diff options
Diffstat (limited to 'Modern_Physics_by_B_L_Theraja/5-QUANTUM_THEORY.ipynb')
-rw-r--r-- | Modern_Physics_by_B_L_Theraja/5-QUANTUM_THEORY.ipynb | 614 |
1 files changed, 614 insertions, 0 deletions
diff --git a/Modern_Physics_by_B_L_Theraja/5-QUANTUM_THEORY.ipynb b/Modern_Physics_by_B_L_Theraja/5-QUANTUM_THEORY.ipynb new file mode 100644 index 0000000..0538521 --- /dev/null +++ b/Modern_Physics_by_B_L_Theraja/5-QUANTUM_THEORY.ipynb @@ -0,0 +1,614 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: QUANTUM THEORY" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.10: CALCULATE_MAXIMUM_ENERGY_AND_WORK_FUNCTION.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.10\n", +"\n", +"//given data\n", +"Wo=2300*10;//threshold wavelength in Angstrom\n", +"W=1800*10;//incident light wavelength in Angstrom\n", +"\n", +"//calculations\n", +"w=124000/Wo;\n", +"disp(w,'The work function in eV is');\n", +"E=124000*((1/W)-(1/Wo));\n", +"disp(E,'The maximum energy in eV')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.11: WHAT_IS_THRESHOLD_WAVELENGTH.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.11\n", +"\n", +"//given data\n", +"W=6000;//wavelegth in Angstrom\n", +"v=4*10^5;//velocity in m/sec\n", +"m=9.12*10^-31;//mass of electron in kg\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calculations\n", +"KE=0.5*m*v^2/e;\n", +"disp(KE,'The Kinetic energy in eV is');\n", +"WF=12400/W;\n", +"Wo=12400/(WF-KE);\n", +"disp(Wo,'The threshold wavelength in Angstrom is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.12: CALCULATE_THRESHOLD_FREQUENCY.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.12\n", +"\n", +"//given data\n", +"Wo=4.8;//work function in eV\n", +"W=2220;//wavelength in angstrom\n", +"\n", +"//calculations\n", +"E=12400/W;\n", +"Emax=E-Wo;\n", +"disp(Emax,'The maximum Kinetic energy in eV is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.13: WHEN_VIOLET_LIGHT.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.13\n", +"\n", +"//given data\n", +"W=4000*10^-10;//wavelength in m\n", +"Vs=0.4;//retarding potential in eV\n", +"h=6.625*10^-34;//Plank's constant\n", +"c=3*10^8;//speed of light in m/s\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calculations\n", +"f=c/W;\n", +"disp(f,'The light frequency in Hz');\n", +"E=h*f/e;\n", +"disp(E,'The photon energy in eV');\n", +"Wo=E-Vs;\n", +"disp(Wo,'The work function in eV');\n", +"fo=Wo/h*e;\n", +"disp(fo,'The threshold frequency in Hz');\n", +"NE=(E-Wo)*e;\n", +"disp(NE,'The net energy in J')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.14: CALCULATE_THRESHOLD_WAVELENGTH_AND_PLANKS_CONSTANT.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.14\n", +"\n", +"//given data\n", +"W1=3310*10^-10;//photon wavelength in m\n", +"W2=5000*10^-10;//photon wavelength in m\n", +"E1=3*10^-19;//electron energy in J\n", +"E2=0.972*10^-19;//electron energy in J\n", +"c=3*10^8;//speed of light in m/s\n", +"\n", +"//given values\n", +"h=(E1-E2)*(W1*W2)/(c*(W2-W1));\n", +"disp(h,'the plancks const in Js');\n", +"Wo=c*h/E1;\n", +"disp(Wo,'The threshold wavelength in m')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.15: A_CERTAIN_METAL.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.15\n", +"\n", +"//given data\n", +"W=6525;//wavelength in angstrom\n", +"\n", +"//calcualation\n", +"Vo=12400*((1/4000)-(1/W));\n", +"disp(Vo,'Stopping potential in (a) in volts');\n", +"Vo=12400*((1/2000)-(1/W));\n", +"disp(Vo,'Stopping potential in (b) in volts');\n", +"Vo=12400*((1/2000)-(2/W));\n", +"disp(Vo,'Stopping potential in (c) in volts')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.16: FIND_UNKNOWN_WAVELENGTH.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//EXample 5.16\n", +"\n", +"//given data\n", +"Wo=5000;//wavelength in angstrom\n", +"V=3.1;//stopping potential in V\n", +"\n", +"//calcualtion\n", +"W=1/((V/12400)+(1/Wo));\n", +"disp(W,'The unknown wavelength in Angstrom')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.17: LIGHT_OF_WAVELENGTH_2000_ANGSTROM.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.17\n", +"\n", +"//given values\n", +"W=2000;//wavelength in Angstrom\n", +"Vs=4.2;//Work Function in eV\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calculations\n", +"E=12400/W;\n", +"Emax=(E-Vs)*e;\n", +"disp(Emax,'KE of fastest photoelectron in J');\n", +"Emin=0;\n", +"disp(Emin,'KE of slowest moving electron in J');\n", +"Vo=Emax/e;\n", +"disp(Vo,'Stopping potential in V');\n", +"Wo=12400/Vs;\n", +"disp(Wo,'The cutoff wavelength in Angstrom')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.18: CALCULATE_PLANKS_CONSTANT.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.18\n", +"\n", +"//given values\n", +"Vs1=4.6;//Stopping Potential in V\n", +"Vs2=12.9;//Stopping Potential in V\n", +"f1=2*10^15;//frequency in Hz\n", +"f2=4*10^15;//frequency in Hz\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calculations\n", +"h=((Vs2-Vs1)*e)/(f2-f1)\n", +"disp(h,'The Plancks const in Js')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: CALCULATE_ENERGY.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.1\n", +"\n", +"//given values\n", +"W1=4;//wavelength in Angstrom\n", +"W2=1;//wavelength in Angstrom\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"m=9.12*10^-31;//mass of electron in kg\n", +"\n", +"//calculation\n", +"disp('Part (i)');\n", +"E=12400/W1;\n", +"disp(E,'The energy in eV is');\n", +"v=sqrt(E*e*2/m);\n", +"disp(v,'The velocity in m/s is');\n", +"disp('Part (ii)');\n", +"E=12400/W2;\n", +"disp(E,'The energy in eV is');\n", +"v=sqrt(E*e*2/m);\n", +"disp(v,'The velocity in m/s is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.2: HOW_MANY_PHOTONS.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.2\n", +"\n", +"//given values\n", +"f=880*10^3;//frequency in Hz\n", +"P=10*10^3;//Power in W\n", +"h=6.625*10^-34;//Plank's constant\n", +"\n", +"//calculation\n", +"E=h*f;\n", +"n=P/E;\n", +"disp(n,'The number of photons emitted per second are')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3: HOW_MANY_LIGHT_QUANTA.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.3\n", +"\n", +"//given values\n", +"P=200;//power in W\n", +"W=6123*10^-10;//wavelength in m\n", +"c=3*10^8;//speed of light in m/s\n", +"h=6.625*10^-34;//Plank's constant\n", +"\n", +"//calculation\n", +"Op=0.5*P;//radiant o/p\n", +"E=h*c/W;\n", +"n=2/E;\n", +"disp(n,'No. of Quanta emitted/s')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.4: FIND_THE_NO_OF_PHOTOELECTRONS.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.4\n", +"\n", +"//given values\n", +"N=5*10^4;//no. of photons\n", +"W=3000*10^-10;//wavelength in A\n", +"J=5*10^-3;//senstivity for W in A/W\n", +"h=6.625*10^-34;//Plank's constant\n", +"c=3*10^8;//speed of light in m/s\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calculation\n", +"E=h*c/W;//energy content of each photon\n", +"TE=N*E;//total energy\n", +"I=J*TE;//current produced\n", +"n=I/e;\n", +"disp(n,'no. photoelectrons emitted are')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.5: HOW_MANY_PHOTONS_AND_AT_WHAT_RATE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.5\n", +"\n", +"//given values\n", +"W=5*10^-7;//wavelength in m\n", +"F=10^-5;//force in N\n", +"h=6.625*10^-34;//Plank's constant\n", +"m=1.5*10^-3;//mass in kg\n", +"c=3*10^8;//speed of light in m/s\n", +"S=0.1//specific heat\n", +"\n", +"//calculation\n", +"n=F*W/h;\n", +"disp(n,'no. of photons');\n", +"E=F*c/4200;//in kcal/s\n", +"T=E/(m*S);\n", +"disp(T,'the rate of temperature rise')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.6: HOW_MANY_PHOTONS_EMITTED_BY_LAMP.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.6\n", +"\n", +"//given values\n", +"W=4500*10^-10;//wavelength in m\n", +"V=150;//rated voltage in W\n", +"h=6.625*10^-34;//Plank's constant\n", +"c=3*10^8;//speed of light in m/s\n", +"\n", +"//calculation\n", +"P=V*8/100;//lamp power emitted\n", +"E=h*c/W;\n", +"n=P/E;\n", +"disp(n,'No. photons emitted/s')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.7: CALCULATE_NUMBER_OF_PHOTONS.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.7\n", +"\n", +"//given values\n", +"f=1*10^12;//frequency in Hz\n", +"h=6.625*10^-34;//Plank's constant\n", +"\n", +"//calculation\n", +"E=h*f;\n", +"n=E/6.625;\n", +"disp(n,'the no. of photons required')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.8: WITH_WHAT_VELOCITY.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.8\n", +"\n", +"//given values\n", +"W=5200*10^-10;//wavelength in m\n", +"h=6.625*10^-34;//Plank's constant\n", +"m=9.12*10^-31;//mass of electron in kg\n", +"\n", +"//calculations\n", +"p=h/W;\n", +"v=p/m;\n", +"disp(v,'the velocity in m/s')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.9: CALCULATE_THRESHOLD_FREQUENCY.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 5.9\n", +"\n", +"//given data\n", +"v=7*10^5;//maximum speed in m/sec\n", +"f=8*10^14;//frequency in Hz\n", +"h=6.625*10^-34;//Plank's constant\n", +"c=3*10^8;//speed of light in m/s\n", +"m=9.12*10^-31;//mass of electron in kg\n", +"\n", +"//calulations\n", +"E=0.5*m*v*v;\n", +"fo=f-(E/h);\n", +"disp(fo,'the threshold frequency in Hz is')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |