summaryrefslogtreecommitdiff
path: root/Modern_Physics_by_B_L_Theraja/16-PARTICLE_ACCELERATORS.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Modern_Physics_by_B_L_Theraja/16-PARTICLE_ACCELERATORS.ipynb')
-rw-r--r--Modern_Physics_by_B_L_Theraja/16-PARTICLE_ACCELERATORS.ipynb332
1 files changed, 332 insertions, 0 deletions
diff --git a/Modern_Physics_by_B_L_Theraja/16-PARTICLE_ACCELERATORS.ipynb b/Modern_Physics_by_B_L_Theraja/16-PARTICLE_ACCELERATORS.ipynb
new file mode 100644
index 0000000..2e4b19f
--- /dev/null
+++ b/Modern_Physics_by_B_L_Theraja/16-PARTICLE_ACCELERATORS.ipynb
@@ -0,0 +1,332 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 16: PARTICLE ACCELERATORS"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.1: WHAT_MUST_BE_THE_FLUX_DENSITY.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 16.1\n",
+"\n",
+"//given data\n",
+"fo=9*10^6;//frequency in Hz\n",
+"m=6.643*10^-27;//mass in kg\n",
+"pi=3.14;//constant \n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"\n",
+"//calculations\n",
+"Q=2*e;\n",
+"B=fo*2*pi*m/Q;\n",
+"disp(B,'magnetic flux density in Wb/m^2')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.2: WHAT_IS_FREQUENCY_OF_ALTERNATING_POTENTIAL.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 16.2\n",
+"\n",
+"//given data\n",
+"B=0.7;//magnetic flux intensity in Wb/m^2\n",
+"m=3.34*10^-27;//mass in Kg\n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"pi=3.14;//const\n",
+"\n",
+"//calculations\n",
+"Q=e;\n",
+"fo=B*Q/(2*pi*m*10^6);\n",
+"disp(fo,'The cyclotron frquency in MHz ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.3: A_CYCLOTRON_OF_DEES_OF_RADIUS_2_METERES.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 16.3\n",
+"\n",
+"//given data\n",
+"B=0.75;//magnetic flux intensity in Wb/m^2\n",
+"m1=1.67*10^-27;//mass in Kg\n",
+"m2=3.31*10^-27;//mass in Kg\n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"Rm=2;//radius in m\n",
+"\n",
+"//calculations\n",
+"Q=e;\n",
+"Emax=3.12*10^12*B^2*Q^2*Rm^2/m1;\n",
+"disp(Emax,'Maximum energies in Mev for proton');\n",
+"Emax=3.12*10^12*B^2*Q^2*Rm^2/m2;\n",
+"disp(Emax,'Maximum energies in Mev for deuteron')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.4: CALCULATE_THE_RATIO.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 16.4\n",
+"\n",
+"//given data\n",
+"mo=9.1*10^-31;//mass of electron in kg\n",
+"m=1.67*10^-27;//mass of proton in kg\n",
+"c=3*10^8;//speed of light in m/s\n",
+"E=1;//given energy in MeV\n",
+"\n",
+"//calculations\n",
+"Eo=mo*c^2/(1.6*10^-13);\n",
+"mbymo=1+(E/Eo);\n",
+"disp(mbymo,'Ratio for electron');\n",
+"Eo=m*c^2/(1.6*10^-13);\n",
+"mbymo=1+(E/Eo);\n",
+"disp(mbymo,'Ratio for proton')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.5: IN_A_CERTAIN_BETATRON.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 16.5\n",
+"\n",
+"//given data\n",
+"B=0.5;//magnetic field in Wb/m^2\n",
+"d=1.5;//diameter in m\n",
+"f=59;//frequency in Hz\n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"c=3*10^8;//speed of light in m/s\n",
+"pi=3.14;//const\n",
+"\n",
+"//calculations\n",
+"R=d/2;\n",
+"N=c/(4*(2*pi*50)*R);\n",
+"E=B*e*R*c/(1.6*10^-13);\n",
+"disp(E,'final energy in MeV');\n",
+"AE=E/N*10^6;\n",
+"disp(AE,'average energy in eV')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.6: CALCULATE_MASS_AND_VELOCITY_OF_ELCTRONS.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 16.6\n",
+"\n",
+"//given data\n",
+"E=0.51;//kinetic energy in MeV\n",
+"R=0.15;//radius in m\n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"mo=9.12*10^-31;//mass of electron in kg\n",
+"c=3*10^8;//speed of light in m/s\n",
+"\n",
+"//calculation\n",
+"Eo=E;\n",
+"m=mo*(1+(E/Eo));\n",
+"b=sqrt(1-(mo/m)^2);\n",
+"v=b*c;\n",
+"B=mo*v/(e*R);\n",
+"disp(B,'magnetic field intensity')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.7: DETERMINE_THE_FREQUENCY_OF_GENERATOR.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 16.7\n",
+"\n",
+"//given data\n",
+"E=4;//applied voltage in MeV\n",
+"m=3.334*10^-27;//mass of deuteron in kg\n",
+"R=0.75;//radius in m\n",
+"pi=3.14;//const\n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"\n",
+"//calcualtions\n",
+"E=4*10^6*e;\n",
+"fo=sqrt(E/(2*m))/(pi*R);\n",
+"disp(fo,'frequnecy of generator in Hz')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.8: WHAT_WOULD_BE_THE_ENERGY_OF_ELECTRON.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 16.8\n",
+"\n",
+"//given data\n",
+"roi=15;//rate of increase in Wb/s\n",
+"tr=10^6;//total revolutions\n",
+"\n",
+"//calcualtion\n",
+"IE=roi*10^-6;//increased energy in MeV\n",
+"FE=IE*tr;\n",
+"disp(FE,'Fianl Energy in MeV')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.9: FIND_THE_MAX_ENERGY_AND_CORRESPONDING_WAVELENGTH.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 16.9\n",
+"\n",
+"//given data\n",
+"R=0.1;//radius in m\n",
+"pi=3.14;//const\n",
+"h=6.625*10^-34;//Plank's constant\n",
+"c=3*10^8;//speed of light in m/s\n",
+"roi=15;//rate of increase in Wb/s\n",
+"t=4*10^-4;//period of accerleartion in s\n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"\n",
+"//calculations\n",
+"N=c*t/(2*pi*R);\n",
+"IE=roi;//incresed energy in eV\n",
+"ME=N*IE*10^-6;\n",
+"disp(ME,'Maximum energy in MeV');\n",
+"ME=ME*10^6*e;//conversion in V\n",
+"p=ME/c;\n",
+"Y=h/p;\n",
+"disp(Y,'corresponding wavelength of X-rays in m')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}