diff options
Diffstat (limited to 'Modern_Physics_by_B_L_Theraja/9-WAVES_AND_PARTICLES.ipynb')
-rw-r--r-- | Modern_Physics_by_B_L_Theraja/9-WAVES_AND_PARTICLES.ipynb | 305 |
1 files changed, 305 insertions, 0 deletions
diff --git a/Modern_Physics_by_B_L_Theraja/9-WAVES_AND_PARTICLES.ipynb b/Modern_Physics_by_B_L_Theraja/9-WAVES_AND_PARTICLES.ipynb new file mode 100644 index 0000000..013ec4f --- /dev/null +++ b/Modern_Physics_by_B_L_Theraja/9-WAVES_AND_PARTICLES.ipynb @@ -0,0 +1,305 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: WAVES AND PARTICLES" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1: WHAT_IS_DE_BROGLIE_WAVELENGTH.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 9.1\n", +"\n", +"//given data\n", +"V=20000;//applied voltage in V\n", +"\n", +"//calculation\n", +"W=12.25/(sqrt(V));\n", +"disp(W,'de broglie wavelength in angstrom')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.2: CALCULATE_MOMENTUM_DE_BROGLIE_WAVELENGTH_AND_WAVE_NUMBER.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 9.2\n", +"\n", +"//given data\n", +"V=5000;//applied voltage in V\n", +"e=1.602*10^-19;//the charge on electron in C\n", +"m=9.12*10^-31;//mass of electron in kg\n", +"d=2.04*10^-10;//distance in m\n", +"\n", +"//calculations\n", +"p=sqrt(2*m*e*V);\n", +"disp(p,'momentum in kg-m/s^2');\n", +"W=12.25/sqrt(V);\n", +"disp(W,'de broglie wavelength in angstrom');\n", +"v=1/(W*10^-10);\n", +"disp(v,'the wave number in m');\n", +"D=asind((W*10^-10)/(2*d));\n", +"disp(D,'the Bragg angle in degrees')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.3: AN_ELECTRON_INTIALLY_AT_REST.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 9.3\n", +"\n", +"//given data\n", +"V=54;//applied voltage in V\n", +"e=1.602*10^-19;//the charge on electron in C\n", +"m=9.12*10^-31;//mass of electron in kg\n", +"h=6.625*10^-34;//Plank's constant\n", +"\n", +"//calcualtions\n", +"v=sqrt(2*e*V/m);\n", +"disp(v,'velocity of electron in m/s');\n", +"W=12.25/sqrt(V);\n", +"disp(W,'de broglie wavelength in angstrom');\n", +"u=h/(2*m*W*10^-10);\n", +"disp(u,'phase velocity in m/s')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.4: COMPUTE_DE_BROGLIE_WAVELENGTH.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 9.4\n", +"\n", +"//given data\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"m=9.12*10^-31;//mass of electron in kg\n", +"c=3*10^8;//speed of light in m/s\n", +"h=6.625*10^-34;//Plank's constant\n", +"\n", +"//calculations\n", +"E=m*c^2;\n", +"mp=1836*m;\n", +"//(0.5*m*v^2)=E\n", +"mv=sqrt(E*2*mp);\n", +"W=h/mv;\n", +"disp((W/10^-10),'de broglie wavelength in Angstrom')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.5: WHAT_IS_DE_BROGLIE_WAVELENGTH_OF_NEUTRON.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 9.5\n", +"\n", +"//given data\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"m=1.676*10^-27;//mass of neutron in kg\n", +"c=3*10^8;//speed of light in m/s\n", +"h=6.625*10^-34;//Plank's constant\n", +"\n", +"//calculations\n", +"E=1;//in eV\n", +"E=1*e;//in V\n", +"mv=sqrt(2*E*m);\n", +"W=h/mv;\n", +"disp((W/10^-10),'de broglie wavelength in Angstrom')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.6: CALCULATE_THE_SCATTERED_WAVELENGTH.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 9.6\n", +"\n", +"//calculations\n", +"W=0.09;//wavelength in Angstrom\n", +"D=54;//scattering angle in degree\n", +"h=6.625*10^-34;//Plank's constant\n", +"c=3*10^8;//speed of light in m/s\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calculations\n", +"dW=0.0243*(1-cosd(D));\n", +"W1=W+dW;\n", +"disp(W1,'wavelegth of scattered X-ray in Angstrom');\n", +"E=h*c/(W*10^-10);\n", +"disp((E/(e*10^6)),'Energy of incident photon in MeV');\n", +"E=h*c/(W1*10^-10);\n", +"disp((E/(e*10^6)),'Energy of scattered photon in MeV')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.7: COMPUTE_ENERGY_DIFFERENCE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 9.7\n", +"\n", +"//given data\n", +"h=6.625*10^-34;//Plank's constant\n", +"m=9.12*10^-31;//mass of electron in kg\n", +"\n", +"//calculations\n", +"//for (a)\n", +"nx=1;\n", +"ny=1;\n", +"nz=1;\n", +"L=1;\n", +"E=h^2*(nx^2+ny^2+nz^2)/(8*m*L^2);\n", +"disp(E,'energy in first quantum state in J');\n", +"//for (b) (nx^2+ny^2+nz^2)=6\n", +"L=1;\n", +"E=h^2*6/(8*m*L^2);\n", +"disp(E,'energy in second quantum state in J')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.8: CALCULATE_THE_LOWEST_THREE_PREMISSIBLE_ENERGIES.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 9.8\n", +"\n", +"//given data\n", +"h=6.625*10^-34;//Plank's constant\n", +"m=9.12*10^-31;//mass of electron in kg\n", +"L=2.5*10^-10;\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calcualtions\n", +"n=1;\n", +"E1=n^2*h^2/(8*m*L^2*e);\n", +"disp(E1,'E1 in eV');\n", +"n=2;\n", +"E2=4*E1;\n", +"disp(E2,'E2 in eV');\n", +"n=3;\n", +"E3=9*E1;\n", +"disp(E3,'E3 in eV');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |