diff options
Diffstat (limited to 'Modern_Physics_by_B_L_Theraja/3-THE_ATOMIC_STRUCTURE.ipynb')
-rw-r--r-- | Modern_Physics_by_B_L_Theraja/3-THE_ATOMIC_STRUCTURE.ipynb | 263 |
1 files changed, 263 insertions, 0 deletions
diff --git a/Modern_Physics_by_B_L_Theraja/3-THE_ATOMIC_STRUCTURE.ipynb b/Modern_Physics_by_B_L_Theraja/3-THE_ATOMIC_STRUCTURE.ipynb new file mode 100644 index 0000000..caa704c --- /dev/null +++ b/Modern_Physics_by_B_L_Theraja/3-THE_ATOMIC_STRUCTURE.ipynb @@ -0,0 +1,263 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: THE ATOMIC STRUCTURE" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: CALCULATE_DISTANCE_OF_CLOSEST_APPROACH.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 3.1\n", +"\n", +"//given values\n", +"Z=79;//atomic number of gold\n", +"e=1.6*10^-19;//electron charge in C\n", +"Eo=8.854*10^-12;//absolute permitivity of free space in F/m\n", +"K=7.68*1.6*10^-13;//kinectic energy in J\n", +"pi=3.14;//standard constant \n", +"\n", +"//calculations\n", +"D=(2*Z*e^2)/(4*pi*Eo*K);\n", +"disp(D,'The closest distance(in m) of approach is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: CALCULATE_VELOCITY_RADIUS_TIME_TAKEN_AND_RYDBERG_CONST.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 3.2\n", +"\n", +"//given values\n", +"Z=1;//atomic number of hydrogen\n", +"e=1.6*10^-19;//electron charge in C\n", +"pi=3.14;//standard constant\n", +"h=6.625*10^-34;//plank's constant in J-s\n", +"m=9.1*10^-31;//mass of an electron in kg\n", +"Eo=8.854*10^-12;//absolute permitivity of free space in F/m\n", +"c=3*10^8;//speed of light in m/s\n", +"n=1;//ground state\n", +"\n", +"//calculation\n", +"v=9*10^9*(2*pi*Z*e^2)/(n*h);\n", +"disp(v,'velocity(in m/s) of ground state');\n", +"r=(Eo*n^2*h^2)/(pi*m*e^2);\n", +"disp(r,'radius(in m) of Bohr orbit in ground state')\n", +"t=(2*pi*r)/v;\n", +"disp(t,'time taken(in s) by electron to traverse the bohr first orbit');\n", +"R=(m*e^4)/(8*Eo^2*h^3*c);\n", +"disp(R,'Rhydberg contstant (in m^-1)')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: CALCULATE_FREQUENCY.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 3.3\n", +"\n", +"//given values\n", +"B=2.179*10^-16;//a constant in J\n", +"h=6.625*10^-34;//plank's constant in J-s\n", +"\n", +"//calculation\n", +"E3=-B/3^2;\n", +"E2=-B/2^2;\n", +"f=(E3-E2)/h;\n", +"disp(f,'frequency(in Hz) of radiation')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: CALCULATE_FREQUENCY_IN_FIRST_ORBIT.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 3.4\n", +"\n", +"//given values\n", +"Z=1;//atomic number of hydrogen\n", +"e=1.6*10^-19;//electron charge in C\n", +"h=6.625*10^-34;//plank's constant in J-s\n", +"m=9.1*10^-31;//mass of an electron in kg\n", +"Eo=8.854*10^-12;//absolute permitivity of free space in F/m\n", +"n=1;//ground state\n", +"\n", +"//Calculations\n", +"f=(m*Z^2*e^4)/(4*Eo^2*h^3);\n", +"disp(f,'the frequency(in Hz) is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: AT_WHAT_SPEED_MUST_ELECTRON.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 3.5\n", +"\n", +"//given data\n", +"Z=1;\n", +"n=1;\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"h=6.625*10^-34;//Plank's constant\n", +"Eo=8.854*10^-12;//absolute permitivity of free space in F/m\n", +"m=9.12*10^-31;//mass of electron in kg\n", +"\n", +"//calculations\n", +"v=Z*e^2/(2*Eo*n*h);\n", +"disp(v,'velcocity in m/s');\n", +"E=-m*Z^2*e^4/(8*(Eo*n*h)^2);\n", +"disp(E,'energy of hydrogen atom in J');\n", +"f=m*Z^2*e^4/(4*Eo^2*(n*h)^3);\n", +"disp(f,'frequecy in Hz')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.8: CALCULATE_PRINCIPAL_QUANTUM_NO_AND_WAVELENGTH.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 3.8\n", +"\n", +"//given data\n", +"h=6.625*10^-34;//Plank's constant\n", +"c=3*10^8;//speed of light in m/s\n", +"E1=10.2;//in eV energy\n", +"E2=12.09;//in eV energy\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calcualtion\n", +"//principal quantum no are 2 & 3 respectively\n", +"W=c*h/(E1*e)*10^10;\n", +"disp(W,'wavelength in angstrom is for 10.2 eV');\n", +"W=c*h/(E2*e)*10^10;\n", +"disp(W,'wavelength in angstrom is for 12.09 eV')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.9: CALCULATE_WAVELENGTH_FOR_LYMAN_SERIES.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 3.9\n", +"\n", +"//given data\n", +"R=10967700;//Rydberg constant in 1/m\n", +"\n", +"//calculation\n", +"W1=4/(3*R);//as n1=1 and n2=2\n", +"disp((W1*10^10),'Long wavelength in angstrom');\n", +"W2=1/R;//as n1=1 and n2=infinity\n", +"disp((W2*10^10),'Short wavelength in angstrom')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |