1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 16: PARTICLE ACCELERATORS"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 16.1: WHAT_MUST_BE_THE_FLUX_DENSITY.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 16.1\n",
"\n",
"//given data\n",
"fo=9*10^6;//frequency in Hz\n",
"m=6.643*10^-27;//mass in kg\n",
"pi=3.14;//constant \n",
"e=1.6*10^-19;//the charge on electron in C\n",
"\n",
"//calculations\n",
"Q=2*e;\n",
"B=fo*2*pi*m/Q;\n",
"disp(B,'magnetic flux density in Wb/m^2')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 16.2: WHAT_IS_FREQUENCY_OF_ALTERNATING_POTENTIAL.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 16.2\n",
"\n",
"//given data\n",
"B=0.7;//magnetic flux intensity in Wb/m^2\n",
"m=3.34*10^-27;//mass in Kg\n",
"e=1.6*10^-19;//the charge on electron in C\n",
"pi=3.14;//const\n",
"\n",
"//calculations\n",
"Q=e;\n",
"fo=B*Q/(2*pi*m*10^6);\n",
"disp(fo,'The cyclotron frquency in MHz ')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 16.3: A_CYCLOTRON_OF_DEES_OF_RADIUS_2_METERES.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 16.3\n",
"\n",
"//given data\n",
"B=0.75;//magnetic flux intensity in Wb/m^2\n",
"m1=1.67*10^-27;//mass in Kg\n",
"m2=3.31*10^-27;//mass in Kg\n",
"e=1.6*10^-19;//the charge on electron in C\n",
"Rm=2;//radius in m\n",
"\n",
"//calculations\n",
"Q=e;\n",
"Emax=3.12*10^12*B^2*Q^2*Rm^2/m1;\n",
"disp(Emax,'Maximum energies in Mev for proton');\n",
"Emax=3.12*10^12*B^2*Q^2*Rm^2/m2;\n",
"disp(Emax,'Maximum energies in Mev for deuteron')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 16.4: CALCULATE_THE_RATIO.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 16.4\n",
"\n",
"//given data\n",
"mo=9.1*10^-31;//mass of electron in kg\n",
"m=1.67*10^-27;//mass of proton in kg\n",
"c=3*10^8;//speed of light in m/s\n",
"E=1;//given energy in MeV\n",
"\n",
"//calculations\n",
"Eo=mo*c^2/(1.6*10^-13);\n",
"mbymo=1+(E/Eo);\n",
"disp(mbymo,'Ratio for electron');\n",
"Eo=m*c^2/(1.6*10^-13);\n",
"mbymo=1+(E/Eo);\n",
"disp(mbymo,'Ratio for proton')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 16.5: IN_A_CERTAIN_BETATRON.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 16.5\n",
"\n",
"//given data\n",
"B=0.5;//magnetic field in Wb/m^2\n",
"d=1.5;//diameter in m\n",
"f=59;//frequency in Hz\n",
"e=1.6*10^-19;//the charge on electron in C\n",
"c=3*10^8;//speed of light in m/s\n",
"pi=3.14;//const\n",
"\n",
"//calculations\n",
"R=d/2;\n",
"N=c/(4*(2*pi*50)*R);\n",
"E=B*e*R*c/(1.6*10^-13);\n",
"disp(E,'final energy in MeV');\n",
"AE=E/N*10^6;\n",
"disp(AE,'average energy in eV')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 16.6: CALCULATE_MASS_AND_VELOCITY_OF_ELCTRONS.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 16.6\n",
"\n",
"//given data\n",
"E=0.51;//kinetic energy in MeV\n",
"R=0.15;//radius in m\n",
"e=1.6*10^-19;//the charge on electron in C\n",
"mo=9.12*10^-31;//mass of electron in kg\n",
"c=3*10^8;//speed of light in m/s\n",
"\n",
"//calculation\n",
"Eo=E;\n",
"m=mo*(1+(E/Eo));\n",
"b=sqrt(1-(mo/m)^2);\n",
"v=b*c;\n",
"B=mo*v/(e*R);\n",
"disp(B,'magnetic field intensity')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 16.7: DETERMINE_THE_FREQUENCY_OF_GENERATOR.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 16.7\n",
"\n",
"//given data\n",
"E=4;//applied voltage in MeV\n",
"m=3.334*10^-27;//mass of deuteron in kg\n",
"R=0.75;//radius in m\n",
"pi=3.14;//const\n",
"e=1.6*10^-19;//the charge on electron in C\n",
"\n",
"//calcualtions\n",
"E=4*10^6*e;\n",
"fo=sqrt(E/(2*m))/(pi*R);\n",
"disp(fo,'frequnecy of generator in Hz')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 16.8: WHAT_WOULD_BE_THE_ENERGY_OF_ELECTRON.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 16.8\n",
"\n",
"//given data\n",
"roi=15;//rate of increase in Wb/s\n",
"tr=10^6;//total revolutions\n",
"\n",
"//calcualtion\n",
"IE=roi*10^-6;//increased energy in MeV\n",
"FE=IE*tr;\n",
"disp(FE,'Fianl Energy in MeV')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 16.9: FIND_THE_MAX_ENERGY_AND_CORRESPONDING_WAVELENGTH.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 16.9\n",
"\n",
"//given data\n",
"R=0.1;//radius in m\n",
"pi=3.14;//const\n",
"h=6.625*10^-34;//Plank's constant\n",
"c=3*10^8;//speed of light in m/s\n",
"roi=15;//rate of increase in Wb/s\n",
"t=4*10^-4;//period of accerleartion in s\n",
"e=1.6*10^-19;//the charge on electron in C\n",
"\n",
"//calculations\n",
"N=c*t/(2*pi*R);\n",
"IE=roi;//incresed energy in eV\n",
"ME=N*IE*10^-6;\n",
"disp(ME,'Maximum energy in MeV');\n",
"ME=ME*10^6*e;//conversion in V\n",
"p=ME/c;\n",
"Y=h/p;\n",
"disp(Y,'corresponding wavelength of X-rays in m')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|