summaryrefslogtreecommitdiff
path: root/Modern_Physics_by_B_L_Theraja/5-QUANTUM_THEORY.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Modern_Physics_by_B_L_Theraja/5-QUANTUM_THEORY.ipynb')
-rw-r--r--Modern_Physics_by_B_L_Theraja/5-QUANTUM_THEORY.ipynb614
1 files changed, 614 insertions, 0 deletions
diff --git a/Modern_Physics_by_B_L_Theraja/5-QUANTUM_THEORY.ipynb b/Modern_Physics_by_B_L_Theraja/5-QUANTUM_THEORY.ipynb
new file mode 100644
index 0000000..0538521
--- /dev/null
+++ b/Modern_Physics_by_B_L_Theraja/5-QUANTUM_THEORY.ipynb
@@ -0,0 +1,614 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: QUANTUM THEORY"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.10: CALCULATE_MAXIMUM_ENERGY_AND_WORK_FUNCTION.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 5.10\n",
+"\n",
+"//given data\n",
+"Wo=2300*10;//threshold wavelength in Angstrom\n",
+"W=1800*10;//incident light wavelength in Angstrom\n",
+"\n",
+"//calculations\n",
+"w=124000/Wo;\n",
+"disp(w,'The work function in eV is');\n",
+"E=124000*((1/W)-(1/Wo));\n",
+"disp(E,'The maximum energy in eV')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.11: WHAT_IS_THRESHOLD_WAVELENGTH.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 5.11\n",
+"\n",
+"//given data\n",
+"W=6000;//wavelegth in Angstrom\n",
+"v=4*10^5;//velocity in m/sec\n",
+"m=9.12*10^-31;//mass of electron in kg\n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"\n",
+"//calculations\n",
+"KE=0.5*m*v^2/e;\n",
+"disp(KE,'The Kinetic energy in eV is');\n",
+"WF=12400/W;\n",
+"Wo=12400/(WF-KE);\n",
+"disp(Wo,'The threshold wavelength in Angstrom is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.12: CALCULATE_THRESHOLD_FREQUENCY.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 5.12\n",
+"\n",
+"//given data\n",
+"Wo=4.8;//work function in eV\n",
+"W=2220;//wavelength in angstrom\n",
+"\n",
+"//calculations\n",
+"E=12400/W;\n",
+"Emax=E-Wo;\n",
+"disp(Emax,'The maximum Kinetic energy in eV is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13: WHEN_VIOLET_LIGHT.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 5.13\n",
+"\n",
+"//given data\n",
+"W=4000*10^-10;//wavelength in m\n",
+"Vs=0.4;//retarding potential in eV\n",
+"h=6.625*10^-34;//Plank's constant\n",
+"c=3*10^8;//speed of light in m/s\n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"\n",
+"//calculations\n",
+"f=c/W;\n",
+"disp(f,'The light frequency in Hz');\n",
+"E=h*f/e;\n",
+"disp(E,'The photon energy in eV');\n",
+"Wo=E-Vs;\n",
+"disp(Wo,'The work function in eV');\n",
+"fo=Wo/h*e;\n",
+"disp(fo,'The threshold frequency in Hz');\n",
+"NE=(E-Wo)*e;\n",
+"disp(NE,'The net energy in J')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.14: CALCULATE_THRESHOLD_WAVELENGTH_AND_PLANKS_CONSTANT.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 5.14\n",
+"\n",
+"//given data\n",
+"W1=3310*10^-10;//photon wavelength in m\n",
+"W2=5000*10^-10;//photon wavelength in m\n",
+"E1=3*10^-19;//electron energy in J\n",
+"E2=0.972*10^-19;//electron energy in J\n",
+"c=3*10^8;//speed of light in m/s\n",
+"\n",
+"//given values\n",
+"h=(E1-E2)*(W1*W2)/(c*(W2-W1));\n",
+"disp(h,'the plancks const in Js');\n",
+"Wo=c*h/E1;\n",
+"disp(Wo,'The threshold wavelength in m')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.15: A_CERTAIN_METAL.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 5.15\n",
+"\n",
+"//given data\n",
+"W=6525;//wavelength in angstrom\n",
+"\n",
+"//calcualation\n",
+"Vo=12400*((1/4000)-(1/W));\n",
+"disp(Vo,'Stopping potential in (a) in volts');\n",
+"Vo=12400*((1/2000)-(1/W));\n",
+"disp(Vo,'Stopping potential in (b) in volts');\n",
+"Vo=12400*((1/2000)-(2/W));\n",
+"disp(Vo,'Stopping potential in (c) in volts')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.16: FIND_UNKNOWN_WAVELENGTH.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//EXample 5.16\n",
+"\n",
+"//given data\n",
+"Wo=5000;//wavelength in angstrom\n",
+"V=3.1;//stopping potential in V\n",
+"\n",
+"//calcualtion\n",
+"W=1/((V/12400)+(1/Wo));\n",
+"disp(W,'The unknown wavelength in Angstrom')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.17: LIGHT_OF_WAVELENGTH_2000_ANGSTROM.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 5.17\n",
+"\n",
+"//given values\n",
+"W=2000;//wavelength in Angstrom\n",
+"Vs=4.2;//Work Function in eV\n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"\n",
+"//calculations\n",
+"E=12400/W;\n",
+"Emax=(E-Vs)*e;\n",
+"disp(Emax,'KE of fastest photoelectron in J');\n",
+"Emin=0;\n",
+"disp(Emin,'KE of slowest moving electron in J');\n",
+"Vo=Emax/e;\n",
+"disp(Vo,'Stopping potential in V');\n",
+"Wo=12400/Vs;\n",
+"disp(Wo,'The cutoff wavelength in Angstrom')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.18: CALCULATE_PLANKS_CONSTANT.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 5.18\n",
+"\n",
+"//given values\n",
+"Vs1=4.6;//Stopping Potential in V\n",
+"Vs2=12.9;//Stopping Potential in V\n",
+"f1=2*10^15;//frequency in Hz\n",
+"f2=4*10^15;//frequency in Hz\n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"\n",
+"//calculations\n",
+"h=((Vs2-Vs1)*e)/(f2-f1)\n",
+"disp(h,'The Plancks const in Js')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: CALCULATE_ENERGY.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 5.1\n",
+"\n",
+"//given values\n",
+"W1=4;//wavelength in Angstrom\n",
+"W2=1;//wavelength in Angstrom\n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"m=9.12*10^-31;//mass of electron in kg\n",
+"\n",
+"//calculation\n",
+"disp('Part (i)');\n",
+"E=12400/W1;\n",
+"disp(E,'The energy in eV is');\n",
+"v=sqrt(E*e*2/m);\n",
+"disp(v,'The velocity in m/s is');\n",
+"disp('Part (ii)');\n",
+"E=12400/W2;\n",
+"disp(E,'The energy in eV is');\n",
+"v=sqrt(E*e*2/m);\n",
+"disp(v,'The velocity in m/s is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: HOW_MANY_PHOTONS.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 5.2\n",
+"\n",
+"//given values\n",
+"f=880*10^3;//frequency in Hz\n",
+"P=10*10^3;//Power in W\n",
+"h=6.625*10^-34;//Plank's constant\n",
+"\n",
+"//calculation\n",
+"E=h*f;\n",
+"n=P/E;\n",
+"disp(n,'The number of photons emitted per second are')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: HOW_MANY_LIGHT_QUANTA.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 5.3\n",
+"\n",
+"//given values\n",
+"P=200;//power in W\n",
+"W=6123*10^-10;//wavelength in m\n",
+"c=3*10^8;//speed of light in m/s\n",
+"h=6.625*10^-34;//Plank's constant\n",
+"\n",
+"//calculation\n",
+"Op=0.5*P;//radiant o/p\n",
+"E=h*c/W;\n",
+"n=2/E;\n",
+"disp(n,'No. of Quanta emitted/s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: FIND_THE_NO_OF_PHOTOELECTRONS.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 5.4\n",
+"\n",
+"//given values\n",
+"N=5*10^4;//no. of photons\n",
+"W=3000*10^-10;//wavelength in A\n",
+"J=5*10^-3;//senstivity for W in A/W\n",
+"h=6.625*10^-34;//Plank's constant\n",
+"c=3*10^8;//speed of light in m/s\n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"\n",
+"//calculation\n",
+"E=h*c/W;//energy content of each photon\n",
+"TE=N*E;//total energy\n",
+"I=J*TE;//current produced\n",
+"n=I/e;\n",
+"disp(n,'no. photoelectrons emitted are')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: HOW_MANY_PHOTONS_AND_AT_WHAT_RATE.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 5.5\n",
+"\n",
+"//given values\n",
+"W=5*10^-7;//wavelength in m\n",
+"F=10^-5;//force in N\n",
+"h=6.625*10^-34;//Plank's constant\n",
+"m=1.5*10^-3;//mass in kg\n",
+"c=3*10^8;//speed of light in m/s\n",
+"S=0.1//specific heat\n",
+"\n",
+"//calculation\n",
+"n=F*W/h;\n",
+"disp(n,'no. of photons');\n",
+"E=F*c/4200;//in kcal/s\n",
+"T=E/(m*S);\n",
+"disp(T,'the rate of temperature rise')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6: HOW_MANY_PHOTONS_EMITTED_BY_LAMP.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 5.6\n",
+"\n",
+"//given values\n",
+"W=4500*10^-10;//wavelength in m\n",
+"V=150;//rated voltage in W\n",
+"h=6.625*10^-34;//Plank's constant\n",
+"c=3*10^8;//speed of light in m/s\n",
+"\n",
+"//calculation\n",
+"P=V*8/100;//lamp power emitted\n",
+"E=h*c/W;\n",
+"n=P/E;\n",
+"disp(n,'No. photons emitted/s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.7: CALCULATE_NUMBER_OF_PHOTONS.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 5.7\n",
+"\n",
+"//given values\n",
+"f=1*10^12;//frequency in Hz\n",
+"h=6.625*10^-34;//Plank's constant\n",
+"\n",
+"//calculation\n",
+"E=h*f;\n",
+"n=E/6.625;\n",
+"disp(n,'the no. of photons required')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.8: WITH_WHAT_VELOCITY.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 5.8\n",
+"\n",
+"//given values\n",
+"W=5200*10^-10;//wavelength in m\n",
+"h=6.625*10^-34;//Plank's constant\n",
+"m=9.12*10^-31;//mass of electron in kg\n",
+"\n",
+"//calculations\n",
+"p=h/W;\n",
+"v=p/m;\n",
+"disp(v,'the velocity in m/s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.9: CALCULATE_THRESHOLD_FREQUENCY.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 5.9\n",
+"\n",
+"//given data\n",
+"v=7*10^5;//maximum speed in m/sec\n",
+"f=8*10^14;//frequency in Hz\n",
+"h=6.625*10^-34;//Plank's constant\n",
+"c=3*10^8;//speed of light in m/s\n",
+"m=9.12*10^-31;//mass of electron in kg\n",
+"\n",
+"//calulations\n",
+"E=0.5*m*v*v;\n",
+"fo=f-(E/h);\n",
+"disp(fo,'the threshold frequency in Hz is')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}