summaryrefslogtreecommitdiff
path: root/Modern_Physics_by_B_L_Theraja/15-NUCLEUR_ENERGY_SOURCES.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Modern_Physics_by_B_L_Theraja/15-NUCLEUR_ENERGY_SOURCES.ipynb')
-rw-r--r--Modern_Physics_by_B_L_Theraja/15-NUCLEUR_ENERGY_SOURCES.ipynb305
1 files changed, 305 insertions, 0 deletions
diff --git a/Modern_Physics_by_B_L_Theraja/15-NUCLEUR_ENERGY_SOURCES.ipynb b/Modern_Physics_by_B_L_Theraja/15-NUCLEUR_ENERGY_SOURCES.ipynb
new file mode 100644
index 0000000..bfa072d
--- /dev/null
+++ b/Modern_Physics_by_B_L_Theraja/15-NUCLEUR_ENERGY_SOURCES.ipynb
@@ -0,0 +1,305 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 15: NUCLEUR ENERGY SOURCES"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.1: CALCULATE_THE_MAXIMUM_FRACTION_OF_THE_KE.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 15.1\n",
+"\n",
+"//given data\n",
+"ma=1;\n",
+"Ma=2;\n",
+"mb=1;\n",
+"Mb=12;\n",
+"mc=1;\n",
+"Mc=238;//m is mass of neutron and M is mass of other neucleus\n",
+"\n",
+"//calculation\n",
+"n=(4*ma*Ma/(ma+Ma)^2)*100;\n",
+"disp(n,'Maximum fraction of KE lost by a neutron for (a)');\n",
+"n=(4*mb*Mb/(mb+Mb)^2)*100;\n",
+"disp(n,'Maximum fraction of KE lost by a neutron for (a)');\n",
+"n=(4*mc*Mc/(mc+Mc)^2)*100;\n",
+"disp(n,'Maximum fraction of KE lost by a neutron for (a)')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.2: CALCULATE_THE_FISSION_RATE.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 15.2\n",
+"\n",
+"//given data\n",
+"E=200;//energy released per fission in MeV\n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n",
+"\n",
+"//calculations\n",
+"CE=E*e*10^6;//conversion in J\n",
+"RF=1/CE;\n",
+"disp(RF,'fission rate of one watt in fissions/second');\n",
+"Ekg=CE*Na/235;\n",
+"disp(Ekg,'Energy realeased in complete fission of 1 kg in J')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.3: HOW_MANY_KG_OF_U_235.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 15.3\n",
+"\n",
+"//given data\n",
+"R=3*10^7;//rate of energy development in J s\n",
+"E=200;//energy released per fission in MeV\n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"t=1000;//time is hours\n",
+"Ekg=8.2*10^13;//energy released per kg of U-235\n",
+"\n",
+"//calculation\n",
+"CE=E*e*10^6;//conversion in J\n",
+"n=R/CE;\n",
+"disp(n,'no of atoms undergo fission/second ');\n",
+"TE=R*t*3600;//energy produced in 1000 hours\n",
+"MC=TE/Ekg;\n",
+"disp(MC,'mass consumed in kg')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.4: HOW_MUCH_U_235_WOULD_BE_CONSUMED_IN_THE_RUN.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 15.4\n",
+"\n",
+"//given data\n",
+"EPF=180;//Energy consumed per disintegration in MeV\n",
+"E=1200;//average power in kW\n",
+"t=10;//time in hours\n",
+"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"\n",
+"//calculation\n",
+"TE=E*t;//energy consumed in kWh\n",
+"TE=TE*36*10^5;//conversion in J\n",
+"EE=TE/0.2;//efficient energy\n",
+"CE=EPF*e*10^6;//conversion in J\n",
+"n=EE/CE;\n",
+"m=235*n/Na*1000;\n",
+"disp(m,'mass consumed in gram')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.5: NUCLEUR_REACTOR_PRODUCES_200MW.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 15.5\n",
+"\n",
+"//given data\n",
+"OE=200;//o/p power in MW\n",
+"E=200;//energy released per fission in MeV\n",
+"WF=3.1*10^10;//fission rate in fissions/second\n",
+"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n",
+"\n",
+"//calculations\n",
+"IE=OE/0.3*10^6;//reactor input in W\n",
+"TFR=WF*IE;\n",
+"n=TFR*24*3600;//no. of U-235 for one day\n",
+"m=235*n/Na;\n",
+"disp((m*100/0.7),'amt of natural uranium conumed/day in kg')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.6: A_CITY_REQUIRES_100_MW.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 15.6\n",
+"\n",
+"//given data\n",
+"AE=100;//electrical power in MW\n",
+"E=200;//energy released per fission in MeV\n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n",
+"\n",
+"//calculations\n",
+"TE=AE*10^6*24*3600;//energy consumed in city in one day in J\n",
+"EE=TE/0.2;\n",
+"CE=E*e*10^6;//conversion in J\n",
+"n=EE/CE;\n",
+"m=235*n/Na;\n",
+"disp(m,'amt of fuel required in kg')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.7: BOMBAY_REQUIRES_300_MWh.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 15.7\n",
+"\n",
+"//given data\n",
+"OE=3000;//output power in MWh\n",
+"E=200;//energy released per fission in MeV\n",
+"e=1.6*10^-19;//the charge on electron in C\n",
+"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n",
+"\n",
+"//calculations\n",
+"IE=OE/0.2;\n",
+"TE=IE*36*10^8;//conversion in J\n",
+"CE=E*e*10^6;//conversion in J\n",
+"n=TE/CE;\n",
+"m=235*n/Na;\n",
+"disp(m,'daily fuel requirement in kg')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.8: THE_MOTOR_OF_AN_ATOMIC_ICE_BREAKER.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 15.8\n",
+"\n",
+"//given data\n",
+"OP=32824;//o/p power in kW\n",
+"E=200;//energy released per fission in MeV\n",
+"Ekg=8.2*10^13;//energy released per kg of U-235\n",
+"\n",
+"//calculations\n",
+"DOP=OP*1000*24*3600;//daily o/p power in J\n",
+"IP=DOP/0.2;\n",
+"DFC=IP/Ekg;//daily fuel cosumption\n",
+"disp(DFC,'daily fuel cosumption in kg');\n",
+"DI=DOP/(0.8*4186);//daily input at 80% efficiency\n",
+"Crqd=DI/(7*10^3);\n",
+"disp(Crqd,'Coal reqd/day in tonnes')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}