blob: f02a0b052ad03b803907573bc319461ad253353b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
|
clear
//
//
//
//Initilization of Variables
d_o=300 //mm //Outside diameter
d2=200 //mm //Internal Diameter
p=14 //N/mm**2 //internal Fluid pressure
t=50 //mm //Thickness
r_o=150 //mm //Outside Diameter
r2=100 //mm //Internal Diameter
//Calculations
//From Lame's Equation
//p_x=b*(x**2)**-1-a //N/mm**2 ...................(1)
//F_x=b*(x**2)**-1+a //N/mm**2 ...................(2)
//At
p_x=14 //N/mm**2
//Sub value of p_x in equation 1 we get
//14=(100)**-1*b-a ............................(3)
//At
p_x2=0 //N/mm**2
//Sub value in equation 1 we get
//0=b*(150**2)**-1-a ......................(4)
//From Equations 3 and 4 we get
//14=b*(100**2)**-1-b*(100**2)**-1
//After sub values and further simplifying we get
b=14*100**2*150**2*(150**2-100**2)**-1
//From equation 4 we get
a=b*(150**2)**-1
//Hoop Stress
//F_x=b*(x**2)**-1+a //N/mm**2
//At
x=100 //mm
F_x=b*(x**2)**-1+a //N/mm**2
//At
x2=125 //mm
F_x2=b*(x2**2)**-1+a //N/mm**2
//At
x3=150 //mm
F_x3=b*(x3**2)**-1+a //N/mm**2
//If thin Cyclindrical shell theory is used,hoop stress is uniform and is given by
F=p*d2*(2*t)**-1 //N/mm**2
//Percentage error in estimating max hoop tension
E=(F_x-F)*F_x**-1*100 //%
//Result
printf("\n Max Hoop Stress Developed in the cross-section is %0.2f N/mm**2",F)
printf("\n Plot of Variation of hoop stress")
|