blob: 40556ec38b1ed7daa30f86993c0452630057994b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
clear
//
//Initilization of Variables
//Flange (Top)
b1=80 //mm //Width
t1=40 //mm //Thickness
//Flange (Bottom)
b2=160 //mm //width
t2=40 //mm //Thickness
//web
d=120 //mm //Depth
t3=20 //mm //Thickness
D=200 //mm //Overall Depth
sigma1=30 //N/mm**2 //Tensile stress
sigma2=90 //N/mm**2 //Compressive stress
L=6000 //mm //Span
//Calculations
//Distance of centroid from bottom fibre
y_bar=(b1*t1*(D-t1*2**-1)+d*t3*(d*2**-1+t2)+b2*t2*t2*2**-1)*(b1*t1+d*t3+b2*t2)**-1 //mm
//Moment of Inertia
I=1*12**-1*b1*t1**3+b1*t1*(D-t1*2**-1-(y_bar))**2+1*12**-1*t3*d**3+t3*d*(d*2**-1+t2-(y_bar))**2+1*12**-1*b2*t2**3+b2*t2*(t2*2**-1-(y_bar))**2
//Extreme fibre distance of top and bottom fibres are y_t and y_c respectively
y_t=y_bar //mm
y_c=D-y_bar //mm
//Moment carrying capacity considering Tensile strength
M1=sigma1*I*y_t**-1*10**-6 //KN-m
//Moment carrying capacity considering compressive strength
M2=sigma2*I*y_c**-1*10**-6 //KN-m
//Max Bending moment in simply supported beam 6 m due to u.d.l
//M_max=w*L*10**-3*8**-1
//After simplifying further we get
//M_max=4.5*w
//Now Equating it to Moment carrying capacity, we get load carrying capacity
w=M1*4.5**-1 //KN/m
//Result
printf("\n Max Uniformly Distributed Load is %0.3f KN/m",w)
|