diff options
Diffstat (limited to 'Modern_Physics_by_B_L_Theraja')
15 files changed, 4059 insertions, 0 deletions
diff --git a/Modern_Physics_by_B_L_Theraja/1-ELECTRIC_AND_MAGNETIC_FIELD.ipynb b/Modern_Physics_by_B_L_Theraja/1-ELECTRIC_AND_MAGNETIC_FIELD.ipynb new file mode 100644 index 0000000..02dbc3a --- /dev/null +++ b/Modern_Physics_by_B_L_Theraja/1-ELECTRIC_AND_MAGNETIC_FIELD.ipynb @@ -0,0 +1,291 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: ELECTRIC AND MAGNETIC FIELD" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1: CALCUALTION_OF_ELECTROSTATIC_FORCE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 1.1\n", +"//Comparision of electrostatic force of replusion between two particles with the gravitational forces between them\n", +"\n", +"//given values\n", +"q1=3.2*10^-19;\n", +"q2=q1;//q1 and q2 are the values of charge on alpha-particle in C\n", +"d=10^-13;//distance between two alpha-particles in m\n", +"m1=6.68*10^-27;\n", +"m2=m1;//m1 and m2 are masses of alpha-particles in kg\n", +"G=6.67*10^-11;//Gravitational constant in N-(m^2)/(kg^2)\n", +"\n", +"//calculation\n", +"F1=(9*10^9)*(q1*q2)/(d^2);//calculation of electrostatic force\n", +"disp(F1,'The electrosatic force(in N) is');\n", +"F2=G*(m1*m2)/(d^2);//calculation of electrostatic force\n", +"disp(F2,'The gravitational force (in N) is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: CALCUALTION_OF_DISTANCE_OF_SEPARATION.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 1.2\n", +"//Calculation of the distance of separation between two electrons\n", +"\n", +"// given values\n", +"m=9.1*10^-31;//mass of elctron in kg\n", +"q=1.6*10^-19;//charge on electron in C\n", +"g=9.81;//acceleration due to gravity in m/(s^2)\n", +"\n", +"//calculation\n", +"Fg=m*g;//gravitational force in N\n", +"d=sqrt((9*10^9*q^2)/Fg);//equating gravitational force with electrosatic force for calculating distance\n", +"disp(d,'The distance of separation(in m) is') " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3: CALCULATE_FIELD_INTENSITY_AND_FORCE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 1.3\n", +"//Calculation of electric intensity between plates and force on proton\n", +"\n", +"//given values\n", +"d=0.02//distance between plates in m\n", +"V=400;//potential differnce of plates in V\n", +"q=1.6*10^-19;//charge on a proton in C\n", +"\n", +"//calculation\n", +"E=V/d;//\n", +"disp(E,'The electric field intensity(in V/m) between plates is');\n", +"F=q*E;//\n", +"disp(F,'The force(in N) on proton is') " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4: CALCULATE_MASS_OF_OIL_DROP.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 1.4\n", +"//calculation of mass of oil drop\n", +"\n", +"//given values\n", +"d=0.02//distance between plates in m\n", +"q=1.6*10^-19;//charge on oil drop in C\n", +"V=6000;//potential differnce of plates in V\n", +"g=9.81;//acceleration due to gravity in m/(s^2)\n", +"\n", +"//calculation\n", +"E=V/d;//electric field intensity between plates in V/m\n", +"F=q*E;//electrostatic force on oil drop in N\n", +"m=F/g;//equating the weight of oil drop to the electrostatic force on it\n", +"disp(m,'The mass(in kg) of oil drop') " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5: CALCULATE_VELOCITY_OF_ELECTRON.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 1.5\n", +"//Calculation of velocity of an electron\n", +"\n", +"//given values\n", +"V=150;//potential difference between anode and cathode in V\n", +"m=9.31*10^-31;//mass of an electron in kg\n", +"q=1.6*10^-19;//charge on an electron in C\n", +"\n", +"//Calculation\n", +"E=q*V;//energy(in J) gained by electron during speeding from cathode to anode\n", +"vel=sqrt(E*2/m);//equating with kinetic energy of electron i.e m(v^2)/2\n", +"disp(vel,'The velocity(in m/s) is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.6: CALCULATE_ENERGY.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 1.6\n", +"//Calculation of energy in eV,MeV,J\n", +"\n", +"//given values\n", +"V=5*10^6;//potential differnce through which alpha-particle is accelerated\n", +"e=1.6*10^-19;//charge on electron in C\n", +"\n", +"//calculation\n", +"E1=2*V;//electronic charge on alpha-particle is 2e Coulombs\n", +"disp(E1,'The energy in eV is');\n", +"E2=E1/10^6;//energy in MeV\n", +"disp(E2,'The energy in MeV is');\n", +"E3=E1*e;//energy in Joules\n", +"disp(E3,'The energy in J is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.7: CALCULATE_TOTAL_ENERGY.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 1.7\n", +"//Calculation of the total energy \n", +"\n", +"//given values\n", +"r=0.528*10^-10;//radius of the orbit in m\n", +"q=-1.6*10^-19;//charge on electron in C\n", +"Q=1.6*10^-19;//charge on Hydrogen nucleus in C\n", +"Eo=8.854*10^-12;//permittivity in free space in F/m\n", +"\n", +"//calculation\n", +"E=(q*Q)/(8*3.14*Eo*r);//\n", +"disp(E,'The total energy(in J) is');\n", +"E1=E/(1.6*10^-19);//\n", +"disp(E1,'The total energy(in eV) is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8: CALCULATE_FORCE_AND_RADIUS.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 1.8\n", +"\n", +"//given values\n", +"Q=3.2*10^-19;//charge on alpha-particle in C\n", +"m=6.68*10^-27;//mass on alpha-particle in kg\n", +"B=1.5;//transverse magnetic field of flux density in Wb/(m^2)\n", +"v=5*10^6;//velocity of alpha-particle in m/s\n", +"\n", +"//Calculation\n", +"F=B*Q*v;//\n", +"disp(F,'The force(in N) on particle is');\n", +"R=m*v/(Q*B);//\n", +"disp(R,'The radius(in m) of its circular path')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_B_L_Theraja/10-THE_ATOMIC_NUCLEUS.ipynb b/Modern_Physics_by_B_L_Theraja/10-THE_ATOMIC_NUCLEUS.ipynb new file mode 100644 index 0000000..9fb6af6 --- /dev/null +++ b/Modern_Physics_by_B_L_Theraja/10-THE_ATOMIC_NUCLEUS.ipynb @@ -0,0 +1,220 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: THE ATOMIC NUCLEUS" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.1: COMPARE_DENSITIES_OF_WATER_AND_NUCLEUS.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 10.1\n", +"\n", +"//given data\n", +"R=1.2*10^-15;//radius in A^(1/3)-m *A is mass number\n", +"mp=1.008;\n", +"mn=mp;//mass of proton and neutron in a.m.u\n", +"pi=3.14;//const\n", +"Dw=1000;///density of water in kg/m^3\n", +"\n", +"//calculation\n", +"Vn=4/3*pi*R^3;\n", +"mp=mp*1.66*10^-27;//conversion in kg\n", +"mn=mp;\n", +"m=mn;//m is combined mass in A-kg\n", +"Dn=m/Vn;\n", +"R=Dn/Dw;\n", +"disp(R,'the ratio is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.2: CALCULATE_ENERGY_EQUIVALENCE_FOR_MeV.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 10.2\n", +"\n", +"//calculations\n", +"amu=1.66*10^-27;//1 amu in kg\n", +"c=3*10^8;//speed of light in m/s\n", +"m=amu;\n", +"E=m*c^2;\n", +"kWh=1.6*10^-13;//conversion of kWh in J\n", +"E=E/kWh;\n", +"disp(E,'energy equivalence in MeV')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.3: CALCULATE_ENERGY_EQUIVALENCE_FOR_kWh.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 10.3\n", +"\n", +"//calculations\n", +"gm=10^-3;//1 gram in kg\n", +"m=gm;\n", +"c=3*10^8;//speed of light in m/s\n", +"E=m*c^2;\n", +"kWh=36*10^5;//1 kWh in J\n", +"EE=E/kWh;\n", +"disp(EE,'energy equivalence in kWh')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.4: CALCULATE_BINDING_ENERGY.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 10.4\n", +"\n", +"//given data\n", +"mn=1.00893;//mass of neutron in a.m.u\n", +"mp=1.00813;//mass of proton in a.m.u\n", +"md=2.01473;//mass of deuteron in a.m.u\n", +"ma=4.00389;//mass of alpha-particle in a.m.u\n", +"\n", +"//calculations\n", +"dm=md-(mn+mp);\n", +"disp((-dm*931),'binding energy in MeV');\n", +"dm=ma-2*(mn+mp);\n", +"disp((-dm*931),'binding energy in MeV')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.5: CALCULATE_BINDING_ENERGY_OF_17Cl35.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 10.5\n", +"\n", +"//given data\n", +"m1=1.008665;//mass of 0n1 in a.m.u\n", +"m2=1.007825;//mass of 1H1 in a.m.u\n", +"m3=34.9800;//mass 17Cl35 in a.m.u\n", +"n=17+18;\n", +"\n", +"//calculations\n", +"dm=(17*m2)+(18*m1)-m3;\n", +"Q=dm*931;\n", +"disp(Q,'Binding energy in MeV');\n", +"BEn=Q/n;\n", +"disp(BEn,'Binding energy per nucleon in MeV')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.6: CALCULATE_BINDING_ENERGY_FOR_LITHIUM_NUCLEUS.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example in 10.6\n", +"\n", +"//given data\n", +"m1=1.00814;//mass of proton in a.m.u\n", +"m2=1.00893;//mass of neutron in a.m.u\n", +"m3=7.01822;//mass of lithium in a.m.u\n", +"\n", +"//calculations\n", +"dm=(3*m1)+(4*m2)-m3;\n", +"Q=dm*931;\n", +"disp(Q,'Binding energy in MeV')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_B_L_Theraja/11-NATURAL_RADIOACTIVTIY.ipynb b/Modern_Physics_by_B_L_Theraja/11-NATURAL_RADIOACTIVTIY.ipynb new file mode 100644 index 0000000..a34832e --- /dev/null +++ b/Modern_Physics_by_B_L_Theraja/11-NATURAL_RADIOACTIVTIY.ipynb @@ -0,0 +1,225 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11: NATURAL RADIOACTIVTIY" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.1: CALCUALTE_HOW_MUCH_RADIUM.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 11.1\n", +"\n", +"//given data\n", +"ttg=8378-1898;//total time gap in yrs\n", +"hf=1620;//half life in yrs\n", +"n=ttg/hf;//no of half-periods\n", +"Mo=200;//amt of radium in mg\n", +"\n", +"//calculations\n", +"M=Mo*(0.5)^n;\n", +"disp(M,'radium left in mg')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.2: CALCULATE_RADIOACTIVE_DISINTEGRATING_CONST.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 11.2\n", +"\n", +"//given data\n", +"hf=30;//half life in days\n", +"//M is intial conc.\n", +"\n", +"//calcualtions\n", +"k=0.693/hf;\n", +"disp(k,'radioactive disintegration constant in 1/day');\n", +"//M/4 is left\n", +"t=-log(1/4)/k;\n", +"disp(t,'time taken for (ii) in days');\n", +"//M/8 is left\n", +"t=-log(1/8)/k;\n", +"disp(t,'time taken for (iii) in days')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.3: COMPUTE_DECAY_CONST_AND_HALF_LIFE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 11.3\n", +"\n", +"//given data\n", +"No=4750;\n", +"N=2700;//rate in counts/minute\n", +"t=5;//time in minutes\n", +"\n", +"//calculation \n", +"k=log(No/N)/t;\n", +"disp(k,'radioactive disintegration constant in 1/min');\n", +"hf=0.693/k;\n", +"disp(hf,'half life in minutes')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.4: ESTIMATE_HALF_LIFE_OF_PLUTONIUM.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 13.4\n", +"\n", +"//given data\n", +"m=4.00387;//mass of alpha particle in a.m.u\n", +"M=10^-6;//mass of Pu-239 in kg \n", +"\n", +"//calculations\n", +"m=m*1.66*10^-24;//conversion in gm\n", +"Mo=2300*m;\n", +"k=(Mo/1)/M;\n", +"hf=0.693/k;\n", +"hf=hf/(365*24*3600);//conversion in yrs\n", +"disp(hf,'half life in yrs')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.5: CALCULATE_ACTIVITY.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 11.5\n", +"\n", +"//given data\n", +"hf=2.48*10^5;//half life in yrs\n", +"k=8.88*10^-14//decay const in 1/s\n", +"Mo=4;//intial mass in mg\n", +"Na=6.02*10^23;//Avgraodo no. in 1/gm mole\n", +"\n", +"//calculations\n", +"kt=0.693/hf*62000;\n", +"M=Mo*(exp(-kt));\n", +"disp(M,'mass remain unchanged in mg');\n", +"N=M*10^-3*Na/234;\n", +"A=k*N;\n", +"disp(A,'Activity in disintegrations/second ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.6: HALF_LIFE_OF_RADIUM_IS_1620_YRS.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 11.6\n", +"\n", +"//given data\n", +"hf=1620;//half life in yrs\n", +"Mo=1/100;//mass in gm\n", +"\n", +"//calculations\n", +"k=0.693/hf;\n", +"M=(1-Mo);\n", +"t=log(1/M)/k;\n", +"disp(t,'time reqd for (i) in yrs');\n", +"M=Mo;\n", +"t=log(1/M)/k;\n", +"disp(t,'time reqd for (ii) in yrs')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_B_L_Theraja/12-ARTIFICAL_RADIOACTIVTIY.ipynb b/Modern_Physics_by_B_L_Theraja/12-ARTIFICAL_RADIOACTIVTIY.ipynb new file mode 100644 index 0000000..4a7e425 --- /dev/null +++ b/Modern_Physics_by_B_L_Theraja/12-ARTIFICAL_RADIOACTIVTIY.ipynb @@ -0,0 +1,59 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: ARTIFICAL RADIOACTIVTIY" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.1: ESTIMATE_ITS_AGE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 12.1\n", +"\n", +"//given data\n", +"r=0.5;//ratio of mass of Pb206 and mass of U238\n", +"t=4.5*10^9;//half life in years\n", +"\n", +"//calculation\n", +"T=(log(1+r))*(t/0.693);\n", +"disp(T,'age in years')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_B_L_Theraja/13-NUCLEAR_REACTIONS.ipynb b/Modern_Physics_by_B_L_Theraja/13-NUCLEAR_REACTIONS.ipynb new file mode 100644 index 0000000..f227f06 --- /dev/null +++ b/Modern_Physics_by_B_L_Theraja/13-NUCLEAR_REACTIONS.ipynb @@ -0,0 +1,195 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: NUCLEAR REACTIONS" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1: CALCULATE_THE_ENERGY_AVAILABLE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 13.1\n", +"\n", +"//given data\n", +"m1=7.0183;//mass of 3Li7 in a.m.u\n", +"m2=4.0040;//mass of 2He4 in a.m.u\n", +"m3=1.0082;//mass of 1H1 in a.m.u\n", +"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n", +"//rxn = 3Li7 + 1H1 = 2He4 + 2He4 \n", +"\n", +"//calculations\n", +"dm=m1+m3-(2*m2);\n", +"E=dm*931;\n", +"n=0.1*Na/7;//no of atoms in 100 gm of lithium\n", +"TE=n*E;\n", +"disp(TE,'Total energy available in MeV')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.2: CALCULATE_THE_ENERGY_RELEASED.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 13.2\n", +"\n", +"//given data\n", +"m1=6.015126;//mass of 3Li7 in a.m.u\n", +"m2=4.002604;//mass oh 2He4 in a.m.u\n", +"m3=1.00865;//mass of 0n1 in a.m.u\n", +"m4=3.016049;//mass of 1H3 in a.m.u\n", +"//rxn = 3Li7 + 0n1 = 2He4 + 1H3 + Q\n", +"\n", +"//calcualtions\n", +"dm=m1+m3-(m2+m4);\n", +"Q=dm*931;\n", +"disp(Q,'energy released in MeV')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3: WHAT_IS_THE_Q_VALUE_OF_THE_REACTION.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 13.3\n", +"\n", +"//given data\n", +"m1=14.007515;//mass of 7N14 in a.m.u\n", +"m2=4.003837;//mass oh 2He4 in a.m.u\n", +"m3=17.004533;//mass of 8O17 in a.m.u\n", +"m4=1.008142;//mass of 1H1 in a.m.u\n", +"//rxn = 7N14 + 2He14 = 8O17 + 1H1\n", +"\n", +"//calculations\n", +"dm=m3+m4-(m1+m2);\n", +"Q=dm*931;\n", +"disp(Q,'energy released in MeV')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.4: FIND_THE_MASS.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 13.3\n", +"\n", +"//given data\n", +"m1=14.007520;//mass of 7N14 in a.m.u\n", +"m2=1.008986;//mass oh 0n1 in a.m.u\n", +"//m3=mass of 6C14 in a.m.u\n", +"m4=1.008145;//mass of 1H1 in a.m.u\n", +"//rxn = 7N14 + 0n1 = 6C14 + 1H1 + 0.55 MeV\n", +"\n", +"//calculations\n", +"Q=0.55;\n", +"dm=Q/931;\n", +"m3=dm+m1+m2-m4;\n", +"disp(m3,'mass of 6C14 in a.m.u')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.6: EXPLAIN_MASS_DEFECT.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 13.6\n", +"\n", +"//given data\n", +"m0=11.01280;//mass 5B11 in a.m.u\n", +"m1=4.00387;//mass of alpha particle in a.m.u\n", +"m2=14.00752;//mass of 7N14 in a.m.u\n", +"//m3=mass of neutron \n", +"E1=5.250;//energy of alpha particle in MeV\n", +"E2=2.139;//energy of 7N14 in MeV\n", +"E3=3.260;//energy of 0n1 in MeV\n", +"\n", +"//calculations\n", +"m3=(m0*931)+((m1*931)+E1)-((m2*931)+E2)-E3;\n", +"disp((m3/931),'mass of neutron in a.m.u')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_B_L_Theraja/14-NUCLEUR_FISSION_AND_FUSION.ipynb b/Modern_Physics_by_B_L_Theraja/14-NUCLEUR_FISSION_AND_FUSION.ipynb new file mode 100644 index 0000000..0e28e67 --- /dev/null +++ b/Modern_Physics_by_B_L_Theraja/14-NUCLEUR_FISSION_AND_FUSION.ipynb @@ -0,0 +1,165 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 14: NUCLEUR FISSION AND FUSION" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.1: COMPUTE_FISSION_ENERGY.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 14.1\n", +"\n", +"//given data\n", +"E1=7.8;//avg. B.E per nucleon in MeV\n", +"E2=8.6;//for fissin fragments in MeV\n", +"\n", +"//calculations\n", +"FER=(234*E2)-(236*E1);\n", +"disp(FER,'Fission energy released in MeV')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.2: FIND_ELEMENTARY_PARTICLES_RELEASED_IN_BINARY_FISSION_OF_92U235.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 14.2\n", +"\n", +"//given data\n", +"m1=235.044;//mass of 92U235 in a.m.u\n", +"m2=97.905;//mass of 42Mo98 in a.m.u\n", +"m3=135.917;//mass of 54Xe136 in a.m.u\n", +"//rxn = 0n1 + 92U235 = 42Mo98 + 54Xe136 + 4 -1e0 + 2 0n1\n", +"\n", +"//calculation\n", +"LHSm=1.009+m1;\n", +"RHSm=m2+m3+(4*0.00055)+(2*1.009);\n", +"dm=LHSm-RHSm;\n", +"disp(dm,'mass defect in a.m.u');\n", +"E=dm*931;\n", +"disp(E,'energy released in MeV')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.3: HOW_MUCH_HYDROGEN_MUST_BE_CONVERTED_INTO_HELIUM.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 14.3\n", +"\n", +"//given data\n", +"m1=1.00813;//mass of 1H1 in a.m.u\n", +"m2=4.00386;//mass of 2He4 in a.m.u\n", +"SC=1.35;//solar constant in kW/m^2\n", +"d=1.5*10^11;//dist b/w earth and sum in m\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n", +"pi=3.14;//const\n", +"//rxn = 4 1H1 = 2He4 + 2 1e0\n", +"\n", +"//calculations\n", +"dm=(4*m1)-m2\n", +"E=dm*931;//energy produced in MeV\n", +"EP=E/4;//energy produced per atom\n", +"EP=EP*10^6*e;//conversion in J\n", +"EPkg=EP*Na;//energy produced by 1 kg of hydrogen\n", +"SC=SC*1000;//conversion in J/s-m^2\n", +"SA=4*pi*d^2;//surface area of sphere\n", +"ER=SC*SA;//energy recieved per second\n", +"m=ER/EPkg;\n", +"disp((m/10^3),'mass of hydrogen consumed in tonnes/second')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.4: CALCULATE_THE_ENERGY_LIBERATED.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 14.4\n", +"\n", +"//given data\n", +"m1=2.01478;//mass of 1H2 in a.m.u\n", +"m2=4.00388;//mass of 2He4 in a.m.u\n", +"//rxn 1H2 + 1H2 = 2He4 + Q\n", +"\n", +"//calculations\n", +"Q=2*m1-m2;\n", +"Q=Q*931;//conversion in MeV\n", +"disp(Q,'energy liberated in MeV')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_B_L_Theraja/15-NUCLEUR_ENERGY_SOURCES.ipynb b/Modern_Physics_by_B_L_Theraja/15-NUCLEUR_ENERGY_SOURCES.ipynb new file mode 100644 index 0000000..bfa072d --- /dev/null +++ b/Modern_Physics_by_B_L_Theraja/15-NUCLEUR_ENERGY_SOURCES.ipynb @@ -0,0 +1,305 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 15: NUCLEUR ENERGY SOURCES" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.1: CALCULATE_THE_MAXIMUM_FRACTION_OF_THE_KE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 15.1\n", +"\n", +"//given data\n", +"ma=1;\n", +"Ma=2;\n", +"mb=1;\n", +"Mb=12;\n", +"mc=1;\n", +"Mc=238;//m is mass of neutron and M is mass of other neucleus\n", +"\n", +"//calculation\n", +"n=(4*ma*Ma/(ma+Ma)^2)*100;\n", +"disp(n,'Maximum fraction of KE lost by a neutron for (a)');\n", +"n=(4*mb*Mb/(mb+Mb)^2)*100;\n", +"disp(n,'Maximum fraction of KE lost by a neutron for (a)');\n", +"n=(4*mc*Mc/(mc+Mc)^2)*100;\n", +"disp(n,'Maximum fraction of KE lost by a neutron for (a)')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.2: CALCULATE_THE_FISSION_RATE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 15.2\n", +"\n", +"//given data\n", +"E=200;//energy released per fission in MeV\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n", +"\n", +"//calculations\n", +"CE=E*e*10^6;//conversion in J\n", +"RF=1/CE;\n", +"disp(RF,'fission rate of one watt in fissions/second');\n", +"Ekg=CE*Na/235;\n", +"disp(Ekg,'Energy realeased in complete fission of 1 kg in J')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.3: HOW_MANY_KG_OF_U_235.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 15.3\n", +"\n", +"//given data\n", +"R=3*10^7;//rate of energy development in J s\n", +"E=200;//energy released per fission in MeV\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"t=1000;//time is hours\n", +"Ekg=8.2*10^13;//energy released per kg of U-235\n", +"\n", +"//calculation\n", +"CE=E*e*10^6;//conversion in J\n", +"n=R/CE;\n", +"disp(n,'no of atoms undergo fission/second ');\n", +"TE=R*t*3600;//energy produced in 1000 hours\n", +"MC=TE/Ekg;\n", +"disp(MC,'mass consumed in kg')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.4: HOW_MUCH_U_235_WOULD_BE_CONSUMED_IN_THE_RUN.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 15.4\n", +"\n", +"//given data\n", +"EPF=180;//Energy consumed per disintegration in MeV\n", +"E=1200;//average power in kW\n", +"t=10;//time in hours\n", +"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calculation\n", +"TE=E*t;//energy consumed in kWh\n", +"TE=TE*36*10^5;//conversion in J\n", +"EE=TE/0.2;//efficient energy\n", +"CE=EPF*e*10^6;//conversion in J\n", +"n=EE/CE;\n", +"m=235*n/Na*1000;\n", +"disp(m,'mass consumed in gram')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.5: NUCLEUR_REACTOR_PRODUCES_200MW.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 15.5\n", +"\n", +"//given data\n", +"OE=200;//o/p power in MW\n", +"E=200;//energy released per fission in MeV\n", +"WF=3.1*10^10;//fission rate in fissions/second\n", +"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n", +"\n", +"//calculations\n", +"IE=OE/0.3*10^6;//reactor input in W\n", +"TFR=WF*IE;\n", +"n=TFR*24*3600;//no. of U-235 for one day\n", +"m=235*n/Na;\n", +"disp((m*100/0.7),'amt of natural uranium conumed/day in kg')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.6: A_CITY_REQUIRES_100_MW.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 15.6\n", +"\n", +"//given data\n", +"AE=100;//electrical power in MW\n", +"E=200;//energy released per fission in MeV\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n", +"\n", +"//calculations\n", +"TE=AE*10^6*24*3600;//energy consumed in city in one day in J\n", +"EE=TE/0.2;\n", +"CE=E*e*10^6;//conversion in J\n", +"n=EE/CE;\n", +"m=235*n/Na;\n", +"disp(m,'amt of fuel required in kg')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.7: BOMBAY_REQUIRES_300_MWh.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 15.7\n", +"\n", +"//given data\n", +"OE=3000;//output power in MWh\n", +"E=200;//energy released per fission in MeV\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n", +"\n", +"//calculations\n", +"IE=OE/0.2;\n", +"TE=IE*36*10^8;//conversion in J\n", +"CE=E*e*10^6;//conversion in J\n", +"n=TE/CE;\n", +"m=235*n/Na;\n", +"disp(m,'daily fuel requirement in kg')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.8: THE_MOTOR_OF_AN_ATOMIC_ICE_BREAKER.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 15.8\n", +"\n", +"//given data\n", +"OP=32824;//o/p power in kW\n", +"E=200;//energy released per fission in MeV\n", +"Ekg=8.2*10^13;//energy released per kg of U-235\n", +"\n", +"//calculations\n", +"DOP=OP*1000*24*3600;//daily o/p power in J\n", +"IP=DOP/0.2;\n", +"DFC=IP/Ekg;//daily fuel cosumption\n", +"disp(DFC,'daily fuel cosumption in kg');\n", +"DI=DOP/(0.8*4186);//daily input at 80% efficiency\n", +"Crqd=DI/(7*10^3);\n", +"disp(Crqd,'Coal reqd/day in tonnes')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_B_L_Theraja/16-PARTICLE_ACCELERATORS.ipynb b/Modern_Physics_by_B_L_Theraja/16-PARTICLE_ACCELERATORS.ipynb new file mode 100644 index 0000000..2e4b19f --- /dev/null +++ b/Modern_Physics_by_B_L_Theraja/16-PARTICLE_ACCELERATORS.ipynb @@ -0,0 +1,332 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 16: PARTICLE ACCELERATORS" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.1: WHAT_MUST_BE_THE_FLUX_DENSITY.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 16.1\n", +"\n", +"//given data\n", +"fo=9*10^6;//frequency in Hz\n", +"m=6.643*10^-27;//mass in kg\n", +"pi=3.14;//constant \n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calculations\n", +"Q=2*e;\n", +"B=fo*2*pi*m/Q;\n", +"disp(B,'magnetic flux density in Wb/m^2')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.2: WHAT_IS_FREQUENCY_OF_ALTERNATING_POTENTIAL.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 16.2\n", +"\n", +"//given data\n", +"B=0.7;//magnetic flux intensity in Wb/m^2\n", +"m=3.34*10^-27;//mass in Kg\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"pi=3.14;//const\n", +"\n", +"//calculations\n", +"Q=e;\n", +"fo=B*Q/(2*pi*m*10^6);\n", +"disp(fo,'The cyclotron frquency in MHz ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.3: A_CYCLOTRON_OF_DEES_OF_RADIUS_2_METERES.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 16.3\n", +"\n", +"//given data\n", +"B=0.75;//magnetic flux intensity in Wb/m^2\n", +"m1=1.67*10^-27;//mass in Kg\n", +"m2=3.31*10^-27;//mass in Kg\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"Rm=2;//radius in m\n", +"\n", +"//calculations\n", +"Q=e;\n", +"Emax=3.12*10^12*B^2*Q^2*Rm^2/m1;\n", +"disp(Emax,'Maximum energies in Mev for proton');\n", +"Emax=3.12*10^12*B^2*Q^2*Rm^2/m2;\n", +"disp(Emax,'Maximum energies in Mev for deuteron')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.4: CALCULATE_THE_RATIO.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 16.4\n", +"\n", +"//given data\n", +"mo=9.1*10^-31;//mass of electron in kg\n", +"m=1.67*10^-27;//mass of proton in kg\n", +"c=3*10^8;//speed of light in m/s\n", +"E=1;//given energy in MeV\n", +"\n", +"//calculations\n", +"Eo=mo*c^2/(1.6*10^-13);\n", +"mbymo=1+(E/Eo);\n", +"disp(mbymo,'Ratio for electron');\n", +"Eo=m*c^2/(1.6*10^-13);\n", +"mbymo=1+(E/Eo);\n", +"disp(mbymo,'Ratio for proton')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.5: IN_A_CERTAIN_BETATRON.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 16.5\n", +"\n", +"//given data\n", +"B=0.5;//magnetic field in Wb/m^2\n", +"d=1.5;//diameter in m\n", +"f=59;//frequency in Hz\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"c=3*10^8;//speed of light in m/s\n", +"pi=3.14;//const\n", +"\n", +"//calculations\n", +"R=d/2;\n", +"N=c/(4*(2*pi*50)*R);\n", +"E=B*e*R*c/(1.6*10^-13);\n", +"disp(E,'final energy in MeV');\n", +"AE=E/N*10^6;\n", +"disp(AE,'average energy in eV')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.6: CALCULATE_MASS_AND_VELOCITY_OF_ELCTRONS.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 16.6\n", +"\n", +"//given data\n", +"E=0.51;//kinetic energy in MeV\n", +"R=0.15;//radius in m\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"mo=9.12*10^-31;//mass of electron in kg\n", +"c=3*10^8;//speed of light in m/s\n", +"\n", +"//calculation\n", +"Eo=E;\n", +"m=mo*(1+(E/Eo));\n", +"b=sqrt(1-(mo/m)^2);\n", +"v=b*c;\n", +"B=mo*v/(e*R);\n", +"disp(B,'magnetic field intensity')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.7: DETERMINE_THE_FREQUENCY_OF_GENERATOR.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 16.7\n", +"\n", +"//given data\n", +"E=4;//applied voltage in MeV\n", +"m=3.334*10^-27;//mass of deuteron in kg\n", +"R=0.75;//radius in m\n", +"pi=3.14;//const\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calcualtions\n", +"E=4*10^6*e;\n", +"fo=sqrt(E/(2*m))/(pi*R);\n", +"disp(fo,'frequnecy of generator in Hz')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.8: WHAT_WOULD_BE_THE_ENERGY_OF_ELECTRON.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 16.8\n", +"\n", +"//given data\n", +"roi=15;//rate of increase in Wb/s\n", +"tr=10^6;//total revolutions\n", +"\n", +"//calcualtion\n", +"IE=roi*10^-6;//increased energy in MeV\n", +"FE=IE*tr;\n", +"disp(FE,'Fianl Energy in MeV')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.9: FIND_THE_MAX_ENERGY_AND_CORRESPONDING_WAVELENGTH.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 16.9\n", +"\n", +"//given data\n", +"R=0.1;//radius in m\n", +"pi=3.14;//const\n", +"h=6.625*10^-34;//Plank's constant\n", +"c=3*10^8;//speed of light in m/s\n", +"roi=15;//rate of increase in Wb/s\n", +"t=4*10^-4;//period of accerleartion in s\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calculations\n", +"N=c*t/(2*pi*R);\n", +"IE=roi;//incresed energy in eV\n", +"ME=N*IE*10^-6;\n", +"disp(ME,'Maximum energy in MeV');\n", +"ME=ME*10^6*e;//conversion in V\n", +"p=ME/c;\n", +"Y=h/p;\n", +"disp(Y,'corresponding wavelength of X-rays in m')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_B_L_Theraja/2-THE_ELECTRON.ipynb b/Modern_Physics_by_B_L_Theraja/2-THE_ELECTRON.ipynb new file mode 100644 index 0000000..3f4903b --- /dev/null +++ b/Modern_Physics_by_B_L_Theraja/2-THE_ELECTRON.ipynb @@ -0,0 +1,166 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: THE ELECTRON" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: CALCULATE_FORCE_ACCELERATION_AND_KINETIC_ENERGY.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 2.1\n", +"\n", +"//given values\n", +"E=2400;//electric field intensity in V/m\n", +"V=90;//potential difference in V\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"m=9.12*10^-31;//mass of electron in kg\n", +"\n", +"//Calculation\n", +"F=e*E;\n", +"disp(F,'The force(in N) on electron is');\n", +"a=F/m;\n", +"disp(a,'Its acceleration (in m/s^2)');\n", +"KE=e*V;\n", +"disp(KE,'The Kinetic Energy(in J) of particle is');\n", +"v=sqrt(2*KE/m);\n", +"disp(v,'The velocity(in m/s) of the electron')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: CALCULATE_LINEAR_VELOCITY_AND_RADIUS.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 2.2\n", +"\n", +"//given values\n", +"V=900;//potential difference in V\n", +"B=0.01;//uniform magnetic field in Wb/m^2\n", +"em=1.76*10^11;//value of e/m in C/kg\n", +"\n", +"//calculation\n", +"v=sqrt(2*em*V);\n", +"disp(v,'The linear velocity(in m/s) of electron is');\n", +"R=v/(em*B);\n", +"disp(R,'The radius(in m) of the circular path is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: CALCULATE_MASS.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 2.3\n", +"\n", +"//given values\n", +"d=6*10^-3;//distance between plates in m\n", +"V=900;//potential difference in V\n", +"B=0.5;//uniform magnetic field in Wb/m^2\n", +"Q=1.6*10^-19;//the charge on electron in C\n", +"R=10.6*10^-2;//circular track radius in m\n", +"\n", +"//calculation\n", +"v=V/(B*d);\n", +"m=R*Q*B/v;\n", +"disp(m,'The mass(in kg) of particle')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: CALCULATE_RADIUS_AND_CHARGE_ON_OIL_DROP.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 2.4\n", +"\n", +"//given values\n", +"V=6920;//potential difference in V\n", +"d=1.3*10^-3;//distance between in m\n", +"v=1.9*10^-4;//velocity in m/s\n", +"p=0.9*10^3;//density of oil in kg/m^3\n", +"n=1.81*10^-5;//coefficient of viscosity in N-s/m^2\n", +"g=9.81;//accelaration due to gravity in m/s^2\n", +"pi=3.14;//standard constant\n", +"\n", +"//calculation\n", +"a=sqrt((9*n*v)/(2*g*p));\n", +"disp(a,'The radius(in m) of the drop is');\n", +"E=V/d;\n", +"Q=4*pi*(a^3)*p*g/(3*E);\n", +"disp(Q,'The value of charge(in C) on oil drop is')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_B_L_Theraja/3-THE_ATOMIC_STRUCTURE.ipynb b/Modern_Physics_by_B_L_Theraja/3-THE_ATOMIC_STRUCTURE.ipynb new file mode 100644 index 0000000..caa704c --- /dev/null +++ b/Modern_Physics_by_B_L_Theraja/3-THE_ATOMIC_STRUCTURE.ipynb @@ -0,0 +1,263 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: THE ATOMIC STRUCTURE" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: CALCULATE_DISTANCE_OF_CLOSEST_APPROACH.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 3.1\n", +"\n", +"//given values\n", +"Z=79;//atomic number of gold\n", +"e=1.6*10^-19;//electron charge in C\n", +"Eo=8.854*10^-12;//absolute permitivity of free space in F/m\n", +"K=7.68*1.6*10^-13;//kinectic energy in J\n", +"pi=3.14;//standard constant \n", +"\n", +"//calculations\n", +"D=(2*Z*e^2)/(4*pi*Eo*K);\n", +"disp(D,'The closest distance(in m) of approach is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: CALCULATE_VELOCITY_RADIUS_TIME_TAKEN_AND_RYDBERG_CONST.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 3.2\n", +"\n", +"//given values\n", +"Z=1;//atomic number of hydrogen\n", +"e=1.6*10^-19;//electron charge in C\n", +"pi=3.14;//standard constant\n", +"h=6.625*10^-34;//plank's constant in J-s\n", +"m=9.1*10^-31;//mass of an electron in kg\n", +"Eo=8.854*10^-12;//absolute permitivity of free space in F/m\n", +"c=3*10^8;//speed of light in m/s\n", +"n=1;//ground state\n", +"\n", +"//calculation\n", +"v=9*10^9*(2*pi*Z*e^2)/(n*h);\n", +"disp(v,'velocity(in m/s) of ground state');\n", +"r=(Eo*n^2*h^2)/(pi*m*e^2);\n", +"disp(r,'radius(in m) of Bohr orbit in ground state')\n", +"t=(2*pi*r)/v;\n", +"disp(t,'time taken(in s) by electron to traverse the bohr first orbit');\n", +"R=(m*e^4)/(8*Eo^2*h^3*c);\n", +"disp(R,'Rhydberg contstant (in m^-1)')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: CALCULATE_FREQUENCY.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 3.3\n", +"\n", +"//given values\n", +"B=2.179*10^-16;//a constant in J\n", +"h=6.625*10^-34;//plank's constant in J-s\n", +"\n", +"//calculation\n", +"E3=-B/3^2;\n", +"E2=-B/2^2;\n", +"f=(E3-E2)/h;\n", +"disp(f,'frequency(in Hz) of radiation')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: CALCULATE_FREQUENCY_IN_FIRST_ORBIT.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 3.4\n", +"\n", +"//given values\n", +"Z=1;//atomic number of hydrogen\n", +"e=1.6*10^-19;//electron charge in C\n", +"h=6.625*10^-34;//plank's constant in J-s\n", +"m=9.1*10^-31;//mass of an electron in kg\n", +"Eo=8.854*10^-12;//absolute permitivity of free space in F/m\n", +"n=1;//ground state\n", +"\n", +"//Calculations\n", +"f=(m*Z^2*e^4)/(4*Eo^2*h^3);\n", +"disp(f,'the frequency(in Hz) is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: AT_WHAT_SPEED_MUST_ELECTRON.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 3.5\n", +"\n", +"//given data\n", +"Z=1;\n", +"n=1;\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"h=6.625*10^-34;//Plank's constant\n", +"Eo=8.854*10^-12;//absolute permitivity of free space in F/m\n", +"m=9.12*10^-31;//mass of electron in kg\n", +"\n", +"//calculations\n", +"v=Z*e^2/(2*Eo*n*h);\n", +"disp(v,'velcocity in m/s');\n", +"E=-m*Z^2*e^4/(8*(Eo*n*h)^2);\n", +"disp(E,'energy of hydrogen atom in J');\n", +"f=m*Z^2*e^4/(4*Eo^2*(n*h)^3);\n", +"disp(f,'frequecy in Hz')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.8: CALCULATE_PRINCIPAL_QUANTUM_NO_AND_WAVELENGTH.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 3.8\n", +"\n", +"//given data\n", +"h=6.625*10^-34;//Plank's constant\n", +"c=3*10^8;//speed of light in m/s\n", +"E1=10.2;//in eV energy\n", +"E2=12.09;//in eV energy\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calcualtion\n", +"//principal quantum no are 2 & 3 respectively\n", +"W=c*h/(E1*e)*10^10;\n", +"disp(W,'wavelength in angstrom is for 10.2 eV');\n", +"W=c*h/(E2*e)*10^10;\n", +"disp(W,'wavelength in angstrom is for 12.09 eV')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.9: CALCULATE_WAVELENGTH_FOR_LYMAN_SERIES.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 3.9\n", +"\n", +"//given data\n", +"R=10967700;//Rydberg constant in 1/m\n", +"\n", +"//calculation\n", +"W1=4/(3*R);//as n1=1 and n2=2\n", +"disp((W1*10^10),'Long wavelength in angstrom');\n", +"W2=1/R;//as n1=1 and n2=infinity\n", +"disp((W2*10^10),'Short wavelength in angstrom')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_B_L_Theraja/4-CRYSTALLOGRAPHY.ipynb b/Modern_Physics_by_B_L_Theraja/4-CRYSTALLOGRAPHY.ipynb new file mode 100644 index 0000000..684ed81 --- /dev/null +++ b/Modern_Physics_by_B_L_Theraja/4-CRYSTALLOGRAPHY.ipynb @@ -0,0 +1,237 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: CRYSTALLOGRAPHY" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.10: CALCULATION_OF_INTERPLANAR_SPACING.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 4.10\n", +"\n", +"//given data\n", +"r=1.746;//atomic radius in angstrom\n", +"\n", +"//calulations\n", +"a=4*r/sqrt(2);\n", +"//for (i)\n", +"h=2;k=0;l=0;\n", +"d=a/sqrt(h^2+k^2+l^2);\n", +"disp(d,'distace for (200) in A.U');\n", +"//for (ii)\n", +"h=2;k=2;l=0;\n", +"d=a/sqrt(h^2+k^2+l^2);\n", +"disp(d,'distace for (220) in A.U ')\n", +"//for (iii)\n", +"h=1;k=1;l=1;\n", +"d=a/sqrt(h^2+k^2+l^2);\n", +"disp(d,'distace for (111) in A.U')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.11: CALCULATION_OF_ANGLE_BETWEEN_PAIR_OF_PLANES.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 4.11\n", +"\n", +"//calculations\n", +"//for (i)\n", +"l=1;m=0;n=0;\n", +"p=0;q=1;r=0;\n", +"d=acosd((l*p+m*q+n*r)/(sqrt(l^2+m^2+n^2)*sqrt(p^2+q^2+r^2)));\n", +"disp(d,'angle b/w pair of miller incdices in (i)');\n", +"//for (ii)\n", +"l=1;m=2;n=1;\n", +"p=1;q=1;r=1;\n", +"d=acosd((l*p+m*q+n*r)/(sqrt(l^2+m^2+n^2)*sqrt(p^2+q^2+r^2)));\n", +"disp(d,'angle b/w pair of miller incdices in (ii)')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.13: CALCUALTION_OF_NO_OF_ATOMS_PER_SQMM.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 4.13\n", +"\n", +"//given data\n", +"a=3.61*10^-7;//lattice constant in mm\n", +"\n", +"//calcualtions\n", +"//for (i) plane (100)\n", +"SA=a*a;\n", +"tamc=2;//total atoms included according to sketch\n", +"ans=tamc/SA;\n", +"disp(ans,'atoms per mm^2 for (i)');\n", +"//for (ii) plane (110)\n", +"A=a*(sqrt(2)*a);\n", +"tamc=2;//total atoms included according to sketch\n", +"ans=tamc/A;\n", +"disp(ans,'atoms per mm^2 for (ii)');\n", +"//for (iii) plane (111)\n", +"A=0.866*a*a;\n", +"tamc=2;//total atoms included according to sketch\n", +"ans=tamc/A;\n", +"disp(ans,'atoms per mm^2 for (iii)')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: CALCULATE_DISTANCE_BETWEEN_ADJACENT_ATOMS.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 4.2\n", +"\n", +"//given data\n", +"d=2180;//density of NaCl\n", +"M=23.5+35.5;//Molecular weight\n", +"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n", +"n=4;//for f.c.c\n", +"\n", +"//calculations\n", +"a=(n*M/(Na*d))^(1/3);\n", +"d=a/2;\n", +"disp((d*10^10),'distance between to adajcent atoms in angstrom')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: CALCULATE_SPACING.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 4.3\n", +"\n", +"//given data\n", +"d=2.163;//density in gm/cm^3\n", +"M=58.45;\n", +"Na=6.02*10^23;//Avgraodo no. in 1/gm mole\n", +"\n", +"//calcualtions\n", +"n=Na/M;//no. of molecules/gram\n", +"n=n*d;//no. of molecules/cm^3 \n", +"n=2*n;//no. of atom/cm^3;\n", +"n=n^(1/3);//no. of atoms in a row 1cm long\n", +"d1=1/n;\n", +"disp((d1*10^8),'Spacing in angstrom')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: CALCULATE_DENSITY_OF_Cu.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 4.4\n", +"\n", +"//given data\n", +"r=1.278;//radius in A.U\n", +"n=4;//structure is f.c.c\n", +"M=63.54;\n", +"Na=6.02*10^23;//Avgraodo no. in 1/gm mole\n", +"\n", +"//calculations\n", +"a=4*r/(sqrt(2));\n", +"V=a^3;\n", +"d=n*M/(Na*V);\n", +"disp((d*(10^8)^3),'Density in g/cm^3')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_B_L_Theraja/5-QUANTUM_THEORY.ipynb b/Modern_Physics_by_B_L_Theraja/5-QUANTUM_THEORY.ipynb new file mode 100644 index 0000000..0538521 --- /dev/null +++ b/Modern_Physics_by_B_L_Theraja/5-QUANTUM_THEORY.ipynb @@ -0,0 +1,614 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: QUANTUM THEORY" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.10: CALCULATE_MAXIMUM_ENERGY_AND_WORK_FUNCTION.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.10\n", +"\n", +"//given data\n", +"Wo=2300*10;//threshold wavelength in Angstrom\n", +"W=1800*10;//incident light wavelength in Angstrom\n", +"\n", +"//calculations\n", +"w=124000/Wo;\n", +"disp(w,'The work function in eV is');\n", +"E=124000*((1/W)-(1/Wo));\n", +"disp(E,'The maximum energy in eV')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.11: WHAT_IS_THRESHOLD_WAVELENGTH.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.11\n", +"\n", +"//given data\n", +"W=6000;//wavelegth in Angstrom\n", +"v=4*10^5;//velocity in m/sec\n", +"m=9.12*10^-31;//mass of electron in kg\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calculations\n", +"KE=0.5*m*v^2/e;\n", +"disp(KE,'The Kinetic energy in eV is');\n", +"WF=12400/W;\n", +"Wo=12400/(WF-KE);\n", +"disp(Wo,'The threshold wavelength in Angstrom is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.12: CALCULATE_THRESHOLD_FREQUENCY.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.12\n", +"\n", +"//given data\n", +"Wo=4.8;//work function in eV\n", +"W=2220;//wavelength in angstrom\n", +"\n", +"//calculations\n", +"E=12400/W;\n", +"Emax=E-Wo;\n", +"disp(Emax,'The maximum Kinetic energy in eV is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.13: WHEN_VIOLET_LIGHT.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.13\n", +"\n", +"//given data\n", +"W=4000*10^-10;//wavelength in m\n", +"Vs=0.4;//retarding potential in eV\n", +"h=6.625*10^-34;//Plank's constant\n", +"c=3*10^8;//speed of light in m/s\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calculations\n", +"f=c/W;\n", +"disp(f,'The light frequency in Hz');\n", +"E=h*f/e;\n", +"disp(E,'The photon energy in eV');\n", +"Wo=E-Vs;\n", +"disp(Wo,'The work function in eV');\n", +"fo=Wo/h*e;\n", +"disp(fo,'The threshold frequency in Hz');\n", +"NE=(E-Wo)*e;\n", +"disp(NE,'The net energy in J')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.14: CALCULATE_THRESHOLD_WAVELENGTH_AND_PLANKS_CONSTANT.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.14\n", +"\n", +"//given data\n", +"W1=3310*10^-10;//photon wavelength in m\n", +"W2=5000*10^-10;//photon wavelength in m\n", +"E1=3*10^-19;//electron energy in J\n", +"E2=0.972*10^-19;//electron energy in J\n", +"c=3*10^8;//speed of light in m/s\n", +"\n", +"//given values\n", +"h=(E1-E2)*(W1*W2)/(c*(W2-W1));\n", +"disp(h,'the plancks const in Js');\n", +"Wo=c*h/E1;\n", +"disp(Wo,'The threshold wavelength in m')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.15: A_CERTAIN_METAL.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.15\n", +"\n", +"//given data\n", +"W=6525;//wavelength in angstrom\n", +"\n", +"//calcualation\n", +"Vo=12400*((1/4000)-(1/W));\n", +"disp(Vo,'Stopping potential in (a) in volts');\n", +"Vo=12400*((1/2000)-(1/W));\n", +"disp(Vo,'Stopping potential in (b) in volts');\n", +"Vo=12400*((1/2000)-(2/W));\n", +"disp(Vo,'Stopping potential in (c) in volts')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.16: FIND_UNKNOWN_WAVELENGTH.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//EXample 5.16\n", +"\n", +"//given data\n", +"Wo=5000;//wavelength in angstrom\n", +"V=3.1;//stopping potential in V\n", +"\n", +"//calcualtion\n", +"W=1/((V/12400)+(1/Wo));\n", +"disp(W,'The unknown wavelength in Angstrom')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.17: LIGHT_OF_WAVELENGTH_2000_ANGSTROM.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.17\n", +"\n", +"//given values\n", +"W=2000;//wavelength in Angstrom\n", +"Vs=4.2;//Work Function in eV\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calculations\n", +"E=12400/W;\n", +"Emax=(E-Vs)*e;\n", +"disp(Emax,'KE of fastest photoelectron in J');\n", +"Emin=0;\n", +"disp(Emin,'KE of slowest moving electron in J');\n", +"Vo=Emax/e;\n", +"disp(Vo,'Stopping potential in V');\n", +"Wo=12400/Vs;\n", +"disp(Wo,'The cutoff wavelength in Angstrom')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.18: CALCULATE_PLANKS_CONSTANT.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.18\n", +"\n", +"//given values\n", +"Vs1=4.6;//Stopping Potential in V\n", +"Vs2=12.9;//Stopping Potential in V\n", +"f1=2*10^15;//frequency in Hz\n", +"f2=4*10^15;//frequency in Hz\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calculations\n", +"h=((Vs2-Vs1)*e)/(f2-f1)\n", +"disp(h,'The Plancks const in Js')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: CALCULATE_ENERGY.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.1\n", +"\n", +"//given values\n", +"W1=4;//wavelength in Angstrom\n", +"W2=1;//wavelength in Angstrom\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"m=9.12*10^-31;//mass of electron in kg\n", +"\n", +"//calculation\n", +"disp('Part (i)');\n", +"E=12400/W1;\n", +"disp(E,'The energy in eV is');\n", +"v=sqrt(E*e*2/m);\n", +"disp(v,'The velocity in m/s is');\n", +"disp('Part (ii)');\n", +"E=12400/W2;\n", +"disp(E,'The energy in eV is');\n", +"v=sqrt(E*e*2/m);\n", +"disp(v,'The velocity in m/s is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.2: HOW_MANY_PHOTONS.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.2\n", +"\n", +"//given values\n", +"f=880*10^3;//frequency in Hz\n", +"P=10*10^3;//Power in W\n", +"h=6.625*10^-34;//Plank's constant\n", +"\n", +"//calculation\n", +"E=h*f;\n", +"n=P/E;\n", +"disp(n,'The number of photons emitted per second are')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3: HOW_MANY_LIGHT_QUANTA.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.3\n", +"\n", +"//given values\n", +"P=200;//power in W\n", +"W=6123*10^-10;//wavelength in m\n", +"c=3*10^8;//speed of light in m/s\n", +"h=6.625*10^-34;//Plank's constant\n", +"\n", +"//calculation\n", +"Op=0.5*P;//radiant o/p\n", +"E=h*c/W;\n", +"n=2/E;\n", +"disp(n,'No. of Quanta emitted/s')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.4: FIND_THE_NO_OF_PHOTOELECTRONS.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.4\n", +"\n", +"//given values\n", +"N=5*10^4;//no. of photons\n", +"W=3000*10^-10;//wavelength in A\n", +"J=5*10^-3;//senstivity for W in A/W\n", +"h=6.625*10^-34;//Plank's constant\n", +"c=3*10^8;//speed of light in m/s\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calculation\n", +"E=h*c/W;//energy content of each photon\n", +"TE=N*E;//total energy\n", +"I=J*TE;//current produced\n", +"n=I/e;\n", +"disp(n,'no. photoelectrons emitted are')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.5: HOW_MANY_PHOTONS_AND_AT_WHAT_RATE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.5\n", +"\n", +"//given values\n", +"W=5*10^-7;//wavelength in m\n", +"F=10^-5;//force in N\n", +"h=6.625*10^-34;//Plank's constant\n", +"m=1.5*10^-3;//mass in kg\n", +"c=3*10^8;//speed of light in m/s\n", +"S=0.1//specific heat\n", +"\n", +"//calculation\n", +"n=F*W/h;\n", +"disp(n,'no. of photons');\n", +"E=F*c/4200;//in kcal/s\n", +"T=E/(m*S);\n", +"disp(T,'the rate of temperature rise')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.6: HOW_MANY_PHOTONS_EMITTED_BY_LAMP.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.6\n", +"\n", +"//given values\n", +"W=4500*10^-10;//wavelength in m\n", +"V=150;//rated voltage in W\n", +"h=6.625*10^-34;//Plank's constant\n", +"c=3*10^8;//speed of light in m/s\n", +"\n", +"//calculation\n", +"P=V*8/100;//lamp power emitted\n", +"E=h*c/W;\n", +"n=P/E;\n", +"disp(n,'No. photons emitted/s')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.7: CALCULATE_NUMBER_OF_PHOTONS.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.7\n", +"\n", +"//given values\n", +"f=1*10^12;//frequency in Hz\n", +"h=6.625*10^-34;//Plank's constant\n", +"\n", +"//calculation\n", +"E=h*f;\n", +"n=E/6.625;\n", +"disp(n,'the no. of photons required')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.8: WITH_WHAT_VELOCITY.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.8\n", +"\n", +"//given values\n", +"W=5200*10^-10;//wavelength in m\n", +"h=6.625*10^-34;//Plank's constant\n", +"m=9.12*10^-31;//mass of electron in kg\n", +"\n", +"//calculations\n", +"p=h/W;\n", +"v=p/m;\n", +"disp(v,'the velocity in m/s')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.9: CALCULATE_THRESHOLD_FREQUENCY.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.9\n", +"\n", +"//given data\n", +"v=7*10^5;//maximum speed in m/sec\n", +"f=8*10^14;//frequency in Hz\n", +"h=6.625*10^-34;//Plank's constant\n", +"c=3*10^8;//speed of light in m/s\n", +"m=9.12*10^-31;//mass of electron in kg\n", +"\n", +"//calulations\n", +"E=0.5*m*v*v;\n", +"fo=f-(E/h);\n", +"disp(fo,'the threshold frequency in Hz is')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_B_L_Theraja/7-CLASSIFICATION_OF_SOLIDS.ipynb b/Modern_Physics_by_B_L_Theraja/7-CLASSIFICATION_OF_SOLIDS.ipynb new file mode 100644 index 0000000..1f70e0c --- /dev/null +++ b/Modern_Physics_by_B_L_Theraja/7-CLASSIFICATION_OF_SOLIDS.ipynb @@ -0,0 +1,150 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: CLASSIFICATION OF SOLIDS" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1: CALCULATE_ENERGY_GAP.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 7.1\n", +"\n", +"//given data\n", +"W=11000;//wavelength in angrstrom\n", +"\n", +"//calcuations\n", +"Eg=W/12400;\n", +"disp(Eg,'Energy Gap in eV')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: FIND_MOBILITY_OF_ELECTRONS.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 7.2\n", +"\n", +"//given data\n", +"p=1.7*10^-6;//resistivity in ohm-cm\n", +"d=8.96;//density in gm/cc\n", +"W=63.5;\n", +"Na=6.02*10^23;//Avgraodo no. in 1/g mole\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calcualtions\n", +"n=8.96*Na/W;\n", +"ue=1/(p*e*n);\n", +"disp(ue,'mobilty of electrons in cm^2/V-s');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3: FIND_RESISTIVITY.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 7.3\n", +"\n", +"//given data\n", +"d1=2.5*10^19;//density of charge carries in 1/m^3\n", +"d2=4.2*10^28;//density of germanium atoms\n", +"ue=0.36;//mobilty of electrons in m^2/V-s\n", +"Na=6.02*10^23;//Avgraodo no. in 1/g mole\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calcualtions\n", +"Nd=d2/10^6;\n", +"cn=Nd*e*ue;\n", +"pn=1/cn;\n", +"disp(pn,'resistivity of doped germanium in ohm-m')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.4: CALCULATE_WAVELENGTH.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 7.4\n", +"\n", +"//given data\n", +"Eg=0.75;//energy gap in eV\n", +"\n", +"//calcualtions\n", +"W=12400/Eg;\n", +"disp(W,'wavelength in angstrom')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_B_L_Theraja/8-X_RAYS.ipynb b/Modern_Physics_by_B_L_Theraja/8-X_RAYS.ipynb new file mode 100644 index 0000000..6d8d760 --- /dev/null +++ b/Modern_Physics_by_B_L_Theraja/8-X_RAYS.ipynb @@ -0,0 +1,532 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: X RAYS" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.10: CALCULATE_ANGLE_OF_THIRD_ORDER_REFLECTION_NOTE_CALCUALTION_MISTAKE_IN_BOOK.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +" clc;clear;\n", +"//Example 8.10\n", +"\n", +"//given values\n", +"D=12;//glancing angle in Degree\n", +"n=1;\n", +"d=3.04*10^-10;//grating space in m\n", +"\n", +"//calculation \n", +"W=(2*d*sind(D));\n", +"disp((W/(10^-10)),'the wavelength in Angstrom');\n", +"D3=asind((3*W)/(2*d));\n", +"disp(D3,'the angle for third order reflection in degrees')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.11: HOW_MANY_ORDERS_OF_BRAGG_RELFLECTION.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 8.11\n", +"\n", +"//given data\n", +"d=1.181;//distance of seperation in Angstrom\n", +"W=1.540;//wavelength in Angstrom\n", +"\n", +"//calculations\n", +"n=2*d/W;//sin(D) = 1 for max value\n", +"disp(n,'the orders of bragg reflection')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.12: CALCULATE_INTERPLANAR_SPACING.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 8.12\n", +"\n", +"//given data\n", +"W=0.6;//wavelength in angstrom\n", +"D1=6.45;\n", +"D2=9.15;\n", +"D3=13;//angles in degree\n", +"\n", +"//calculation\n", +"d=W/(2*sind(D1));\n", +"disp(d,'interplanar spacing for (a) in angstrom');\n", +"d=W/(2*sind(D2));\n", +"disp(d,'interplanar spacing for (b) in angstrom');\n", +"d=W/(2*sind(D3))*2;//n=2 for (c)\n", +"disp(d,'interplanar spacing for (c) in angstrom')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.13: DETERMINE_THE_SPACING.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 8.13\n", +"\n", +"//given data\n", +"W=3*10^-10;//wavelength in m\n", +"D=40;//angle in degree\n", +"n=1;\n", +"\n", +"//calculation\n", +"d=n*W/(2*sind(D));\n", +"disp((d/10^-10),'spacing in AU')\n", +"a=2*d;\n", +"v=a^3;\n", +"disp(v,'the volumne in m^3 is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.14: DETERMINE_THE_TYPE_OF_CRYSTAL_POSSESED.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 8.14\n", +"\n", +"//given data\n", +"D1=5.4;\n", +"D2=7.6;\n", +"D3=9.4;//angles in degree\n", +"\n", +"//calcualtion\n", +"d1=1/(2*sind(D1));\n", +"d2=1/(2*sind(D2));\n", +"d3=1/(2*sind(D3));\n", +"m=min(d1,d2,d3);\n", +"d1=d1/m;\n", +"d2=d2/m;\n", +"d3=d3/m;\n", +"disp(d1,d2,d3,'d1:d2:d3 =')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.15: CALCULATE_SHORT_WAVELENGTH_AND_GALNCING_ANGLE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 8.15\n", +"\n", +"//given data\n", +"V=50000;//applied voltage in V\n", +"p=1.99*10^3;//density in kg/m^3\n", +"n=4;\n", +"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n", +"M=74.6;//molecular mass\n", +"W=0.248*10^-10;//wavelength in m\n", +"\n", +"//calculation\n", +"Wmin=12400/V;\n", +"disp(Wmin,'short wavelength limit');\n", +"a=(n*M/(Na*p))^(1/3);\n", +"d=a/2;\n", +"D=asind(W/(2*d));\n", +"disp(D,'glancing angle in degree')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.16: CALCULATE_LATTICE_SPACING_OF_NaCl.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 8.16\n", +"\n", +"//given data\n", +"W=1.54;//wavelength in angstrom\n", +"D=15.9;//angle in degree\n", +"M=58.45//molecular weight\n", +"p=2164*10^3;//density in kg/m^3\n", +"n=2;//for NaCl molecule\n", +"\n", +"//calculation\n", +"d=W/(2*sind(D));\n", +"disp(d,'lattice spacing in angstrom');\n", +"d=d*10^-10;\n", +"Na=M/(2*d^3*p);\n", +"disp(Na,'Avogrado number in 1/gm mole')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.17: WHAT_IS_PRIMARY_WAVELENGTH.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 8.17\n", +"\n", +"//given data\n", +"D=60;//angle in degree\n", +"W=0.254;//wavelength in angstrom\n", +"\n", +"//calcualtion\n", +"dW=0.024*(1-cosd(D));\n", +"W1=W-dW;\n", +"disp(W1,'primary X-ray wavelength in angstrom')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.18: WHAT_IS_LATTICE_PARAMETER.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 8.18\n", +"\n", +"//given data\n", +"D=32;//angle in degree\n", +"W=1.54*10^-10;//wavelength in angstrom\n", +"h=2;k=2;l=0;//lattice consts\n", +"\n", +"//calcualtions\n", +"d=W/(2*sind(D));\n", +"a=d*sqrt(h^2+k^2+l^2);\n", +"disp(a,'lattice parameter in m');\n", +"r=sqrt(2)*a/4;\n", +"disp(r,'radius of atom in m')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1: CALCULATE_WAVELENGTH.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 8.1\n", +"\n", +"//given data\n", +"V=60000;//working voltage in V\n", +"\n", +"//calculation\n", +"Wmin=12400/V;\n", +"disp(Wmin,'Wavelength emitted in Angstrom')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2: CALCULATE_NUMBER_OF_ELECTRONS_STRIKING_PER_SECOND.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 8.2\n", +"\n", +"//given data\n", +"V=12400;//Volatage applied in V\n", +"I=0.002;//current drop in A\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calculations\n", +"n=I/e;\n", +"disp(n,'No. of electrons');\n", +"v=(5.93*10^5)*(sqrt(V));\n", +"disp(v,'the speed with which they strike in m/s');\n", +"Wmin=12400/V;\n", +"disp(Wmin,'shortest wavelength in Angstrom')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: CALCULATE_MIN_APPLIED_POTENTIAL.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 8.3\n", +"\n", +"//given values\n", +"Wmin=1;//shortest wavelength in Angstrom\n", +"\n", +"//calculations\n", +"V=(12400/Wmin)/1000;\n", +"disp(V,'The minimum applied voltage in kV')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: CALCULATE_MAX_SPEED.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Exmaple 8.4\n", +"\n", +"//given data\n", +"I=0.005;//current in A\n", +"V=100000;//potential difference in V\n", +"\n", +"//calcualtions\n", +"v=(5.98*10^5)*(sqrt(V));\n", +"disp(v,'Maximum speed in m/s');\n", +"IP=V*I;//incident power in W\n", +"P=.999*IP;//power converted into heat in W\n", +"H=P/4.18;\n", +"disp(H,'The heat produced/second in cal/s');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5: CALCULATE_PLANKS_CONSTANT.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 8.5\n", +"\n", +"//given data\n", +"V=30000;//potential difference in V\n", +"Wmin=0.414*10^-10;//short wavelength limit in m\n", +"e=1.602*10^-19;//the charge on electron in C\n", +"c=3*10^8;//speed of light in m/s\n", +"\n", +"//calcualtions\n", +"h=(e*V*Wmin)/c;\n", +"disp(h,'The Plancks const in Js')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.6: CALCULATE_SCREENING_CONST.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 8.6\n", +"\n", +"//given data\n", +"W=1.43*10^-10;//wavelength in m\n", +"Z=74;//atomic no\n", +"R=10.97*10^6;//Rydberg constant in 1/m\n", +"\n", +"//calcualation\n", +"b=74-sqrt(36/(5*R*W));//Transition from to M to L\n", +"disp(b,'the screening const.')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.9: CALCULATE_LINEAR_ADSORPTION_COEFF.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 8.9\n", +"\n", +"//given data\n", +"um=0.6;//mass adsoption coeffcient in cm^2/g\n", +"p=2.7;//density of aluminium in g/cm^3\n", +"\n", +"//calculations\n", +"u=p*um;\n", +"disp(u,'linear adsorption coefficent of aluminium in 1/cm');\n", +"T=0.693/u\n", +"disp(T,'the hvl in cm');\n", +"x=(log(20))*(1/u);\n", +"disp(x,'the thickness in cm')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_B_L_Theraja/9-WAVES_AND_PARTICLES.ipynb b/Modern_Physics_by_B_L_Theraja/9-WAVES_AND_PARTICLES.ipynb new file mode 100644 index 0000000..013ec4f --- /dev/null +++ b/Modern_Physics_by_B_L_Theraja/9-WAVES_AND_PARTICLES.ipynb @@ -0,0 +1,305 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: WAVES AND PARTICLES" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1: WHAT_IS_DE_BROGLIE_WAVELENGTH.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 9.1\n", +"\n", +"//given data\n", +"V=20000;//applied voltage in V\n", +"\n", +"//calculation\n", +"W=12.25/(sqrt(V));\n", +"disp(W,'de broglie wavelength in angstrom')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.2: CALCULATE_MOMENTUM_DE_BROGLIE_WAVELENGTH_AND_WAVE_NUMBER.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 9.2\n", +"\n", +"//given data\n", +"V=5000;//applied voltage in V\n", +"e=1.602*10^-19;//the charge on electron in C\n", +"m=9.12*10^-31;//mass of electron in kg\n", +"d=2.04*10^-10;//distance in m\n", +"\n", +"//calculations\n", +"p=sqrt(2*m*e*V);\n", +"disp(p,'momentum in kg-m/s^2');\n", +"W=12.25/sqrt(V);\n", +"disp(W,'de broglie wavelength in angstrom');\n", +"v=1/(W*10^-10);\n", +"disp(v,'the wave number in m');\n", +"D=asind((W*10^-10)/(2*d));\n", +"disp(D,'the Bragg angle in degrees')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.3: AN_ELECTRON_INTIALLY_AT_REST.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 9.3\n", +"\n", +"//given data\n", +"V=54;//applied voltage in V\n", +"e=1.602*10^-19;//the charge on electron in C\n", +"m=9.12*10^-31;//mass of electron in kg\n", +"h=6.625*10^-34;//Plank's constant\n", +"\n", +"//calcualtions\n", +"v=sqrt(2*e*V/m);\n", +"disp(v,'velocity of electron in m/s');\n", +"W=12.25/sqrt(V);\n", +"disp(W,'de broglie wavelength in angstrom');\n", +"u=h/(2*m*W*10^-10);\n", +"disp(u,'phase velocity in m/s')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.4: COMPUTE_DE_BROGLIE_WAVELENGTH.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 9.4\n", +"\n", +"//given data\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"m=9.12*10^-31;//mass of electron in kg\n", +"c=3*10^8;//speed of light in m/s\n", +"h=6.625*10^-34;//Plank's constant\n", +"\n", +"//calculations\n", +"E=m*c^2;\n", +"mp=1836*m;\n", +"//(0.5*m*v^2)=E\n", +"mv=sqrt(E*2*mp);\n", +"W=h/mv;\n", +"disp((W/10^-10),'de broglie wavelength in Angstrom')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.5: WHAT_IS_DE_BROGLIE_WAVELENGTH_OF_NEUTRON.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 9.5\n", +"\n", +"//given data\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"m=1.676*10^-27;//mass of neutron in kg\n", +"c=3*10^8;//speed of light in m/s\n", +"h=6.625*10^-34;//Plank's constant\n", +"\n", +"//calculations\n", +"E=1;//in eV\n", +"E=1*e;//in V\n", +"mv=sqrt(2*E*m);\n", +"W=h/mv;\n", +"disp((W/10^-10),'de broglie wavelength in Angstrom')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.6: CALCULATE_THE_SCATTERED_WAVELENGTH.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 9.6\n", +"\n", +"//calculations\n", +"W=0.09;//wavelength in Angstrom\n", +"D=54;//scattering angle in degree\n", +"h=6.625*10^-34;//Plank's constant\n", +"c=3*10^8;//speed of light in m/s\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calculations\n", +"dW=0.0243*(1-cosd(D));\n", +"W1=W+dW;\n", +"disp(W1,'wavelegth of scattered X-ray in Angstrom');\n", +"E=h*c/(W*10^-10);\n", +"disp((E/(e*10^6)),'Energy of incident photon in MeV');\n", +"E=h*c/(W1*10^-10);\n", +"disp((E/(e*10^6)),'Energy of scattered photon in MeV')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.7: COMPUTE_ENERGY_DIFFERENCE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 9.7\n", +"\n", +"//given data\n", +"h=6.625*10^-34;//Plank's constant\n", +"m=9.12*10^-31;//mass of electron in kg\n", +"\n", +"//calculations\n", +"//for (a)\n", +"nx=1;\n", +"ny=1;\n", +"nz=1;\n", +"L=1;\n", +"E=h^2*(nx^2+ny^2+nz^2)/(8*m*L^2);\n", +"disp(E,'energy in first quantum state in J');\n", +"//for (b) (nx^2+ny^2+nz^2)=6\n", +"L=1;\n", +"E=h^2*6/(8*m*L^2);\n", +"disp(E,'energy in second quantum state in J')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.8: CALCULATE_THE_LOWEST_THREE_PREMISSIBLE_ENERGIES.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 9.8\n", +"\n", +"//given data\n", +"h=6.625*10^-34;//Plank's constant\n", +"m=9.12*10^-31;//mass of electron in kg\n", +"L=2.5*10^-10;\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calcualtions\n", +"n=1;\n", +"E1=n^2*h^2/(8*m*L^2*e);\n", +"disp(E1,'E1 in eV');\n", +"n=2;\n", +"E2=4*E1;\n", +"disp(E2,'E2 in eV');\n", +"n=3;\n", +"E3=9*E1;\n", +"disp(E3,'E3 in eV');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |