blob: be8ad539ff39b2c46a6e648a36f51a780482b13d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
|
clear
//
//Initilization of Variables
L=5000 //mm //Length of Beam
a=2000 //mm //Length of start of beam to Pt Load
b=3000 //mm //Length of Pt load to end of beam
A=150*250 //m**2 //Area of beam
b=150 //mm //Width of beam
d=250 //mm //Depth of beam
sigma=10//N/mm**2 //stress
l=2000 //m //Load applied from one end
//Calculations
//Moment of Inertia
I=1*12**-1*b*d**3 //m**4
//Distance from N.A to end
y_max=d*2**-1 //m
//Section Modulus
Z=1*6**-1*b*d**2 //mm**3
//Moment Carrying Capacity
M=sigma*Z //N-mm
//Let w be the Intensity of the Load in N/m,then Max moment
//M_max=w*L**2*8**-1 //N-mm
//After substituting values and further simplifying we get
//M_max=w*25*100*8**-1
//EQuating it to moment carrying capacity,we get max intensity load
w=M*(25*1000)**-1*8*10**-3
//Part-2
//Let P be the concentrated load,then max moment occurs under the load and its value
//M1=P*a*b*L**-1 //N-mm
//Equting it to moment carrying capacity we get
P=M*1200**-1*10**-3 //N
//Result
printf("\n Max Intensity of u.d.l it can carry %0.3f KN-m",w)
printf("\n MAx concentrated Load P apllied at 2 m from one end is %0.3f KN",P)
|