blob: d1060e823549c88bd5cc222037351f999fc253b4 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
clear
//
//Initilization of Variables
b=200 //mm //Width of timber
d=400 //mm //Depth of timber
t=6 //mm //Thickness
b2=200 //mm //width of steel plate
t2=20 //mm //Thickness of steel plate
M=40*10**6 //KN-mm //Moment
//Let E_s*E_t**-1=X
X=20 //Ratio of Modulus of steel to timber
//Calculations
//let y_bar be the Distance of centroidfrom bottom most fibre
y_bar=(b*d*(b+t)+t2*b2*t*t*2**-1)*(b*d+t2*b2*t)**-1 //mm
//Moment of Inertia
I=1*12**-1*b*d**3+b*d*(b+t-(y_bar))**2+1*12**-1*t2*b2*t**3+b2*t2*t*((y_bar)-t*2**-1)**2
//distance of the top fibre from N-A
y_1=d+t-y_bar //mm
//Distance of the junction of timber and steel From N-A
y_2=y_bar-t //mm
//Stress in Timber at the top
Y=M*I**-1*y_1 //N/mm**2
//Stress in the Timber at the junction point
Z=M*I**-1*y_2
//Coressponding stress in steel at the junction point
Z2=X*Z //N/mm**2
//The stress in Extreme steel fibre
Z3=X*M*I**-1*y_bar
//Result
printf("\n Stress in Extreme steel Fibre %0.2f N/mm**2",Z3)
|