1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 15: NUCLEUR ENERGY SOURCES"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.1: CALCULATE_THE_MAXIMUM_FRACTION_OF_THE_KE.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 15.1\n",
"\n",
"//given data\n",
"ma=1;\n",
"Ma=2;\n",
"mb=1;\n",
"Mb=12;\n",
"mc=1;\n",
"Mc=238;//m is mass of neutron and M is mass of other neucleus\n",
"\n",
"//calculation\n",
"n=(4*ma*Ma/(ma+Ma)^2)*100;\n",
"disp(n,'Maximum fraction of KE lost by a neutron for (a)');\n",
"n=(4*mb*Mb/(mb+Mb)^2)*100;\n",
"disp(n,'Maximum fraction of KE lost by a neutron for (a)');\n",
"n=(4*mc*Mc/(mc+Mc)^2)*100;\n",
"disp(n,'Maximum fraction of KE lost by a neutron for (a)')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.2: CALCULATE_THE_FISSION_RATE.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 15.2\n",
"\n",
"//given data\n",
"E=200;//energy released per fission in MeV\n",
"e=1.6*10^-19;//the charge on electron in C\n",
"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n",
"\n",
"//calculations\n",
"CE=E*e*10^6;//conversion in J\n",
"RF=1/CE;\n",
"disp(RF,'fission rate of one watt in fissions/second');\n",
"Ekg=CE*Na/235;\n",
"disp(Ekg,'Energy realeased in complete fission of 1 kg in J')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.3: HOW_MANY_KG_OF_U_235.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 15.3\n",
"\n",
"//given data\n",
"R=3*10^7;//rate of energy development in J s\n",
"E=200;//energy released per fission in MeV\n",
"e=1.6*10^-19;//the charge on electron in C\n",
"t=1000;//time is hours\n",
"Ekg=8.2*10^13;//energy released per kg of U-235\n",
"\n",
"//calculation\n",
"CE=E*e*10^6;//conversion in J\n",
"n=R/CE;\n",
"disp(n,'no of atoms undergo fission/second ');\n",
"TE=R*t*3600;//energy produced in 1000 hours\n",
"MC=TE/Ekg;\n",
"disp(MC,'mass consumed in kg')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.4: HOW_MUCH_U_235_WOULD_BE_CONSUMED_IN_THE_RUN.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 15.4\n",
"\n",
"//given data\n",
"EPF=180;//Energy consumed per disintegration in MeV\n",
"E=1200;//average power in kW\n",
"t=10;//time in hours\n",
"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n",
"e=1.6*10^-19;//the charge on electron in C\n",
"\n",
"//calculation\n",
"TE=E*t;//energy consumed in kWh\n",
"TE=TE*36*10^5;//conversion in J\n",
"EE=TE/0.2;//efficient energy\n",
"CE=EPF*e*10^6;//conversion in J\n",
"n=EE/CE;\n",
"m=235*n/Na*1000;\n",
"disp(m,'mass consumed in gram')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.5: NUCLEUR_REACTOR_PRODUCES_200MW.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 15.5\n",
"\n",
"//given data\n",
"OE=200;//o/p power in MW\n",
"E=200;//energy released per fission in MeV\n",
"WF=3.1*10^10;//fission rate in fissions/second\n",
"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n",
"\n",
"//calculations\n",
"IE=OE/0.3*10^6;//reactor input in W\n",
"TFR=WF*IE;\n",
"n=TFR*24*3600;//no. of U-235 for one day\n",
"m=235*n/Na;\n",
"disp((m*100/0.7),'amt of natural uranium conumed/day in kg')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.6: A_CITY_REQUIRES_100_MW.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 15.6\n",
"\n",
"//given data\n",
"AE=100;//electrical power in MW\n",
"E=200;//energy released per fission in MeV\n",
"e=1.6*10^-19;//the charge on electron in C\n",
"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n",
"\n",
"//calculations\n",
"TE=AE*10^6*24*3600;//energy consumed in city in one day in J\n",
"EE=TE/0.2;\n",
"CE=E*e*10^6;//conversion in J\n",
"n=EE/CE;\n",
"m=235*n/Na;\n",
"disp(m,'amt of fuel required in kg')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.7: BOMBAY_REQUIRES_300_MWh.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 15.7\n",
"\n",
"//given data\n",
"OE=3000;//output power in MWh\n",
"E=200;//energy released per fission in MeV\n",
"e=1.6*10^-19;//the charge on electron in C\n",
"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n",
"\n",
"//calculations\n",
"IE=OE/0.2;\n",
"TE=IE*36*10^8;//conversion in J\n",
"CE=E*e*10^6;//conversion in J\n",
"n=TE/CE;\n",
"m=235*n/Na;\n",
"disp(m,'daily fuel requirement in kg')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.8: THE_MOTOR_OF_AN_ATOMIC_ICE_BREAKER.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 15.8\n",
"\n",
"//given data\n",
"OP=32824;//o/p power in kW\n",
"E=200;//energy released per fission in MeV\n",
"Ekg=8.2*10^13;//energy released per kg of U-235\n",
"\n",
"//calculations\n",
"DOP=OP*1000*24*3600;//daily o/p power in J\n",
"IP=DOP/0.2;\n",
"DFC=IP/Ekg;//daily fuel cosumption\n",
"disp(DFC,'daily fuel cosumption in kg');\n",
"DI=DOP/(0.8*4186);//daily input at 80% efficiency\n",
"Crqd=DI/(7*10^3);\n",
"disp(Crqd,'Coal reqd/day in tonnes')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|