diff options
Diffstat (limited to 'Modern_Physics_by_B_L_Theraja/15-NUCLEUR_ENERGY_SOURCES.ipynb')
-rw-r--r-- | Modern_Physics_by_B_L_Theraja/15-NUCLEUR_ENERGY_SOURCES.ipynb | 305 |
1 files changed, 305 insertions, 0 deletions
diff --git a/Modern_Physics_by_B_L_Theraja/15-NUCLEUR_ENERGY_SOURCES.ipynb b/Modern_Physics_by_B_L_Theraja/15-NUCLEUR_ENERGY_SOURCES.ipynb new file mode 100644 index 0000000..bfa072d --- /dev/null +++ b/Modern_Physics_by_B_L_Theraja/15-NUCLEUR_ENERGY_SOURCES.ipynb @@ -0,0 +1,305 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 15: NUCLEUR ENERGY SOURCES" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.1: CALCULATE_THE_MAXIMUM_FRACTION_OF_THE_KE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 15.1\n", +"\n", +"//given data\n", +"ma=1;\n", +"Ma=2;\n", +"mb=1;\n", +"Mb=12;\n", +"mc=1;\n", +"Mc=238;//m is mass of neutron and M is mass of other neucleus\n", +"\n", +"//calculation\n", +"n=(4*ma*Ma/(ma+Ma)^2)*100;\n", +"disp(n,'Maximum fraction of KE lost by a neutron for (a)');\n", +"n=(4*mb*Mb/(mb+Mb)^2)*100;\n", +"disp(n,'Maximum fraction of KE lost by a neutron for (a)');\n", +"n=(4*mc*Mc/(mc+Mc)^2)*100;\n", +"disp(n,'Maximum fraction of KE lost by a neutron for (a)')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.2: CALCULATE_THE_FISSION_RATE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 15.2\n", +"\n", +"//given data\n", +"E=200;//energy released per fission in MeV\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n", +"\n", +"//calculations\n", +"CE=E*e*10^6;//conversion in J\n", +"RF=1/CE;\n", +"disp(RF,'fission rate of one watt in fissions/second');\n", +"Ekg=CE*Na/235;\n", +"disp(Ekg,'Energy realeased in complete fission of 1 kg in J')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.3: HOW_MANY_KG_OF_U_235.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 15.3\n", +"\n", +"//given data\n", +"R=3*10^7;//rate of energy development in J s\n", +"E=200;//energy released per fission in MeV\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"t=1000;//time is hours\n", +"Ekg=8.2*10^13;//energy released per kg of U-235\n", +"\n", +"//calculation\n", +"CE=E*e*10^6;//conversion in J\n", +"n=R/CE;\n", +"disp(n,'no of atoms undergo fission/second ');\n", +"TE=R*t*3600;//energy produced in 1000 hours\n", +"MC=TE/Ekg;\n", +"disp(MC,'mass consumed in kg')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.4: HOW_MUCH_U_235_WOULD_BE_CONSUMED_IN_THE_RUN.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 15.4\n", +"\n", +"//given data\n", +"EPF=180;//Energy consumed per disintegration in MeV\n", +"E=1200;//average power in kW\n", +"t=10;//time in hours\n", +"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"\n", +"//calculation\n", +"TE=E*t;//energy consumed in kWh\n", +"TE=TE*36*10^5;//conversion in J\n", +"EE=TE/0.2;//efficient energy\n", +"CE=EPF*e*10^6;//conversion in J\n", +"n=EE/CE;\n", +"m=235*n/Na*1000;\n", +"disp(m,'mass consumed in gram')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.5: NUCLEUR_REACTOR_PRODUCES_200MW.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 15.5\n", +"\n", +"//given data\n", +"OE=200;//o/p power in MW\n", +"E=200;//energy released per fission in MeV\n", +"WF=3.1*10^10;//fission rate in fissions/second\n", +"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n", +"\n", +"//calculations\n", +"IE=OE/0.3*10^6;//reactor input in W\n", +"TFR=WF*IE;\n", +"n=TFR*24*3600;//no. of U-235 for one day\n", +"m=235*n/Na;\n", +"disp((m*100/0.7),'amt of natural uranium conumed/day in kg')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.6: A_CITY_REQUIRES_100_MW.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 15.6\n", +"\n", +"//given data\n", +"AE=100;//electrical power in MW\n", +"E=200;//energy released per fission in MeV\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n", +"\n", +"//calculations\n", +"TE=AE*10^6*24*3600;//energy consumed in city in one day in J\n", +"EE=TE/0.2;\n", +"CE=E*e*10^6;//conversion in J\n", +"n=EE/CE;\n", +"m=235*n/Na;\n", +"disp(m,'amt of fuel required in kg')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.7: BOMBAY_REQUIRES_300_MWh.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 15.7\n", +"\n", +"//given data\n", +"OE=3000;//output power in MWh\n", +"E=200;//energy released per fission in MeV\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n", +"\n", +"//calculations\n", +"IE=OE/0.2;\n", +"TE=IE*36*10^8;//conversion in J\n", +"CE=E*e*10^6;//conversion in J\n", +"n=TE/CE;\n", +"m=235*n/Na;\n", +"disp(m,'daily fuel requirement in kg')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.8: THE_MOTOR_OF_AN_ATOMIC_ICE_BREAKER.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 15.8\n", +"\n", +"//given data\n", +"OP=32824;//o/p power in kW\n", +"E=200;//energy released per fission in MeV\n", +"Ekg=8.2*10^13;//energy released per kg of U-235\n", +"\n", +"//calculations\n", +"DOP=OP*1000*24*3600;//daily o/p power in J\n", +"IP=DOP/0.2;\n", +"DFC=IP/Ekg;//daily fuel cosumption\n", +"disp(DFC,'daily fuel cosumption in kg');\n", +"DI=DOP/(0.8*4186);//daily input at 80% efficiency\n", +"Crqd=DI/(7*10^3);\n", +"disp(Crqd,'Coal reqd/day in tonnes')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |