summaryrefslogtreecommitdiff
path: root/Modern_Physics_by_B_L_Theraja/9-WAVES_AND_PARTICLES.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Modern_Physics_by_B_L_Theraja/9-WAVES_AND_PARTICLES.ipynb')
-rw-r--r--Modern_Physics_by_B_L_Theraja/9-WAVES_AND_PARTICLES.ipynb305
1 files changed, 305 insertions, 0 deletions
diff --git a/Modern_Physics_by_B_L_Theraja/9-WAVES_AND_PARTICLES.ipynb b/Modern_Physics_by_B_L_Theraja/9-WAVES_AND_PARTICLES.ipynb
new file mode 100644
index 0000000..013ec4f
--- /dev/null
+++ b/Modern_Physics_by_B_L_Theraja/9-WAVES_AND_PARTICLES.ipynb
@@ -0,0 +1,305 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: WAVES AND PARTICLES"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1: WHAT_IS_DE_BROGLIE_WAVELENGTH.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 9.1\n",
+"\n",
+"//given data\n",
+"V=20000;//applied voltage in V\n",
+"\n",
+"//calculation\n",
+"W=12.25/(sqrt(V));\n",
+"disp(W,'de broglie wavelength in angstrom')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2: CALCULATE_MOMENTUM_DE_BROGLIE_WAVELENGTH_AND_WAVE_NUMBER.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 9.2\n",
+"\n",
+"//given data\n",
+"V=5000;//applied voltage in V\n",
+"e=1.602*10^-19;//the charge on electron in C\n",
+"m=9.12*10^-31;//mass of electron in kg\n",
+"d=2.04*10^-10;//distance in m\n",
+"\n",
+"//calculations\n",
+"p=sqrt(2*m*e*V);\n",
+"disp(p,'momentum in kg-m/s^2');\n",
+"W=12.25/sqrt(V);\n",
+"disp(W,'de broglie wavelength in angstrom');\n",
+"v=1/(W*10^-10);\n",
+"disp(v,'the wave number in m');\n",
+"D=asind((W*10^-10)/(2*d));\n",
+"disp(D,'the Bragg angle in degrees')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.3: AN_ELECTRON_INTIALLY_AT_REST.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 9.3\n",
+"\n",
+"//given data\n",
+"V=54;//applied voltage in V\n",
+"e=1.602*10^-19;//the charge on electron in C\n",
+"m=9.12*10^-31;//mass of electron in kg\n",
+"h=6.625*10^-34;//Plank's constant\n",
+"\n",
+"//calcualtions\n",
+"v=sqrt(2*e*V/m);\n",
+"disp(v,'velocity of electron in m/s');\n",
+"W=12.25/sqrt(V);\n",
+"disp(W,'de broglie wavelength in angstrom');\n",
+"u=h/(2*m*W*10^-10);\n",
+"disp(u,'phase velocity in m/s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4: COMPUTE_DE_BROGLIE_WAVELENGTH.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 9.4\n",
+"\n",
+"//given data\n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"m=9.12*10^-31;//mass of electron in kg\n",
+"c=3*10^8;//speed of light in m/s\n",
+"h=6.625*10^-34;//Plank's constant\n",
+"\n",
+"//calculations\n",
+"E=m*c^2;\n",
+"mp=1836*m;\n",
+"//(0.5*m*v^2)=E\n",
+"mv=sqrt(E*2*mp);\n",
+"W=h/mv;\n",
+"disp((W/10^-10),'de broglie wavelength in Angstrom')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5: WHAT_IS_DE_BROGLIE_WAVELENGTH_OF_NEUTRON.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 9.5\n",
+"\n",
+"//given data\n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"m=1.676*10^-27;//mass of neutron in kg\n",
+"c=3*10^8;//speed of light in m/s\n",
+"h=6.625*10^-34;//Plank's constant\n",
+"\n",
+"//calculations\n",
+"E=1;//in eV\n",
+"E=1*e;//in V\n",
+"mv=sqrt(2*E*m);\n",
+"W=h/mv;\n",
+"disp((W/10^-10),'de broglie wavelength in Angstrom')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.6: CALCULATE_THE_SCATTERED_WAVELENGTH.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 9.6\n",
+"\n",
+"//calculations\n",
+"W=0.09;//wavelength in Angstrom\n",
+"D=54;//scattering angle in degree\n",
+"h=6.625*10^-34;//Plank's constant\n",
+"c=3*10^8;//speed of light in m/s\n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"\n",
+"//calculations\n",
+"dW=0.0243*(1-cosd(D));\n",
+"W1=W+dW;\n",
+"disp(W1,'wavelegth of scattered X-ray in Angstrom');\n",
+"E=h*c/(W*10^-10);\n",
+"disp((E/(e*10^6)),'Energy of incident photon in MeV');\n",
+"E=h*c/(W1*10^-10);\n",
+"disp((E/(e*10^6)),'Energy of scattered photon in MeV')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.7: COMPUTE_ENERGY_DIFFERENCE.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 9.7\n",
+"\n",
+"//given data\n",
+"h=6.625*10^-34;//Plank's constant\n",
+"m=9.12*10^-31;//mass of electron in kg\n",
+"\n",
+"//calculations\n",
+"//for (a)\n",
+"nx=1;\n",
+"ny=1;\n",
+"nz=1;\n",
+"L=1;\n",
+"E=h^2*(nx^2+ny^2+nz^2)/(8*m*L^2);\n",
+"disp(E,'energy in first quantum state in J');\n",
+"//for (b) (nx^2+ny^2+nz^2)=6\n",
+"L=1;\n",
+"E=h^2*6/(8*m*L^2);\n",
+"disp(E,'energy in second quantum state in J')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.8: CALCULATE_THE_LOWEST_THREE_PREMISSIBLE_ENERGIES.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 9.8\n",
+"\n",
+"//given data\n",
+"h=6.625*10^-34;//Plank's constant\n",
+"m=9.12*10^-31;//mass of electron in kg\n",
+"L=2.5*10^-10;\n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"\n",
+"//calcualtions\n",
+"n=1;\n",
+"E1=n^2*h^2/(8*m*L^2*e);\n",
+"disp(E1,'E1 in eV');\n",
+"n=2;\n",
+"E2=4*E1;\n",
+"disp(E2,'E2 in eV');\n",
+"n=3;\n",
+"E3=9*E1;\n",
+"disp(E3,'E3 in eV');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}