diff options
Diffstat (limited to 'Modern_Physics_by_B_L_Theraja/14-NUCLEUR_FISSION_AND_FUSION.ipynb')
-rw-r--r-- | Modern_Physics_by_B_L_Theraja/14-NUCLEUR_FISSION_AND_FUSION.ipynb | 165 |
1 files changed, 165 insertions, 0 deletions
diff --git a/Modern_Physics_by_B_L_Theraja/14-NUCLEUR_FISSION_AND_FUSION.ipynb b/Modern_Physics_by_B_L_Theraja/14-NUCLEUR_FISSION_AND_FUSION.ipynb new file mode 100644 index 0000000..0e28e67 --- /dev/null +++ b/Modern_Physics_by_B_L_Theraja/14-NUCLEUR_FISSION_AND_FUSION.ipynb @@ -0,0 +1,165 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 14: NUCLEUR FISSION AND FUSION" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.1: COMPUTE_FISSION_ENERGY.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 14.1\n", +"\n", +"//given data\n", +"E1=7.8;//avg. B.E per nucleon in MeV\n", +"E2=8.6;//for fissin fragments in MeV\n", +"\n", +"//calculations\n", +"FER=(234*E2)-(236*E1);\n", +"disp(FER,'Fission energy released in MeV')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.2: FIND_ELEMENTARY_PARTICLES_RELEASED_IN_BINARY_FISSION_OF_92U235.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 14.2\n", +"\n", +"//given data\n", +"m1=235.044;//mass of 92U235 in a.m.u\n", +"m2=97.905;//mass of 42Mo98 in a.m.u\n", +"m3=135.917;//mass of 54Xe136 in a.m.u\n", +"//rxn = 0n1 + 92U235 = 42Mo98 + 54Xe136 + 4 -1e0 + 2 0n1\n", +"\n", +"//calculation\n", +"LHSm=1.009+m1;\n", +"RHSm=m2+m3+(4*0.00055)+(2*1.009);\n", +"dm=LHSm-RHSm;\n", +"disp(dm,'mass defect in a.m.u');\n", +"E=dm*931;\n", +"disp(E,'energy released in MeV')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.3: HOW_MUCH_HYDROGEN_MUST_BE_CONVERTED_INTO_HELIUM.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 14.3\n", +"\n", +"//given data\n", +"m1=1.00813;//mass of 1H1 in a.m.u\n", +"m2=4.00386;//mass of 2He4 in a.m.u\n", +"SC=1.35;//solar constant in kW/m^2\n", +"d=1.5*10^11;//dist b/w earth and sum in m\n", +"e=1.6*10^-19;//the charge on electron in C\n", +"Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n", +"pi=3.14;//const\n", +"//rxn = 4 1H1 = 2He4 + 2 1e0\n", +"\n", +"//calculations\n", +"dm=(4*m1)-m2\n", +"E=dm*931;//energy produced in MeV\n", +"EP=E/4;//energy produced per atom\n", +"EP=EP*10^6*e;//conversion in J\n", +"EPkg=EP*Na;//energy produced by 1 kg of hydrogen\n", +"SC=SC*1000;//conversion in J/s-m^2\n", +"SA=4*pi*d^2;//surface area of sphere\n", +"ER=SC*SA;//energy recieved per second\n", +"m=ER/EPkg;\n", +"disp((m/10^3),'mass of hydrogen consumed in tonnes/second')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.4: CALCULATE_THE_ENERGY_LIBERATED.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 14.4\n", +"\n", +"//given data\n", +"m1=2.01478;//mass of 1H2 in a.m.u\n", +"m2=4.00388;//mass of 2He4 in a.m.u\n", +"//rxn 1H2 + 1H2 = 2He4 + Q\n", +"\n", +"//calculations\n", +"Q=2*m1-m2;\n", +"Q=Q*931;//conversion in MeV\n", +"disp(Q,'energy liberated in MeV')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |