{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 16: PARTICLE ACCELERATORS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.1: WHAT_MUST_BE_THE_FLUX_DENSITY.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 16.1\n", "\n", "//given data\n", "fo=9*10^6;//frequency in Hz\n", "m=6.643*10^-27;//mass in kg\n", "pi=3.14;//constant \n", "e=1.6*10^-19;//the charge on electron in C\n", "\n", "//calculations\n", "Q=2*e;\n", "B=fo*2*pi*m/Q;\n", "disp(B,'magnetic flux density in Wb/m^2')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.2: WHAT_IS_FREQUENCY_OF_ALTERNATING_POTENTIAL.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 16.2\n", "\n", "//given data\n", "B=0.7;//magnetic flux intensity in Wb/m^2\n", "m=3.34*10^-27;//mass in Kg\n", "e=1.6*10^-19;//the charge on electron in C\n", "pi=3.14;//const\n", "\n", "//calculations\n", "Q=e;\n", "fo=B*Q/(2*pi*m*10^6);\n", "disp(fo,'The cyclotron frquency in MHz ')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.3: A_CYCLOTRON_OF_DEES_OF_RADIUS_2_METERES.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 16.3\n", "\n", "//given data\n", "B=0.75;//magnetic flux intensity in Wb/m^2\n", "m1=1.67*10^-27;//mass in Kg\n", "m2=3.31*10^-27;//mass in Kg\n", "e=1.6*10^-19;//the charge on electron in C\n", "Rm=2;//radius in m\n", "\n", "//calculations\n", "Q=e;\n", "Emax=3.12*10^12*B^2*Q^2*Rm^2/m1;\n", "disp(Emax,'Maximum energies in Mev for proton');\n", "Emax=3.12*10^12*B^2*Q^2*Rm^2/m2;\n", "disp(Emax,'Maximum energies in Mev for deuteron')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.4: CALCULATE_THE_RATIO.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 16.4\n", "\n", "//given data\n", "mo=9.1*10^-31;//mass of electron in kg\n", "m=1.67*10^-27;//mass of proton in kg\n", "c=3*10^8;//speed of light in m/s\n", "E=1;//given energy in MeV\n", "\n", "//calculations\n", "Eo=mo*c^2/(1.6*10^-13);\n", "mbymo=1+(E/Eo);\n", "disp(mbymo,'Ratio for electron');\n", "Eo=m*c^2/(1.6*10^-13);\n", "mbymo=1+(E/Eo);\n", "disp(mbymo,'Ratio for proton')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.5: IN_A_CERTAIN_BETATRON.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 16.5\n", "\n", "//given data\n", "B=0.5;//magnetic field in Wb/m^2\n", "d=1.5;//diameter in m\n", "f=59;//frequency in Hz\n", "e=1.6*10^-19;//the charge on electron in C\n", "c=3*10^8;//speed of light in m/s\n", "pi=3.14;//const\n", "\n", "//calculations\n", "R=d/2;\n", "N=c/(4*(2*pi*50)*R);\n", "E=B*e*R*c/(1.6*10^-13);\n", "disp(E,'final energy in MeV');\n", "AE=E/N*10^6;\n", "disp(AE,'average energy in eV')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.6: CALCULATE_MASS_AND_VELOCITY_OF_ELCTRONS.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 16.6\n", "\n", "//given data\n", "E=0.51;//kinetic energy in MeV\n", "R=0.15;//radius in m\n", "e=1.6*10^-19;//the charge on electron in C\n", "mo=9.12*10^-31;//mass of electron in kg\n", "c=3*10^8;//speed of light in m/s\n", "\n", "//calculation\n", "Eo=E;\n", "m=mo*(1+(E/Eo));\n", "b=sqrt(1-(mo/m)^2);\n", "v=b*c;\n", "B=mo*v/(e*R);\n", "disp(B,'magnetic field intensity')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.7: DETERMINE_THE_FREQUENCY_OF_GENERATOR.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 16.7\n", "\n", "//given data\n", "E=4;//applied voltage in MeV\n", "m=3.334*10^-27;//mass of deuteron in kg\n", "R=0.75;//radius in m\n", "pi=3.14;//const\n", "e=1.6*10^-19;//the charge on electron in C\n", "\n", "//calcualtions\n", "E=4*10^6*e;\n", "fo=sqrt(E/(2*m))/(pi*R);\n", "disp(fo,'frequnecy of generator in Hz')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.8: WHAT_WOULD_BE_THE_ENERGY_OF_ELECTRON.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 16.8\n", "\n", "//given data\n", "roi=15;//rate of increase in Wb/s\n", "tr=10^6;//total revolutions\n", "\n", "//calcualtion\n", "IE=roi*10^-6;//increased energy in MeV\n", "FE=IE*tr;\n", "disp(FE,'Fianl Energy in MeV')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.9: FIND_THE_MAX_ENERGY_AND_CORRESPONDING_WAVELENGTH.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 16.9\n", "\n", "//given data\n", "R=0.1;//radius in m\n", "pi=3.14;//const\n", "h=6.625*10^-34;//Plank's constant\n", "c=3*10^8;//speed of light in m/s\n", "roi=15;//rate of increase in Wb/s\n", "t=4*10^-4;//period of accerleartion in s\n", "e=1.6*10^-19;//the charge on electron in C\n", "\n", "//calculations\n", "N=c*t/(2*pi*R);\n", "IE=roi;//incresed energy in eV\n", "ME=N*IE*10^-6;\n", "disp(ME,'Maximum energy in MeV');\n", "ME=ME*10^6*e;//conversion in V\n", "p=ME/c;\n", "Y=h/p;\n", "disp(Y,'corresponding wavelength of X-rays in m')" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }