1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 3: THE ATOMIC STRUCTURE"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.1: CALCULATE_DISTANCE_OF_CLOSEST_APPROACH.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 3.1\n",
"\n",
"//given values\n",
"Z=79;//atomic number of gold\n",
"e=1.6*10^-19;//electron charge in C\n",
"Eo=8.854*10^-12;//absolute permitivity of free space in F/m\n",
"K=7.68*1.6*10^-13;//kinectic energy in J\n",
"pi=3.14;//standard constant \n",
"\n",
"//calculations\n",
"D=(2*Z*e^2)/(4*pi*Eo*K);\n",
"disp(D,'The closest distance(in m) of approach is')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.2: CALCULATE_VELOCITY_RADIUS_TIME_TAKEN_AND_RYDBERG_CONST.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 3.2\n",
"\n",
"//given values\n",
"Z=1;//atomic number of hydrogen\n",
"e=1.6*10^-19;//electron charge in C\n",
"pi=3.14;//standard constant\n",
"h=6.625*10^-34;//plank's constant in J-s\n",
"m=9.1*10^-31;//mass of an electron in kg\n",
"Eo=8.854*10^-12;//absolute permitivity of free space in F/m\n",
"c=3*10^8;//speed of light in m/s\n",
"n=1;//ground state\n",
"\n",
"//calculation\n",
"v=9*10^9*(2*pi*Z*e^2)/(n*h);\n",
"disp(v,'velocity(in m/s) of ground state');\n",
"r=(Eo*n^2*h^2)/(pi*m*e^2);\n",
"disp(r,'radius(in m) of Bohr orbit in ground state')\n",
"t=(2*pi*r)/v;\n",
"disp(t,'time taken(in s) by electron to traverse the bohr first orbit');\n",
"R=(m*e^4)/(8*Eo^2*h^3*c);\n",
"disp(R,'Rhydberg contstant (in m^-1)')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.3: CALCULATE_FREQUENCY.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 3.3\n",
"\n",
"//given values\n",
"B=2.179*10^-16;//a constant in J\n",
"h=6.625*10^-34;//plank's constant in J-s\n",
"\n",
"//calculation\n",
"E3=-B/3^2;\n",
"E2=-B/2^2;\n",
"f=(E3-E2)/h;\n",
"disp(f,'frequency(in Hz) of radiation')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.4: CALCULATE_FREQUENCY_IN_FIRST_ORBIT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 3.4\n",
"\n",
"//given values\n",
"Z=1;//atomic number of hydrogen\n",
"e=1.6*10^-19;//electron charge in C\n",
"h=6.625*10^-34;//plank's constant in J-s\n",
"m=9.1*10^-31;//mass of an electron in kg\n",
"Eo=8.854*10^-12;//absolute permitivity of free space in F/m\n",
"n=1;//ground state\n",
"\n",
"//Calculations\n",
"f=(m*Z^2*e^4)/(4*Eo^2*h^3);\n",
"disp(f,'the frequency(in Hz) is')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.5: AT_WHAT_SPEED_MUST_ELECTRON.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 3.5\n",
"\n",
"//given data\n",
"Z=1;\n",
"n=1;\n",
"e=1.6*10^-19;//the charge on electron in C\n",
"h=6.625*10^-34;//Plank's constant\n",
"Eo=8.854*10^-12;//absolute permitivity of free space in F/m\n",
"m=9.12*10^-31;//mass of electron in kg\n",
"\n",
"//calculations\n",
"v=Z*e^2/(2*Eo*n*h);\n",
"disp(v,'velcocity in m/s');\n",
"E=-m*Z^2*e^4/(8*(Eo*n*h)^2);\n",
"disp(E,'energy of hydrogen atom in J');\n",
"f=m*Z^2*e^4/(4*Eo^2*(n*h)^3);\n",
"disp(f,'frequecy in Hz')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.8: CALCULATE_PRINCIPAL_QUANTUM_NO_AND_WAVELENGTH.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 3.8\n",
"\n",
"//given data\n",
"h=6.625*10^-34;//Plank's constant\n",
"c=3*10^8;//speed of light in m/s\n",
"E1=10.2;//in eV energy\n",
"E2=12.09;//in eV energy\n",
"e=1.6*10^-19;//the charge on electron in C\n",
"\n",
"//calcualtion\n",
"//principal quantum no are 2 & 3 respectively\n",
"W=c*h/(E1*e)*10^10;\n",
"disp(W,'wavelength in angstrom is for 10.2 eV');\n",
"W=c*h/(E2*e)*10^10;\n",
"disp(W,'wavelength in angstrom is for 12.09 eV')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.9: CALCULATE_WAVELENGTH_FOR_LYMAN_SERIES.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 3.9\n",
"\n",
"//given data\n",
"R=10967700;//Rydberg constant in 1/m\n",
"\n",
"//calculation\n",
"W1=4/(3*R);//as n1=1 and n2=2\n",
"disp((W1*10^10),'Long wavelength in angstrom');\n",
"W2=1/R;//as n1=1 and n2=infinity\n",
"disp((W2*10^10),'Short wavelength in angstrom')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|