{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 3: THE ATOMIC STRUCTURE" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.1: CALCULATE_DISTANCE_OF_CLOSEST_APPROACH.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 3.1\n", "\n", "//given values\n", "Z=79;//atomic number of gold\n", "e=1.6*10^-19;//electron charge in C\n", "Eo=8.854*10^-12;//absolute permitivity of free space in F/m\n", "K=7.68*1.6*10^-13;//kinectic energy in J\n", "pi=3.14;//standard constant \n", "\n", "//calculations\n", "D=(2*Z*e^2)/(4*pi*Eo*K);\n", "disp(D,'The closest distance(in m) of approach is')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.2: CALCULATE_VELOCITY_RADIUS_TIME_TAKEN_AND_RYDBERG_CONST.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 3.2\n", "\n", "//given values\n", "Z=1;//atomic number of hydrogen\n", "e=1.6*10^-19;//electron charge in C\n", "pi=3.14;//standard constant\n", "h=6.625*10^-34;//plank's constant in J-s\n", "m=9.1*10^-31;//mass of an electron in kg\n", "Eo=8.854*10^-12;//absolute permitivity of free space in F/m\n", "c=3*10^8;//speed of light in m/s\n", "n=1;//ground state\n", "\n", "//calculation\n", "v=9*10^9*(2*pi*Z*e^2)/(n*h);\n", "disp(v,'velocity(in m/s) of ground state');\n", "r=(Eo*n^2*h^2)/(pi*m*e^2);\n", "disp(r,'radius(in m) of Bohr orbit in ground state')\n", "t=(2*pi*r)/v;\n", "disp(t,'time taken(in s) by electron to traverse the bohr first orbit');\n", "R=(m*e^4)/(8*Eo^2*h^3*c);\n", "disp(R,'Rhydberg contstant (in m^-1)')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.3: CALCULATE_FREQUENCY.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 3.3\n", "\n", "//given values\n", "B=2.179*10^-16;//a constant in J\n", "h=6.625*10^-34;//plank's constant in J-s\n", "\n", "//calculation\n", "E3=-B/3^2;\n", "E2=-B/2^2;\n", "f=(E3-E2)/h;\n", "disp(f,'frequency(in Hz) of radiation')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.4: CALCULATE_FREQUENCY_IN_FIRST_ORBIT.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 3.4\n", "\n", "//given values\n", "Z=1;//atomic number of hydrogen\n", "e=1.6*10^-19;//electron charge in C\n", "h=6.625*10^-34;//plank's constant in J-s\n", "m=9.1*10^-31;//mass of an electron in kg\n", "Eo=8.854*10^-12;//absolute permitivity of free space in F/m\n", "n=1;//ground state\n", "\n", "//Calculations\n", "f=(m*Z^2*e^4)/(4*Eo^2*h^3);\n", "disp(f,'the frequency(in Hz) is')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.5: AT_WHAT_SPEED_MUST_ELECTRON.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 3.5\n", "\n", "//given data\n", "Z=1;\n", "n=1;\n", "e=1.6*10^-19;//the charge on electron in C\n", "h=6.625*10^-34;//Plank's constant\n", "Eo=8.854*10^-12;//absolute permitivity of free space in F/m\n", "m=9.12*10^-31;//mass of electron in kg\n", "\n", "//calculations\n", "v=Z*e^2/(2*Eo*n*h);\n", "disp(v,'velcocity in m/s');\n", "E=-m*Z^2*e^4/(8*(Eo*n*h)^2);\n", "disp(E,'energy of hydrogen atom in J');\n", "f=m*Z^2*e^4/(4*Eo^2*(n*h)^3);\n", "disp(f,'frequecy in Hz')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.8: CALCULATE_PRINCIPAL_QUANTUM_NO_AND_WAVELENGTH.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 3.8\n", "\n", "//given data\n", "h=6.625*10^-34;//Plank's constant\n", "c=3*10^8;//speed of light in m/s\n", "E1=10.2;//in eV energy\n", "E2=12.09;//in eV energy\n", "e=1.6*10^-19;//the charge on electron in C\n", "\n", "//calcualtion\n", "//principal quantum no are 2 & 3 respectively\n", "W=c*h/(E1*e)*10^10;\n", "disp(W,'wavelength in angstrom is for 10.2 eV');\n", "W=c*h/(E2*e)*10^10;\n", "disp(W,'wavelength in angstrom is for 12.09 eV')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.9: CALCULATE_WAVELENGTH_FOR_LYMAN_SERIES.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 3.9\n", "\n", "//given data\n", "R=10967700;//Rydberg constant in 1/m\n", "\n", "//calculation\n", "W1=4/(3*R);//as n1=1 and n2=2\n", "disp((W1*10^10),'Long wavelength in angstrom');\n", "W2=1/R;//as n1=1 and n2=infinity\n", "disp((W2*10^10),'Short wavelength in angstrom')" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }