summaryrefslogtreecommitdiff
path: root/3864
diff options
context:
space:
mode:
Diffstat (limited to '3864')
-rw-r--r--3864/CH10/EX10.1/Ex10_1.sce61
-rw-r--r--3864/CH10/EX10.2/Ex10_2.sce50
-rw-r--r--3864/CH10/EX10.3/Ex10_3.sce67
-rw-r--r--3864/CH2/EX2.1/Ex2_1.sce21
-rw-r--r--3864/CH2/EX2.11/Ex2_11.sce26
-rw-r--r--3864/CH2/EX2.12/Ex2_12.sce29
-rw-r--r--3864/CH2/EX2.14/Ex2_14.sce51
-rw-r--r--3864/CH2/EX2.15/Ex2_15.sce71
-rw-r--r--3864/CH2/EX2.2/Ex2_2.sce19
-rw-r--r--3864/CH2/EX2.20/Ex2_20.sce56
-rw-r--r--3864/CH2/EX2.21/Ex2_21.sce52
-rw-r--r--3864/CH2/EX2.22/Ex2_22.sce39
-rw-r--r--3864/CH2/EX2.23/Ex2_23.sce43
-rw-r--r--3864/CH2/EX2.24/Ex2_24.sce39
-rw-r--r--3864/CH2/EX2.25/Ex2_25.sce56
-rw-r--r--3864/CH2/EX2.26/Ex2_26.sce38
-rw-r--r--3864/CH2/EX2.27/Ex2_27.sce42
-rw-r--r--3864/CH2/EX2.28/Ex2_28.sce29
-rw-r--r--3864/CH2/EX2.3/Ex2_3.sce25
-rw-r--r--3864/CH2/EX2.30/Ex2_30.sce35
-rw-r--r--3864/CH2/EX2.31/Ex2_31.sce26
-rw-r--r--3864/CH2/EX2.33/Ex2_33.sce50
-rw-r--r--3864/CH2/EX2.34/Ex2_34.sce45
-rw-r--r--3864/CH2/EX2.35/Ex2_35.sce72
-rw-r--r--3864/CH2/EX2.36/Ex2_36.sce36
-rw-r--r--3864/CH2/EX2.37/Ex2_37.sce36
-rw-r--r--3864/CH2/EX2.38/Ex2_38.sce38
-rw-r--r--3864/CH2/EX2.39/Ex2_39.sce36
-rw-r--r--3864/CH2/EX2.4/Ex2_4.sce39
-rw-r--r--3864/CH2/EX2.41/Ex2_41.sce21
-rw-r--r--3864/CH2/EX2.42/Ex2_42.sce20
-rw-r--r--3864/CH2/EX2.43/Ex2_43.sce82
-rw-r--r--3864/CH2/EX2.44/Ex2_44.sce32
-rw-r--r--3864/CH2/EX2.45/Ex2_45.sce66
-rw-r--r--3864/CH2/EX2.46/Ex2_46.sce34
-rw-r--r--3864/CH2/EX2.47/Ex2_47.sce44
-rw-r--r--3864/CH2/EX2.48/Ex2_48.sce35
-rw-r--r--3864/CH2/EX2.49/Ex2_49.sce63
-rw-r--r--3864/CH2/EX2.6/Ex2_6.sce21
-rw-r--r--3864/CH2/EX2.7/Ex2_7.sce27
-rw-r--r--3864/CH2/EX2.8/Ex2_8.sce25
-rw-r--r--3864/CH4/EX4.1/Ex4_1.sce47
-rw-r--r--3864/CH4/EX4.10/Ex4_10.sce53
-rw-r--r--3864/CH4/EX4.12/Ex4_12.sce43
-rw-r--r--3864/CH4/EX4.13/Ex4_13.sce41
-rw-r--r--3864/CH4/EX4.14/Ex4_14.sce53
-rw-r--r--3864/CH4/EX4.15/Ex4_15.sce33
-rw-r--r--3864/CH4/EX4.17/Ex4_17.sce54
-rw-r--r--3864/CH4/EX4.18/Ex4_18.sce36
-rw-r--r--3864/CH4/EX4.19/Ex4_19.sce30
-rw-r--r--3864/CH4/EX4.2/Ex4_2.sce35
-rw-r--r--3864/CH4/EX4.20/Ex4_20.sce48
-rw-r--r--3864/CH4/EX4.21/Ex4_21.sce40
-rw-r--r--3864/CH4/EX4.22/Ex4_22.sce38
-rw-r--r--3864/CH4/EX4.24/Ex4_24.sce40
-rw-r--r--3864/CH4/EX4.4/Ex4_4.sce52
-rw-r--r--3864/CH4/EX4.5/Ex4_5.sce49
-rw-r--r--3864/CH4/EX4.6/Ex4_6.sce63
-rw-r--r--3864/CH4/EX4.7/Ex4_7.sce40
-rw-r--r--3864/CH4/EX4.8/Ex4_8.sce65
-rw-r--r--3864/CH4/EX4.9/Ex4_9.sce48
-rw-r--r--3864/CH5/EX5.11/Ex5_11.sce55
-rw-r--r--3864/CH5/EX5.12/Ex5_12.sce87
-rw-r--r--3864/CH5/EX5.14/Ex5_14.sce62
-rw-r--r--3864/CH5/EX5.16/Ex5_16.sce60
-rw-r--r--3864/CH5/EX5.18/Ex5_18.sce72
-rw-r--r--3864/CH5/EX5.2/Ex5_2.sce26
-rw-r--r--3864/CH5/EX5.4/Ex5_4.sce27
-rw-r--r--3864/CH6/EX6.1/Ex6_1.sce25
-rw-r--r--3864/CH6/EX6.11/Ex6_11.sce45
-rw-r--r--3864/CH6/EX6.12/Ex6_12.sce43
-rw-r--r--3864/CH6/EX6.13/Ex6_13.sce36
-rw-r--r--3864/CH6/EX6.14/Ex6_14.sce40
-rw-r--r--3864/CH6/EX6.15/Ex6_15.sce55
-rw-r--r--3864/CH6/EX6.16/Ex6_16.sce52
-rw-r--r--3864/CH6/EX6.17/Ex6_17.sce45
-rw-r--r--3864/CH6/EX6.18/Ex6_18.sce39
-rw-r--r--3864/CH6/EX6.2/Ex6_2.sce26
-rw-r--r--3864/CH6/EX6.20/Ex6_20.sce31
-rw-r--r--3864/CH6/EX6.21/Ex6_21.sce29
-rw-r--r--3864/CH6/EX6.22/Ex6_22.sce32
-rw-r--r--3864/CH6/EX6.23/Ex6_23.sce35
-rw-r--r--3864/CH6/EX6.24/Ex6_24.sce30
-rw-r--r--3864/CH6/EX6.25/Ex6_25.sce27
-rw-r--r--3864/CH6/EX6.26/Ex6_26.sce36
-rw-r--r--3864/CH6/EX6.3/Ex6_3.sce27
-rw-r--r--3864/CH6/EX6.4/Ex6_4.sce28
-rw-r--r--3864/CH6/EX6.5/Ex6_5.sce26
-rw-r--r--3864/CH6/EX6.6/Ex6_6.sce30
-rw-r--r--3864/CH6/EX6.7/Ex6_7.sce33
-rw-r--r--3864/CH6/EX6.8/Ex6_8.sce64
-rw-r--r--3864/CH7/EX7.1/Ex7_1.sce35
-rw-r--r--3864/CH7/EX7.12/Ex7_12.sce30
-rw-r--r--3864/CH7/EX7.14/Ex7_14.sce40
-rw-r--r--3864/CH7/EX7.16/Ex7_16.sce54
-rw-r--r--3864/CH7/EX7.18/Ex7_18.sce26
-rw-r--r--3864/CH7/EX7.19/Ex7_19.sce64
-rw-r--r--3864/CH7/EX7.2/Ex7_2.sce29
-rw-r--r--3864/CH7/EX7.20/Ex7_20.sce49
-rw-r--r--3864/CH7/EX7.21/Ex7_21.sce59
-rw-r--r--3864/CH7/EX7.22/Ex7_22.sce39
-rw-r--r--3864/CH7/EX7.23/Ex7_23.sce47
-rw-r--r--3864/CH7/EX7.4/Ex7_4.sce29
-rw-r--r--3864/CH7/EX7.7/Ex7_7.sce32
-rw-r--r--3864/CH7/EX7.9/Ex7_9.sce42
-rw-r--r--3864/CH8/EX8.1/Ex8_1.sce50
-rw-r--r--3864/CH8/EX8.11/Ex8_11.sce64
-rw-r--r--3864/CH8/EX8.12/Ex8_12.sce43
-rw-r--r--3864/CH8/EX8.13/Ex8_13.sce41
-rw-r--r--3864/CH8/EX8.14/Ex8_14.sce73
-rw-r--r--3864/CH8/EX8.16/Ex8_16.sce62
-rw-r--r--3864/CH8/EX8.17/Ex8_17.sce92
-rw-r--r--3864/CH8/EX8.2/Ex8_2.sce61
-rw-r--r--3864/CH8/EX8.3/Ex8_3.sce23
-rw-r--r--3864/CH8/EX8.4/Ex8_4.sce26
-rw-r--r--3864/CH8/EX8.5/Ex8_5.sce23
-rw-r--r--3864/CH8/EX8.6/Ex8_6.sce53
-rw-r--r--3864/CH8/EX8.7/Ex8_7.sce30
-rw-r--r--3864/CH8/EX8.8/Ex8_8.sce18
-rw-r--r--3864/CH8/EX8.9/Ex8_9.sce38
-rw-r--r--3864/CH9/EX9.1/Ex9_1.sce23
-rw-r--r--3864/CH9/EX9.10/Ex9_10.sce51
-rw-r--r--3864/CH9/EX9.11/Ex9_11.sce31
-rw-r--r--3864/CH9/EX9.2/Ex9_2.sce54
-rw-r--r--3864/CH9/EX9.3/Ex9_3.sce37
-rw-r--r--3864/CH9/EX9.4/Ex9_4.sce43
-rw-r--r--3864/CH9/EX9.5/Ex9_5.sce42
-rw-r--r--3864/CH9/EX9.6/Ex9_6.sce59
-rw-r--r--3864/CH9/EX9.7/Ex9_7.sce65
-rw-r--r--3864/CH9/EX9.8/Ex9_8.sce45
-rw-r--r--3864/CH9/EX9.9/Ex9_9.sce30
131 files changed, 5580 insertions, 0 deletions
diff --git a/3864/CH10/EX10.1/Ex10_1.sce b/3864/CH10/EX10.1/Ex10_1.sce
new file mode 100644
index 000000000..b17b14525
--- /dev/null
+++ b/3864/CH10/EX10.1/Ex10_1.sce
@@ -0,0 +1,61 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+P_e=300 //N/mm**2 //Elastic Limit in tension
+FOS=3 //Factor of safety
+mu=0.3 //Poissons ratio
+P=12*10**3 //N Pull
+Q=6*10**3 //N //Shear force
+
+//Calculations
+
+//Let d be the diameter of the shaft
+
+//Direct stress
+//P_x=P*(%pi*4**-1*d**3)**-1
+//After substituting values and further simplifying we get
+//P_x=48*10**3
+
+//Now shear stress at the centre of bolt
+//q=4*3**-1*q_av
+//After substituting values and further simplifying we get
+//q=32*10**3*(%pi*d**2)**-1
+
+//Principal stresses are
+//P1=P_x*2**-1+((P_x*2**-1)**2+q**2)**0.5
+//After substituting values and further simplifying we get
+//p1=20371.833*(d**2)**-1
+
+//P2=P_x*2**-1-((P_x*2**-1)**2+q**2)**0.5
+//After substituting values and further simplifying we get
+//P2=-5092.984*(d**2)**-1
+
+//q_max=((P_x*2**-1)**2+q**2)**0.5
+
+//From Max Principal stress theory
+//Permissible stress in Tension
+P1=100 //N/mm**2
+d=(20371.833*P1**-1)**0.5
+
+//Max strain theory
+//e_max=P1*E**-1-mu*P2*E**-1
+//After substituting values and further simplifying we get
+//e_max=21899.728*(d**2*E)**-1
+
+//According to this theory,the design condition is
+//e_max=P_e*(E*FOS)**-1
+//After substituting values and further simplifying we get
+d2=(21899.728*3*300**-1)**0.5 //mm
+
+//Max shear stress theory
+//e_max=shear stress at elastic*(FOS)**-1
+//After substituting values and further simplifying we get
+d3=(12732.421*6*300**-1)**0.5 //mm
+
+//Result
+printf("\n Diameter of Bolt by:Max Principal stress theory %0.2f mm",d)
+printf("\n :Max strain theory %0.2f mm",d2)
+printf("\n :Max shear stress theory %0.2f mm",d3)
diff --git a/3864/CH10/EX10.2/Ex10_2.sce b/3864/CH10/EX10.2/Ex10_2.sce
new file mode 100644
index 000000000..81c9db7dd
--- /dev/null
+++ b/3864/CH10/EX10.2/Ex10_2.sce
@@ -0,0 +1,50 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+M=40*10**6 //N-mm //Bending moment
+T=10*10**6 //N-mm //TOrque
+mu=0.25 //Poissons ratio
+P_e=200 //N/mm**2 //Stress at Elastic Limit
+FOS=2
+
+//Calculations
+
+//Let d be the diameter of the shaft
+
+//Principal stresses are given by
+
+//P1=16*(%pi*d**3)**-1*(M+(M**2+T**2)**0.5)
+//After substituting values and further simplifying we get
+//P1=4.13706*10**8*(d**3)**-1 ............................(1)
+
+//P2=16*(%pi*d**3)**-1*(M-(M**2+T**2)**0.5)
+//After substituting values and further simplifying we get
+//P2=-6269718*(%pi*d**3)**-1 ..............................(2)
+
+//q_max=(P1-P2)*2**-1
+//After substituting values and further simplifying we get
+//q_max=2.09988*10**8*(d**3)**-1
+
+//Max Principal stress theory
+//P1=P_e*(FOS)**-1
+//After substituting values and further simplifying we get
+d=(4.13706*10**8*2*200**-1)**0.33333 //mm
+
+//Max shear stress theory
+//q_max=shear stress at elastic limit*(FOS)**-1
+//After substituting values and further simplifying we get
+d2=(2.09988*10**8*4*200**-1)**0.33333
+
+//Max strain energy theory
+//P_3=0
+//P1**2+P2**2-2*mu*P1*P2=P_e**2*(FOS)**-1
+//After substituting values and further simplifying we get
+d3=(8.62444*10**12)**0.166666
+
+//Result
+printf("\n Diameter of shaft according to:MAx Principal stress theory %0.2f mm",d)
+printf("\n :Max shear stress theory %0.2f mm",d2)
+printf("\n :Max strain energy theory %0.2f mm",d3)
diff --git a/3864/CH10/EX10.3/Ex10_3.sce b/3864/CH10/EX10.3/Ex10_3.sce
new file mode 100644
index 000000000..19a6c0323
--- /dev/null
+++ b/3864/CH10/EX10.3/Ex10_3.sce
@@ -0,0 +1,67 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+f_x=40 //N/mm**2 //Internal Fliud Pressure
+d1=200 //mm //Internal Diameter
+r1=d1*2**-1 //mm //Radius
+q=300 //N/mm**2 //Tensile stress
+
+//Calculations
+
+//From Lame's Equation we have,
+
+//Hoop Stress
+//f_x=b*(x**2)**-1+a ..........................(1)
+
+//Radial Pressure
+//p_x=b*(x**2)**-1-a .........................(2)
+
+//the boundary conditions are
+x=d1*2**-1 //mm
+//After sub values in equation 1 and further simplifying we get
+//40=b*100**-1-a ..........................(3)
+
+//Max Principal stress theory
+//q*(FOS)**-1=b*100**2+a ..................(4)
+//After sub values in above equation and further simplifying we get
+
+//From Equation 3 and 4 we get
+a=80*2**-1
+//Sub value of a in equation 3 we get
+b=(f_x+a)*100**2
+
+//At outer edge where x=r_0 pressure is zero
+r_0=(b*a**-1)**0.5 //mm
+
+//thickness
+t=r_0-r1 //mm
+
+//Max shear stress theory
+P1=b*(100**2)**-1+a //Max hoop stress
+P2=-40 //pressure at int radius (since P2 is compressive)
+
+//Max shear stress
+q_max=(P1-P2)*2**-1
+
+//According max shear theory the design condition is
+//q_max=P_e*2**-1*(FOS)**-1
+//After sub values in equation we get and further simplifying we get
+//80=b*(100**2)**-1+a
+//After sub values in equation 1 and 3 and further simplifying we get
+b2=120*100**2*2**-1
+
+//from equation(3)
+a2=120*2**-1-a
+
+//At outer radius r_0,radial pressure=0
+r_02=(b2*a2**-1)**0.5
+
+//thickness
+t2=r_02-r1
+
+//Result
+printf("\n Thickness of metal by:Max Principal stress theory %0.2f mm",t)
+printf("\n :Max shear stress thoery %0.2f mm",t2)
diff --git a/3864/CH2/EX2.1/Ex2_1.sce b/3864/CH2/EX2.1/Ex2_1.sce
new file mode 100644
index 000000000..573580d97
--- /dev/null
+++ b/3864/CH2/EX2.1/Ex2_1.sce
@@ -0,0 +1,21 @@
+clear
+//
+//
+
+//Initilization of Variables
+P=45*10**3 //N //Load
+E=200*10**3 //N/mm**2 //Modulus of elasticity of rod
+L=500 //mm //Length of rod
+d=20 //mm //Diameter of rod
+
+//Calculations
+
+A=%pi*d**2*4**-1 //mm**2 //Area of circular rod
+p=P*A**-1 //N/mm**2 //stress
+e=p*E**-1 //strain
+dell_l=(P*L)*(A*E)**-1
+
+//Result
+printf("\n The stress in bar due to Load is %0.5f N/mm",p)
+printf("\n The strain in bar due to Load is %0.5f N/mm",e)
+printf("\n The Elongation in bar due to Load is %0.2f mm",dell_l)
diff --git a/3864/CH2/EX2.11/Ex2_11.sce b/3864/CH2/EX2.11/Ex2_11.sce
new file mode 100644
index 000000000..e3deff5c9
--- /dev/null
+++ b/3864/CH2/EX2.11/Ex2_11.sce
@@ -0,0 +1,26 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+t=10 //mm //Thickness of steel
+b1=60 //mm //width of plate1
+b2=40 //mm //width of plate2
+P=60*10**3 //Load
+L=600 //mm //Length of plate
+E=2*10**5 //N/mm**2
+
+//Calculations
+
+//Extension of taperong bar of rectangular section
+dell_l=P*L*(t*E*(b1-b2))**-1*log(b1*b2**-1)
+
+A_av=(b1*t+b2*t)*2**-1 //Average Area //mm**2
+dell_l2=P*L*(A_av*E)**-1
+
+//PErcentage Error
+e=(dell_l-dell_l2)*(dell_l)**-1*100
+
+//Result
+printf("\n The Percentage Error is %0.2f ",e)
diff --git a/3864/CH2/EX2.12/Ex2_12.sce b/3864/CH2/EX2.12/Ex2_12.sce
new file mode 100644
index 000000000..acb225448
--- /dev/null
+++ b/3864/CH2/EX2.12/Ex2_12.sce
@@ -0,0 +1,29 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+L=1.5 //m //Length of steel bar
+L1=1000 //m0 //Length of steel bar 1
+L2=500 //m //Length of steel bar 2
+d1=40 //Diameter of steel bar 1
+d2=20 //diameter of steel bar 2
+E=2*10**5 //N/mm**2 //Modulus of Elasticity
+P=160*10**3 //N //Load
+
+//Calculations
+
+A1=%pi*4**-1*d1**2 //Area of Portion 1
+
+//Extension of uniform Portion 1
+dell_l1=P*L1*(A1*E)**-1 //mm
+
+//Extension of uniform Portion 2
+dell_l2=4*P*L2*(%pi*d1*d2*E)**-1 //mm
+
+//Total Extension of Bar
+dell_l=dell_l1+dell_l2
+
+//Result
+printf("\n The Elongation of the Bar is %0.2f mm",dell_l)
diff --git a/3864/CH2/EX2.14/Ex2_14.sce b/3864/CH2/EX2.14/Ex2_14.sce
new file mode 100644
index 000000000..b654e813d
--- /dev/null
+++ b/3864/CH2/EX2.14/Ex2_14.sce
@@ -0,0 +1,51 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+//Portion AB
+L_AB=600 //mm //Length of AB
+A_AB=40*40 //mm**2 //Cross-section Area of AB
+
+//Portion BC
+L_BC=800 //mm //Length of BC
+A_BC=30*30 //mm //Length of BC
+
+//Portion CD
+L_CD=1000 //mm //Length of CD
+A_CD=20*20 //mm //Area of CD
+
+P1=80*10**3 //N //Load1
+P2=60*10**3 //N //Load2
+P3=40*10**3 //N //Load3
+
+E=2*10**5 //Modulus of Elasticity
+
+//Calculations
+
+P4=P1-P2+P3 //Load4
+
+//Now Force in AB
+F_AB=P1
+
+//Force in BC
+F_BC=P1-P2
+
+//Force in CD
+F_CD=P4
+
+//Extension of AB
+dell_l_AB=F_AB*L_AB*(A_AB*E)**-1
+
+//Extension of BC
+dell_l_BC=F_BC*L_BC*(A_BC*E)**-1
+
+//Extension of CD
+dell_l_CD=F_CD*L_CD*(A_CD*E)**-1
+
+//Total Extension
+dell_l=dell_l_AB+dell_l_BC+dell_l_CD
+
+//Result
+printf("\n The Total Extension in Bar is %0.2f mm",dell_l)
diff --git a/3864/CH2/EX2.15/Ex2_15.sce b/3864/CH2/EX2.15/Ex2_15.sce
new file mode 100644
index 000000000..e93ab1cf5
--- /dev/null
+++ b/3864/CH2/EX2.15/Ex2_15.sce
@@ -0,0 +1,71 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+L=800 //mm //Length of bar
+F1=30*10**3 //N //Force acting on the bar
+F2=60*10**3 //N //force acting on the bar
+L=800 //mm //Length of bar
+d=25 //mm //diameter of bar
+L_AC=275 //mm //Length of AC
+L_CD=150 //mm //Length of CD
+L_DB=375 //mm //Length of DB
+E=2*10**5 //Pa //Modulus of elasticity
+
+//Calculations
+
+//Let P be the Reaction on tne Bar from support at A
+
+//Shortening of Portion AC
+//dell_l_AC1=P*L_AC*(A*E)**-1
+
+//Shortening of Portion CD
+//dell_l_CD1=(30+P)*L_CD*(A*E)**-1
+
+//Extension of Portion DB
+//dell_l_DB1=(30-P)*L_DB*(A*E)**-1
+
+//Total Extensions=1*(A*E)**-1*(P*L_AC-(30+P)*L_CD+(30-P)*L_DB)
+//As Supports are unyielding,Total Extensions=0
+
+//After substituting values in above equation and Further simplifying we get
+P=(30*375-150*30)*800**-1
+
+//Reaction of support A
+R_A=P
+
+//Reaction of support B
+R_B=30-P
+
+//Cross-sectional Area
+A=%pi*4**-1*d**2
+
+//Stress in Portion AC
+sigma1=P*10**3*A**-1 //N/mm**2
+
+//Stress in Portion CD
+sigma2=(30+P)*10**3*A**-1 //N/mm**2
+
+//Stress in Portion DB
+sigma3=(30-P)*10**3*A**-1 //N/mm**2
+
+//Shortening of Portion AC
+dell_l_AC2=P*10**3*L_AC*(A*E)**-1 //mm
+
+//Shortening of Portion CD
+dell_l_CD2=(30+P)*10**3*L_CD*(A*E)**-1 //mm
+
+//Extension of Portion DB
+dell_l_DB2=(30-P)*10**3*L_DB*(A*E)**-1 //mm
+
+//result
+printf("\n The Reactios at two Ends are:R_A %0.2f KN",R_A)
+printf("\n :R_B %0.2f KN",R_B)
+printf("\n Stress in Portion AC %0.2f N/mm**2",sigma1)
+printf("\n Stress in Portion CD %0.2f N/mm**2",sigma2)
+printf("\n Stress in Portion DB %0.2f N/mm**2",sigma3)
+printf("\n Shortening of Portion AC %0.3f mm",dell_l_AC2)
+printf("\n Shortening of Portion CD %0.3f mm",dell_l_CD2)
+printf("\n Shortening of Portion DB %0.3f mm",dell_l_DB2)
diff --git a/3864/CH2/EX2.2/Ex2_2.sce b/3864/CH2/EX2.2/Ex2_2.sce
new file mode 100644
index 000000000..b255a81fa
--- /dev/null
+++ b/3864/CH2/EX2.2/Ex2_2.sce
@@ -0,0 +1,19 @@
+clear
+//
+
+//Initilization of Variables
+
+A=15*0.75 //mm**2 //area of steel tape
+P=100 //N //Force apllied
+L=30*10**3 //mm //Length of tape
+E=200*10**3 //N/m**2 //Modulus of Elasticity of steel tape
+AB=150 //m //Measurement of Line AB
+
+//Calculations
+
+dell_l=P*L*(A*E)**-1 //mm //Elongation
+l=L+dell_l*10**-3 //mm //Actual Length
+AB1=AB*l*L**-1 //m Actual Length of AB
+
+//Result
+printf("\n The Actual Length of Line AB is %0.2f m",AB1)
diff --git a/3864/CH2/EX2.20/Ex2_20.sce b/3864/CH2/EX2.20/Ex2_20.sce
new file mode 100644
index 000000000..9d5785310
--- /dev/null
+++ b/3864/CH2/EX2.20/Ex2_20.sce
@@ -0,0 +1,56 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+sigma=150 //N/mm**2 //Stress
+P=40*10**3 //N //Load
+
+//Calculations
+
+//LEt P_A.P_B,P_C,P_D be the forces developed in wires A,B,C,D respectively
+
+//Let sum of all Vertical Forces=0
+//P_A+P_B+P_C+P_D=40 ..........................(1)
+
+//Let x be the distance between each wires
+//sum of all moments=0
+//P_B*x+P_C*2*x+P_D*3*x=40*2*x
+
+//After further simplifying we get
+//P_B+2*P_C+3*P_D=80 ..........................(2)
+
+//As the equations of statics ae not enough to find unknowns,Consider compatibilit Equations
+
+//Let dell_l be the increse in elongation of wire
+
+//dell_l_B=dell_l_A+dell_l
+//dell_l_C=dell_l_A+2*dell_l
+//dell_l_D=dell_l_A+3*dell_l
+
+//Let P1 be the force required for the Elongation of wires,then
+//P_B=P_A+P1 ]
+//P_C=P_A+2*P1 ]
+//P_D=P_A+3*P1 ] ................................(3)
+
+//from Equation (3) and (1) we get
+//2*P_A+3*P1=20 ................................(4)
+
+//from Equation (3) and (2) we get
+//6*P_A+14*P1=80
+
+//subtracting 3 times equation (4) from (3) we get
+P1=20*5**-1
+
+//from Equation 4 we get
+P_A=(80-14*P1)*6**-1
+P_B=P_A+P1
+P_C=P_A+2*P1
+P_D=P_A+3*P1
+
+//Let d be the diameter required,then
+d=(P_D*10**3*4*(%pi*150)**-1)**0.5
+
+//result
+printf("\n The Required Diameter is %0.2f mm",d)
diff --git a/3864/CH2/EX2.21/Ex2_21.sce b/3864/CH2/EX2.21/Ex2_21.sce
new file mode 100644
index 000000000..678fe0d54
--- /dev/null
+++ b/3864/CH2/EX2.21/Ex2_21.sce
@@ -0,0 +1,52 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+P=20*10**3 //N //Load
+d=6 //mm //diameter of wire
+E=2*10**5 //N/mm**2
+L_BO=4000 //mm //Length of BO
+
+//Calculations
+
+//Let theta be the angle between OA and OB and also between OC and OB
+theta=30
+
+//Let P_OA,P_OB,P_OC be the Forces introduced in wires OA,OB,OC respectively
+//Due to symmetry P_OA=P_OC (same angles)
+
+//Sum of all Vertical Forces=0
+//P_OA*cos(theta)+P_OB+P_OC*cos(theta)=P
+
+//After further simplifyinf we get
+//2*P_OA*cos(theta)+P_OB=20 ...............(1)
+
+//Let oo1 be the extension of BO
+//oo1=L_A1o1*(cos(theta))**-1
+
+//From relation we get
+//P_OB*L_BO=P_OA*L_AO*(cos(theta))**-1
+
+//But L_AO=L_BO*(cos(theta))**-1
+
+//After substituting value of L_AO in above equation we get
+//P_OB=0.75*P_OA .......................(2)
+
+//substituting in Equation 1 we get
+//2*P_OA*cos(theta)+0.75*P_OA=20
+
+P_OA=20*(2*cos(theta*%pi*180**-1)+0.75)**-1
+
+P_OB=0.75*P_OA
+
+A=%pi*4**-1*d**2
+
+//Vertical displacement of Load
+dell_l_BO=P_OB*10**3*L_BO*(A*E)**-1
+
+//Result
+printf("\n Forces in each wire is:P_OA %0.2f KN",P_OA)
+printf("\n :P_OB %0.2f KN",P_OB)
+printf("\n Vertical displacement of Loadis %0.2f mm",dell_l_BO)
diff --git a/3864/CH2/EX2.22/Ex2_22.sce b/3864/CH2/EX2.22/Ex2_22.sce
new file mode 100644
index 000000000..0949e768e
--- /dev/null
+++ b/3864/CH2/EX2.22/Ex2_22.sce
@@ -0,0 +1,39 @@
+clear
+//
+
+//Initilization of Variables
+
+A_a=50*20 //mm //Area of aluminium strip
+A_s=50*15 //mm //Area of steel strip
+P=50*10**3 //N //Load
+E_a=1*10**5 //N/mm**2 //Modulus of aluminium
+E_s=2*10**5 //N/mm**2 //Modulus of steel
+
+//Calculations
+
+//Let P_a and P_s br the Load shared by aluminium and steel strip
+//P_a+P_s=P ..................(1)
+
+//For compatibility condition,dell_l_a=dell_l_s
+//P_a*L_a*(A_a*E_a)**-1=P_s*L_s*(A_s*E_s)**-1 .....(2)
+
+//As L_a=L_s we get
+//P_s=1.5*P_a .................(3)
+
+//From Equation 1 and 2 we get
+P_a=P*2.5**-1
+
+//Substituting in equation 1 we get
+P_s=P-P_a
+
+//stress in aluminium strip
+sigma_a=P_a*A_a**-1
+
+//stress in steel strip
+sigma_s=P_s*A_s**-1
+
+//Now from the relation we get
+
+//result
+printf("\n Stress in Aluminium strip is %0.2f N/mm**2",sigma_a)
+printf("\n Stress in steel strip is %0.2f N/mm**2",sigma_s)
diff --git a/3864/CH2/EX2.23/Ex2_23.sce b/3864/CH2/EX2.23/Ex2_23.sce
new file mode 100644
index 000000000..b1ee4ddd9
--- /dev/null
+++ b/3864/CH2/EX2.23/Ex2_23.sce
@@ -0,0 +1,43 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+D_s=20 //mm //Diameter of steel
+D_Ci=20 //mm //Internal Diameter of Copper
+t=5 //mm //THickness of copper bar
+P=100*10**3 //N //Load
+E_s=2*10**5 //N/mm**2 //modulus of elasticity of steel
+E_c=1.2*10**5 //N/mm**2 //Modulus of Elasticity of Copper
+
+//Calculations
+
+A_s=%pi*4**-1*D_s**2 //mm**2 //Area of steel
+D_Ce=D_s+2*t //mm //External Diameterof Copper Tube
+
+A_c=%pi*4**-1*(D_Ce**2-D_Ci**2) //mm**2 //Area of Copper
+
+//From static Equilibrium condition
+//Let P_s and P_c be the Load shared by steel and copper in KN
+//P_s+P_c=100 ....................................(1)
+
+//From compatibility Equation,dell_l_s=dell_l_c
+//P_s*L*(A_s*E_s)**-1=P_c*L*(A_c*E_c)**-1
+
+//Substituting values in above Equation we get
+//P_s=1.3333*P_C
+
+//Now Substituting value of P_s in Equation (1),we get
+P_c=100*2.3333**-1 //KN
+P_s=100-P_c //KN
+
+//Stress in steel
+sigma_s=P_s*10**3*A_s**-1 //N/mm**2
+
+//Stress in copper
+sigma_c=P_c*10**3*A_c**-1 //N/mm**2
+
+//Result
+printf("\n Stresses Developed in Two material are:sigma_s %0.2f N/mm**2",sigma_s)
+printf("\n :sigma_c %0.2f N/mm**2",sigma_c)
diff --git a/3864/CH2/EX2.24/Ex2_24.sce b/3864/CH2/EX2.24/Ex2_24.sce
new file mode 100644
index 000000000..b75582839
--- /dev/null
+++ b/3864/CH2/EX2.24/Ex2_24.sce
@@ -0,0 +1,39 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+A_C=230*400 //mm //Area of column
+D_s=12 //mm //Diameter of steel Bar
+P=600*10**3 //N //Axial compression
+//E_s*E_c=18.67
+n=8 //number of steel Bars
+
+//Calculations
+
+A_s=%pi*4**-1*D_s**2*n //Area of steel //mm**2
+A_c=A_C-A_s //mm**2 //Area of concrete
+
+//From static Equilibrium condition
+//P_s+P_c=600 .........(1)
+
+//Now from compatibility Equation dell_l_s=dell_l_c we get,
+//P_s*L*(A_s*E_s)**-1=P_c*L*(A_c*E_c)**-1
+
+//Substituting values in above Equation we get
+//P_s=0.1854*P_c
+
+//Now Substituting value of P_s in Equation (1),we get
+P_c=600*1.1854**-1
+P_s=600-P_c
+
+//Stress in steel
+sigma_s=P_s*10**3*A_s**-1 //N/mm**2
+
+//Stress in copper
+sigma_c=P_c*10**3*A_c**-1 //N/mm**2
+
+//Result
+printf("\n Stresses Developed in Two material are:sigma_s %0.2f N/mm**2",sigma_s)
+printf("\n :sigma_c %0.2f N/mm**2",sigma_c)
diff --git a/3864/CH2/EX2.25/Ex2_25.sce b/3864/CH2/EX2.25/Ex2_25.sce
new file mode 100644
index 000000000..8b3b0923d
--- /dev/null
+++ b/3864/CH2/EX2.25/Ex2_25.sce
@@ -0,0 +1,56 @@
+clear
+//
+
+//Initilization of Variables
+
+P=200*10**3 //N //Load
+A_a=1000 //mm**2 //Area of Aluminium
+A_s=800 //mm**2 //Area of steel
+E_a=1*10**5 //N/mm**2 //Modulus of Elasticity of Aluminium
+E_s=2*10**5 //N/mm**2 //Modulus of ELasticity of steel
+sigma_a1=65 //N/mm**2 //stress in aluminium
+sigma_s1=150 //N/mm**2 //Stress in steel
+
+//Calculations
+
+//Let P_a and P_s be the force in aluminium and steel pillar respectively
+
+//Now,sum of forces in Vertical direction we get
+//2*P_a+P_s=200 .........................................(1)
+
+//By compatibility Equation dell_l_s=dell_l_a we get
+//P_s=1.28*P_a ..........................................(2)
+
+//Now substituting value of P_s in Equation 1 we get
+P_a=200*3.28**-1 //KN
+P_s=200-2*P_a //KN
+
+//Stress developed in aluminium
+sigma_a=P_a*10**3*A_a**-1 //N/mm**2
+
+//Stress developed in steel
+sigma_s=P_s*10**3*A_s**-1 //N/mm**2
+
+//Part-2
+
+//Let sigma_a1 and sigma_s1 be the stresses in Aluminium and steel due to Additional LOad
+
+P_a1=sigma_a1*A_a //Load carrying capacity of aluminium
+P_s1=1.28*P_a1
+
+//Total Load carrying capacity
+P1=2*P_a1+P_s1 //N
+
+P_s2=sigma_s1*A_s //Load carrying capacity of steel
+P_a2=P_s2*1.28**-1
+
+//Total Load carrying capacity
+P2=2*P_a2+P_s2
+
+//Additional Load
+P3=P1-P
+
+//Result
+printf("\n Stresses Developed in Each Pillar is:sigma_a %0.2f N/mm**2",sigma_a)
+printf("\n :sigma_s %0.2f N/mm**2",sigma_s)
+printf("\n Additional Load taken by pillars is %0.2f N",P3)
diff --git a/3864/CH2/EX2.26/Ex2_26.sce b/3864/CH2/EX2.26/Ex2_26.sce
new file mode 100644
index 000000000..448652caf
--- /dev/null
+++ b/3864/CH2/EX2.26/Ex2_26.sce
@@ -0,0 +1,38 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+L=500 //mm //Length of assembly
+D=16 //mm //Diameter of steel bolt
+Di=20 //mm //internal Diameter of copper tube
+Do=30 //mm //External Diameter of copper tube
+E_s=2*10**5 //N/mm**2 //Modulus of Elasticity of steel
+E_c=1.2*10**5 //N/mm**2 //Modulus of Elasticity of copper
+p=2 //mm //Pitch of nut
+
+//Calculations
+
+//Let P_s be the Force in bolt and P_c be the FOrce in copper tube
+//P_s=-P_s
+
+dell=1*4**-1*2 //Quarter turn of nut total movement
+
+//dell=dell_s+dell_c
+
+//Area of steel
+A_s=%pi*4**-1*D**2
+
+//Area of copper
+A_c=%pi*4**-1*(Do**2-Di**2)
+
+//dell=P*L*(A_s*E_s)**-1+P*L*(A_c*E_c)**-1
+P=dell*(1*(A_s*E_s)**-1+1*(A_c*E_c)**-1)**-1*L**-1 //LOad
+
+P_s=P*A_s**-1
+P_c=P*A_c**-1
+
+//result
+printf("\n stress introduced in bolt is %0.2f N/mm**2",P_s)
+printf("\n stress introduced in tube is %0.2f N/mm**2",P_c)
diff --git a/3864/CH2/EX2.27/Ex2_27.sce b/3864/CH2/EX2.27/Ex2_27.sce
new file mode 100644
index 000000000..d02f8430d
--- /dev/null
+++ b/3864/CH2/EX2.27/Ex2_27.sce
@@ -0,0 +1,42 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+D=20 //mm //Diameter of Bolts
+Di=25 //m //internal Diameter
+t=10 //mm //Thickness of bolt
+E_s=2*10**5 //N/mm**2 //Modulus of Elasticity
+E_c=1.2*10**5 //N/mm**2 //Modulus of copper
+p=3 //mm //Pitch
+theta=30 //degree
+L_c=500 //Lengh of copper
+L_s=600 //Length of steel
+
+//Calculations
+
+//Let P_s be the Force in each bolt and P_c be the FOrce in copper tube
+//From Static Equilibrium condition
+//P_c=2*P_s
+
+//As nut moves by 60 degree.If nut moves by 360 degree its Longitudinal movement is by 3 mm
+dell=theta*360**-1*p
+
+//From Compatibility Equaton we get
+//dell=dell_c+dell_s
+
+
+A_s=%pi*4**-1*Di**2 //mm**2 //Area of steel
+A_c=%pi*4**-1*(45**2-Di**2) //mm**2 //Area of copper
+
+//Force introduced in steel
+P_s=0.5*(2*L_c*(A_c*E_c)**-1+L_s*(A_s*E_s)**-1)**-1 //N
+P_s2=P_s*A_s**-1
+
+//Force introduced in copper
+P_c=2*P_s*A_c**-1 //N
+
+//Result
+printf("\n Stress introduced in bolt is %0.2f N/mm**2",P_s2)
+printf("\n stress introduced in tube is %0.2f N/mm**2",P_c)
diff --git a/3864/CH2/EX2.28/Ex2_28.sce b/3864/CH2/EX2.28/Ex2_28.sce
new file mode 100644
index 000000000..a89771447
--- /dev/null
+++ b/3864/CH2/EX2.28/Ex2_28.sce
@@ -0,0 +1,29 @@
+clear
+//
+
+//Initilization of Variables
+
+L=9 //m //Length of rigid bar
+L_b=3000 //Length of bar
+A_b=1000 //mm**2 //Area of bar
+E_b=1*10**5 //N/mm**2 //Modulus of Elasticity of brasss bar
+L_s=5000 //mm //Length of steel bar
+A_s=445 //mm**2 //Area of steel bar
+E_s=2*10**5 //N/mm**2 //Modulus of elasticity of steel bar
+P=3000 //N //Load
+
+//Calculations
+
+//From static equilibrium Equation of the rod after appliying Load is
+//P_b+P_s=P ......................(1)
+
+//P_b=1.8727*P_s ..................(2)
+
+//NOw substituting equation 2 in equation 1 we get
+P_s=P*2.8727**-1
+P_b=P-P_s
+
+d=P_s*L*P**-1
+
+//Result
+printf("\n Distance at which Load applied even after which bar remains horizontal is %0.2f m",d)
diff --git a/3864/CH2/EX2.3/Ex2_3.sce b/3864/CH2/EX2.3/Ex2_3.sce
new file mode 100644
index 000000000..9ef330004
--- /dev/null
+++ b/3864/CH2/EX2.3/Ex2_3.sce
@@ -0,0 +1,25 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+//Let y be the yield stress
+
+y=250 //N/mm**2 //yield stress
+FOS=1.75 //Factor of safety
+P=140*10**3 //N //compressive Load
+D=101.6 //mm //External diameter
+
+//Calculations
+
+p=y*(FOS)**-1 //N/mm**2 //Permissible stress
+A=P*p**-1 //mm**2 //Area of hollow tube
+
+//Let d be the internal diameter of tube
+d=-((A*4*(%pi)**-1)-D**2)
+X=d**0.5
+t=(D-X)*2**-1 //mm //Thickness of steel tube
+
+//result
+printf("\n The thickness of steel tube is %0.2f mm",t)
diff --git a/3864/CH2/EX2.30/Ex2_30.sce b/3864/CH2/EX2.30/Ex2_30.sce
new file mode 100644
index 000000000..494f7c86a
--- /dev/null
+++ b/3864/CH2/EX2.30/Ex2_30.sce
@@ -0,0 +1,35 @@
+clear
+//
+
+//Initilization of Variables
+
+L=12.6 //m //Length of rail
+t1=24 //Degree celsius
+t2=44 //degree celsius
+alpha=12*10**-6 //Per degree celsius
+E=2*10**5 //N/mm**2 //Modulus of ELasticity
+gamma=2 //mm //Gap provided for Expansion
+sigma=20 //N/mm**2 //Stress
+
+//Calculations
+
+t=t2-t1 //Temperature Difference
+
+//Free Expansion of the rails
+dell=alpha*t*L*1000 //mm
+
+//When no expansion joint is provided then
+p=dell*E*(L*10**3)**-1
+
+//When a gap of 2 mm is provided,then free expansion prevented is
+dell_1=dell-gamma
+p2=dell_1*E*(L*10**3)**-1
+
+//When stress is developed,then gap left is
+gamma2=-(sigma*L*10**3*E**-1-dell)
+
+//Result
+printf("\n The minimum gap between the two rails is %0.2f mm",dell)
+printf("\n Thermal Developed in the rials if:No expansionn joint is provided:p %0.2f N/mm**2",p)
+printf("\n :If a gap of is provided then :p2 %0.2f N/mm**2",p2)
+printf("\n When stress is developed gap left between the rails is %0.2f mm",gamma2)
diff --git a/3864/CH2/EX2.31/Ex2_31.sce b/3864/CH2/EX2.31/Ex2_31.sce
new file mode 100644
index 000000000..8a95fa359
--- /dev/null
+++ b/3864/CH2/EX2.31/Ex2_31.sce
@@ -0,0 +1,26 @@
+clear
+//
+
+//Initilization of Variables
+
+t=20 //degree celsius
+E_a=70*10**9 //N/mm**2 //Modulus of Elasticicty of aluminium
+alpha_a=11*10**-6 //per degree celsius //Temperature coeff of aluminium
+alpha_s=12*10**-6 //Per degree celsius //Temperature coeff of steel
+L_a=1000 //mm //Length of aluminium
+L_s=3000 //mm //Length of steel
+E_a=7*10**4 //N/mm**2 //Modulus of Elasticity of aluminium
+E_s=2*10**5 //N/mm*2 //Modulus of Elasticity of steel
+A_a=600 //mm**2 //Area of aluminium
+A_s=300 //mm**2 //Area of steel
+
+//Calculations
+
+//Free Expansion
+dell=alpha_a*t*L_a+alpha_s*t*L_s
+
+//support Reaction
+P=dell*(L_a*(A_a*E_a)**-1+L_s*(A_s*E_s)**-1)**-1
+
+//Result
+printf("\n Reaction at support is %0.2f N",P)
diff --git a/3864/CH2/EX2.33/Ex2_33.sce b/3864/CH2/EX2.33/Ex2_33.sce
new file mode 100644
index 000000000..4baa8d7d1
--- /dev/null
+++ b/3864/CH2/EX2.33/Ex2_33.sce
@@ -0,0 +1,50 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+D=25 //mm //Diameter of Brass
+De=50 //mm //External Diameter of steel tube
+Di=25 //mm //Internal Diameter of steel tube
+L=1.5 //m //Length of both bars
+t1=30 //degree celsius //Initial Temperature
+t2=100 //degree celsius //final Temperature
+E_s=2*10**5 //N/mm**2 //Modulus of ELasticity of steel bar
+E_b=1*10**5 //N/mm**2 //Modulus of Elasticity of brass bar
+alpha_s=11.6*10**-6 //Temperature Coeff of steel
+alpha_b=18.7*10**-6 //Temperature coeff of brass bar
+d=20 //mm //diameter of pins
+
+//Calculations
+
+t=t2-t1 //Temperature Difference
+A_s=%pi*4**-1*(De**2-Di**2) //mm**2 //Area of steel
+A_b=%pi*4**-1*D**2 //mm**2 //Area of brass
+
+//Let P_b be the tensile force in brass bar and P_s be the compressive force in steel bar
+//But from Equilibrium of Forces
+//P_b=P_s=P
+
+//Let dell=dell_s+dell_b
+dell=(alpha_b-alpha_s)*t*L*1000
+
+P=dell*(1*(A_s*E_s)**-1+1*(A_b*E_b)**-1)**-1*(L*1000)**-1
+P_b=P
+P_s=P
+//Stress in steel
+sigma_s=P*A_s**-1
+
+//Stress in Brass
+sigma_b=P_b*A_b**-1
+
+//Area of Pins
+A_p=%pi*4**-1*d**2
+
+//Since,the force is resisted by two cross section of pins
+tou=P*(2*A_p)**-1
+
+//Result
+printf("\n Stress in steel bar is %0.2f N/mm**2",sigma_s)
+printf("\n Stress in Brass bar is %0.2f N/mm**2",sigma_b)
+printf("\n Shear Stresss induced in pins is %0.2f N/mm**2",tou)
diff --git a/3864/CH2/EX2.34/Ex2_34.sce b/3864/CH2/EX2.34/Ex2_34.sce
new file mode 100644
index 000000000..9ce4dd115
--- /dev/null
+++ b/3864/CH2/EX2.34/Ex2_34.sce
@@ -0,0 +1,45 @@
+clear
+//
+
+//Initilization of Variables
+
+b_s=60 //mm //width of steel Bar
+t_s=10 //mm //thickness of steel Bar
+b_c=40 //mm //width of copper bar
+t_c=5 //mm //thickness of copper bar
+E_s=2*10**5 //N/mm**2 //Modulus of Elasticity of steel bar
+E_c=1*10**5 //N/mm**2 //Modulus of Elasticity of copper bar
+alpha_s=12*10**-6 //Per degree celsius //Temperature coeff of steel bar
+alpha_c=17*10**-6 //Per degree celsius //Temperature coeff of copper bar
+L=1000 //mm //Length of bar
+L_s=1000 //mm //Length of bar
+t=80 //degree celsius
+
+//Calculations
+
+A_s=b_s*t_s //Area of steel bar
+A_c=b_c*t_c //Area of copper bar
+
+//Let P_s be the tensile force in steel bar and P_c be the compressive force in copper bar
+//The equilibrium of forces gives
+//P_s=2*P_c
+
+//Let dell=dell_s+dell_b
+dell=(alpha_c-alpha_s)*t
+
+P_c=dell*(2*(A_s*E_s)**-1+1*(A_c*E_c)**-1)**-1
+P_s=2*P_c
+
+//Stress in copper
+sigma_c=P_c*A_c**-1
+
+//Stress in steel
+sigma_s=P_s*A_s**-1
+
+//Change in Length of bar
+dell_2=alpha_s*t*L+P_s*L_s*(A_s*E_s)**-1
+
+//result
+printf("\n Stress in copper is %0.2f N/mm**2",sigma_c)
+printf("\n Stress in steel is %0.2f N/mm**2",sigma_s)
+printf("\n the change in Length is %0.2f mm",dell_2)
diff --git a/3864/CH2/EX2.35/Ex2_35.sce b/3864/CH2/EX2.35/Ex2_35.sce
new file mode 100644
index 000000000..66abf1a79
--- /dev/null
+++ b/3864/CH2/EX2.35/Ex2_35.sce
@@ -0,0 +1,72 @@
+clear
+//
+
+//Initilization of Variables
+
+A_c=500 //mm**2 //Area of each rod
+A_s=500
+A=500
+P=2*10**5 //N //Weight
+L=1 //m //Length of each rod
+t=40 //degree celsius //temperature
+E_s=2*10**5 //N/mm**2 //Modulus of Elasticity of steel rod
+E_c=1*10**5 //N/mm**2 //modulus of Elastictiy of copper rod
+alpha_s=1.2*10**-5 //Per degree Celsius //temp coeff of steel rod
+alpha_c=1.8*10**-5 //Per degree Celsius //Temp coeff of copper rod
+
+//Calculations
+
+//Let P_s be the force in each one of the copper rods and P_s be the force in steel rod
+//2*P_c+P_s=P .....................(1)
+
+//Extension of copper bar=Extension of steel bar
+//P_s*L*(A_s*E_s)**-1=P_c*L*(A_c*E_c)**-1
+//after simplifying above equation we get
+//P_s=2*P_c ........................(2)
+
+//Now substituting value of P_s in Equation 1 we get
+P_c=P*4**-1
+P_s=2*P_c
+
+//Now EXtension due to copper Load
+dell_1=P_c*L*1000*(A_c*E_c)**-1
+
+//Part-2
+
+//Due to rise of temperature of40 degree celsius
+
+//As bars are rigidly joined,let P_c1 be the compressive forccesdeveloped in copper bar and P_s1 be the tensile force in steel causing changes
+//P_s1=2*P_c1
+
+//dell_s+dell_c=(alpha_c-alpha_s)*t*L .......................................(3)
+//P_s1*L*(A_s*E_s)**-1+P_c1*L*(A_c*E_c)**-1=(alpha_c-alpha_s)*t*L ................(4)
+//After substituting values in above equation and further simplifying we get,
+P_c1=(alpha_c-alpha_s)*t*L*(2*(A_s*E_s)**-1+1*(A_c*E_c)**-1)**-1 //.................(5)
+P_s1=2*P_c1
+
+//Extension of bar due to temperature rise
+dell_2=alpha_s*t*L+P_s1*L*(A_s*E_s)**-1
+
+//Amount by which bar will descend
+dell_3=dell_1+dell_2
+
+//Load carried by steel bar
+P_S=P_s+P_s1
+
+//Load carried by copper bar
+P_C=P_c-P_c1
+
+//Part-3
+
+//Let P_c1_1=P_c //For convenience
+//Rise in temperature if Load is to be carried out by steel rod alone
+P_c1_1=P_c
+
+//From equation 5
+t=P_c1_1*(2*(A_s*E_s)**-1+1*(A_c*E_c)**-1)*(alpha_c-alpha_s)**-1
+
+//result
+printf("\n Extension Due top copper Load %0.2f mm",dell_1)
+printf("\n Load carried by each rod:P_s %0.2f N",P_s)
+printf("\n :P_c %0.2f N",P_c)
+printf("\n Rise in Temperature of steel rod should be %0.2f degree Celsius",t)
diff --git a/3864/CH2/EX2.36/Ex2_36.sce b/3864/CH2/EX2.36/Ex2_36.sce
new file mode 100644
index 000000000..6f16a2cc0
--- /dev/null
+++ b/3864/CH2/EX2.36/Ex2_36.sce
@@ -0,0 +1,36 @@
+clear
+//
+
+//Initilization of Variables
+
+t=40 //degree celsius //temperature
+A_s=400 //mm**2 //Area of steel bar
+A_c=600 //mm**2 //Area of copper bar
+E_s=2*10**5 //N/mm**2 //Modulus of Elasticity of steel bar
+E_c=1*10**5 //N/mm**2 //Modulus of Elasticity of copper bar
+alpha_s=12*10**-6 //degree celsius //Temperature coeff of steel bar
+alpha_c=18*10**-6 //degree celsius //Temperature coeff of copper bar
+L_c=800 //mm //Length of copper bar
+L_s=600 //mm //Length of steel bar
+
+//Calculations
+
+//Let P_s be the tensile force in steel bar and P_c be the compressive force in copper bar
+//Static Equilibrium obtained by taking moment about A
+//P_c=2*P_s
+
+//From property of similar triangles we get
+//(alpha_c*Lc-dell_c)*1**-1=(alpha_s*L_s-dell_s)*2**-1
+//After substituting values in above equations and further simplifying we get
+P_s=(2*alpha_c*L_c-alpha_s*L_s)*t*(L_s*(A_s*E_s)**-1+4*L_c*(A_c*E_c)**-1)**-1
+P_c=2*P_s
+
+//Stress in steel rod
+sigma_s=P_s*A_s**-1 //N/mm**2
+
+//Stress in copper rod
+sigma_c=P_c*A_c**-1 //N/mm**2
+
+//Result
+printf("\n Stress in steel rod is %0.2f N/mm**2",sigma_s)
+printf("\n STress in copper rod is %0.2f N/mm**2",sigma_c)
diff --git a/3864/CH2/EX2.37/Ex2_37.sce b/3864/CH2/EX2.37/Ex2_37.sce
new file mode 100644
index 000000000..155d3e6c4
--- /dev/null
+++ b/3864/CH2/EX2.37/Ex2_37.sce
@@ -0,0 +1,36 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=20 //mm //Diameter of bar
+P=37.7*10**3 //N //Load
+L=200 //mm //Guage Length
+dell=0.12 //mm //Extension
+dell_d=0.0036 //mm //contraction in diameter
+
+//Calculations
+
+//Area of bar
+A=%pi*4**-1*d**2
+
+//Let s and dell_s be the Linear strain and Lateral strain
+s=dell*L**-1
+dell_s=dell_d*d**-1
+mu=dell_s*s**-1 //Poissons ratio
+
+//dell=P*L*(A*E)**-1
+E=P*L*(dell*A)**-1 //N/mm**2 //Modulus of Elasticity of bar
+
+//Modulus of Rigidity
+G=E*(2*(1+mu))**-1 //N/mm**2
+
+//Bulk Modulus
+K=E*(3*(1-2*mu))**-1 //N/mm**2
+
+//result
+printf("\n Poissons ratio is %0.2f ",mu)
+printf("\n The Elastic constant are:E %0.2f ",E)
+printf("\n :G %0.2f ",G)
+printf("\n :K %0.2f ",K)
diff --git a/3864/CH2/EX2.38/Ex2_38.sce b/3864/CH2/EX2.38/Ex2_38.sce
new file mode 100644
index 000000000..86842b02d
--- /dev/null
+++ b/3864/CH2/EX2.38/Ex2_38.sce
@@ -0,0 +1,38 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=100 //mm //Diameter of circular rod
+P=1*10**6 //N //Tensile Force
+mu=0.3 //Poissons ratio
+E=2*10**5 //N/mm**2 //Youngs Modulus
+L=500 //mm //Length of rod
+
+//Calculations
+
+//Modulus of Rigidity
+G=E*(2*(1+mu))**-1 //N/mm**2
+
+//Bulk Modulus
+K=E*(3*(1-2*mu))**-1 //N/mm**2
+
+A=%pi*4**-1*d**2 //mm**2 //Area of Circular rod
+//Let sigma be the Longitudinal stress
+sigma=P*A**-1 //N/mm**2
+
+s=sigma*E**-1 //Linear strain
+e_x=s
+
+//Volumetric strain
+e_v=e_x*(1-2*mu)
+
+v=%pi*4**-1*d**2*L
+//Change in VOlume
+dell_v=e_v*v
+
+//Result
+printf("\n Bulk Modulus is %0.2f N/mm**2",E)
+printf("\n Modulus of Rigidity is %0.2f N/mm**2",G)
+printf("\n The change in Volume is %0.2f mm**3",dell_v)
diff --git a/3864/CH2/EX2.39/Ex2_39.sce b/3864/CH2/EX2.39/Ex2_39.sce
new file mode 100644
index 000000000..1a55112ed
--- /dev/null
+++ b/3864/CH2/EX2.39/Ex2_39.sce
@@ -0,0 +1,36 @@
+clear
+//
+
+//Initilization of Variables
+
+L=500 //mm //Length of rectangular cross section bar
+A=20*40 //mm**2 //Area of rectangular cross section bar
+P1=4*10**4 //N //Tensile Force on 20mm*40mm Faces
+P2=2*10**5 //N //compressive force on 20mm*500mm Faces
+P3=3*10**5 //N //Tensile Force on 40mm*500mm Faces
+E=2*10**5 //N/mm**2 //Youngs Modulus
+mu=0.3 //Poissons Ratio
+
+//Calculations
+
+//Let P_x,P_y,P_z be the forces n x,y,z directions
+
+P_x=P1*A**-1
+P_y=P2*A**-1
+P_z=P3*A**-1
+
+//Let e_x,e_y,e_z be the strains in x,y,z directions
+e_x=1*E**-1*(50+mu*20-15*mu)
+e_y=1*E**-1*(-mu*50-20-mu*15)
+e_z=1*E**-1*(-mu*50+mu*20+15)
+
+//Volumetric strain
+e_v=e_x+e_y+e_z
+
+//Volume
+V=20*40*500 //mm**3
+//Change in Volume
+dell_v=e_v*V //mm**3
+
+//Result
+printf("\n The change in Volume is %0.2f mm**3",dell_v)
diff --git a/3864/CH2/EX2.4/Ex2_4.sce b/3864/CH2/EX2.4/Ex2_4.sce
new file mode 100644
index 000000000..d8c5efd5a
--- /dev/null
+++ b/3864/CH2/EX2.4/Ex2_4.sce
@@ -0,0 +1,39 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=25 //mm //diameter of steel
+d2=18 //mm //Diameter at neck
+L=200 //mm //length of stee
+P=80*10**3 //KN //Load
+P1=160*10**3 //N //Load at Elastic Limit
+P2=180*10**3 //N //Max Load
+L1=56 //mm //Total Extension
+dell_l=0.16 //mm //Extension
+
+
+//Calculations
+
+A=%pi*d**2*4**-1 //Area of steel //mm**2
+
+p=P1*A**-1 //Stress at Elastic Limit //N/mm**2
+Y=P*L*(A*dell_l)**-1 //Modulus of elasticity
+
+//Let % elongation be x
+x=L1*L**-1*100
+
+//Percentage reduction in area
+//Let % A be a
+a=((%pi*4**-1*d**2)-(%pi*4**-1*d2**2))*(%pi*4**-1*d**2)**-1*100
+
+//Ultimate tensile stress
+sigma=P2*A**-1 //N/mm**2
+
+//result
+printf("\n Stress at Elastic limit is %0.2f N/mm**2",p)
+printf("\n Youngs Modulus is %0.2f N/mm**2",Y)
+printf("\n Percentage Elongation is %0.2f ",a)
+printf("\n Percentage reduction in area is %0.2f ",P2)
+printf("\n Ultimate tensile stress %0.2f N/mm**2",sigma)
diff --git a/3864/CH2/EX2.41/Ex2_41.sce b/3864/CH2/EX2.41/Ex2_41.sce
new file mode 100644
index 000000000..c7360546a
--- /dev/null
+++ b/3864/CH2/EX2.41/Ex2_41.sce
@@ -0,0 +1,21 @@
+clear
+//
+
+//Initilization of Variables
+
+E=2.1*10**5 //N/mm**2 //Youngs Modulus
+G=0.78*10**5 //N/mm**2 //Modulus of Rigidity
+
+//Calculations
+
+//Now using the relation
+//E=2*G*(1+mu)
+mu=E*(2*G)**-1-1 //Poissons ratio
+
+//Bulk Modulus
+K=E*(3*(1-2*mu))**-1 //N/mm**2
+
+
+//Result
+printf("\n The Poissons Ratio is %0.2f ",mu)
+printf("\n The modulus of Rigidity %0.2f N/mm**2",K)
diff --git a/3864/CH2/EX2.42/Ex2_42.sce b/3864/CH2/EX2.42/Ex2_42.sce
new file mode 100644
index 000000000..f11a803cd
--- /dev/null
+++ b/3864/CH2/EX2.42/Ex2_42.sce
@@ -0,0 +1,20 @@
+clear
+//
+
+//Initilization of Variables
+
+G=0.4*10**5 //N/mm**2 //Modulus of rigidity
+K=0.75*10**5 //N/mm**2 //Bulk Modulus
+
+//Calculations
+
+//Youngs Modulus
+E=9*G*K*(3*K+G)**-1
+
+//Now from the relation
+//E=2*G(1+2*mu)
+mu=E*(2*G)**-1-1 //Poissons ratio
+
+//result
+printf("\n Youngs modulus is %0.2f N/mm**2",E)
+printf("\n Poissons ratio is %0.2f ",mu)
diff --git a/3864/CH2/EX2.43/Ex2_43.sce b/3864/CH2/EX2.43/Ex2_43.sce
new file mode 100644
index 000000000..31a051d8c
--- /dev/null
+++ b/3864/CH2/EX2.43/Ex2_43.sce
@@ -0,0 +1,82 @@
+clear
+//
+
+//Initilization of Variables
+
+b=60 //mm //width of bar
+d=30 //mm //depth of bar
+L=200 //mm //Length of bar
+A=30*60 //mm**2 //Area of bar
+A2=30*200 //mm**2 //Area of bar along which expansion is restrained
+P=180*10**3 //N //Compressive force
+E=2*10**5 //N/mm**2 //Youngs Modulus
+mu=0.3 //Poissons ratio
+
+//Calculations
+
+//The bar is restrained from expanding in Y direction
+P_z=0
+P_x=P*A**-1 //stress developed in x direction
+
+//Now taking compressive strain as positive
+//e_x=P_x*E**-1-mu*P_y*E**-1 .......................(1)
+//e_y=-mu*P_x*E**-1+P_y*E**-1 ....................(2)
+//e_z=-mu*P_x*E**-1-mu*P_y*E**-1 ......................(3)
+
+//Part-1
+//When it is fully restrained
+e_y=0
+P_y=30 //N/mm**2
+e_x=P_x*E**-1-mu*P_y*E**-1
+e_z=-mu*P_x*E**-1-mu*P_y*E**-1
+
+//Change in Length
+dell_l=e_x*L //mm
+
+//Change in width
+dell_b=b*e_y
+
+//change in Depth
+dell_d=d*e_z
+
+//Volume of bar
+V=b*d*L //mm**3
+//Change in Volume
+e_v=(e_x+e_y+e_z)*V //mm**3
+
+//Part-2
+//When 50% is restrained
+
+//Free strain in Y direction
+e_y1=mu*P_x*E**-1
+
+//As 50% is restrained,so
+e_y2=-50*100**-1*e_y1
+
+//But form Equation 2 we have e_y=-mu*P_x*E**-1+P_y*E**-1
+//After substituting values in above equation and furthe simplifying we get
+P_y=e_y2*E+d
+
+e_x2=P_x*E**-1-mu*P_y*E**-1
+e_z2=-mu*P_x*E**-1-mu*P_y*E**-1
+
+//Change in Length
+dell_l2=e_x2*L //mm
+
+//Change in width
+dell_b2=b*e_y2
+
+//change in Depth
+dell_d2=d*e_z2
+
+//Change in Volume
+e_v2=(e_x2+e_y2+e_z2)*V //mm**3
+
+//REsult
+printf("\n Change in Dimension of bar is:dell_l %0.2f mm",dell_l)
+printf("\n :dell_b %0.4f mm",dell_b)
+printf("\n :dell_d %0.2f mm",dell_d)
+printf("\n Change in Volume is %0.2f mm**3",e_v)
+printf("\n Changes in material when only 50% of expansion can be reatrained:dell_l2mm",dell_l2)
+printf("\n :dell_b2 %0.4f mm",dell_b2)
+printf("\n :dell_d2 %0.2f mm",dell_d2)
diff --git a/3864/CH2/EX2.44/Ex2_44.sce b/3864/CH2/EX2.44/Ex2_44.sce
new file mode 100644
index 000000000..8cd10f122
--- /dev/null
+++ b/3864/CH2/EX2.44/Ex2_44.sce
@@ -0,0 +1,32 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+P=10*10**3 //N //Load
+E=2*10**5 //N/mm**2 //Youngs Modulus
+d2=12 //mm //Diameter of bar1
+d1=16 //mm //diameter of bar2
+L1=200 //mm //Length of bar1
+L2=500 //mm //Length of bar2
+
+//Calculations
+
+//Let A1 and A2 be the cross Area of Bar1 & bar2 respectively
+A1=%pi*4**-1*d1**2 //mm**2
+A2=%pi*4**-1*d2**2 //mm**2
+
+//Let p1 and p2 be the stress in Bar1 nad bar2 respectively
+p1=P*A1**-1 //N/mm**2
+p2=P*A2**-1 //N/mm**2
+
+//Let V1 nad V2 be the Volume of of Bar1 and Bar2
+V1=A1*(L1+L1)
+V2=A2*L2
+
+//Let E be the strain Energy stored in the bar
+E=p1**2*(2*E)**-1*V1+p2**2*V2*(2*E)**-1
+
+//result
+printf("\n The Strain Energy stored in Bar is %0.2f N-mm",E)
diff --git a/3864/CH2/EX2.45/Ex2_45.sce b/3864/CH2/EX2.45/Ex2_45.sce
new file mode 100644
index 000000000..bcb78b03e
--- /dev/null
+++ b/3864/CH2/EX2.45/Ex2_45.sce
@@ -0,0 +1,66 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+//Bar-A
+d1=30 //mm //Diameter of bar1
+L=600 //mm //length of bar1
+
+//Bar-B
+d2=30 //mm //Diameter of bar2
+d3=20 //mm //Diameter of bar2
+L2=600 //mm //length of bar2
+
+//Calculations
+
+//Area of bar-A
+A1=%pi*4**-1*d1**2
+
+//Area of bar-B
+A2=%pi*4**-1*d2**2
+A3=%pi*4**-1*d3**2
+
+//let SE be the Strain Energy
+//Strain Energy stored in Bar-A
+//SE=p**2*(2*E)**-1*V
+//After substituting values and simolifying further we get
+//SE=P**2*E**-1*0.4244
+
+//Strain Energy stored in Bar-B
+//SE2=p1**2*V1*(2*E)**-1+p2**2*V2*(2*E)**-1
+//After substituting values and simolifying further we get
+//SE2=0.6897*P**2*E**-1
+
+//Let X be the ratio of SE in Bar-B and SE in Bar-A
+X=0.6897*0.4244**-1
+
+//Part-2
+
+//When Max stress is produced is same:Let p be the max stress produced
+
+//Stress in bar A is p throughout
+//In bar B:stress in 20mm dia.portion=p2=p
+
+//Stress in 30 mm dia.portion
+//p1=P*A2*A3**-1
+//After substituting values and simolifying further we get
+//p1=4*9**-1*p
+
+//Strain Energy in bar A
+//SE_1=p**2*(2*E)**-1*A1*L1
+//After substituting values and simolifying further we get
+//SE_1=67500*p**2*%pi*E**-1
+
+//Strain Energy in bar B
+//SE_2=p1**2*V1*(2*E)**-1+p2**2*V2*(2*E)**-1
+//After substituting values and simolifying further we get
+//SE_2=21666.67*%pi*p**2*E**-1
+
+//Let Y be the Ratio of SE in bar B and SE in bar A
+Y=21666.67*67500**-1
+
+//result
+printf("\n Gradually applied Load is %0.2f ",X)
+printf("\n Gradually applied Load is %0.2f ",Y)
diff --git a/3864/CH2/EX2.46/Ex2_46.sce b/3864/CH2/EX2.46/Ex2_46.sce
new file mode 100644
index 000000000..11d592824
--- /dev/null
+++ b/3864/CH2/EX2.46/Ex2_46.sce
@@ -0,0 +1,34 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+W=100 //N //Load
+E=2*10**5 //N/mm**2 //Youngs Modulus
+h=60 //mm //Height through Load falls down
+L=400 //mm //Length of collar
+d=30 //mm //diameter of bar
+
+//Calculations
+
+A=%pi*4**-1*d**2 //mm**2 //Area of bar
+
+//Instantaneous stress produced is
+p=W*A**-1*(1+(1+(2*A*E*h*(W*L)**-1))**0.5)
+
+//Now the EXtension of the bar is neglected in calculating work doneby the Load,then
+P=(2*E*h*W*(A*L)**-1)**0.5
+
+//Let percentage error be denoted by E1
+//Percentage error in approximating is
+E1=(p-P)*p**-1*100
+
+//Instantaneous Extension produced is
+dell_l=(P)*E**-1*L
+
+
+//Result
+printf("\n The Instantaneous stress is %0.2f N/mm",p)
+printf("\n Percentage Error is %0.2f ",E1)
+printf("\n The Instantaneous extension is %0.2f mm",dell_l)
diff --git a/3864/CH2/EX2.47/Ex2_47.sce b/3864/CH2/EX2.47/Ex2_47.sce
new file mode 100644
index 000000000..2ffb85808
--- /dev/null
+++ b/3864/CH2/EX2.47/Ex2_47.sce
@@ -0,0 +1,44 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=20 //mm //Diameter of steel bar
+L=1000 //mm //Length of bar
+E=2*10**5 //N/mm**2 //Youngs Modulus
+p=300 //N/mm**2 //max Permissible stress
+h=50 //mm //Height through which weight will fall
+w=600 //N //Load
+
+//Calculations
+
+//ARea of steel bar
+A=%pi*4**-1*d**2
+
+//Instantaneous extension is
+dell_l=p*L*E**-1 //mm
+
+//Work done by Load
+//W=W1*(h+dell_l)
+
+//Volume of bar
+V=(A)*L
+
+//Let E1 be the strain Energy
+E1=p**2*(2*E)**-1*V
+
+//Answer in Book for Strain Energy is Incorrect
+
+//Now Equating Workdone by Load to strain Energy
+W1=E1*51.5**-1
+
+//Now when w=600 N
+//Let W2 be the Work done by the Load
+//W2=w(h2*dell_l)
+
+h=E1*w**-1-dell_l
+
+//Result
+printf("\n The Max Lodad which can Fall from a height of 50 mm on the collar is %0.2f N",W1)
+printf("\n the Max Height from which a 600 N Load can fall on the collar is %0.2f mm",h)
diff --git a/3864/CH2/EX2.48/Ex2_48.sce b/3864/CH2/EX2.48/Ex2_48.sce
new file mode 100644
index 000000000..e5a667a1b
--- /dev/null
+++ b/3864/CH2/EX2.48/Ex2_48.sce
@@ -0,0 +1,35 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+D_s=30 //mm //Diameter of steel rod
+d=30 //mm //Internal Diameter of copper tube
+D=40//mm //External Diameter of copper tube
+E_s=2*10**5 //N/mm**2 //Youngs Modulus of Steel rod
+E_c=1*10**5//N/mm**2 //Youngs Modulus of copper tube
+P=100 //N //Load
+h=40 //mm //height from which Load falls
+L=800 //mm //Length
+
+//Calculations
+
+//Area of steel rod
+A_s=%pi*4**-1*D_s**2
+
+//Area of copper tube
+A_c=%pi*4**-1*(D**2-d**2)
+
+//But Dell_s=dell_c=dell
+//p_s*E_s**-1*L=p_c*L*E_c
+//After simplifying furthe we get
+//p_s=2*p_c
+
+//Now Equating internal Energy to Workdone we get
+p_c=(2*P*h*L**-1*(4*A_s*E_s**-1+A_c*E_c**-1))**0.5
+p_s=2*p_c
+
+//Result
+printf("\n STress produced in steel is %0.2f N/mm**2",p_s)
+printf("\n STress produced in copper is %0.2f N/mm**2",p_c)
diff --git a/3864/CH2/EX2.49/Ex2_49.sce b/3864/CH2/EX2.49/Ex2_49.sce
new file mode 100644
index 000000000..15102ddaf
--- /dev/null
+++ b/3864/CH2/EX2.49/Ex2_49.sce
@@ -0,0 +1,63 @@
+clear
+//
+//
+
+dell=0.25 //mm //Instantaneous Extension
+
+//Bar-A
+b1=25 //mm //width of bar
+D1=500 //mm //Depth of bar
+
+//Bar-B
+b2_1=25 //mm //width of upper bar
+b2_2=15 //mm //Width of Lower Bar
+L2=200 //mm //Length of upper bar
+L1=300 //mm //Length of Lower bar
+
+E=2*10**5 //N/mm**2 //Youngs Modulus of bar
+
+//Calculations
+
+//Strain
+e=dell*D1**-1
+
+//Load
+p=e*E
+
+//Area of bar-A
+A=%pi*4**-1*25**2
+
+//Volume of bar-A
+V=A*D1
+
+//Let E1 be the Energy of Blow
+//Energy of Blow
+E1=p**2*(E)**-1*V
+
+//Let p2 be the Max stress in bar B When this blow is applied.
+//the max stress occurs in the 15mm dia. portion,Hence, the stress in 25 mm dia.portion is
+//p2*%pi*4**-1*b2_2**2*(%pi*4**-1*b2_2**2=0.36*p
+
+//Strain Energy of bar B
+//E2=p**2*(2*E)**-1*v1+1*(2*E)**-1*(0.36*p2)**2*v2
+//After substituting values and Further substituting values we get
+//E2=0.1643445*p2**2
+
+//Equating it to Energy of applied blow,we get
+p2=(12271.846*0.1643445**-1)**0.5
+
+//Stress in top portion
+sigma=0.36*p2
+
+//Extension in Bar-1
+dell_1=p2*E**-1*L1
+
+//Extension in Bar-2
+dell_2=0.36*p2*E**-1*L2
+
+//Extension of bar
+dell_3=dell_1+dell_2
+
+//Result
+printf("\n Instantaneous Max stress is %0.2f N/mm**2",sigma)
+printf("\n extension in Bar is %0.2f mm",dell_3)
diff --git a/3864/CH2/EX2.6/Ex2_6.sce b/3864/CH2/EX2.6/Ex2_6.sce
new file mode 100644
index 000000000..06fbd1663
--- /dev/null
+++ b/3864/CH2/EX2.6/Ex2_6.sce
@@ -0,0 +1,21 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+P=40*10**3 //N //Load
+L1=160 //mm //Length of Bar1
+L2=240 //mm //Length of bar2
+L3=160 //mm //Length of bar3
+d1=25 //mm //Diameter of Bar1
+d2=20 //mm //diameter of bar2
+d3=25 //mm //diameter of bar3
+dell_l=0.285 //mm //Total Extension of bar
+
+//Calculations
+
+E=P*4*(dell_l*%pi)**-1*(L1*(d1**2)**-1+L2*(d2**2)**-1+L3*(d3**2)**-1)
+
+//Result
+printf("\n The Youngs Modulus of the material %0.2f N/mm**2",E)
diff --git a/3864/CH2/EX2.7/Ex2_7.sce b/3864/CH2/EX2.7/Ex2_7.sce
new file mode 100644
index 000000000..89129ffa2
--- /dev/null
+++ b/3864/CH2/EX2.7/Ex2_7.sce
@@ -0,0 +1,27 @@
+clear
+//
+
+//Initilization of Variables
+
+E1=2*10**5 //N/mm**2 //modulus of Elasticity of material1
+E2=1*10**5 //N/mm**2 //modulus of Elasticity of material2
+P=25*10**3 //N //Load
+t=20 //mm //thickness of material
+b1=40 //mm //width of material1
+b2=30 //mm //width of material2
+L1=500 //mm //Length of material1
+L2=750 //mm //Length of material2
+
+//Calculations
+
+A1=b1*t //mm**2 //Area of materila1
+A2=b2*t //mm**2 //Area of material2
+
+dell_l1=P*L1*(A1*E1)**-1 //Extension of Portion1
+dell_l2=P*L2*(A2*E2)**-1 //Extension of portion2
+
+//Total Extension of Bar is
+dell_l=dell_l1+dell_l2
+
+//Result
+printf("\n The Total Extension of the Bar is %0.2f mm",dell_l)
diff --git a/3864/CH2/EX2.8/Ex2_8.sce b/3864/CH2/EX2.8/Ex2_8.sce
new file mode 100644
index 000000000..4d18eb885
--- /dev/null
+++ b/3864/CH2/EX2.8/Ex2_8.sce
@@ -0,0 +1,25 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+L=1000 //mm //Length of Bar
+l=400 //mm //Length upto which bire is drilled
+D=30 //mm //diameter of bar
+d1=10 //mm //diameter of bore
+P=25*10**3 //N //Load
+dell_l=0.185 //mm //Extension of bar
+
+//Calculations
+
+L1=L-l //Length of bar above the bore
+L2=400 //mm //Length of bore
+
+A1=%pi*4**-1*D**2 //Area of bar
+A2=%pi*4**-1*(D**2-d1**2) //Area of bore
+
+E=P*dell_l**-1*(L1*A1**-1+L2*A2**-1)
+
+//Result
+printf("\n The Modulus of ELasticity is %0.2f N/mm**2",E)
diff --git a/3864/CH4/EX4.1/Ex4_1.sce b/3864/CH4/EX4.1/Ex4_1.sce
new file mode 100644
index 000000000..be8ad539f
--- /dev/null
+++ b/3864/CH4/EX4.1/Ex4_1.sce
@@ -0,0 +1,47 @@
+clear
+//
+
+//Initilization of Variables
+
+L=5000 //mm //Length of Beam
+a=2000 //mm //Length of start of beam to Pt Load
+b=3000 //mm //Length of Pt load to end of beam
+A=150*250 //m**2 //Area of beam
+b=150 //mm //Width of beam
+d=250 //mm //Depth of beam
+sigma=10//N/mm**2 //stress
+l=2000 //m //Load applied from one end
+
+//Calculations
+
+//Moment of Inertia
+I=1*12**-1*b*d**3 //m**4
+
+//Distance from N.A to end
+y_max=d*2**-1 //m
+
+//Section Modulus
+Z=1*6**-1*b*d**2 //mm**3
+
+//Moment Carrying Capacity
+M=sigma*Z //N-mm
+
+//Let w be the Intensity of the Load in N/m,then Max moment
+//M_max=w*L**2*8**-1 //N-mm
+//After substituting values and further simplifying we get
+//M_max=w*25*100*8**-1
+
+//EQuating it to moment carrying capacity,we get max intensity load
+w=M*(25*1000)**-1*8*10**-3
+
+//Part-2
+
+//Let P be the concentrated load,then max moment occurs under the load and its value
+//M1=P*a*b*L**-1 //N-mm
+
+//Equting it to moment carrying capacity we get
+P=M*1200**-1*10**-3 //N
+
+//Result
+printf("\n Max Intensity of u.d.l it can carry %0.3f KN-m",w)
+printf("\n MAx concentrated Load P apllied at 2 m from one end is %0.3f KN",P)
diff --git a/3864/CH4/EX4.10/Ex4_10.sce b/3864/CH4/EX4.10/Ex4_10.sce
new file mode 100644
index 000000000..d09c2efb0
--- /dev/null
+++ b/3864/CH4/EX4.10/Ex4_10.sce
@@ -0,0 +1,53 @@
+clear
+//
+
+//Initilization of Variables
+H=10 //mm //Height
+A1=160*160 //mm**2 //area of square section at bottom
+L1=160 //mm //Length of square section at bottom
+b1=160 //mm //width of square section at bottom
+A2=80*80 //mm**2 //area of square section at top
+L2=80 //mm //Length of square section at top
+b2=80 //mm //Width of square section at top
+P=100 //N //Pull
+
+//Calculations
+
+//Consider a section at distance y from top.
+//Let the side of square bar be 'a'
+//a=L2+y*(H)**-1*(b1-b2)
+//After further simplifying we get
+//a=L2+8*y
+
+//Moment of Inertia
+//I=2*1*12**-1*a*(2)**0.5*(a*((2)**0.5)**-1)**3
+//After further simplifying we get
+//I=a**4*12**-1
+
+//Section Modulus
+//Z=a**4*(12*a*(2)**0.5)**-1
+//After further simplifying we get
+//Z=2**0.5*a**3*(12)**-1 //mm**3
+
+//Bending moment at this section=100*y N-mm
+//M=100*10**3*y //N-mm
+
+//But
+//M=sigma*Z
+//After sub values in above equation we get
+//sigma=M*Z**-1
+//After further simplifying we get
+//sigma=1200*10**3*(2**0.5)**-1*y*((80+80*y)**3)**-1 .......(1)
+
+//For Max stress df*(dy)**-1=0
+//After taking Derivative of above equation we get
+//df*(dy)**-1=1200*10**3*(2**0.5)**-1*((80+8*y)**-3+y(-3)*(80+8*y)**-4*8)
+//After further simplifying we get
+y=80*16**-1 //m
+
+//Max stress at this level is
+sigma=1200*10**3*(2**0.5)**-1*y*((80+8*y)**3)**-1
+
+//Result
+printf("\n Max Bending stress is Developed at %0.3f m",y)
+printf("\n Value of Max Bending stress is %0.3f N/mm**2",sigma)
diff --git a/3864/CH4/EX4.12/Ex4_12.sce b/3864/CH4/EX4.12/Ex4_12.sce
new file mode 100644
index 000000000..d1060e823
--- /dev/null
+++ b/3864/CH4/EX4.12/Ex4_12.sce
@@ -0,0 +1,43 @@
+clear
+//
+
+//Initilization of Variables
+
+b=200 //mm //Width of timber
+d=400 //mm //Depth of timber
+t=6 //mm //Thickness
+b2=200 //mm //width of steel plate
+t2=20 //mm //Thickness of steel plate
+M=40*10**6 //KN-mm //Moment
+//Let E_s*E_t**-1=X
+X=20 //Ratio of Modulus of steel to timber
+
+//Calculations
+
+//let y_bar be the Distance of centroidfrom bottom most fibre
+y_bar=(b*d*(b+t)+t2*b2*t*t*2**-1)*(b*d+t2*b2*t)**-1 //mm
+
+//Moment of Inertia
+I=1*12**-1*b*d**3+b*d*(b+t-(y_bar))**2+1*12**-1*t2*b2*t**3+b2*t2*t*((y_bar)-t*2**-1)**2
+
+
+//distance of the top fibre from N-A
+y_1=d+t-y_bar //mm
+
+//Distance of the junction of timber and steel From N-A
+y_2=y_bar-t //mm
+
+//Stress in Timber at the top
+Y=M*I**-1*y_1 //N/mm**2
+
+//Stress in the Timber at the junction point
+Z=M*I**-1*y_2
+
+//Coressponding stress in steel at the junction point
+Z2=X*Z //N/mm**2
+
+//The stress in Extreme steel fibre
+Z3=X*M*I**-1*y_bar
+
+//Result
+printf("\n Stress in Extreme steel Fibre %0.2f N/mm**2",Z3)
diff --git a/3864/CH4/EX4.13/Ex4_13.sce b/3864/CH4/EX4.13/Ex4_13.sce
new file mode 100644
index 000000000..39953ccc4
--- /dev/null
+++ b/3864/CH4/EX4.13/Ex4_13.sce
@@ -0,0 +1,41 @@
+clear
+//
+
+//Initilization of Variables
+
+//Timber size
+b=150 //mm //Width
+d=300 //mm //Depth
+
+t=6 //mm //Thickness of steel plate
+l=6 //m //Span
+
+//E_s*E_t**-1=20
+//m=E_s*E_t**-1
+m=20
+sigma_timber=8 //N/mm**2 //Stress in timber
+sigma_steel=150 //N/mm**2 //Stress in steel plate
+
+//Let m*t=Y
+Y=m*t //mm
+L=(2*t+b)*m //mm //Width of flitched beam
+
+//Calculations
+
+//Due to synnetry cenroid,the neutral axis is half the depth
+I=(1*12**-1*L*t**3+L*t*(b+t*2**-1)**2)*2+1*12**-1*(Y+b+Y)*d**3 //mm**4
+
+y_max1=150 //mm //For timber
+y_max2=156 //mm //For steel
+
+//stress in steel
+f_t1=1*m**-1*sigma_steel //N/mm**2
+
+//Moment of resistance
+M=f_t1*(I*y_max2**-1)
+
+//load
+w=8*M*(l**2)**-1*10**-6 //KN/m
+
+//Result
+printf("\n Load beam can carry is %0.2f KN/m",w)
diff --git a/3864/CH4/EX4.14/Ex4_14.sce b/3864/CH4/EX4.14/Ex4_14.sce
new file mode 100644
index 000000000..dd7431bd4
--- /dev/null
+++ b/3864/CH4/EX4.14/Ex4_14.sce
@@ -0,0 +1,53 @@
+clear
+//
+
+//Initilization of Variables
+
+L=6000 //mm //Span of beam
+W=20*10**3 //N //Load
+sigma=8 //N/mm**2 //Stress
+b=200 //mm //Width of section
+d=300 //mm //Depth of section
+
+//Calculations
+
+//let x be the distance from left side of beam
+
+//Bending moment
+//M=W*2**-1*x //Nmm .......(1)
+
+//But M=sigma*Z ..........(2)
+
+//Equating equation 1 and 2 we get
+//W*2**-1*x=sigma*Z ............(3)
+
+//Section Modulus
+//Z=1*6*b*d**2 ...............(4)
+
+//Equating equation 3 and 4 we get
+//b*d**2=3*W*x*sigma**-1 .............(5)
+
+//Beam of uniform strength of constant depth
+//b=3*W*x*(sigma*d**2)
+
+//When x=0
+b=0
+
+//When x=L*2**-1
+b2=3*W*L*(2*sigma*d**2)**-1 //mm
+
+//Beam with constant width of 200 mm
+
+//We have
+//d=(3*W*x*(sigma*d)**-1)**0.5
+//thus depth varies as (x)**0.5
+
+//when x=0
+d1=0
+
+//when x=L*2**-1
+d2=(3*W*L*(2*sigma*200)**-1)**0.5 //mm
+
+//Result
+printf("\n Cross section of rectangular beam is: %0.2f mm",b2)
+printf("\n : %0.2f mm",d2)
diff --git a/3864/CH4/EX4.15/Ex4_15.sce b/3864/CH4/EX4.15/Ex4_15.sce
new file mode 100644
index 000000000..6991385fa
--- /dev/null
+++ b/3864/CH4/EX4.15/Ex4_15.sce
@@ -0,0 +1,33 @@
+clear
+//
+
+//Initilization of Variables
+
+L=800 //mm //Span
+n=5 //number of leaves
+b=60 //mm //Width
+t=10 //mm //thickness
+sigma=250 //N/mm**2 //Stress
+
+//Calculations
+
+//section Modulus
+Z=n*6**-1*b*t**2 //mm**3
+
+//from the relation
+//sigma*Z=M ...................(1)
+//M=P*L*4**-1
+//sub values of M in equation 1 we get
+P=sigma*Z*4*L**-1*10**-3 //KN //Load
+
+//Length of Leaves
+L1=0.2*L //mm
+L2=0.4*L //mm
+L3=0.6*L //mm
+L4=0.8*L //mm
+L5=L //mm
+
+//Result
+printf("\n Max Load it can take is %0.2f KN",P)
+printf("\n Length of leaves:L1 %0.2f mm",L1)
+printf("\n :L2 %0.2f mm",L2)
diff --git a/3864/CH4/EX4.17/Ex4_17.sce b/3864/CH4/EX4.17/Ex4_17.sce
new file mode 100644
index 000000000..0477cf682
--- /dev/null
+++ b/3864/CH4/EX4.17/Ex4_17.sce
@@ -0,0 +1,54 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+F=40*10**3 //N //shear Force
+
+//I-section
+
+//Flanges
+b=80 //mm //Width of flange
+t=20 //mm //Thickness
+
+//Web
+d=200 //mm //Depth
+t2=20 //mm //Thickness
+
+//Flange-2
+b2=160 //mm //Width
+t3=20 //mm //Thickness
+
+D=240 //mm //Overall Depth
+
+//Calculations
+
+//Distance of N-A from Top Fibre
+y=(b*t*t*2**-1+d*t2*(t+d*2**-1)+b2*t3*(t+d+t3*2**-1))*(b*t+d*t2+b2*t3)**-1 //mm
+
+//Moment of Inertia
+I=1*12**-1*b*t**3+b*t*(y-(t*2**-1))**2+1*12**-1*t2*d**3+t2*d*(y-(t+d*2**-1))**2+1*12**-1*b2*t3**3+t3*b2*((d+t+t3*2**-1)-y)**2 //mm**4
+
+//Shear stress bottom of flange
+sigma=F*b*t*(y-t*2**-1)*(b*I)**-1 //N/mm**2
+
+//At same Level but in web
+sigma2=F*b*t*(y-t*2**-1)*(t2*I)**-1 //N/mm**2
+
+//for shear stress at N.A
+X=b*t*(y-t*2**-1)+t2*(y-t)*(y-t)*2**-1 //mm**3
+sigma3=F*X*(t2*I)**-1 //N/mm**2
+
+//Shear stress at bottom of web
+
+X=b2*t3*((D-y)-t3*2**-1) //mm**3
+
+//Stress at bottom of web
+sigma4=F*X*(t2*I)**-1 //N/mm**2
+
+//Stress at Lower flange
+sigma5=F*X*(b2*I)**-1 //N/mm**2
+
+//Result
+printf("\n The Shear Force Diagram is the result")
diff --git a/3864/CH4/EX4.18/Ex4_18.sce b/3864/CH4/EX4.18/Ex4_18.sce
new file mode 100644
index 000000000..48f9ecb18
--- /dev/null
+++ b/3864/CH4/EX4.18/Ex4_18.sce
@@ -0,0 +1,36 @@
+clear
+//
+
+//Initilization of Variables
+
+F=30*10**3 //N //Shear Force
+
+//Channel Section
+d=400 //mm //Depth of web
+t=10 //mm //THickness of web
+t2=15 //mm //Thickness of flange
+b=100 //mm //Width of flange
+
+//Rectangular Welded section
+b2=80 //mm //Width
+d2=60 //mm //Depth
+
+//Calculations
+
+//Distance of Centroid From Top Fibre
+y=(d*t*t*2**-1+2*t2*(b-t)*((b-t)*2**-1+10)+d2*b2*(d2*2**-1+t))*(d*t+2*t2*(b-t)+d2*b2)**-1 //mm
+
+//Moment Of Inertia of the section about N-A
+I=1*12**-1*d*t**3+d*t*(y-t*2**-1)**2+2*(1*12**-1*t2*(b-t)**3+t2*(b-t)*(((b-t)*2**-1+t)-y)**2)+1*12**-1*d2**3*b2+d2*b2*(d2*2**-1+t-y)**2
+
+//Shear stress at level of weld
+sigma=F*d*t*(y-t*2**-1)*((b2+t2+t2)*I)**-1 //N/mm**2
+
+//Max Shear Stress occurs at Neutral Axis
+X=d*t*(y-t*2**-1)+2*t2*(y-t)*(y-t)*2**-1+b2*(y-t)*(y-t)*2**-1
+
+sigma_max=F*X*((b+t)*I)**-1
+
+//Result
+printf("\n Shear stress in the weld is %0.2f N/mm**2",sigma)
+printf("\n Max shear stress is %0.2f N/mm**2",sigma_max)
diff --git a/3864/CH4/EX4.19/Ex4_19.sce b/3864/CH4/EX4.19/Ex4_19.sce
new file mode 100644
index 000000000..319ec29a0
--- /dev/null
+++ b/3864/CH4/EX4.19/Ex4_19.sce
@@ -0,0 +1,30 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+//Wooden Section
+b=300 //mm //Width
+d=300 //mm //Depth
+
+D=100 //mm //Diameter of Bore
+F=10*10**3 //N //Shear Force
+
+//Calculations
+
+//Moment Of Inertia Of Section
+I=1*12**-1*b*d**3-%pi*64**-1*D**4
+
+//Shear stress at crown of circle
+sigma=F*b*D*(d*2**-1-D*2**-1)*(b*I)**-1
+
+//Let a*y_bar=X
+X=b*d*2**-1*d*4**-1-%pi*8**-1*D**2*4*D*2**-1*(3*%pi)**-1 //mm**3
+
+//Shear Stress at Neutral Axis
+sigma2=F*X*((b-D)*I)**-1 //N/mm**2
+
+//Result
+printf("\n Shearing Stress at Crown of Bore %0.3f N/mm**2",sigma)
+printf("\n Shear Stress at Neutral Axis %0.3f N/mm**2",sigma2)
diff --git a/3864/CH4/EX4.2/Ex4_2.sce b/3864/CH4/EX4.2/Ex4_2.sce
new file mode 100644
index 000000000..029c9dacc
--- /dev/null
+++ b/3864/CH4/EX4.2/Ex4_2.sce
@@ -0,0 +1,35 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+D=70 //mm //External Diameter
+t=8 //mm //Thickness of pipe
+L=2500 //mm //span
+sigma=150 //N/mm**2 //stress
+
+//Calculations
+
+//Internal Diameter
+d=D-2*t //mm
+
+//M.I Of Pipe
+I=%pi*64**-1*(D**4-d**4) //mm**4
+
+y_max=D*2**-1 //mm
+Z=I*(y_max)**-1 //mm**3
+
+//Moment Carrying capacity
+M=sigma*Z //N*mm
+
+//Max moment int the beam occurs at the mid-span and is equal to
+//m=P*L*4**-1
+
+//Equating Max moment to moment carrying capacity we get,
+//M=P*2.5*L*4**-1
+//After substituting and simplifying we get
+P=4*M*(L)**-1*10**-3 //N
+
+//Result
+printf("\n Max concentrated load that can be applied at the centre of span is %0.3f KN",P)
diff --git a/3864/CH4/EX4.20/Ex4_20.sce b/3864/CH4/EX4.20/Ex4_20.sce
new file mode 100644
index 000000000..f4733fccf
--- /dev/null
+++ b/3864/CH4/EX4.20/Ex4_20.sce
@@ -0,0 +1,48 @@
+clear
+//
+
+//Initilization of Variables
+
+//flanges
+b=200 //mm //width
+t1=25 //mm //Thickness
+
+//web
+d=450 //mm //Depth
+t2=20 //mm //thickness
+
+D=500 //mm //Total Depth of section
+
+//Calculations
+
+//Moment Of Inertia of the section about N-A
+I=1*12**-1*b*D**3-1*12**-1*(b-t2)*d**3 //mm**4
+
+//Consider an element in the web at distance y from y from N-A
+//Depth of web section=225-y
+
+//C.G From N-A
+//y2=y+(((D*2**-1-t)-y)*2**-1)
+
+//ay_bar for section at y
+//Let ay_bar be X
+//X=X1 be of Flange + X2 be of web above y
+//X=b*t1*(D*2**-1-t1*2**-1)+t2*(d-t1)*(d-t1+y)*2**-1
+//After Sub values and Further simplifying we get
+//X=1187500+10*(225**2-y**2)
+
+//Shear stress at y
+//sigma_y=F*(X)*(t2*I)**-1
+
+//Shear Force resisted by the Element
+//F1=F*X*t2*dy*(t2*I)**-1
+
+//Shear stress resisted by web
+//sigma=2*F*I**-1*(X)*dy
+
+//After Integrating above equation and further simplifying we get
+//sigma=0.9578*F
+
+sigma=0.9578*100
+
+//Result
diff --git a/3864/CH4/EX4.21/Ex4_21.sce b/3864/CH4/EX4.21/Ex4_21.sce
new file mode 100644
index 000000000..d8a38b8be
--- /dev/null
+++ b/3864/CH4/EX4.21/Ex4_21.sce
@@ -0,0 +1,40 @@
+clear
+//
+
+//Initilization of Variables
+
+//Wooden Beam
+
+b=150 //mm //width
+d=250 //mm //Depth
+
+L=5000 //mm //span
+m=11.2 //N/mm**2 //Max Bending stress
+sigma=0.7 //N/mm**2 //Max shear stress
+
+//Calculations
+
+//Let 'a' be the distance from left support
+//Max shear force
+//F=R_A=W*(L-a)*L**-1
+
+//Max Moment
+//M=W*(L-a)*a*L**-1
+
+//But M=sigma*Z
+//W*(L-a)*a*L**-1=m*1*6**-1*b*d**2 .....................(1)
+
+//In Rectangular Section MAx stress is 1.5 times Avg shear stress
+F=sigma*b*d*1.5**-1
+
+//W*(L-a)*L**-1=F .....................(2)
+
+//Dividing Equation 1 nad 2 we get
+a=m*6**-1*b*d**2*1.5*(sigma*b*d)**-1
+
+//Sub above value in equation 2 we get
+W=(L-a)**-1*L*F*10**-3 //KN
+
+//Result
+printf("\n Load is %0.2f KN",W)
+printf("\n Distance from Left support is %0.2f mm",a)
diff --git a/3864/CH4/EX4.22/Ex4_22.sce b/3864/CH4/EX4.22/Ex4_22.sce
new file mode 100644
index 000000000..d25a86e08
--- /dev/null
+++ b/3864/CH4/EX4.22/Ex4_22.sce
@@ -0,0 +1,38 @@
+clear
+//
+
+//Initilization of Variables
+
+L=1000 //mm //span
+
+//Rectangular Section
+
+b=200 //mm //width
+d=400 //mm //depth
+
+sigma=1.5 //N/mm**2 //Shear stress
+
+//Calculations
+
+//Let AB be the cantilever beam subjected to load W KN at free end
+
+//MAx shear Force
+//F=W*10**3 //KN
+
+//Since Max shear stress in Rectangular section
+//sigma_max=1.5*F*A**-1
+//After sub values and further simplifyng we get
+W=1.5*b*d*(1.5*1000)**-1 //KN
+
+//Moment at fixwed end
+M=W*1 //KN-m
+y_max=d*2**-1 //mm
+
+//M.I
+I=1*12**-1*b*d**3 //mm**3
+
+//MAx Stress
+sigma_max=M*10**6*I**-1*y_max
+
+//Result
+printf("\n Concentrated Load is %0.2f N/mm**2",sigma_max)
diff --git a/3864/CH4/EX4.24/Ex4_24.sce b/3864/CH4/EX4.24/Ex4_24.sce
new file mode 100644
index 000000000..5b2e0cad5
--- /dev/null
+++ b/3864/CH4/EX4.24/Ex4_24.sce
@@ -0,0 +1,40 @@
+clear
+//
+
+//Initilization of Variables
+
+L=4000 //mm //span
+
+//Rectangular Cross-section
+b=100 //mm //Width
+d=200 //mm //Thickness
+
+F_per=10 //N/mm**2 //Max Bending stress
+q_max=0.6 //N/mm**2 //Shear stress
+
+//Calculations
+
+//If the Load W is in KN/m
+
+//Max shear Force
+//F=w*l*2**-1 //KN
+//After substituting values and further simplifying we get
+//M=2*w //KN-m
+
+//Max Load from Consideration of moment
+//M=1*6**-1*b*d**2*F_per
+//After substituting values and further simplifying we get
+w=(1*6**-1*b*d**2*F_per)*(2*10**6)**-1 //KN/m
+
+//Max Load from Consideration of shear stress
+//q_max=1.5*F*(b*d)**-1 //N
+//After substituting values and further simplifying we get
+F=q_max*(1.5)*b*d //N
+
+//If w is Max Load in KN/m,then
+//2*w*1000=8000
+//After Rearranging and Further simplifying we get
+w2=8000*(2*1000)**-1 //KN/m
+
+//Result
+printf("\n Uniformly Distributed Load Beam can carry is %0.2f KN/m",w)
diff --git a/3864/CH4/EX4.4/Ex4_4.sce b/3864/CH4/EX4.4/Ex4_4.sce
new file mode 100644
index 000000000..40556ec38
--- /dev/null
+++ b/3864/CH4/EX4.4/Ex4_4.sce
@@ -0,0 +1,52 @@
+clear
+//
+
+//Initilization of Variables
+
+//Flange (Top)
+b1=80 //mm //Width
+t1=40 //mm //Thickness
+
+//Flange (Bottom)
+b2=160 //mm //width
+t2=40 //mm //Thickness
+
+//web
+d=120 //mm //Depth
+t3=20 //mm //Thickness
+
+D=200 //mm //Overall Depth
+sigma1=30 //N/mm**2 //Tensile stress
+sigma2=90 //N/mm**2 //Compressive stress
+L=6000 //mm //Span
+
+//Calculations
+
+//Distance of centroid from bottom fibre
+y_bar=(b1*t1*(D-t1*2**-1)+d*t3*(d*2**-1+t2)+b2*t2*t2*2**-1)*(b1*t1+d*t3+b2*t2)**-1 //mm
+
+//Moment of Inertia
+I=1*12**-1*b1*t1**3+b1*t1*(D-t1*2**-1-(y_bar))**2+1*12**-1*t3*d**3+t3*d*(d*2**-1+t2-(y_bar))**2+1*12**-1*b2*t2**3+b2*t2*(t2*2**-1-(y_bar))**2
+
+
+//Extreme fibre distance of top and bottom fibres are y_t and y_c respectively
+
+y_t=y_bar //mm
+y_c=D-y_bar //mm
+
+//Moment carrying capacity considering Tensile strength
+M1=sigma1*I*y_t**-1*10**-6 //KN-m
+
+//Moment carrying capacity considering compressive strength
+M2=sigma2*I*y_c**-1*10**-6 //KN-m
+
+//Max Bending moment in simply supported beam 6 m due to u.d.l
+//M_max=w*L*10**-3*8**-1
+//After simplifying further we get
+//M_max=4.5*w
+
+//Now Equating it to Moment carrying capacity, we get load carrying capacity
+w=M1*4.5**-1 //KN/m
+
+//Result
+printf("\n Max Uniformly Distributed Load is %0.3f KN/m",w)
diff --git a/3864/CH4/EX4.5/Ex4_5.sce b/3864/CH4/EX4.5/Ex4_5.sce
new file mode 100644
index 000000000..0b6583da4
--- /dev/null
+++ b/3864/CH4/EX4.5/Ex4_5.sce
@@ -0,0 +1,49 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+//Flanges
+b=200 //mm //Width
+t=25 //mm //Thickness
+
+D1=500 //mm //Overall Depth
+t2=20 //mm //Thickness of web
+
+d=450 //mm //Depth of web
+
+//Calculations
+
+//Consider,Element of Thickness "y" at Distance "dy" from N.A
+//Let Bending stress "sigma_max"
+
+//Stress on the element
+//sigma=y*(D*2**-1)*sigma_max ..............(1)
+
+//Area of Element
+//A=b*dy .................................(2)
+
+//Force on Element
+//F=y*250**-1*sigma_max*b*dy
+
+//Let M be the Moment of resistance
+//M=y*250**-1*sigma_max*b*dy*y
+
+//Moment of Resistance of top flange after simplification we gget
+//M.R=2258333.3*f
+
+//M.I of I section
+I=1*12**-1*(b*D1**3-180*d**3)*10**-8
+
+//Moment acting on section
+//After simplifying we get
+//M=2865833.3*f
+
+//Percentage moment resistance
+M1=2258333.3*2865833.3**-1*100
+
+//Percentage moment resisted by web
+M2=100-M1
+
+//Result
diff --git a/3864/CH4/EX4.6/Ex4_6.sce b/3864/CH4/EX4.6/Ex4_6.sce
new file mode 100644
index 000000000..d6659cef7
--- /dev/null
+++ b/3864/CH4/EX4.6/Ex4_6.sce
@@ -0,0 +1,63 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+//Flanges
+b1=200 //mm //Width
+t1=10 //mm //Thickness
+
+//Web
+d=380 //mm //Depth
+t2=8 //mm //Thickness
+
+D=400 //mm //Overall Depth
+sigma=150 //N/mm**2
+
+//Calculations
+
+//Area
+A=b1*t1+d*t2+b1*t1 //mm**2
+
+//Moment of Inertia
+I=1*12**-1*(b1*D**3-(b1-t2)*d**3)
+
+//Bending Moment
+M=sigma*I*(D*2**-1)**-1
+
+//Square Section
+
+//Let 'a' be the side
+a=A**0.5
+
+//Moment of Resistance of this section
+M1=1*6**-1*a*a**2*sigma
+
+X=M*M1**-1
+
+//Rectangular section
+//Let 'a' be the side and depth be 2*a
+
+a=(A*2**-1)**0.5
+
+//Moment of Rectangular secction
+M2=1*6**-1*a*(2*a)**2*sigma
+
+X2=M*M2**-1
+
+//Circular section
+//A=%pi*d1**2*4**-1
+
+d1=(A*4*%pi**-1)**0.5
+
+//Moment of circular section
+M3=%pi*32**-1*d1**3*sigma
+
+X3=M*M3**-1
+
+//Result
+printf("\n Moment of resistance of beam section %0.2f mm",M)
+printf("\n Moment of resistance of square section %0.2f mm",X)
+printf("\n Moment of resistance of rectangular section %0.2f mm",X2)
+printf("\n Moment of resistance of circular section %0.2f mm",X3)
diff --git a/3864/CH4/EX4.7/Ex4_7.sce b/3864/CH4/EX4.7/Ex4_7.sce
new file mode 100644
index 000000000..e50fc587f
--- /dev/null
+++ b/3864/CH4/EX4.7/Ex4_7.sce
@@ -0,0 +1,40 @@
+clear
+//
+
+//Initilization of Variables
+
+F=12 //KN //Force at End of beam
+L=2 //m //span
+
+//Square section
+b=200 //mm //Width and depth of beam
+d=200
+
+//Rectangular section
+b1=150 //mm //Width
+d1=300 //mm //Depth
+
+//Calculations
+
+//Max bending Moment
+M=F*L*10**6 //N-mm
+
+//M=sigma*b*d**2
+sigma=M*6*(b*d**2)**-1 //N/mm**2
+
+//Let W be the central concentrated Load in simply supported beam of span L1=3 m
+//MAx Moment
+//M1=W*L1*4**-1
+//After Further simplifying we get
+//M1=0.75*10**6 //N-mm
+
+//The section has a moment of resistance
+M1=sigma*1*6**-1*b1*d1**2
+
+//Equating it to moment of resistance we get max load W
+//0.75*10**6*W=M1
+//After Further simplifying we get
+W=M1*(0.75*10**6)**-1
+
+//Result
+printf("\n Minimum Concentrated Load required to brek the beam %0.2f KN",W)
diff --git a/3864/CH4/EX4.8/Ex4_8.sce b/3864/CH4/EX4.8/Ex4_8.sce
new file mode 100644
index 000000000..73bf0efb6
--- /dev/null
+++ b/3864/CH4/EX4.8/Ex4_8.sce
@@ -0,0 +1,65 @@
+clear
+//
+
+//Initilization of Variables
+
+L=3 //m //span
+sigma_t=35 //N/mm**2 //Permissible stress in tension
+sigma_c=90 //N/mm**2 //Permissible stress in compression
+
+//Flanges
+t=30 //mm //Thickness
+d=250 //mm //Depth
+
+//Web
+t2=25 //mm //Thickness
+b=600 //mm //Width
+
+//Calculations
+
+//Let y_bar be the Distance of N.A from Extreme Fibres
+y_bar=(t*d*d*2**-1*2+(b-2*t)*t2*t2*2**-1)*(t*d*2+(b-2*t)*t2)**-1
+
+//Moment of Inertia
+I=(1*12**-1*t*d**3+t*d*(d*2**-1-y_bar)**2)*2+1*12**-1*(b-2*t)*t2**3+(b-2*t)*t2*(t2*2**-1-y_bar)**2
+
+//Part-1
+
+//If web is in Tension
+y_t=y_bar //mm
+y_c=d-y_bar //mm
+
+//Moment carrying caryying capacity From consideration of tensile stress
+M=sigma_t*I*(y_bar)**-1 //N-mm
+
+//Moment carrying caryying capacity From consideration of compressive stress
+M1=sigma_c*I*(y_c)**-1 //N-mm
+
+//If w KN/m is u.d.l in beam,Max bending moment
+//M=wl**2*8**-1
+//After further simplifyng we get
+//M=1.125*w*10**6 N-mm
+w=M*(1.125*10**6)**-1 //KN
+
+//Part-2
+
+//If web is in compression
+y_t2=178.299 //mm
+y_c2=71.71 //mm
+
+//Moment carrying caryying capacity From consideration of tensile stress
+M2=sigma_t*I*(y_t2)**-1 //N-mm
+
+//Moment carrying caryying capacity From consideration of compressive stress
+M3=sigma_c*I*(y_c2)**-1 //N-mm
+
+//Moment of resistance is M2
+
+//Equating it to bending moment we get
+//M2=1.125*10**6*w2
+//After further simplifyng we get
+w2=M2*(1.125*10**6)**-1
+
+//Result
+printf("\n Uniformly Distributed Load carrying capacity if:web is in Tension %0.2f KN",w)
+printf("\n :web is in compression %0.3f KN",w2)
diff --git a/3864/CH4/EX4.9/Ex4_9.sce b/3864/CH4/EX4.9/Ex4_9.sce
new file mode 100644
index 000000000..93537e581
--- /dev/null
+++ b/3864/CH4/EX4.9/Ex4_9.sce
@@ -0,0 +1,48 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+b1=200 //mm //Width at base
+b2=100 //mm //Width at top
+
+L=8 //m Length
+P=500 //N //Load
+
+//Calculations
+
+//Consider a section at y metres from top
+
+//At this section diameter d is
+//d=b2+y*L**-1*(b1-b2)
+//After Further simplifying we get
+//d=b2+12.5*y //mm
+
+//Moment of Inertia
+//I=%pi*64**-1*d**4
+
+//Section Modulus
+//Z=%pi*32**-1*(b1+12.5*y)**3
+
+//Moment
+//M=5*10**5*y //N-mm
+
+//Let sigma be the fibre stress at this section then
+//M=sigma*Z
+//After sub values in above equation and further simplifying we get
+//sigma=5*10**5*32*%pi**-1*y*((b2+12.5*y)**3)**-1
+
+//For sigma to be Max,d(sigma)*(dy)**-1=0
+//16*10**6*%pi**-1*((b2+12.5*y)**-3+y*(-3)*(b2+12.5*y)**-4*12.5)
+//After Further simplifying we get
+//b2+12.5*y=37.5*y
+//After Further simplifying we get
+y=b2*25**-1 //m
+
+//Stress at this section
+sigma=5*10**5*32*%pi**-1*y*((b2+12.5*y)**3)**-1
+
+//Result
+printf("\n Stress at Extreme Fibre is max %0.2f m",y)
+printf("\n Max stress is %0.2f N/mm**2",sigma)
diff --git a/3864/CH5/EX5.11/Ex5_11.sce b/3864/CH5/EX5.11/Ex5_11.sce
new file mode 100644
index 000000000..ef6e75900
--- /dev/null
+++ b/3864/CH5/EX5.11/Ex5_11.sce
@@ -0,0 +1,55 @@
+clear
+//
+//
+
+
+//Initilization of Variables
+
+L_CB=2 //m //Length of CB
+L_AC=4 //m //Length of AB
+M_C=15 //KN.m //Moment At Pt C
+F_C=30 //KN
+L=6 //m Span of Beam
+
+//Let X=E*I
+X=10000 //KN-m**2
+
+//Calculations
+
+//Let V_A and V_B be the reactions at A & B respectively
+//V_A+V_B=30
+
+//Taking Moment a A,we get
+V_B=(F_C*L_AC+M_C)*L**-1
+V_A=30-V_B
+
+//Now Taking Moment at distacnce x from A
+//M_x=7.5*x-30*(x-4)+15
+
+//By using Macaulay's Method
+//EI*(d**2*x/dx**2)=M_x=7.5*x-30*(x-4)+15
+
+//Now Integrating above Equation we get
+//EI*(dy/dx)=C1+7.5*x**2*2**-1-15*(x-4)**2+15*(x-4) ............(1)
+
+//Again Integrating above Equation we get
+//EIy=C2+C1*x+7.5*6**-1*x**3-5*(x-4)**3+15*(x-4)**2*2**-1..........(2)
+
+//Boundary Cinditions
+x=0
+y=0
+
+//Substituting above equations we get
+C2=0
+
+x=6 //m
+y=0
+
+C1=-(7.5*6**3*6**-1-5*2**3+15*2**2*2**-1)*6**-1
+
+//EIy_c=C2+C1*x+7.5*6**-1*x**3-5*(x-4)**3+15*(x-4)**2*2**-1
+//Sub values in Above equation we get
+y_c=(93.3333*(X)**-1)
+
+//Result
+printf("\n The Deflection at C %0.4f mm",y_c)
diff --git a/3864/CH5/EX5.12/Ex5_12.sce b/3864/CH5/EX5.12/Ex5_12.sce
new file mode 100644
index 000000000..755716ee5
--- /dev/null
+++ b/3864/CH5/EX5.12/Ex5_12.sce
@@ -0,0 +1,87 @@
+clear
+//
+//
+
+
+//Initilization of Variables
+L_AC=2 //m //Length of AC,CD,DB
+L_DB=2
+L_CD=2
+F_C=40 //KN //Force at C
+w=20 //KN/m //u.d.l
+L=6 //m //span of beam
+
+//Let E*I=X
+X=15000 //KN-m**2
+
+
+//Calculations
+
+//Let V_A & V_B be the reactions at A & B respectively
+//V_A+V_B=80
+
+//Taking Moment B,M_B
+V_A=(F_C*(L_CD+L_DB)+w*L_DB*L_DB*2**-1)*L**-1 //KN
+V_B=80-V_A //KN
+
+//Taking Moment at distance x from A
+//M_x=33.333*x-40*(x-2)-20*(x-4)**2*2**-1
+//EI*(d**2/dx**2)=33.333*x-40*(x-2)-10*(x-4)**2
+
+//Integrating above equation we get
+//EI*(dy/dx)=C1+33.333*x**2*2**-1-20*(x-2)**2-10*3**-1*(x-4)**3
+
+//Again Integrating above equation we get
+//EI*y=C2+C1*x+33.333*x**3*6**-1-20*3**-1*(x-2)**3-10*12**-1*(x-4)**4
+
+//At
+x=0
+y=0
+C2=0
+
+//At
+x=6
+y=0
+C1=-760*6**-1
+
+//Assuming Deflection to be max in portion CD and sustituting value of C1 in equation of slope we get
+//EI*y=C2+C1*x+33.333*x**3*6**-1-20*3**-1*(x-2)**3-10*12**-1*(x-4)**4
+//0=-126.667+33.333*x**2**-1-20*(x-2)**2
+
+//After rearranging and simplifying further we get
+
+//x**2-24*x+62=0
+//From above equations
+a=1
+b=-24
+c=62
+
+y=(b**2-4*a*c)**0.5
+
+x1=(-b+y)*(2*a)**-1
+x2=(-b-y)*(2*a)**-1
+
+//Taking x2 into account
+x=2.945 //m
+C1=-126.667
+C2=0
+
+y_max=(C2+C1*x+33.333*x**3*6**-1-20*3**-1*(x-2)**3)*X**-1 //mm
+
+//Max slope occurs at the ends
+//At A,
+//EI*(dy/dx)_A=-126.667
+//At B
+//EI*(dy/dx)_B=126.667+33.333*6**2*2**-1-20*4**2-10*2**3
+//After simplifying Further we get
+//EI*(dy/dx)_B=73.3273
+
+//Now Max slope is EI(dy/dx)_A=-126.667
+//15000*(dy/dx)_=-126.667
+
+//Let Y=dy/dx
+Y=-126.667*X**-1 //Radians
+
+//Result
+printf("\n Maximum Deflection for Beam is %0.4f mm",y_max)
+printf("\n Maximum Slope for beam is %0.4f radians",Y)
diff --git a/3864/CH5/EX5.14/Ex5_14.sce b/3864/CH5/EX5.14/Ex5_14.sce
new file mode 100644
index 000000000..598268c2f
--- /dev/null
+++ b/3864/CH5/EX5.14/Ex5_14.sce
@@ -0,0 +1,62 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+L_CD=2 //m //Length of CD
+E=200 //KN/mm**2
+I=60*10**6 //mm**4 //M.I
+F_C=20 //KN //Force at C
+F_E=30 //KN //Force at E
+w=10 //KN/m //u.d.l
+
+//Calculations
+
+X=E*I*10**-6 //KN-m**2
+
+//Let V_A & V_B be the reactions at A & B respectively
+//V_A+V_B=70
+
+//Taking Moment at distance x from A
+//M_x=34*x-20*(x-1)-10*(x-1)**2*2**-1+10*(x-3)**2*2**-1-30*(x-4)
+//EI*(d**2y/dx**2)=34*x-20*(x-1)-10*(x-1)**2*2**-1+10*(x-3)**2*2**-1-30*(x-4)
+
+//Now Integrating Above equation,we get
+//EI*(dy/dx)=C1+17*x**2-10*(x-1)**2-5*3**-1*(x-1)**3+5*3**-1*(x-3)**3-15*(x-4)**2
+
+//Again Integrating Above equation,we get
+//EI*y=C2+C1*x+17*3**-1*x**3-10*3**-1*(x-1)**3-5*12**-1*(x-1)**4+5*12**-1*(x-3)**4-5*(x-4)**3
+
+//At
+x=0
+y=0
+C2=0
+
+//At
+x=5 //m
+y=0
+C1=(-17*3**-1*x**3+10*3**-1*(x-1)**3+5*12**-1*(x-1)**4-5*12**-1*(x-3)**4+5*(x-4)**3)*5**-1
+
+//EI*y=C2+C1*x+17*3**-1*x**3-10*3**-1*(x-1)**3-5*12**-1*(x-1)**4+5*12**-1*(x-3)**4-5*(x-4)**3
+C2=0
+C1=-78
+x=1
+y_c=(-78*x+17*3**-1*x)*(X)**-1
+
+//EI*y_D=C2+C1*x+17*3**-1*x**3-10*3**-1*(x-1)**3-5*12**-1*(x-1)**4
+x=3
+C1-78
+C2=0
+y_D=(C2+C1*x+17*3**-1*x**3-10*3**-1*(x-1)**3-5*12**-1*(x-1)**4)*(X**-1)
+
+//EI*y_E=C2+C1*x+17*3**-1*x**3-10*3**-1*(x-1)**3-5*12**-1*(x-1)**4+5*12**-1*(x-3)**4
+x=4
+C1-78
+C2=0
+y_E=(C2+C1*x+17*3**-1*x**3-10*3**-1*(x-1)**3-5*12**-1*(x-1)**4+5*12**-1*(x-3)**4)*X**-1
+
+//Result
+printf("\n Deflections at C %0.5f mm",y_c)
+printf("\n Deflections at D %0.5f mm",y_D)
+printf("\n Deflections at E %0.4f mm",y_E)
diff --git a/3864/CH5/EX5.16/Ex5_16.sce b/3864/CH5/EX5.16/Ex5_16.sce
new file mode 100644
index 000000000..244888a3d
--- /dev/null
+++ b/3864/CH5/EX5.16/Ex5_16.sce
@@ -0,0 +1,60 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+L_AC=2 //m //Length of BD,CB,AC
+L_BD=2
+L_CB=2
+F_C=40 //KN //Force at C
+F_D=10 //KN Force at D
+L=6 //m spna of beam
+
+//EI is constant in this problem
+
+//Calculations
+
+//Let V_A & V_B be the reactions at A & B Respectively
+//V_A+V_B=50
+
+//Taking Moment at Pt A
+V_B=(F_D*L+F_C*L_AC)*(L_AC+L_CB)**-1
+V_A=50-V_B
+
+//Now Taking Moment at distance x from A,M_x
+//M_x=15*x-40*(x-2)+35*(x-4)
+//EI*(d**2*y/dx**2)=15*x-40*(x-2)+35*(x-4)
+
+//Now Integrating above equation we get
+//EI*(dy/dx)=C1+7.5*x**2-20*(x-2)**2+17.5(x-4)**2
+
+//Again Integrating above equation we get
+//EI*y=C2+C1*x+2.5*x**2-20*3**-1*(x-2)**3+17.5*(x-4)**3*3**-1
+
+//At
+x=0
+y=0
+//we get
+C2=0
+
+//At
+x=4
+y=0
+//we get
+C1=(2.5*4**3-20*3**-1*2**3)*4**-1
+
+//Now Deflection at C
+x=2
+C1=-26.667
+C2=0
+y_C=C2+C1*x+2.5*x**3
+
+//Now Deflection at D
+C1=-21.667
+C2=0
+y_D=-26.667*6+2.5*6**3-20*3**-1*4**3+17.5*2**3*3**-1
+
+//Result
+printf("\n Deflections Under Loads are:y_D %0.4f ",y_D)
+printf("\n :y_C %0.2f ",y_C)
diff --git a/3864/CH5/EX5.18/Ex5_18.sce b/3864/CH5/EX5.18/Ex5_18.sce
new file mode 100644
index 000000000..26a9324a6
--- /dev/null
+++ b/3864/CH5/EX5.18/Ex5_18.sce
@@ -0,0 +1,72 @@
+clear
+//
+//
+
+//Initilization of Variables
+L_ED=2 //m //Length of DB & AC
+L_AC=2
+L_DB=2
+L_CD=4 //m //Length of CD
+L_CE=2 //m //Length of CE
+F_A=40 //KN //Force at C
+F_B=20 //KN //Force at A
+E=200*10**6 //KN/mm**2 //Modulus of Elasticity
+I=50*10**-6 //m**4 //M.I
+
+//Calculations
+
+//LEt V_C & V_D be the reactions at C & D respectively
+//V_C+V_D=60
+
+//Taking Moment At D,M_D
+V_C=-(-F_A*(L_AC+L_CE+L_ED)+F_B*L_DB)*L_CD**-1
+V_D=60-V_C
+
+//Now Taking Moment at Distance x from A,
+//M_x=-40*x+50*(x-2)+10*(x-6)
+
+//EI*(d**2*y/dx**2)=-40*x+50*(x-2)+10*(x-6)
+
+//Now Integrating above Equation we get
+//EI*(dy/dx)=C1+20*x**2-25*(x-2)+5*(x-6)**2
+
+//Again Integrating above Equation we get
+//EI*y=C2+C1*x-20*3**-1*x**3+25*3**-1*(x-2)**3+5*3**-1*(x-6)**3
+
+//At
+x=0
+y=0
+//C2+2*C1=-53.33 ...............(1)
+
+//At
+x=6
+y=0
+//C2+6*C1=906.667 ...............(2)
+
+//Subtracting Equation 1 from 2 we get
+C1=853.333*4**-1
+C2=53.333-2*C1
+x=0
+y_A=(C2+C1*x-20*3**-1*x**3+25*3**-1*(x-2)**3+5*3**-1*(x-6)**3)*(E*I)**-1
+
+//Answer For y_A is incorrect in textbook
+
+//At Mid-span
+C1=853.333*4**-1
+C2=53.333-2*C1
+x=4
+y_E=(C2+C1*x-20*3**-1*x**3+25*3**-1*(x-2)**3+5*3**-1*(x-6)**3)*(E*I)**-1
+
+//Answer For y_E is incorrect in textbook
+
+//At B
+C1=853.333*4**-1
+C2=53.333-2*C1
+x=8
+y_B=(C2+C1*x-20*3**-1*x**3+25*3**-1*(x-2)**3+5*3**-1*(x-6)**3)*(E*I)**-1
+
+
+//Result
+printf("\n Deflection relative to the level of the supports:at End A %0.4f mm",y_A)
+printf("\n :at End B %0.4f mm",y_B)
+printf("\n :at Centre of CD %0.4f mm",y_E)
diff --git a/3864/CH5/EX5.2/Ex5_2.sce b/3864/CH5/EX5.2/Ex5_2.sce
new file mode 100644
index 000000000..7d16b55d6
--- /dev/null
+++ b/3864/CH5/EX5.2/Ex5_2.sce
@@ -0,0 +1,26 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+L=3000 //mm //span of beam
+a=2000 //mm
+W1=20*10**3 //N //Pt Load Acting on beam
+W2=30*10**3 //N //Pt Load Acting on beam
+E=2*10**5 //N/mm**2 //Youngs Modulus
+I=2*10**8 //mm**4 //M.I
+
+//Calculations
+
+//Deflection at free End Due to W2
+dell1=W2*L**3*(3*E*I)**-1 //mm
+
+//Deflection at free end Due to W1
+dell2=W1*a**3*(3*E*I)**-1+(L-a)*W1*a**2*(2*E*I)**-1 //mm
+
+//Total Deflection at free end
+dell=dell1+dell2 //mm
+
+//Result
+printf("\n Deflection at Free End is %0.2f mm",dell)
diff --git a/3864/CH5/EX5.4/Ex5_4.sce b/3864/CH5/EX5.4/Ex5_4.sce
new file mode 100644
index 000000000..46dcb2ca2
--- /dev/null
+++ b/3864/CH5/EX5.4/Ex5_4.sce
@@ -0,0 +1,27 @@
+clear
+//
+//
+
+
+//Initilization of Variables
+
+E=2*10**5 //N/mm**2 //Youngs Modulus
+I=180*10**6 //mm**4 //M.I
+W1=20 //N/m //u.d.l
+W2=20*10**3 //N //Pt load
+L=3000 //m //Span of beam
+a=2000 //m //Span of u.d.l
+
+//Calculations
+
+//Displacement of free End due to 20 KN Pt load at free end
+dell1=W2*L**3*(3*E*I)**-1 //mm
+
+//Displacement of free end due to u.d.l
+dell2=W1*a**4*(8*E*I)**-1+(L-a)*W1*a**3*(6*E*I)**-1
+
+//Deflection at free end
+dell=dell1+dell2 //mm
+
+//Result
+printf("\n The Displacement of Free End of cantilever beam is %0.2f mm",dell)
diff --git a/3864/CH6/EX6.1/Ex6_1.sce b/3864/CH6/EX6.1/Ex6_1.sce
new file mode 100644
index 000000000..13d455f14
--- /dev/null
+++ b/3864/CH6/EX6.1/Ex6_1.sce
@@ -0,0 +1,25 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+L=10000 //mm //Length of solid shaft
+d=100 //mm //Diameter of shaft
+n=150 //rpm
+P=112.5*10**6 //N-mm/sec //Power Transmitted
+G=82*10**3 //N/mm**2 //modulus of Rigidity
+
+//Calculations
+
+J=%pi*d**4*(32)**-1 //mm**3 //Polar Modulus
+T=P*60*(2*%pi*n)**-1 //N-mm //Torsional moment
+
+r=50 //mm //Radius
+
+q_s=T*r*J**-1 //N/mm**2 //Max shear stress intensity
+Theta=T*L*(G*J)**-1 //angle of twist
+
+//Result
+printf("\n Max shear stress intensity %0.2f N/mm**2",q_s)
+printf("\n Angle of Twist %0.3f radian",Theta)
diff --git a/3864/CH6/EX6.11/Ex6_11.sce b/3864/CH6/EX6.11/Ex6_11.sce
new file mode 100644
index 000000000..a3f927997
--- /dev/null
+++ b/3864/CH6/EX6.11/Ex6_11.sce
@@ -0,0 +1,45 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+P=250*10**6 //N-mm/sec //Power transmitted
+n=100 //rpm
+q_s=75 //N/mm**2 //Shear stress
+
+//Calculations
+
+//From Equation of Power we have
+T=P*60*(2*%pi*n)**-1 //N-mm //Torsional moment
+
+//Now from torsional moment equation we have
+//T=j*q_s*(d/2**-1)**-1
+//After substituting values in above equation and further simplifying we get
+//T=%pi*16**-1**d**3*q_s
+d=(T*16*(%pi*q_s)**-1)**0.3333 //mm //Diameter of solid shaft
+
+//PArt-2
+
+//Let d1 and d2 be the outer and inner diameter of hollow shaft
+//d2=0.6*d1
+
+//Again from torsional moment equation we have
+//T=%pi*32**-1*(d1**4-d2**4)*q_s*(d1/2)**-1
+d1=(T*16*(%pi*(1-0.6**4)*q_s)**-1)**0.33333
+d2=0.6*d1
+
+//Cross sectional area of solid shaft
+A1=%pi*4**-1*d**2 //mm**2
+
+//cross sectional area of hollow shaft
+A2=%pi*4**-1*(d1**2-d2**2)
+
+//Now percentage saving in weight
+//Let W be the percentage saving in weight
+W=(A1-A2)*100*A1**-1
+
+//Result
+printf("\n Size of shaft is:solid shaft:d %0.3f mm",d)
+printf("\n :Hollow shaft:d1 %0.3f mm",d1)
+printf("\n : :d2 %0.3f mm",d2)
diff --git a/3864/CH6/EX6.12/Ex6_12.sce b/3864/CH6/EX6.12/Ex6_12.sce
new file mode 100644
index 000000000..a38b0a948
--- /dev/null
+++ b/3864/CH6/EX6.12/Ex6_12.sce
@@ -0,0 +1,43 @@
+clear
+//
+//
+
+//Initilization of Variables
+d=100 //mm //Diameter of solid shaft
+d1=100 //mm //Outer Diameter of hollow shaft
+d2=50 //mm //Inner Diameter of hollow shaft
+
+//Calculations
+
+//Torsional moment of solid shaft
+//T_s=J*q_s*(d*2**-1)**-1
+//After substituting values in above equation and further simplifying we get
+//T_s=%pi*16*d**3*q_s ...............(1)
+
+//torsional moment for hollow shaft is
+//T_h=J*q_s*(d1**4-d2**4)**-1*(d1*2**-1)
+//After substituting values in above equation and further simplifying we get
+//T_h=%pi*32**-1*2*d1**-1*(d1**4-d2**4)*q_s ...........(2)
+
+//Dividing Equation 2 by 1 we get
+//Let the ratio of T_h*T_s**-1 Be X
+X=1-0.5**4
+
+//Loss in strength
+//Let s be the loss in strength
+//s=T_s*T_h*100*T_s**-1
+//After substituting values in above equation and further simplifying we get
+s=(1-0.9375)*100
+
+//Weight Ratio
+//Let w be the Weight ratio
+//w=W_h*W_s**-1
+
+A_h=%pi*32**-1*(d1**2-d2**2) //mm**2 //Area of Hollow shaft
+A_s=%pi*32**-1*d**2 //mm**2 //Area of solid shaft
+
+w=A_h*A_s**-1
+
+//Result
+printf("\n Loss in strength is %0.2f ",s)
+printf("\n Weight ratio is %0.2f ",w)
diff --git a/3864/CH6/EX6.13/Ex6_13.sce b/3864/CH6/EX6.13/Ex6_13.sce
new file mode 100644
index 000000000..12f36afcd
--- /dev/null
+++ b/3864/CH6/EX6.13/Ex6_13.sce
@@ -0,0 +1,36 @@
+clear
+//
+//
+
+//Initilization of Variables
+T=8 //KN-m //Torque
+d=100 //mm //Diameter of portion AB
+d1=100 //mm //External Diameter of Portion BC
+d2=75 //mm //Internal Diameter of Portion BC
+G=80 //KN/mm**2 //Modulus of Rigidity
+L1=1500 //mm //Radial Distance of Portion AB
+L2=2500 //mm //Radial Distance ofPortion BC
+
+//Calculations
+
+R=d*2**-1 //mm //Radius of shaft
+
+//For Portion AB,Polar Modulus
+J1=%pi*32**-1*d**4 //mm**4
+
+//For Portion BC,Polar modulus
+J2=%pi*32**-1*(d1**4-d2**4) //mm**4
+
+//Now Max stress occurs in portion BC since max radial Distance is sme in both cases
+q_max=T*J2**-1*R*10**6 //N/mm**2
+
+//Let theta1 be the rotation in Portion AB and theta2 be the rotation in portion BC
+theta1=T*L1*(G*J1)**-1 //Radians
+theta2=T*L2*(G*J2)**-1 //Radians
+
+//Total Rotational at end C
+theta=(theta1+theta2)*10**3 //Radians
+
+//Result
+printf("\n Max stress induced is %0.2f N/mm**2",q_max)
+printf("\n Angle of Twist is %0.3f radians",theta)
diff --git a/3864/CH6/EX6.14/Ex6_14.sce b/3864/CH6/EX6.14/Ex6_14.sce
new file mode 100644
index 000000000..62b0e8876
--- /dev/null
+++ b/3864/CH6/EX6.14/Ex6_14.sce
@@ -0,0 +1,40 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+q_b=80 //N/mm**2 //Shear stress in Brass
+q_s=100 //N/mm**2 //Shear stress in Steel
+G_b=40*10**3 //N/mm**2
+G_s=80*10**3
+L_b=1000 //mm //Length of brass shaft
+L_s=1200 //mm //Length of steel shaft
+d1=80 //mm //Diameter of brass shaft
+d2=60 //mm //Diameter of steel shaft
+
+//Calculations
+
+//Polar modulus of brass rod
+J_b=%pi*32**-1*d1**4 //mm**4
+
+//Polar modulus of steel rod
+J_s=%pi*32**-1*d2**4 //mm**4
+
+//Considering bras Rod:AB
+T1=J_b*q_b*(d1*2**-1)**-1 //N-mm
+
+//Considering Steel Rod:BC
+T2=J_s*q_s*(d2*2**-1)**-1 //N-mm
+
+//Max Torque that can be applied
+T2
+
+//Let theta_b and theta_s be the rotations in Brass and steel respectively
+theta_b=T2*L_b*(G_b*J_b)**-1 //Radians
+theta_s=T2*L_s*(G_s*J_s)**-1 //Radians
+
+theta=theta_b+theta_s //Radians //Rotation of free end
+
+//Result
+printf("\n Total of free end is %0.3f Radians",theta)
diff --git a/3864/CH6/EX6.15/Ex6_15.sce b/3864/CH6/EX6.15/Ex6_15.sce
new file mode 100644
index 000000000..a96281897
--- /dev/null
+++ b/3864/CH6/EX6.15/Ex6_15.sce
@@ -0,0 +1,55 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+G=80*10**3 //N/mm**2 //Modulus of Rigidity
+d1=100 //mm //Outer diameter of hollow shft
+d2=80 //mm //Inner diameter of hollow shaft
+d=80 //mm //diameter of Solid shaft
+d3=60 //mm //diameter of Solid shaft having L=0.5m
+L1=300 //mm //Length of Hollow shaft
+L2=400 //mm //Length of solid shaft
+L3=500 //mm //LEngth of solid shaft of diameter 60mm
+T1=2*10**6 //N-mm //Torsion in Shaft AB
+T2=1*10**6 //N-mm //Torsion in shaft BC
+T3=1*10**6 //N-mm //Torsion in shaft CD
+
+//Calculations
+
+//Now Polar modulus of section AB
+J1=%pi*32**-1*(d1**4-d2**4) //mm**4
+
+//Polar modulus of section BC
+J2=%pi*32**-1*d**4 //mm**4
+
+//Polar modulus of section CD
+J3=%pi*32**-1*d3**4 //mm**4
+
+//Now angle of twist of AB
+theta1=T1*L1*(G*J1)**-1 //radians
+
+//Angle of twist of BC
+theta2=T2*L2*(G*J2)**-1 //radians
+
+//Angle of twist of CD
+theta3=T3*L3*(G*J3)**-1 //radians
+
+//Angle of twist
+theta=theta1-theta2+theta3 //Radians
+
+//Shear stress in AB From Torsion Equation
+q_s1=T1*(d1*2**-1)*J1**-1 //N/mm**2
+
+//Shear stress in BC
+q_s2=T2*(d*2**-1)*J2**-1 //N/mm**2
+
+//Shear stress in CD
+q_s3=T3*(d3*2**-1)*J3**-1 //N-mm**2
+
+//As max shear stress occurs in portion CD,so consider CD
+
+//Result
+printf("\n Angle of twist at free end is %0.5f Radian",theta)
+printf("\n Max Shear stress %0.2f N/mm**2",q_s3)
diff --git a/3864/CH6/EX6.16/Ex6_16.sce b/3864/CH6/EX6.16/Ex6_16.sce
new file mode 100644
index 000000000..76268c16b
--- /dev/null
+++ b/3864/CH6/EX6.16/Ex6_16.sce
@@ -0,0 +1,52 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+L=1000 //mm //Length of bar
+L1=600 //mm //Length of Bar AB
+L2=400 //mm //Length of Bar BC
+d1=60 //mm //Outer Diameter of bar BC
+d2=30 //mm //Inner Diameter of bar BC
+d=60 //mm //Diameter of bar AB
+T=2*10**6 //N-mm //Total Torque
+
+//Calculations
+
+//Polar Modulus of Portion AB
+J1=%pi*32**-1*d**4 //mm*4
+
+//Polar Modulus of Portion BC
+J2=%pi*32**-1*(d1**4-d2**4) //mm**4
+
+//Let T1 be the torque resisted by bar AB and T2 be torque resisted by Bar BC
+//Let theta1 and theta2 be the rotation of shaft in portion AB & BC
+
+//theta1=T1*L1*(G*J1)**-1 //radians
+//After substituting values and further simplifying we get
+//theta1=32*600*T1*(%pi*60**4*G)**-1
+
+//theta2=T2*L*(J2*G)**-1 //Radians
+//After substituting values and further simplifying we get
+//theta2=32*400*T2*(%pi*60**4*(1-0.5**4)*G)**-1
+
+//Now For consistency of Deformation,theta1=theta2
+//After substituting values and further simplifying we get
+//T1=0.7111*T2 ..................................................(1)
+
+//But T1+T2=T=2*10**6 ...........................................(2)
+//Substituting value of T1 in above equation
+
+T2=T*(0.7111+1)**-1
+T1=0.71111*T2
+
+//Max stress in Portion AB
+q_s1=T1*(d*2**-1)*(J1)**-1 //N/mm**2
+
+//Max stress in Portion BC
+q_s2=T2*(d1*2**-1)*J2**-1 //N/mm**2
+
+//Result
+printf("\n Stresses Developed in Portion:AB %0.2f N/mm**2",q_s1)
+printf("\n :BC %0.2f N/mm**2",q_s2)
diff --git a/3864/CH6/EX6.17/Ex6_17.sce b/3864/CH6/EX6.17/Ex6_17.sce
new file mode 100644
index 000000000..7012e6601
--- /dev/null
+++ b/3864/CH6/EX6.17/Ex6_17.sce
@@ -0,0 +1,45 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d1=80 //mm //External Diameter of Brass tube
+d2=50 //mm //Internal Diameter of Brass tube
+d=50 //mm //Diameter of steel Tube
+G_b=40*10**3 //N/mm**2 //Modulus of Rigidity of brass tube
+G_s=80*10**3 //N/mm**2 //Modulus of rigidity of steel tube
+T=6*10**6 //N-mm //Torque
+L=2000 //mm //Length of Tube
+
+//Calculations
+
+//Polar Modulus of brass tube
+J1=%pi*32**-1*(d1**4-d2**4) //mm**4
+
+//Polar modulus of steel Tube
+J2=%pi*32**-1*d**4 //mm**4
+
+//Let T_s & T_b be the torque resisted by steel and brass respectively
+//Then, T_b+T_s=T ............................................(1)
+
+//Since the angle of twist will be the same
+//Theta1=Theta2
+//After substituting values and further simplifying we get
+//Ts=0.360*Tb ...........................................(2)
+
+//After substituting value of Ts in eqn 1 and further simplifying we get
+T_b=T*(0.36+1)**-1 //N-mm
+T_s=0.360*T_b
+
+//Let q_s and q_b be the max stress in steel and brass respectively
+q_b=T_b*(d1*2**-1)*J1**-1 //N/mm**2
+q_s=T_s*(d2*2**-1)*J2**-1 //N/mm**2
+
+//Since angle of twist in brass=angle of twist in steel
+theta_s=T_s*L*(J2*G_s)**-1
+
+//Result
+printf("\n Stresses Developed in Materials are:Brass %0.2f N/mm**2",q_b)
+printf("\n :Steel %0.2f N/mm**2",q_s)
+printf("\n Angle of Twist in 2m Length %0.3f Radians",theta_s)
diff --git a/3864/CH6/EX6.18/Ex6_18.sce b/3864/CH6/EX6.18/Ex6_18.sce
new file mode 100644
index 000000000..cf2139d10
--- /dev/null
+++ b/3864/CH6/EX6.18/Ex6_18.sce
@@ -0,0 +1,39 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d1=60 //mm //External Diameter of aluminium Tube
+d2=40 //mm //Internal Diameter of aluminium Tube
+d=40 //mm //Diameter of steel tube
+q_a=60 //N/mm**2 //Permissible stress in aluminium
+q_s=100 //N/mm**2 //Permissible stress in steel tube
+G_a=27*10**3 //N/mm**2
+G_s=80*10**3 //N/mm**2
+
+//Calculations
+
+//Polar modulus of aluminium Tube
+J_a=%pi*32**-1*(d1**4-d2**4) //mm**4
+
+//Polar Modulus of steel Tube
+J_s=%pi*32**-1*d**4 //mm**4
+
+//Now the angle of twist of steel tube = angle of twist of aluminium tube
+//T_s*L_s*(J_s*theta_s)**-1=T_a*L_a*(J_a*theta_a)**-1
+//After substituting values in above Equation and Further simplifyin we get
+//T_s=0.7293*T_a .....................(1)
+
+//If steel Governs the resisting capacity
+T_s1=q_s*J_s*(d*2**-1)**-1 //N-mm
+T_a1=T_s1*0.7293**-1 //N-mm
+T1=(T_s1+T_a1)*10**-6 //KN-m //Total Torque in steel Tube
+
+//If aluminium Governs the resisting capacity
+T_a2=q_a*J_a*(d1*2**-1) //N-mm
+T_s2=T_a2*0.7293 //N-mm
+T2=(T_s2+T_a2)*10**-6 //KN-m //Total Torque in aluminium tube
+
+//Result
+printf("\n Steel Governs the torque carrying capacity %0.2f KN-m",T1)
diff --git a/3864/CH6/EX6.2/Ex6_2.sce b/3864/CH6/EX6.2/Ex6_2.sce
new file mode 100644
index 000000000..2c4184559
--- /dev/null
+++ b/3864/CH6/EX6.2/Ex6_2.sce
@@ -0,0 +1,26 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+P=440*10**6 //N-m/sec //Power transmitted
+n=280 //rpm
+theta=%pi*180**-1 //radian //angle of twist
+L=1000 //mm //Length of solid shaft
+q_s=40 //N/mm**2 //Max torsional shear stress
+G=84*10**3 //N/mm**2 //Modulus of rigidity
+
+//Calculations
+
+//P=2*%pi*n*T*(60)**-1 //Equation of Power transmitted
+T=P*60*(2*%pi*n)**-1 //N-mm //torsional moment
+
+//From Consideration of shear stress
+d1=(T*16*(%pi*40)**-1)**0.333333
+
+//From Consideration of angle of twist
+d2=(T*L*32*180*(%pi*84*10**3*%pi)**-1)**0.25
+
+//result
+printf("\n Diameter of solid shaft is %0.2f mm",d1)
diff --git a/3864/CH6/EX6.20/Ex6_20.sce b/3864/CH6/EX6.20/Ex6_20.sce
new file mode 100644
index 000000000..b8f895881
--- /dev/null
+++ b/3864/CH6/EX6.20/Ex6_20.sce
@@ -0,0 +1,31 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+T=2*10**6 //N-mm //Torque transmitted
+G=80*10**3 //N/mm**2 //Modulus of rigidity
+d1=40 //mm
+d2=80 //mm
+r1=20 //mm
+r2=40 //mm
+L=2000 //mm //Length of shaft
+
+//Calculations
+
+//Angle of twist
+theta=2*T*L*(r1**2+r1*r2+r2**2)*(3*%pi*G*r2**3*r1**3)**-1 //radians
+
+//If the shaft is treated as shaft of average Diameter
+d_avg=(d1+d2)*2**-1 //mm
+
+theta1=T*L*(G*%pi*32**-1*d_avg**4)**-1 //Radians
+
+//Percentage Error
+//Let Percentage Error be E
+X=theta-theta1
+E=(X*theta**-1)*100
+
+//Result
+printf("Percentage Error is %0.3f",E)
diff --git a/3864/CH6/EX6.21/Ex6_21.sce b/3864/CH6/EX6.21/Ex6_21.sce
new file mode 100644
index 000000000..031493439
--- /dev/null
+++ b/3864/CH6/EX6.21/Ex6_21.sce
@@ -0,0 +1,29 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+G=80*10**3 //N/mm**2
+P=1*10**9 //N-mm/sec //Power
+n=300
+d1=150 //mm //Outer Diameter
+d2=120 //mm //Inner Diameter
+L=2000 //mm //Length of circular shaft
+
+//Calculations
+
+T=P*60*(2*%pi*n)**-1 //N-mm
+
+//Polar Modulus
+J=%pi*32**-1*(d1**4-d2**4) //mm**4
+
+q_s=T*J**-1*(d1*2**-1) //N/mm**2
+
+
+//Strain ENergy
+U=q_s**2*(4*G)**-1*%pi*4**-1*(d1**2-d2**2)*L
+
+//Result
+printf("\n Max shear stress is %0.2f N/mm**2",q_s)
+printf("\n Strain Energy stored in the shaft is %0.2f N-mm",U)
diff --git a/3864/CH6/EX6.22/Ex6_22.sce b/3864/CH6/EX6.22/Ex6_22.sce
new file mode 100644
index 000000000..573d185e2
--- /dev/null
+++ b/3864/CH6/EX6.22/Ex6_22.sce
@@ -0,0 +1,32 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=12 //mm //Diameter of helical spring
+D=150 //mm //Mean Diameter
+R=D*2**-1 //mm //Radius of helical spring
+n=10 //no.of turns
+G=80*10**3 //N/mm**2
+W=450 //N //Load
+
+//Calculations
+
+//Max shear stress
+q_s=16*W*R*(%pi*d**3)**-1 //N/mm**2
+
+//Strain Energy stored
+U=32*W**2*R**3*n*(G*d**4)**-1 //N-mm
+
+//Deflection Produced
+dell=64*W*R**3*n*(G*d**4)**-1 //mm
+
+//Stiffness Spring
+k=W*dell**-1 //N/mm
+
+//Result
+printf("\n Max shear stress is %0.2f N/mm**2",q_s)
+printf("\n Strain Energy stored is %0.2f N-mm",U)
+printf("\n Deflection Produced is %0.2f mm",dell)
+printf("\n Stiffness spring is %0.2f N/mm",k)
diff --git a/3864/CH6/EX6.23/Ex6_23.sce b/3864/CH6/EX6.23/Ex6_23.sce
new file mode 100644
index 000000000..d93dc86f7
--- /dev/null
+++ b/3864/CH6/EX6.23/Ex6_23.sce
@@ -0,0 +1,35 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+K=5 //N/mm //Stiffness
+L=100 //mm //Solid Length
+q_s=60 //N/mm**2 //Max shear stress
+W=200 //N //Max Load
+G=80*10**3 //N/mm**2
+
+//Calculations
+
+//K=W*dell**-1
+//After substituting values and further simplifying we get
+//d=0.004*R**3*n ........(1) //mm //Diameter of wire
+//n=L*d**-1 ........(2)
+
+//From Shearing stress
+//q_s=16*W*R*(%pi*d**3)**-1
+//After substituting values and further simplifying we get
+//d**4=0.004*R**3*n .................(4)
+
+//From Equation 1,2,3
+//d**4=0.004*(0.0785*d**3)**3*100*d**-1
+//after further simplifying we get
+d=5168.101**0.25
+n=100*d**-1
+R=(d**4*(0.004*n)**-1)**0.3333
+
+//Result
+printf("\n Diameter of Wire is %0.2f mm",d)
+printf("\n No.of turns is %0.2f ",n)
+printf("\n Mean Radius of spring is %0.2f mm",R)
diff --git a/3864/CH6/EX6.24/Ex6_24.sce b/3864/CH6/EX6.24/Ex6_24.sce
new file mode 100644
index 000000000..54c23cd26
--- /dev/null
+++ b/3864/CH6/EX6.24/Ex6_24.sce
@@ -0,0 +1,30 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+m=5*10**5 //Wagon Weighing
+v=18*1000*36000**-1
+d=300 //mm //Diameter of Beffer springs
+n=18 //no.of turns
+G=80*10**3 //N/mm**2
+dell=225
+R=100 //mm //Mean Radius
+
+//Calculations
+
+//Energy of Wagon
+E=m*v**2*(9.81*2)**-1 //N-mm
+
+//Load applied
+W=dell*G*d**4*(64*R**3*n)**-1 //N
+
+//Energy each spring can absorb is
+E2=W*dell*2**-1 //N-mm
+
+//No.of springs required to absorb energy of Wagon
+n2=E*E2**-1 *10**7
+
+//Result
+printf("\n No.of springs Required for Buffer is %0.2f ",n2)
diff --git a/3864/CH6/EX6.25/Ex6_25.sce b/3864/CH6/EX6.25/Ex6_25.sce
new file mode 100644
index 000000000..a1b4c1ee4
--- /dev/null
+++ b/3864/CH6/EX6.25/Ex6_25.sce
@@ -0,0 +1,27 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+b=180 //mm //width of flange
+d=10 //mm //Depth of flange
+t=10 //mm //Thickness of flange
+D=400 //mm //Overall Depth
+
+//Calculations
+
+I_xx=1*12**-1*(b*D**3-(b-t)*(D-2*d)**3)
+I_yy=1*12**-1*((D-2*d)*t**3+2*t*b**3)
+
+//If warping is neglected
+J=I_xx+I_yy //mm**4
+
+//Since b/d>1.6,we get
+J2=1*3**-1*d**3*b*(1-0.63*d*b**-1)*2+1*3**-1*t**3*(D-2*d)*(1-0.63*t*b**-1)
+
+//Over Estimation of torsional Rigidity would have been
+T=J*J2**-1
+
+//Result
+printf("\n Error in assessing torsional Rigidity if the warping is neglected is %0.2f ",T)
diff --git a/3864/CH6/EX6.26/Ex6_26.sce b/3864/CH6/EX6.26/Ex6_26.sce
new file mode 100644
index 000000000..4f3185b4c
--- /dev/null
+++ b/3864/CH6/EX6.26/Ex6_26.sce
@@ -0,0 +1,36 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d1=100 //mm //Outer Diameter
+d2=95 //mm //Inner Diameter
+T=2*10**6 //N-mm //Torque
+
+//Calculations
+
+J=%pi*32**-1*(d1**4-d2**4) //mm**4 //Polar Modulus
+
+//Shear stress
+q_max=T*J**-1*d1*2**-1 //N/mm**2
+
+//Now theta*L**-1=T*(G*J)**-1
+//After substituting values and further simplifying we get
+//Let theta*L**-1=X
+X=T*J**-1
+
+//Now Treating it as very thin walled tube
+d=(d1+d2)*2**-1 //mm
+
+r=d*2**-1
+t=(d1-d2)*2**-1
+q_max2=T*(2*%pi*r**2*t)**-1 //N/mm**2
+
+X2=T*(2*%pi*r**3*t)**-1
+
+//Result
+printf("\n When it is treated as hollow shaft:Max shear stress %0.2f N/mm**2",q_max)
+printf("\n :Angle of Twist per unit Length %0.3f ",X)
+printf("\n When it is very thin Walled Tube :Max shear stress %0.2f N/mm**2",q_max2)
+printf("\n :Angle of twist per Unit Length %0.3f ",X2)
diff --git a/3864/CH6/EX6.3/Ex6_3.sce b/3864/CH6/EX6.3/Ex6_3.sce
new file mode 100644
index 000000000..5d5ac6967
--- /dev/null
+++ b/3864/CH6/EX6.3/Ex6_3.sce
@@ -0,0 +1,27 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+G=80*10**3 //N/mm**2 //Modulus of rigidity
+q_s=80 //N/mm**2 //Max sheare stress
+P=736*10**6 //N-mm/sec //Power transmitted
+n=200
+
+//Calculations
+
+T=P*60*(2*%pi*n)**-1 //N-mm //Torsional moment
+
+//Now From consideration of angle of twist
+theta=%pi*180**-1
+//L=15*d
+
+d=(T*32*180*15*(%pi**2*G)**-1)**0.33333
+
+//Now corresponding stress at the surface is
+q_s2=T*32*d*(%pi*2*d**4)**-1
+
+//Result
+printf("\n Max diameter required is %0.2f mm",d)
+printf("\n Corresponding shear stress is %0.2f N/mm**2",q_s2)
diff --git a/3864/CH6/EX6.4/Ex6_4.sce b/3864/CH6/EX6.4/Ex6_4.sce
new file mode 100644
index 000000000..0c51b1470
--- /dev/null
+++ b/3864/CH6/EX6.4/Ex6_4.sce
@@ -0,0 +1,28 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=25 //mm //Diameter of steel bar
+p=50*10**3 //N //Pull
+dell_1=0.095 //mm //Extension of bar
+l=200 //mm //Guage Length
+T=200*10**3 //N-mm //Torsional moment
+theta=0.9*%pi*180**-1 //angle of twist
+L=250 //mm Length of steel bar
+
+//Calculations
+
+A=%pi*4**-1*d**2 //Area of steel bar //mm**2
+E=p*l*(dell_1*A)**-1 //N/mm**2 //Modulus of elasticity
+
+J=%pi*32**-1*d**4 //mm**4 //Polar modulus
+
+G=T*L*(theta*J)**-1 //Modulus of rigidity //N/mm**2
+
+//Now from the relation of Elastic constants
+mu=E*(2*G)**-1-1
+
+//result
+printf("\n The Poissons ratio is %0.3f ",mu)
diff --git a/3864/CH6/EX6.5/Ex6_5.sce b/3864/CH6/EX6.5/Ex6_5.sce
new file mode 100644
index 000000000..0ee4239e2
--- /dev/null
+++ b/3864/CH6/EX6.5/Ex6_5.sce
@@ -0,0 +1,26 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+L=6000 //mm //Length of circular shaft
+d1=100 //mm //Outer Diameter
+d2=75 //mm //Inner Diameter
+R=100*2**-1 //Radius of shaft
+T=10*10**6 //N-mm //Torsional moment
+G=80*10**3 //N/mm**2 //Modulus of Rigidity
+
+//Calculations
+
+J=%pi*32**-1*(d1**4-d2**4) //mm**4 //Polar Modulus
+
+//Max Shear stress produced
+q_s=T*R*J**-1 //N/mm**2
+
+//Angle of twist
+theta=T*L*(G*J)**-1 //Radian
+
+//Result
+printf("\n MAx shear stress produced is %0.2f N/mm**2",q_s)
+printf("\n Angle of Twist is %0.2f Radian",theta)
diff --git a/3864/CH6/EX6.6/Ex6_6.sce b/3864/CH6/EX6.6/Ex6_6.sce
new file mode 100644
index 000000000..f16af5a6e
--- /dev/null
+++ b/3864/CH6/EX6.6/Ex6_6.sce
@@ -0,0 +1,30 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d1=200 //mm //External Diameter of shaft
+t=25 //mm //Thickness of shaft
+n=200 //rpm
+theta=0.5*%pi*180**-1 //Radian //angle of twist
+L=2000 //mm //Length of shaft
+G=84*10**3 //N/mm**2
+d2=d1-2*t //mm //Internal Diameter of shaft
+
+//Calculations
+
+J=%pi*32**-1*(d1**4-d2**4) //mm**4 //Polar Modulus
+
+//Torsional moment
+T=G*J*theta*L**-1 //N/mm**2
+
+//Power Transmitted
+P=2*%pi*n*T*60**-1*10**-6 //N-mm
+
+//Max shear stress transmitted
+q_s=G*theta*(d1*2**-1)*L**-1 //N/mm**2
+
+//Result
+printf("\n Power Transmitted is %0.2f N-mm",P)
+printf("\n Max Shear stress produced is %0.2f N/mm**2",q_s)
diff --git a/3864/CH6/EX6.7/Ex6_7.sce b/3864/CH6/EX6.7/Ex6_7.sce
new file mode 100644
index 000000000..70abac79a
--- /dev/null
+++ b/3864/CH6/EX6.7/Ex6_7.sce
@@ -0,0 +1,33 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+P=3750*10**6 //N-mm/sec
+n=240 //Rpm
+q_s=160 //N/mm**2 //Max shear stress
+
+//Calculations
+
+//d2=0.8*d2 //mm //Internal Diameter of shaft
+
+//J=%pi*32**-1*(d1**4-d2**4) //mm**4 //Polar modulus
+//After substituting value in above Equation we get
+//J=0.05796*d1**4
+
+T=P*60*(2*%pi*n)**-1 //N-mm //Torsional moment
+
+//Now from Torsion Formula
+//T*J**-1=q_s*R**-1 ......................................(1)
+
+//But R=d1*2**-1
+
+//Now substituting value of R and J in Equation (1) we get
+d1=(T*(0.05796*q_s*2)**-1)**0.33333
+
+d2=d1*0.8
+
+//Result
+printf("\n The size of the Shaft is:d1 %0.3f mm",d1)
+printf("\n :d2 %0.3f mm",d2)
diff --git a/3864/CH6/EX6.8/Ex6_8.sce b/3864/CH6/EX6.8/Ex6_8.sce
new file mode 100644
index 000000000..51b52d047
--- /dev/null
+++ b/3864/CH6/EX6.8/Ex6_8.sce
@@ -0,0 +1,64 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+P=245*10**6 //N-mm/sec //Power transmitted
+n=240 //rpm
+q_s=40 //N/mm**2 //Shear stress
+theta=%pi*180**-1 //radian //Angle of twist
+L=1000 //mm //Length of shaft
+G=80*10**3 //N/mm**2
+
+//Tmax=1.5*T
+
+//Calculations
+
+T=P*60*(2*%pi*n)**-1 //N-mm //Torsional Moment
+Tmax=1.5*T
+
+//Now For Solid shaft
+//J=%pi*32*d**4
+
+//Now from the consideration of shear stress we get
+//T*J**-1=q_s*(d*2**-1)**-1
+//After substituting value in above Equation we get
+//T=%pi*16**-1*d**3*q_s
+
+//Designing For max Torque
+d=(Tmax*16*(%pi*40)**-1)**0.33333 //mm //Diameter of shaft
+
+//For max Angle of Twist
+//Tmax*J**-1=G*theta*L**-1
+//After substituting value in above Equation we get
+d2=(Tmax*32*180*L*(%pi**2*G)**-1)**0.25
+
+//For Hollow Shaft
+
+//d1_2=Outer Diameter
+//d2_2=Inner Diameter
+
+//d2_2=0.5*d1_2
+
+// Polar modulus
+//J=%pi*32**-1*(d1_2**4-d2_2**4)
+//After substituting values we get
+//J=0.092038*d1_2**4
+
+//Now from the consideration of stress
+//Tmax*J**-1=q_s*(d1_2*2**-1)**-1
+//After substituting values and further simplifying we get
+d1_2=(Tmax*(0.092038*2*q_s)**-1)**0.33333
+
+//Now from the consideration of angle of twist
+//Tmax*J**-1=G*theta*L**-1
+//After substituting values and further simplifying we get
+d1_3=(Tmax*180*L*(0.092038*G*%pi)**-1)**0.25
+
+d2_2=0.5*d1_2
+
+//result
+printf("\n Diameter of shaft is:For solid shaft:d %0.2f mm",d)
+printf("\n :For Hollow shaft:d1_2 %0.3f mm",d1_2)
+printf("\n : :d2_2 %0.3f mm",d2_2)
diff --git a/3864/CH7/EX7.1/Ex7_1.sce b/3864/CH7/EX7.1/Ex7_1.sce
new file mode 100644
index 000000000..98d6372db
--- /dev/null
+++ b/3864/CH7/EX7.1/Ex7_1.sce
@@ -0,0 +1,35 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+sigma1=30 //N/mm**2 //Stress in tension
+d=20 //mm //Diameter
+sigma2=90 //N/mm**2 //Max compressive stress
+sigma3=25 //N/mm**2
+
+//Calculations
+
+//In TEnsion
+
+//Corresponding stress in shear
+P=sigma1*2**-1 //N/mm**2
+
+//Tensile force
+F=%pi*4**-1*d**2*sigma1
+
+//In Compression
+
+//Correspong shear stress
+P2=sigma2*2**-1 //N/mm**2
+
+//Correspong compressive(axial) stress
+p=2*sigma3 //N/mm**2
+
+//Corresponding Compressive force
+P3=p*%pi*4**-1*d**2 //N
+
+//Result
+printf("\n Failure Loads are: %0.2f N",F)
+printf("\n : %0.2f N",P3)
diff --git a/3864/CH7/EX7.12/Ex7_12.sce b/3864/CH7/EX7.12/Ex7_12.sce
new file mode 100644
index 000000000..40bfce331
--- /dev/null
+++ b/3864/CH7/EX7.12/Ex7_12.sce
@@ -0,0 +1,30 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+//Direct stresses
+p_x=120 //N/mm**2 //Tensile stress
+p_y=-100 //N/mm**2 //Compressive stress
+p1=160 //N/mm**2 //Major principal stress
+
+//Calculations
+
+//Let q be the shearing stress
+
+//p1=(p_x+p_y)*2**-1+((((p_x+p_y)*2**-1)**2)+q**2)**0.5
+//After further simplifying we get
+q=(p1-((p_x+p_y)*2**-1))**2-((p_x-p_y)*2**-1)**2 //N/mm**2
+q2=(q)**0.5 //N/mm**2
+
+//Minimum Principal stress
+p2=(p_x+p_y)*2**-1-(((p_x-p_y)*2**-1)**2+q2**2)**0.5 //N/mm**2
+
+//Max shearing stress
+q_max=(((p_x-p_y)*2**-1)**2+q2**2)**0.5 //N/mm**2
+
+//Result
+printf("\n Shearing stress of material %0.2f N/mm**2",q)
+printf("\n Min Principal stress %0.2f N/mm**2",p2)
+printf("\n Max shearing stress %0.2f N/mm**2",q_max)
diff --git a/3864/CH7/EX7.14/Ex7_14.sce b/3864/CH7/EX7.14/Ex7_14.sce
new file mode 100644
index 000000000..a000a0993
--- /dev/null
+++ b/3864/CH7/EX7.14/Ex7_14.sce
@@ -0,0 +1,40 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+F=40*10**3 //N //Shear Force
+M=20*10**6 //Bending Moment
+
+//Rectangular section
+b=100 //mm //Width
+d=200 //mm //Depth
+
+x=20 //mm //Distance from Top surface upto point
+y=80 //mm //Distance from point to Bottom
+
+//Calculations
+
+I=1*12**-1*b*d**3 //mm**4 //M.I
+
+//At 20 mm Below top Fibre
+f_x=M*I**-1*y //N/mm**2 //Stress
+
+//Assuming sagging moment ,f_x is compressive p_x=f_x=-24 //N/mm**2
+f_x=-24 //N/mm**2
+p_x=-24
+
+//Shearing stress
+q=F*(b*I)**-1*(b*x*(b-x*2**-1)) //N/mm**2
+
+//Direct stresses
+
+p_y=0 //N/mm**2
+
+p1=(p_x+p_y)*2**-1+(((p_x+p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+p2=(p_x+p_y)*2**-1-(((p_x+p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+//Result
+printf("\n Directions of principal stresses at a point below 20mm is: %0.2f N/mm**2",p1)
+printf("\n %0.2f N/mm**2",p2)
diff --git a/3864/CH7/EX7.16/Ex7_16.sce b/3864/CH7/EX7.16/Ex7_16.sce
new file mode 100644
index 000000000..d0f69cf48
--- /dev/null
+++ b/3864/CH7/EX7.16/Ex7_16.sce
@@ -0,0 +1,54 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+L=8000 //mm //Span of beam
+w=40*10**6 //N/mm //udl
+
+//I-section
+
+//Flanges
+b=100 //mm //Width
+t=10 //mm //Thickness
+
+D=400 //mm //Overall Depth
+t2=10 //mm //thickness of web
+
+//Calculations
+
+//Let R_A and R_B be the Reactions at A & B respectively
+R_A=w*2**-1*L*10**-9 //KN
+
+//Shear force at 2m for left support
+F=R_A-2*w*10**-6 //KN
+
+//Bending Moment
+M=R_A*2-2*w*10**-6 //KN-m
+
+//M.I
+I=1*12**-1*b*D**3-1*12**-1*(b-t)*(D-2*t2)**3 //mm**4
+
+//Bending stress at 100 mm above N_A
+f=M*10**6*I**-1*b
+
+//Shear stress
+q=F*10**3*(t*I)**-1*(b*t*(D-t)*2**-1 +t2*(b-t2)*145) //N/mm**2
+
+p_x=-197.06 //N/mm**2
+p_y=0 //N/mm**2
+q=21.38 //N/mm**2
+
+//Principal Stresses
+
+P1=(p_x+p_y)*2**-1+(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+P2=(p_x+p_y)*2**-1-(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+//Max shear stress
+q_max=(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+//Result
+printf("\n Principal Stresses are: %0.2f N/mm**2",P1)
+printf("\n %0.2f N/mm**2",P2)
+printf("\n Max shear stress %0.2f N/mm**2",q_max)
diff --git a/3864/CH7/EX7.18/Ex7_18.sce b/3864/CH7/EX7.18/Ex7_18.sce
new file mode 100644
index 000000000..d2cefbbfc
--- /dev/null
+++ b/3864/CH7/EX7.18/Ex7_18.sce
@@ -0,0 +1,26 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=100 //mm //Diameter of shaft
+M=3*10**6 //N-mm //B.M
+T=6*10**6 //N-mm //Twisting Moment
+mu=0.3
+
+//Calculations
+
+//Max principal Stress
+
+P1=16*(%pi*d**3)**-1*(M+(M**2+T**2)**0.5) //N/mm**2
+P2=16*(%pi*d**3)**-1*(M-(M**2+T**2)**0.5) //N/mm**2
+
+//Direct stress
+P=(P1)-mu*(P2) //N/mm**2
+
+
+//Result
+printf("\n Principal stresses are: %0.2f N/mm**2",P1)
+printf("\n : %0.2f N/mm**2",P2)
+printf("\n Stress Producing the same strain is %0.2f N/mm**2",P)
diff --git a/3864/CH7/EX7.19/Ex7_19.sce b/3864/CH7/EX7.19/Ex7_19.sce
new file mode 100644
index 000000000..63e01c0f3
--- /dev/null
+++ b/3864/CH7/EX7.19/Ex7_19.sce
@@ -0,0 +1,64 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=75 //mm //diameter
+P=30*10**6 //W //Power transmitted
+W=6 //N-mm/sec //Load
+L=1000 //mm
+N=300 //r.p.m
+
+//Calculations
+
+//B.M
+M=W*L*4**-1 //N-mm
+T=P*60*(2*%pi*N)**-1 //Torque transmitted
+
+//M.I
+I=%pi*64**-1*d**4 //mm**4
+
+//Bending stress
+f_A=M*I**-1*(d*2**-1) //N/mm**2
+
+//At A
+p_x=f_A
+p_y=0
+
+//Polar Modulus
+J=%pi*32**-1*d**4 //mm**4
+
+//Shearing stress
+q=T*J**-1*(d*2**-1) //N/mm**2
+
+//Principal Stresses
+P1=(p_x+p_y)*2**-1+(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+P2=(p_x+p_y)*2**-1-(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+//Max shear stress
+q_max=(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+//Bending stress
+p_x2=0
+p_y2=0
+
+//Shearing stress
+q2=T*J**-1*d*2**-1 //N/mm**2
+
+//Principal stresses
+P3=(p_x2+p_y2)*2**-1+(((p_x2-p_y2)*2**-1)**2+q2**2)**0.5 //N/mm**2
+P4=(p_x2+p_y2)*2**-1-(((p_x2-p_y2)*2**-1)**2+q2**2)**0.5 //N/mm**2
+
+//Max shear stress
+q_max2=(((p_x2-p_y2)*2**-1)**2+q2**2)**0.5 //N/mm**2
+
+//Answer for Principal Stresses P1,P2 and Max stress i.e q_max is incorrect in Book
+
+//Result
+printf("\n Principal Stresses at vertical Diameter:P1 %0.2f N/mm**2",P1)
+printf("\n :P2 %0.2f N/mm**2",P2)
+printf("\n Max stress at vertical Diameter : %0.2f N/mm**2",q_max)
+printf("\n Principal Stresses at Horizontal Diameter:P3 %0.2f N/mm**2",P3)
+printf("\n :P4 %0.2f N/mm**2",P4)
+printf("\n Max stress at Horizontal Diameter : %0.2f N/mm**2",q_max2)
diff --git a/3864/CH7/EX7.2/Ex7_2.sce b/3864/CH7/EX7.2/Ex7_2.sce
new file mode 100644
index 000000000..8bb052951
--- /dev/null
+++ b/3864/CH7/EX7.2/Ex7_2.sce
@@ -0,0 +1,29 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=25 //mm //Diameter of circular bar
+F=20*10**3 //N //Axial Force
+theta=30 //Degree //angle
+
+//Calculations
+
+//Axial stresses
+p=F*(%pi*4**-1*d**2)**-1 //N/mm**2
+
+//Normal Stress
+p_n=p*(cos(30*%pi*180**-1))**2
+
+//Tangential Stress
+p_t=p*2**-1*sin(2*theta*%pi*180**-1)
+
+//Max shear stress occurs on plane where theta2=45
+theta2=45
+sigma_max=p*2**-1*sin(2*theta2*%pi*180**-1)
+
+//Result
+printf("\n Stresses developed on a plane making 30 degree is: %0.2f N/mm**2",p_n)
+printf("\n : %0.2f N/mm**2",p_t)
+printf("\n stress on max shear stress is %0.2f N/mm**2",sigma_max)
diff --git a/3864/CH7/EX7.20/Ex7_20.sce b/3864/CH7/EX7.20/Ex7_20.sce
new file mode 100644
index 000000000..a8567c8a7
--- /dev/null
+++ b/3864/CH7/EX7.20/Ex7_20.sce
@@ -0,0 +1,49 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d1=100 //mm //External Diameter
+d2=50 //mm //Internal Diameter
+N=500 //mm //r.p.m
+P=60*10**6 //N-mm/sec //Power
+p=100 //N/mm**2 //principal stress
+
+//Calculations
+
+//M.I
+I=%pi*(d1**4-d2**4)*64**-1 //mm**4
+
+//Bending Stress
+//f=M*I*d1*2**-1 //N/mm**2
+
+//Principal Planes
+//p_x=32*M*(%pi*(d1**4-d2**4))*d1
+//p_y=0
+
+//Shear stress
+//q=T*J**-1*(d1*2**-1)
+//After sub values and further simplifying we get
+//q=16*T*d1*(%pi*(d1**4-d2**4))*d1
+
+//Principal stresses
+//P1=(p_x+p_y)*2**-1+(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+//After sub values and further simplifying we get
+//P1=16*(%pi*(d1**4-d2**4))*d1*(M+(M**2+t**2)**0.5) ...............(1)
+
+//P=2*%pi*N*T*60**-1
+//After sub values and further simplifying we get
+T=P*60*(2*%pi*N)**-1*10**-6 //N-mm
+
+//Again Sub values and further simplifying Equation 1 we get
+M=(337.533)*(36.84)**-1 //KN-m
+
+//Min Principal stress
+//P2=(p_x+p_y)*2**-1-(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+//Sub values and further simplifying we get
+P2=16*(%pi*(d1**4-d2**4))*d1*(M-(M**2+T**2)**0.5)*10**-11
+
+//Result
+printf("\n Bending Moment safely applied to shaft is %0.2f KN-m",M)
+printf("\n Min Principal Stress is %0.3f N/mm**2",P2)
diff --git a/3864/CH7/EX7.21/Ex7_21.sce b/3864/CH7/EX7.21/Ex7_21.sce
new file mode 100644
index 000000000..2f8167ce7
--- /dev/null
+++ b/3864/CH7/EX7.21/Ex7_21.sce
@@ -0,0 +1,59 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=150 //mm //Diameter
+T=20*10**6 //N //Torque
+M=12*10**6 //N-mm //B.M
+F=200*10**3 //N //Axial Thrust
+
+//Calculations
+
+//M.I
+I=(%pi*64**-1*d**4)
+
+//Bending stress
+f_A=M*I**-1*(d*2**-1) //N/mm**2
+f_B=-f_A //N/mm**2
+
+//Axial thrust due to thrust
+sigma=F*(%pi*4**-1*d**2)**-1
+
+//At A
+p_x=f_A-sigma //N/mm**2
+
+//At B
+p_x2=f_B-sigma //N/mm**2
+
+p_y=0 //At A and B
+
+//Polar Modulus
+J=%pi*32**-1*d**4 //mm**4
+
+//Shearing stress at A and B
+q=T*J**-1*(d*2**-1) //N/mm**2
+
+
+//Principal Stresses
+//At A
+P1=(p_x+p_y)*2**-1+(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+P2=(p_x+p_y)*2**-1-(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+//Max shear stress
+q_max1=(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+//At B
+P1_2=(p_x2+p_y)*2**-1+(((p_x2-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+P2_2=(p_x2+p_y)*2**-1-(((p_x2-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+//Max shear stress
+q_max2=(((p_x2-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+
+//Result
+printf("\n MAx Principal Stresses:P1 %0.2f N/mm**2",P1)
+printf("\n :P2 %0.2f N/mm**2",P2)
+printf("\n Min Principal Stresses:P1_2 %0.2f N/mm**2",P1_2)
+printf("\n :P2_2 %0.2f N/mm**2",P2_2)
diff --git a/3864/CH7/EX7.22/Ex7_22.sce b/3864/CH7/EX7.22/Ex7_22.sce
new file mode 100644
index 000000000..99d992598
--- /dev/null
+++ b/3864/CH7/EX7.22/Ex7_22.sce
@@ -0,0 +1,39 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+//strains
+e_A=500 //microns
+e_B=250 //microns
+e_C=-150 //microns
+E=2*10**5 //N/mm**2 //Modulus of Elasticity
+mu=0.3 //Poissons ratio
+theta=45 //Degrees
+
+//Calculations
+e_x=500
+e_A=500
+e_45=250
+e_B=250
+e_y=-150
+e_C=-150
+
+//e_45=(e_x+e_y)*2**-1+(e_x-e_y)*2**-1*cos(2*theta)+rho_x_y*2**-1*sin(2*theta)
+//After sub values and further simplifying we get
+rho_x_y=(e_45-(e_x+e_y)*2**-1-(e_x-e_y)*2**-1*cos(2*theta*%pi*180**-1))*(sin(2*theta*%pi*180**-1))**-1*2
+
+//Principal strains are given by
+e1=(e_x+e_y)*2**-1+(((e_x-e_y)*2**-1)**2+(rho_x_y*2**-1)**2)**0.5 //microns
+e2=(e_x+e_y)*2**-1-(((e_x-e_y)*2**-1)**2+(rho_x_y*2**-1)**2)**0.5 //microns
+
+//Principal Stresses
+sigma1=E*(e1+mu*e2)*(1-mu**2)**-1*10**-6 //N/mm**2
+sigma2=E*(e2+mu*e1)*(1-mu**2)**-1*10**-6 //N/mm**2
+
+//Result
+printf("\n Principal Strains are:e1 %0.2f N/mm**2",e1)
+printf("\n :e2 %0.2f N/mm**2",e2)
+printf("\n Principal Stresses are:sigma1 %0.2f N/mm**2",sigma1)
+printf("\n :sigma2 %0.2f N/mm**2",sigma2)
diff --git a/3864/CH7/EX7.23/Ex7_23.sce b/3864/CH7/EX7.23/Ex7_23.sce
new file mode 100644
index 000000000..0520404bd
--- /dev/null
+++ b/3864/CH7/EX7.23/Ex7_23.sce
@@ -0,0 +1,47 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+//Strains
+e_A=600 //microns
+e_B=-450 //microns
+e_C=100 //micron
+E=2*10**5 //N/mm**2 //Modulus of Elasticity
+mu=0.3 //Poissons ratio
+theta=240
+
+//Calculations
+
+e_x=600
+e_A=600
+
+//e_A=(e_x+e_y)*2**-1+(e_x-e_y)*2**-1*cos(theta)+rho_x_y*2**-1*sin(theta)
+//After sub values and further simplifying we get
+//-450=(e_x+e_y)*2**-1-(e_x-e_y)*2**-1*(0.5)-0.866*2**-1*rho_x_y .....................(1)
+
+//e_C=(e_x+e_y)*2**-1+(e_x-e_y)*2**-1*cos(2*theta)+rho_x_y*2**-1*sin(2*theta)
+//After sub values and further simplifying we get
+//100=(e_x+e_y)*2**-1-0.5*(e_x-e_y)*2**-1*(0.5)-0.866*2**-1*rho_x_y .....................(2)
+
+//Adding Equation 1 and 2 we get equations as
+//-350=e_x+e_y-(e_x-e_y)*2**-1 ...............(3)
+//Further simplifying we get
+
+e_y=(-700-e_x)*3**-1 //micron
+
+rho_x_y=(e_C-(e_x+e_y)*2**-1-(e_x-e_y)*2**-1*cos(2*theta*%pi*180**-1))*(sin(2*theta*%pi*180**-1))**-1*2 //micron
+
+//Principal strains
+e1=(e_x+e_y)*2**-1-(((e_x-e_y)*2**-1)**2+(rho_x_y*2**-1)**2)**0.5 //microns
+e2=(e_x+e_y)*2**-1+(((e_x-e_y)*2**-1)**2+(rho_x_y*2**-1)**2)**0.5 //microns
+
+//Principal Stresses
+sigma1=E*(e1+mu*e2)*(1-mu**2)**-1*10**-6 //N/mm**2
+sigma2=E*(e2+mu*e1)*(1-mu**2)**-1*10**-6 //N/mm**2
+
+
+//Result
+printf("\n Principal Stresses are:sigma1 %0.2f N/mm**2",sigma1)
+printf("\n :sigma2 %0.2f N/mm**2",sigma2)
diff --git a/3864/CH7/EX7.4/Ex7_4.sce b/3864/CH7/EX7.4/Ex7_4.sce
new file mode 100644
index 000000000..20c40bf75
--- /dev/null
+++ b/3864/CH7/EX7.4/Ex7_4.sce
@@ -0,0 +1,29 @@
+clear
+//
+//
+//
+
+//Initilization of Variables
+
+//Direct Stresses
+P1=60 //N/mm**2
+P2=100 //N/mm**2
+
+Theta=25 //Degree //Angle
+
+//Calculations
+
+//Normal Stress
+P_n=(P1-P2)*2**-1+(P1+P2)*2**-1*cos(2*Theta*%pi*180**-1) //N/mm**2
+
+//Tangential Stress
+P_t=(P1+P2)*2**-1*sin(Theta*2*%pi*180**-1) //N/mm**2
+
+//Resultant stress
+P=(P_n**2+P_t**2)**0.5 //N/mm**2
+
+theta2=atan(P_n*P_t**-1)*(180*%pi**-1)
+
+//Result
+printf("\n Stresses on the plane AC is: %0.2f N/mm**2",P_n)
+printf("\n %0.2f N/mm**2",P_t)
diff --git a/3864/CH7/EX7.7/Ex7_7.sce b/3864/CH7/EX7.7/Ex7_7.sce
new file mode 100644
index 000000000..c07f45f71
--- /dev/null
+++ b/3864/CH7/EX7.7/Ex7_7.sce
@@ -0,0 +1,32 @@
+clear
+//
+//
+//
+
+//Initilization of Variables
+
+//stresses
+p_x=60 //N/mm**2
+p_y=-40 //N/mm**2
+
+q=10 //N/mm**2 //shear stress
+
+//Calculations
+
+//Principal Stresses
+p1=(p_x+p_y)*2**-1+(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+p2=(p_x+p_y)*2**-1-(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+//Max shear stress
+q_max=(((p_x-p_y)*2**-1)**2+q**2)**0.5 //N/mm**2
+
+//Inclination of principal stress to plane
+theta=atan(2*q*(p_x-p_y)**-1)*(180*%pi**-1)//Degrees
+theta2=(theta)*2**-1 //degrees
+
+theta3=(theta+180)*2**-1 //degrees
+
+//Result
+printf("\n Principal Stresses are: %0.2f N/mm**2",p1)
+printf("\n : %0.2f N/mm**2",p2)
+printf("\n Max shear stresses %0.2f N/mm**2",q_max)
diff --git a/3864/CH7/EX7.9/Ex7_9.sce b/3864/CH7/EX7.9/Ex7_9.sce
new file mode 100644
index 000000000..d272a4ebd
--- /dev/null
+++ b/3864/CH7/EX7.9/Ex7_9.sce
@@ -0,0 +1,42 @@
+clear
+//
+//
+//
+
+//Initilization of Variables
+
+//stresses
+p_x=-40 //N/mm**2
+p_y=80 //N/mm**2
+
+q=48 //N/mm**2 //shear stress
+
+//Calculations
+
+//Max shear stress
+q_max=((((p_x-p_y)*2**-1)**2)+q**2)**0.5 //N/mm**2
+
+//Inclination of principal stress to plane
+theta=atan(2*q*(p_x-p_y)**-1)*(180*%pi**-1)//Degrees
+theta2=(theta)*2**-1 //degrees
+
+theta3=(theta+180)*2**-1 //degrees
+
+//Normal Corresponding stress
+p_n=(p_x+p_y)*2**-1+(p_x-p_y)*2**-1*cos(2*(theta2+45)*%pi*180**-1)+q*sin(2*(theta2+45)*%pi*180**-1) //Degrees
+
+//Resultant stress
+p=((p_n**2+q_max**2)**0.5) //N/mm**2
+
+phi=atan(p_n*q_max**-1)*(180*%pi**-1) //Degrees
+
+//Inclination to the plane
+alpha=((theta2+45))+(phi )//Degree
+
+
+//Answer in book is incorrect of alpha ie41.25
+
+//Result
+printf("\n Planes of max shear stress: %0.2f N/mm**2",p_n)
+printf("\n %0.2f N/mm*2",q_max)
+printf("\n Resultant Stress is %0.2f N/mm**2",p)
diff --git a/3864/CH8/EX8.1/Ex8_1.sce b/3864/CH8/EX8.1/Ex8_1.sce
new file mode 100644
index 000000000..a58d18d29
--- /dev/null
+++ b/3864/CH8/EX8.1/Ex8_1.sce
@@ -0,0 +1,50 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+L=3000 //mm //Length
+d1=1000 //mm //Internal diameter
+t=15 //mm //Thickness
+P=1.5 //N/mm**2 //Fluid Pressure
+E=2*10**5 //n/mm**2 //Modulus of elasticity
+mu=0.3 //Poissons ratio
+
+//Calculations
+
+//Hoop stress
+f1=P*d1*(2*t)**-1 //N/mm**2
+
+//Longitudinal Stress
+f2=P*d1*(4*t)**-1 //N/mm**2
+
+//Max shear stress
+q_max=(f1-f2)*2**-1 //N/mm**2
+
+//Diametrical Strain
+//Let e1=dell_d*d**-1 .....................(1)
+e1=(f1-mu*f2)*E**-1
+
+//Sub values in equation 1 and further simplifying we get
+dell_d=e1*d1 //mm
+
+//Longitudinal strain
+//e2=dell_L*L**-1 ......................(2)
+e2=(f2-mu*f1)*E**-1
+
+//Sub values in equation 2 and further simplifying we get
+dell_L=e2*L //mm
+
+//Change in Volume
+//Let Z=dell_V*V**-1 ................(3)
+Z=2*e1+e2
+
+//Sub values in equation 3 and further simplifying we get
+dell_V=Z*%pi*4**-1*d1**2*L
+
+//Result
+printf("\n Max Intensity of shear stress %0.2f N/mm**2",q_max)
+printf("\n Change in the Dimensions of the shell is:dell_d %0.2f mm",dell_d)
+printf("\n :dell_L %0.2f mm",dell_L)
+printf("\n :dell_V %0.2f mm**3",dell_V)
diff --git a/3864/CH8/EX8.11/Ex8_11.sce b/3864/CH8/EX8.11/Ex8_11.sce
new file mode 100644
index 000000000..f02a0b052
--- /dev/null
+++ b/3864/CH8/EX8.11/Ex8_11.sce
@@ -0,0 +1,64 @@
+clear
+//
+//
+//
+
+//Initilization of Variables
+
+d_o=300 //mm //Outside diameter
+d2=200 //mm //Internal Diameter
+p=14 //N/mm**2 //internal Fluid pressure
+t=50 //mm //Thickness
+r_o=150 //mm //Outside Diameter
+r2=100 //mm //Internal Diameter
+
+//Calculations
+
+//From Lame's Equation
+//p_x=b*(x**2)**-1-a //N/mm**2 ...................(1)
+//F_x=b*(x**2)**-1+a //N/mm**2 ...................(2)
+
+//At
+p_x=14 //N/mm**2
+
+//Sub value of p_x in equation 1 we get
+//14=(100)**-1*b-a ............................(3)
+
+//At
+p_x2=0 //N/mm**2
+
+//Sub value in equation 1 we get
+//0=b*(150**2)**-1-a ......................(4)
+
+//From Equations 3 and 4 we get
+//14=b*(100**2)**-1-b*(100**2)**-1
+//After sub values and further simplifying we get
+b=14*100**2*150**2*(150**2-100**2)**-1
+
+//From equation 4 we get
+a=b*(150**2)**-1
+
+//Hoop Stress
+//F_x=b*(x**2)**-1+a //N/mm**2
+
+//At
+x=100 //mm
+F_x=b*(x**2)**-1+a //N/mm**2
+
+//At
+x2=125 //mm
+F_x2=b*(x2**2)**-1+a //N/mm**2
+
+//At
+x3=150 //mm
+F_x3=b*(x3**2)**-1+a //N/mm**2
+
+//If thin Cyclindrical shell theory is used,hoop stress is uniform and is given by
+F=p*d2*(2*t)**-1 //N/mm**2
+
+//Percentage error in estimating max hoop tension
+E=(F_x-F)*F_x**-1*100 //%
+
+//Result
+printf("\n Max Hoop Stress Developed in the cross-section is %0.2f N/mm**2",F)
+printf("\n Plot of Variation of hoop stress")
diff --git a/3864/CH8/EX8.12/Ex8_12.sce b/3864/CH8/EX8.12/Ex8_12.sce
new file mode 100644
index 000000000..0a29dbff5
--- /dev/null
+++ b/3864/CH8/EX8.12/Ex8_12.sce
@@ -0,0 +1,43 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d_o=300 //mm //Outside diameter
+d2=200 //mm //Internal Diameter
+p=12 //N/mm**2 //internal Fluid pressure
+F_max=16 //N/mm**2 //Tensile stress
+r_o=150 //mm //Outside Diameter
+r2=100 //mm //Internal Diameter
+
+//Calculations
+
+//Let p_o be the External Pressure applied.
+//From LLame's theorem
+//p_x=b*(x**2)**-1-a ..............(1)
+//F_x=b*(x**2)**-1+a ...........................(2)
+
+//Now At
+x=100 //mm
+p_x=12 //N/mm**2
+//sub in equation 1 we get
+//12=b*(100**2)**-1-a . ..................(3)
+
+//The Max Hoop stress occurs at least value of x where
+//16=b*(100**2)**-1+a .......................(4)
+
+//From Equations 1 and 2 we get
+//28=b*(100**2)**-1+b*(100**2)**-1
+//After furhter Simplifying we get
+b=28*100**2*2**-1
+
+//sub in equation 1 we get
+a=-(12-(b*(100**2)**-1))
+
+//Thus At
+x2=150 //mm
+p_o=b*(x2**2)**-1-a
+
+//Result
+printf("\n Minimum External applied is %0.2f N/mm**2",p_o)
diff --git a/3864/CH8/EX8.13/Ex8_13.sce b/3864/CH8/EX8.13/Ex8_13.sce
new file mode 100644
index 000000000..320b02e37
--- /dev/null
+++ b/3864/CH8/EX8.13/Ex8_13.sce
@@ -0,0 +1,41 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d1=160 //mm //Internal Diameter
+r1=80 //mm //External Diameter
+p1=40 //N/mm**2 //Internal Diameter
+P_max=120 //N/mm**2 //Allowable stress
+
+//Calculations
+
+//From Lame's Equation we have
+//p_x=b*(x**2)**-1-a ..........................(1)
+//F_x=b*(x**2)**-1+a ...........................(2)
+
+//At
+//Sub in equation 1 we get
+//120=b*(80**2)**-1+a ........................(3)
+
+//The hoop tension at inner edge is max stress
+//Hence
+//120=b*(80**2)**-1+a .............................(4)
+
+//From Equation 3 and 4 we get
+b=160*80**2*2**-1
+
+//Sub in equation 3 we get
+a=-(40-(b*(80**2)**-1))
+
+//Let External radius be r_o.Since at External Surface is Zero,we get
+//0=b*(r_o)**-1-a
+//After Further simplifying we get
+r_o=(b*a**-1)**0.5
+
+//Thickness of Cyclinder
+t=r_o-r1 //mm
+
+//Result
+printf("\n Thickness Required is %0.2f mm",t)
diff --git a/3864/CH8/EX8.14/Ex8_14.sce b/3864/CH8/EX8.14/Ex8_14.sce
new file mode 100644
index 000000000..b923e1abc
--- /dev/null
+++ b/3864/CH8/EX8.14/Ex8_14.sce
@@ -0,0 +1,73 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d_o=300 //mm //Outside diameter
+d1=180 //mm //Internal Diameter
+p=12 //N/mm**2 //internal Fluid pressure
+p_o=6 //N/mm**2 //External Pressure
+r_o=150 //mm //Outside Diameter
+r=90 //mm //Internal Diameter
+
+
+//Calculations
+
+//From Lame's Equation we have
+//p_x=b*(x**2)**-1-a ..........................(1)
+//F_x=b*(x**2)**-1+a ...........................(2)
+
+//At
+x=90 //N/mm**2
+r1=90 //N/mm**2
+p=42 //N/mm**2
+//Sub in equation 1 we get
+//42=b*(90**2)**-1-a ..............................(3)
+
+//At
+p2=6 //N/mm**2
+//sub in equation 1 we get
+//6=b*(150**2)**-1-a ..............................(4)
+
+//From equations 3 and 4 weget
+//36=b*(90**2)**-1-b2(150**2)**-1
+//After further simplifying we get
+b=36*90**2*150**2*(150**2-90**2)**-1
+
+//Sub value of b in equation 4 we get
+a=b*(150**2)**-1-p_o
+
+//At
+F_x=b*(x**2)**-1+a //N/mm**2
+
+//At
+x2=150 //mm
+r=150 //mm
+
+F_x2=b*(x2**2)**-1+a //N/mm**2
+
+//Now if External pressure is doubled i.e p_o2=12 //N/mm**2 We have
+p_o2=12 //N/mm**2
+//sub in equation 4 we get
+//12=b2*(150**2)**-1-a2 ..........................(5)
+
+//Max Hoop stress is to be 70.5 //N/mm**2,which occurs at x=r1=90 //mm
+//Sub in equation 4 we get
+//70.5=b*(90**2)**-1+a2 ................................(6)
+
+//Adding equation 5 and 6
+//82.5=b2*(150**2)**-1+b*(90**2)**-1
+//After furhter simplifying we get
+b2=82.5*150**2*90**2*(150**2+90**2)**-1
+
+//Sub in equation 5 we get
+a2=b2*(150**2)**-1-12
+
+//If p_i is the internal pressure required then from Lame's theorem
+p_i=b2*(r1**2)**-1-a2
+
+//Result
+printf("\n Stresses int the material are:F_x %0.2f N/mm**2",F_x)
+printf("\n :F_x2 %0.2f N/mm**2",F_x2)
+printf("\n Internal Pressure that can be maintained is %0.2f N/mm**2",p_i)
diff --git a/3864/CH8/EX8.16/Ex8_16.sce b/3864/CH8/EX8.16/Ex8_16.sce
new file mode 100644
index 000000000..17ed164c5
--- /dev/null
+++ b/3864/CH8/EX8.16/Ex8_16.sce
@@ -0,0 +1,62 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+do=200 //mm //Inner Diameter
+r_o=100 //mm //Inner radius
+d1=300 //mm //outer diameter
+r1=150 //mm //Outer radius
+d2=250 //mm //Junction Diameter
+r2=125 //mm //Junction radius
+E=2*10**5 //N/mm**2 //Modulus of Elasticity
+p=30 //N/mm**2 //radial pressure
+
+//Calculations
+
+//from Lame's Equation we get
+//p_x=b*(x**2)**-1-a ..........................(1)
+//F_x=b*(x**2)**-1+a ...........................(2)
+
+//Then from Boundary condition
+//p_x=0 at x=100 //mm
+//0=b1*(100**2)**-1-a1 .....................(3)
+
+//p_x2=30 //N/mm**2 at x2=125 //mm
+//30=b1*(125**2)**-1-a1 ................................(4)
+
+//From equation 3 and 4 we get
+b1=30*125**2*100**2*(100**2-125**2)**-1
+
+//From Equation 3 we get
+a1=b1*(100**2)**-1
+
+//therefore Hoop stress in inner cyclinder at junction
+F_2_1=b1*(125**2)**-1+a1 //N/mm**2
+
+//Outer Cyclinder
+//p_x=b*(x**2)**-1-a ..........................(5)
+//F_x=b*(x**2)**-1+a ...........................(6)
+
+//Now at x=125 //mm
+//p_x3=30 //N/mm**2
+//30=b2*(125**2)**-1-a2 ..................................(7)
+
+//At x=150 //mm
+//p_x4=0
+//0=b2*(150**2)**-1-a2 ...................................(8)
+
+//From equations 7 and 8
+b2=30*150**2*125**2*(150**2-125**2)**-1
+
+//From eqauation 8 we get
+a2=b2*(150**2)**-1
+
+//Hoop stress at junction
+F_2_0=b2*(125**2)**-1+a2 //N/mm**2
+
+rho_r=(F_2_0-F_2_1)*E**-1*r2
+
+//Result
+printf("\n Shrinkage Allowance is %0.3f mm",rho_r)
diff --git a/3864/CH8/EX8.17/Ex8_17.sce b/3864/CH8/EX8.17/Ex8_17.sce
new file mode 100644
index 000000000..3d7860c79
--- /dev/null
+++ b/3864/CH8/EX8.17/Ex8_17.sce
@@ -0,0 +1,92 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d_o=500 //mm //Outer Diameter
+r_o=250 //mm //Outer Radius
+d1=300 //mm //Inner Diameter
+r1=150 //mm //Inner Radius
+d2=400 //mm //Junction Diameter
+E=2*10**5 //N/mm**2 //Modulus ofElasticity
+alpha=12*10**-6 //Per degree celsius
+dell_d=0.2 //mm
+dell_r=0.1 //mm
+
+//Calculations
+
+//Let p be the radial pressure developed at junction
+//Let Lame's Equation for internal cyclinder be
+//p_x=b*(x**2)**-1-a ................................(1)
+//F_x=b*(x**2)**-1+a ...............................(2)
+
+//At
+x=150 //mm
+p_x=0
+//Sub in equation 1 we get
+//0=b*(150**2)**-1-a .........................(3)
+
+//At
+x2=200 //mm
+//p_x2=p
+//p=b*(200**2)**-1-a ......................(4)
+
+//From Equation 3 and 4
+//p=b*(200**2)**-1-b(150**2)**-1
+//after further simplifying we get
+//b=-51428.571*p
+
+//sub in equation 3 we get
+//a1=-2.2857*p
+
+//therefore hoop stress at junction is
+//F_2_1=-21428.571*p*(200**2)**-1-2.2857*p
+//after Further simplifying we geet
+//F_2_1=3.5714*p
+
+//Let Lame's Equation for cyclinder be
+//p_x=b*(x**2)**-1-a .........................5
+//F_x=b*(x**2)**-1+a .............................6
+
+//At
+x=200 //mm
+//p_x=p2
+//p2=b2*(20**2)**-1-a2 ...................7
+
+//At
+x2=200 //mm
+p_x2=0
+//0=b2*(250**2)**-1-a2 ....................8
+
+//from equation 7 and 8 we get
+//p2=b2*(200**2)**-1-b2*(250**2)**-1
+//After further simplifying we get
+//p2=b2*(250**2-200**2)*(200**2*250**2)**-1
+//b2=111111.11*p
+
+//from equation 7
+//a2=b2*(250**2)**-1
+//further simplifying we get
+//a2=1.778*p
+
+//At the junctionhoop stress in outer cyclinder
+//F_2_0=b2*(200**2)**-1+a2
+//After further simplifying we get
+//F_2_0=4.5556*p
+
+//Considering circumferential strain,the compatibility condition
+//rho_r*r2**-1=1*E**-1*(F_2_1+F_2_0)
+//where F_2_1 is compressive and F_2_0 is tensile
+//furter simplifying we get
+p=0.1*200**-1*2*10**5*(3.5714+4.5556)**-1
+
+//Let T be the rise in temperature required
+//dell_d=d*alpha*T
+//After sub values and further simplifying we get
+d=250 //mm
+T=dell_d*(d*alpha)**-1 //Per degree celsius
+
+//Result
+printf("\n Radial Pressure Developed at junction %0.2f N/mm**2",p)
+printf("\n Min Temperatureto outer cyclinder %0.2f Per degree Celsius",T)
diff --git a/3864/CH8/EX8.2/Ex8_2.sce b/3864/CH8/EX8.2/Ex8_2.sce
new file mode 100644
index 000000000..ea64b7d60
--- /dev/null
+++ b/3864/CH8/EX8.2/Ex8_2.sce
@@ -0,0 +1,61 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+L=2000 //mm //Length
+d=200 //mm // diameter
+t=10 //mm //Thickness
+dell_V=25000 //mm**3 //Additional volume
+E=2*10**5 //n/mm**2 //Modulus of elasticity
+mu=0.3 //Poissons ratio
+
+//Calculations
+
+//Let p be the pressure developed
+
+//Circumferential Stress
+
+//f1=p*d*(2*t)**-1 //N/mm**2
+//After sub values and further simplifying
+//f1=10*p
+
+//f1=p*d*(4*t)**-1 //N/mm**2
+//After sub values and further simplifying
+//f1=5*p
+
+//Diameterical strain = Circumferential stress
+//Let X=dell_d*d**-1 ................................(1)
+//X=e1=(f1-mu*f2)*E**-1
+//After sub values and further simplifying
+//e1=8.5*p*E**-1
+
+//Longitudinal strain
+//Let Y=dell_L*L**-1 ......................................(2)
+//Y=e2=(f2-mu*f1)*E**-1
+//After sub values and further simplifying
+//e2=2*p*E**-1
+
+//Volumetric strain
+//Let X=dell_V*V**-1
+//X=2*e1+e2
+//After sub values and further simplifying
+//X=19*p*E**-1
+//After further simplifying we get
+p=dell_V*(%pi*4**-1*d**2*L)**-1*E*19**-1 //N/mm**2
+
+//Hoop Stress
+f1=p*d*(2*t)**-1
+
+//Sub value of X in equation 1 we get
+dell_d=8.5*p*E**-1*d
+
+//Sub value of Y in equation 2 we get
+dell_L=2*p*E**-1*L
+
+//Result
+printf("\n Pressure Developed is %0.2f N/mm**2",p)
+printf("\n Hoop stress Developed is %0.2f N/mm**2",f1)
+printf("\n Change in diameter is %0.2f mm",dell_d)
+printf("\n Change in Length is %0.2f mm",dell_L)
diff --git a/3864/CH8/EX8.3/Ex8_3.sce b/3864/CH8/EX8.3/Ex8_3.sce
new file mode 100644
index 000000000..cf692919b
--- /dev/null
+++ b/3864/CH8/EX8.3/Ex8_3.sce
@@ -0,0 +1,23 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=750 //mm //Diameter of water supply pipes
+h=50*10**3 //mm //Water head
+sigma=20 //N/mm**2 //Permissible stress
+rho=9810*10**-9 //N/mm**3
+
+//Calculations
+
+//Pressure of water
+P=rho*h //N/mm**2
+
+//Stress
+//sigma=p*d*(2*t)**-1
+//After further simplifying
+t=P*d*(2*sigma)**-1 //mm
+
+//Result
+printf("\n Thickness of seamless pipe is %0.3f mm",t)
diff --git a/3864/CH8/EX8.4/Ex8_4.sce b/3864/CH8/EX8.4/Ex8_4.sce
new file mode 100644
index 000000000..536feaeea
--- /dev/null
+++ b/3864/CH8/EX8.4/Ex8_4.sce
@@ -0,0 +1,26 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=2500 //mm //Diameter of riveted boiler
+P=1 //N/mm**2 //Pressure
+rho1=0.7 //Percent efficiency
+rho2=0.4 //Circumferential joints
+sigma=150 //N/mm**2 //Permissible stress
+
+//Calculations
+
+//Equating Bursting force to longitudinal joint strength ,we get
+//p*d*L=rho1*2*t*L*sigma
+//After rearranging and further simplifying we get
+t=P*d*(2*sigma*rho1)**-1 //mm
+
+//Considering Longitudinal force
+//%pi*d**2*4**-1*P=rho2*%pi*d*t*sigma
+//After rearranging and further simplifying we get
+t2=P*d*(4*sigma*rho2)**-1
+
+//Result
+printf("\n Thickness of plate required is %0.2f mm",t)
diff --git a/3864/CH8/EX8.5/Ex8_5.sce b/3864/CH8/EX8.5/Ex8_5.sce
new file mode 100644
index 000000000..8a11dcc63
--- /dev/null
+++ b/3864/CH8/EX8.5/Ex8_5.sce
@@ -0,0 +1,23 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+//Boiler Dimensions
+t=16 //mm //Thickness
+p=2 //N/mm**2 //internal pressure
+f=150 //N/mm**2 //Permissible stress
+rho1=0.75 //Longitudinal joints
+rho2=0.45 //circumferential joints
+
+//Calculations
+
+//Equating Bursting force to longitudinal joint strength ,we get
+d1=rho1*2*t*f*p**-1 //mm
+
+//Considering circumferential strength
+d2=4*rho2*t*f*p**-1 //mm
+
+//Result
+printf("\n Largest diameter of Boiler is %0.2f mm",d1)
diff --git a/3864/CH8/EX8.6/Ex8_6.sce b/3864/CH8/EX8.6/Ex8_6.sce
new file mode 100644
index 000000000..769bbd3c5
--- /dev/null
+++ b/3864/CH8/EX8.6/Ex8_6.sce
@@ -0,0 +1,53 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=250 //mm //Diameter iron pipe
+t=10 //mm //Thickness
+d2=6 //mm //Diameter of steel
+p=80 //N/mm**2 //stress
+P=3 //N/mm**2 //Pressure
+E_c=1*10**5 //N/mm**2
+mu=0.3 //Poissons ratio
+E_s=2*10**5 //N/mm**2
+n=1 //No.of wires
+
+//Calculations
+
+L=6 //mm //Length of cyclinder
+
+//Force Exerted by steel wire at diameterical section
+F=p*2*%pi*d2**2*1*4**-1 //N
+
+//Initial stress in cyclinder
+f_c=F*(2*t*d2)**-1 //N/mm**2
+
+//LEt due to fluid pressure alone stresses developed in steel wire be F_w and in cyclinder f1 and f2
+f2=P*d*(4*t)**-1 //N/mm**2
+
+//Considering the equilibrium of half the cyclinder, 6mm long we get
+//F_w*2*%pi*4**-1*d2**2*n+f1*2*t*d2=P*d*d2
+//After further simplifying we get
+//F_w+2.122*f1=79.58 . ......................................(1)
+
+//Equating strain in wire to circumferential strain in cyclinder
+//F_w=(f1-mu*f2)*E_s*E_c**-1 //N/mm**2
+//After further simplifying we get
+//F_w=2*f1-11.25 ....................................(2)
+
+//Sub in equation in1 we get
+f1=(79.58+11.25)*(4.122)**-1 //N/mm**2
+F_w=2*f1-11.25 //N/mm**2
+
+//Final stresses
+//1) In steel Wir
+sigma=F_w+p //N/mm**2
+
+//2) In Cyclinde
+sigma2=f1-f_c
+
+//Result
+printf("\n Final Stresses developed in:cyclinder is %0.2f N/mm**2",sigma)
+printf("\n :Steel is %0.2f N/mm**2",sigma2)
diff --git a/3864/CH8/EX8.7/Ex8_7.sce b/3864/CH8/EX8.7/Ex8_7.sce
new file mode 100644
index 000000000..134c16ad3
--- /dev/null
+++ b/3864/CH8/EX8.7/Ex8_7.sce
@@ -0,0 +1,30 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=750 //mm //Diameter of shell
+t=8 //mm //THickness
+p=2.5 //N/mm**2
+E=2*10**5 //N/mm**2
+mu=0.25 //Poissons ratio
+
+//Calculations
+
+//Hoop stress
+f1=p*d*(4*t)**-1 //N/mm**2
+f2=p*d*(4*t)**-1 //N/mm**2
+
+//Change in Diameter
+dell_d=d*p*d*(1-mu)*(4*t*E)**-1 //mm
+
+//Change in Volume
+dell_V=3*p*d*(1-mu)*(4*t*E)**-1*%pi*6**-1*d**3
+
+//Answer for Change in diameter is incorrect in book
+
+//Result
+printf("\n Stress introduced is %0.2f N/mm**2",f1)
+printf("\n Change in Diameter is %0.2f N/mm**2",dell_d)
+printf("\n Change in Volume is %0.2f mm**3",dell_V)
diff --git a/3864/CH8/EX8.8/Ex8_8.sce b/3864/CH8/EX8.8/Ex8_8.sce
new file mode 100644
index 000000000..4ae842bcf
--- /dev/null
+++ b/3864/CH8/EX8.8/Ex8_8.sce
@@ -0,0 +1,18 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+d=600 //mm //Diameter of sherical shell
+t=10 //mm //Thickness
+f=80 //N/mm**2 //Permissible stress
+rho=0.75 //Efficiency joint
+
+//Calculations
+
+//Max Pressure
+p=f*4*t*rho*d**-1 //N/mm**2
+
+//Result
+printf("\n Max Pressure is %0.2f N/mm**2",p)
diff --git a/3864/CH8/EX8.9/Ex8_9.sce b/3864/CH8/EX8.9/Ex8_9.sce
new file mode 100644
index 000000000..884b6515e
--- /dev/null
+++ b/3864/CH8/EX8.9/Ex8_9.sce
@@ -0,0 +1,38 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+L=1000 //mm //Length of shell
+d=200 //mm //Diameter
+t=6 //mm //Thickness
+p=1.5 //N/mm**2 //Internal Pressure
+E=2*10**5 //N/mm**2
+mu=0.25 //Poissons Ratio
+
+//Calculations
+
+//Change in Volume of sphere
+dell_V_s=3*p*d*(1-mu)*(4*t*E)**-1*%pi*6**-1*d**3
+
+//Hoop stress
+f1=p*d*(2*t)**-1 //N/mm**2
+
+//Longitudinal stress
+f2=p*d*(4*t)**-1 //N/mm**2
+
+//Principal strain
+e1=(f1-mu*f2)*E**-1
+e2=(f2-mu*f1)*E**-1
+
+V_c=1000 //mm**3
+
+//Change in Volume of cyclinder
+dell_V_c=(2*e1+e2)*%pi*4**-1*d**2*L
+
+//Total Change in Diameter
+dell_V=dell_V_s+dell_V_c //mm**3
+
+//Result
+printf("\n Change in Volume is %0.2f mm**3",dell_V)
diff --git a/3864/CH9/EX9.1/Ex9_1.sce b/3864/CH9/EX9.1/Ex9_1.sce
new file mode 100644
index 000000000..aaad4d9c6
--- /dev/null
+++ b/3864/CH9/EX9.1/Ex9_1.sce
@@ -0,0 +1,23 @@
+clear
+//
+//
+
+//Initilization of Variables
+L=5000 //mm //Length of strut
+dell=10 //mm //Deflection
+W=10 //N //Load
+
+//Calculations
+
+//Central Deflection of a simply supported beam with central concentrated load is
+//dell=W*L**3*(48*E*I)**-1
+
+//Let E*I=X
+X=W*L**3*(48*dell)**-1 //mm
+
+//Euler's Load
+//Let Euler's Load be P
+P=%pi**2*X*(L**2)**-1
+
+//Result
+printf("\n Critical Load of Bar is %0.2f N",P)
diff --git a/3864/CH9/EX9.10/Ex9_10.sce b/3864/CH9/EX9.10/Ex9_10.sce
new file mode 100644
index 000000000..8bdea9929
--- /dev/null
+++ b/3864/CH9/EX9.10/Ex9_10.sce
@@ -0,0 +1,51 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+sigma=326 //N/mm**2 //stress
+E=2*10**5 //N/mm**2 //Modulus of Elasticity
+FOS=2 //Factor of safety
+a=1*7500**-1 //Rankine's constant
+D=350 //mm //Overall Depth
+
+//Cover plates
+b1=500 //mm //width
+t1=10 //mm //Thickness
+
+d=220 //mm //Distance between two channels
+
+L=6000 //mm //Length of column
+
+A=5366 //mm**2 //Area of Column section
+I_xx=100.08*10**6 //mm**4 //M.I of x-x axis
+I_yy=4.306*10**6 //mm**4 //M.I of y-y axis
+C_yy=23.6 //mm //Centroid at y-y axis
+
+//Calculations
+
+//Symmetric axes are the centroidal axes is
+
+//M.I of Channel at x-x axis
+I_xx_1=2*I_xx+2*(1*12**-1*b1*t1**3+b1*t1*(D*2**-1+t1*2**-1)**2)
+
+//M.I of Channel at y-y axis
+I_yy_1=2*(I_yy+A*(d*2**-1+C_yy)**2)+2*12**-1*t1*b1**3
+
+//As I_yy<I_xx
+//So
+I=I_yy_1 //mm**4
+
+A2=2*A+2*t1*b1 //Area of channel
+
+k=(I*A2**-1)**0.5 //mm
+
+//Critical Load
+P=sigma*A2*(1+a*(L*k**-1)**2)**-1
+
+//Safe Load
+S=P*2**-1*10**-3 //KN
+
+//Result
+printf("\n Safe Load carrying Capacity is %0.2f KN",S)
diff --git a/3864/CH9/EX9.11/Ex9_11.sce b/3864/CH9/EX9.11/Ex9_11.sce
new file mode 100644
index 000000000..48212a800
--- /dev/null
+++ b/3864/CH9/EX9.11/Ex9_11.sce
@@ -0,0 +1,31 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+I=4.085*10**8 //mm**4 //M.I
+A=20732.0 //mm**2 //area of column
+f_y=250 //N/mm**2
+L=6000 //mm //Length of column
+
+//Calculations
+
+k=(I*A**-1)**0.5 //mm
+lamda=L*k**-1 //Slenderness ratro
+
+//From Indian standard table
+lamda_1=40
+sigma_a_c_1=139 //N/mm**2
+lamda_2=50
+sigma_a_c_2=132 //N/mm**2
+
+//Linearly interpolating between these values for lambda=42.744
+
+sigma_a_c_3=sigma_a_c_1-2.744*10**-1*(sigma_a_c_1-sigma_a_c_2)
+
+//Safe Load carrying capacity of column
+P=sigma_a_c_3*A*10**-3
+
+//Result
+printf("\n Safe Load carrying capacity is %0.2f KN",P)
diff --git a/3864/CH9/EX9.2/Ex9_2.sce b/3864/CH9/EX9.2/Ex9_2.sce
new file mode 100644
index 000000000..2287a950a
--- /dev/null
+++ b/3864/CH9/EX9.2/Ex9_2.sce
@@ -0,0 +1,54 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+L=2000 //mm //Length of square column
+E=12*10**3 //N/mm**2 //Modulus of Elasticity
+sigma=12 //N/mm*2 //stress
+W1=95*10**3 //N //Load1
+W2=200*10**3 //N //Load2
+FOS=3
+
+//Calculations
+
+//From Euler's Formula
+//P=%pi**2*E*I*(L**2)**-1 .........(1)
+
+//Working Load
+//W=P*(FOS)**-1
+
+//Part-1
+
+//At W1=95*10**3 //N
+//W1=P*(3*L**2)**-1
+
+//Let 'a' be the side of the square
+//I=1*12**-1*a**4
+
+//sub value of I in Equation 1 and further rearranging we get
+a=(W1*3*12*L**2*(%pi**2*E)**-1)**0.25 //mm
+
+//From Consideration of direct crushing
+//sigma*a**2=W1
+//After Reaaranging the above equation we get
+a2=(W1*(sigma)**-1)**0.5 //mm
+
+//required size is 103.67*103.67 i.e a*a
+
+//Part-2
+
+//At W2=200*10**3 //N
+//W2=P*(3*L**2)**-1
+//After substituting values and further Rearranging the above equation we get
+a3=(W2*3*12*L**2*(%pi**2*E)**-1)**0.25 //mm
+
+//From consideration of direct compression,size required is
+a4=(W2*sigma**-1)**0.5
+
+//required size is 129.10*129.10 i.e a4*a4
+
+//Result
+printf("\n For W1 Load Required size is %0.2f mm**2",a*a)
+printf("\n For W2 Load Required size is %0.2f mm**2",a4*a4)
diff --git a/3864/CH9/EX9.3/Ex9_3.sce b/3864/CH9/EX9.3/Ex9_3.sce
new file mode 100644
index 000000000..522658e0f
--- /dev/null
+++ b/3864/CH9/EX9.3/Ex9_3.sce
@@ -0,0 +1,37 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+//Flange
+b=100 //mm //Width
+
+D=80 //mm //Overall Depth
+t=10 //mm //Thickness of web and flanges
+L=3000 //mm //Length of strut
+E=200*10**3 //N/mm**2 //Modulus of Elasticity
+
+//Calculations
+
+//Let centroid be at depth y_bar from top fibre
+y_bar=(b*t*t*2**-1+(D-t)*t*((D-t)*2**-1+t))*(b*t+(D-t)*t)**-1 //mm
+
+//M.I at x-x axis
+I_x=1*12**-1*b*t**3+b*t*(y_bar-t*2**-1)**2+1*12**-1*t*((D-t))**3+t*((D-t))*((((D-t)*2**-1)+t)-y_bar)**2
+
+//M.I at y-y axis
+I_y=1*12**-1*t*b**3+1*12**-1*(D-t)*t**3 //mm**3
+
+//Least M.I
+I=I_y
+
+//Since both ends are hinged
+//Feective Length=Actual Length
+L=3000 //mm
+l=3000 //mm
+//Buckling Load
+P=%pi**2*E*I*(l**2)**-1*10**-3 //KN
+
+//Result
+printf("\n The Buckling Load for strut of tee section %0.2f KN",P)
diff --git a/3864/CH9/EX9.4/Ex9_4.sce b/3864/CH9/EX9.4/Ex9_4.sce
new file mode 100644
index 000000000..ea72d26dd
--- /dev/null
+++ b/3864/CH9/EX9.4/Ex9_4.sce
@@ -0,0 +1,43 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+D=400 //mm //Overall Depth
+
+//Flanges
+b=300 //mm //Width
+t=50 //mm //Thickness
+
+t2=30 //mm //Web Thickness
+
+dell=10 //mm //Deflection
+w=40 //N/mm //Load
+FOS=1.75 //Factor of safety
+E=2*10**5 //N/mm**2
+
+//Calculations
+
+//M.I at x-x axis
+I_x=1*12**-1*(b*D**3-(b-t2)*b**3) //mm**4
+
+//Central Deflection
+//dell=5*w*L**4*(384*E*I)**-1
+//After sub values in above equation and further simplifying we get
+L=(dell*384*E*I_x*(5*w)**-1)**0.25
+
+//M.I aty-y axis
+I=1*12**-1*t*b**3+1*12**-1*b*t2**3+1*12**-1*t*b**3 //mm**4
+I_y=1*12**-1*t*b**3+1*12**-1*b*t2**3+1*12**-1*t*b**3 //mm**4
+
+//Both the Ends of column are hinged
+
+//Crippling Load
+P=%pi**2*E*I*(L**2)**-1 //N
+
+//Safe Load
+S=P*(FOS)**-1*10**-3 //N
+
+//Result
+printf("\n Safe Load if I-section is used as column with both Ends hhinged %0.2f KN",S)
diff --git a/3864/CH9/EX9.5/Ex9_5.sce b/3864/CH9/EX9.5/Ex9_5.sce
new file mode 100644
index 000000000..b55ef7544
--- /dev/null
+++ b/3864/CH9/EX9.5/Ex9_5.sce
@@ -0,0 +1,42 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+D=200 //mm //External Diameter
+t=20 //mm //hickness
+d=200-2*t //mm //Internal Diameter
+E=1*10**5 //N/mm**2
+a=1*(1600)**-1 //Rankine's Constant
+L=4.5 //m //Length
+sigma=550 //N/mm**2 //Stress
+FOS=2.5
+
+//Calculations
+
+//Moment of Inertia
+I=%pi*D**4*64**-1-%pi*d**4*64**-1
+
+//Both Ends are fixed
+
+//Effective Length
+l=1*2**-1*L*10**3 //mm
+
+//Euler's Critical Load
+P_E=%pi**2*E*I*(l**2)**-1
+
+A=%pi*4**-1*(D**2-d**2) //mm*2
+
+k=(I*A**-1)**0.5
+
+//Rankine's Critical Load
+P_R=sigma*A*(1+a*(l*k**-1)**2)**-1
+
+X=P_E*P_R**-1
+
+//Safe Load using Rankine's Formula
+S=P_R*(FOS)**-1*10**-3 //KN
+
+//Result
+printf("\n Safe Load by Rankines Formula is %0.2f KN",S)
diff --git a/3864/CH9/EX9.6/Ex9_6.sce b/3864/CH9/EX9.6/Ex9_6.sce
new file mode 100644
index 000000000..cc66b9a26
--- /dev/null
+++ b/3864/CH9/EX9.6/Ex9_6.sce
@@ -0,0 +1,59 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+L=3000 //mm //Length of column
+W=800*10**3 //N //Load
+a=1*1600**-1 //Rankine's constant
+FOS=4 //Factor of safety
+sigma=550 //N/mm**2 //stress
+
+//Calculations
+
+//Effective Length
+l=L*2**-1 //mm
+
+//Let d1=outer diameter & d2=inner diameter
+//d1=5*8**-1*d2
+
+//M.I
+//I=%pi*64**-1*(d1**4-d2**4) //mm**4
+
+//Area of section
+//A=pi4**-1*(d1**2-d2**2) //mm**2
+
+//k=(I*A**-1)
+//substituting values in above equation
+//k=1*16**-1*(d1**2-d2**2)
+//after simplifying further we get
+//k=0.2948119.d1
+
+//X=l*k**-1
+//substituting values in above equation and after simplifying further we get
+//X=5087.9898*d1**-1
+
+//Crtitcal Load
+P=W*FOS //N
+
+//From Rankine's Load
+//P2=sigma*A*(1+a*(X)**2)**-1
+//substituting values in above equation and after simplifying further we get
+//d1**4-12156618*d1**4-1.96691*10**8=0
+//Solving Quadratic Equation we get
+//d1**2-12156618*d1-196691000=0
+a=1
+b=-12156.618
+c=-196691000
+
+Y=b**2-4*a*c
+
+d1_1=((-b+Y**0.5)*(2*a)**-1)**0.5 //mm
+d1_2=((-b-Y**0.5)*(2*a)**-1) //mm
+
+d2=5*8**-1*d1_1
+
+//Result
+printf("\n Section of cast iron hollow cylindrical column is:d1_1 %0.2f mm",d1_1)
+printf("\n :d2 %0.2f mm",d2)
diff --git a/3864/CH9/EX9.7/Ex9_7.sce b/3864/CH9/EX9.7/Ex9_7.sce
new file mode 100644
index 000000000..1793b5f17
--- /dev/null
+++ b/3864/CH9/EX9.7/Ex9_7.sce
@@ -0,0 +1,65 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+//Let X=(P*A**-1) //Average Stress at Failure
+Lamda_1=70 //Slenderness Ratio
+Lamda_2=170 //Slenderness Ratio
+X1=200 //N/mm**2
+X2=69 //N/mm**2
+
+//Rectangular section
+b=60 //mm //width
+t=20 //mm //Thickness
+
+L=1250 //mm //Length of strut
+FOS=4 //Factor of safety
+
+//Calculations
+
+//Slenderness ratio
+//Lamda=L*k**-1
+
+//The Rankine's Formula for strut
+//P=sigma*A*(1+a*(L*k**-1)**-1
+
+//From test result 1,
+//After sub values in above equation we get and further simplifying we get
+//sigma_1=200+980000*a ...................(1)
+
+//From test result 2,
+//After sub values in above equation we get and further simplifying we get
+//sigma_2=69+1994100*a ...................(2)
+
+//Substituting it in equation (1) we get
+a=131*1014100**-1
+
+//Substituting a in equation 1
+sigma_1=200+980000*a //N/mm**2
+
+//Effective Length
+l=1*2**-1*L //mm
+
+//Least of M.I
+I=1*12**-1*b*t**3 //mm**4
+
+//Area
+A=b*t //mm**2
+
+k=(I*A**-1)**0.5
+
+//Slenderness ratio
+Lamda=l*k**-1
+
+//From Rankine's Ratio
+P=sigma_1*A*(1+a*(Lamda)**2)**-1
+
+//Safe Load
+S=P*(FOS)**-1*10**-3 //N
+
+//Result
+printf("\n Constant in the Formula is:a %0.6f ",a)
+printf("\n :sigma_1 %0.2f ",sigma_1)
+printf("\n Safe Load is %0.2f KN",S)
diff --git a/3864/CH9/EX9.8/Ex9_8.sce b/3864/CH9/EX9.8/Ex9_8.sce
new file mode 100644
index 000000000..cd2e3d419
--- /dev/null
+++ b/3864/CH9/EX9.8/Ex9_8.sce
@@ -0,0 +1,45 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+D=200 //mm //Depth
+b=140 //mm //width
+
+//Plate
+b2=160 //mm //Width
+t2=10 //mm //Thickness
+
+L=4000 //mm #Length
+l=4000 //mm #Length
+FOS=4 //Factor of safety
+sigma=315 //N/mm**2 //stress
+a2=1*7500**-1
+I_xx=26.245*10**6 //mm**4 //M.I at x-x
+I_yy=3.288*10**6 //mm**4 //M.I at y-y
+a=3671 //mm**2 //Area
+k_x=84.6//mm
+k_y=29.9 //mm
+
+//Calculations
+
+//Total Area
+A=a+2*t2*b2 //mm**2
+
+//M.I
+I=I_yy+2*12**-1*t2*b2**3 //mm**4
+
+k=(I*A**-1)**0.5 //mm
+
+//Let X=L*k**-1
+X=L*k**-1
+
+//Appliying Rankine's Formula
+P=sigma*A*(1+a2*(X)**2)**-1 //N
+
+//Safe Load
+S=P*(FOS)**-1*10**-3 //KN
+
+//Result
+printf("\n Safe axial Load is %0.2f KN",S)
diff --git a/3864/CH9/EX9.9/Ex9_9.sce b/3864/CH9/EX9.9/Ex9_9.sce
new file mode 100644
index 000000000..5d64122bd
--- /dev/null
+++ b/3864/CH9/EX9.9/Ex9_9.sce
@@ -0,0 +1,30 @@
+clear
+//
+//
+
+//Initilization of Variables
+
+E=200*10**3 //N/mm**2 //Modulus of elasticity
+sigma=330 //N/mm**2 //Stress
+a=1*7500**-1 //Rankine's constant
+A=5205 //mm**2 //area of column
+I_xx=59.431*10**6 //mm**4 //M.I at x-x axis
+I_yy=8.575*10**6 //mm**24//M.I at y-y axis
+
+//Calculations
+
+//Total M.I
+I=I_xx+I_yy //mm**4
+
+//Area of compound Section
+A2=2*A //mm**2
+
+k=(I*A2**-1)**0.5 //mm
+
+//Equating Euler's Load to Rankine's Load we get
+//%pi**2*E*I*(L**2)**-1=sigma*A*(1+a*(L*k)**2)**-1
+//After Substitt=uting values and further simplifying we get
+L=(39076198*(1-0.7975432)**-1)**0.5*10**-3 //m
+
+//Result
+printf("\n Length of column for which Rankines formula and Eulers Formula give the same result is %0.2f m",L)