clear // //Initilization of Variables b=200 //mm //Width of timber d=400 //mm //Depth of timber t=6 //mm //Thickness b2=200 //mm //width of steel plate t2=20 //mm //Thickness of steel plate M=40*10**6 //KN-mm //Moment //Let E_s*E_t**-1=X X=20 //Ratio of Modulus of steel to timber //Calculations //let y_bar be the Distance of centroidfrom bottom most fibre y_bar=(b*d*(b+t)+t2*b2*t*t*2**-1)*(b*d+t2*b2*t)**-1 //mm //Moment of Inertia I=1*12**-1*b*d**3+b*d*(b+t-(y_bar))**2+1*12**-1*t2*b2*t**3+b2*t2*t*((y_bar)-t*2**-1)**2 //distance of the top fibre from N-A y_1=d+t-y_bar //mm //Distance of the junction of timber and steel From N-A y_2=y_bar-t //mm //Stress in Timber at the top Y=M*I**-1*y_1 //N/mm**2 //Stress in the Timber at the junction point Z=M*I**-1*y_2 //Coressponding stress in steel at the junction point Z2=X*Z //N/mm**2 //The stress in Extreme steel fibre Z3=X*M*I**-1*y_bar //Result printf("\n Stress in Extreme steel Fibre %0.2f N/mm**2",Z3)