diff options
Diffstat (limited to '3751/CH4')
-rw-r--r-- | 3751/CH4/EX4.1/Ex4_1.sce | 35 | ||||
-rw-r--r-- | 3751/CH4/EX4.10/Ex4_10.sce | 51 | ||||
-rw-r--r-- | 3751/CH4/EX4.11/Ex4_11.sce | 57 | ||||
-rw-r--r-- | 3751/CH4/EX4.12/Ex4_12.sce | 51 | ||||
-rw-r--r-- | 3751/CH4/EX4.13/Ex4_13.sce | 45 | ||||
-rw-r--r-- | 3751/CH4/EX4.14/Ex4_14.sce | 61 | ||||
-rw-r--r-- | 3751/CH4/EX4.15/Ex4_15.sce | 35 | ||||
-rw-r--r-- | 3751/CH4/EX4.16/Ex4_16.sce | 26 | ||||
-rw-r--r-- | 3751/CH4/EX4.17/Ex4_17.sce | 41 | ||||
-rw-r--r-- | 3751/CH4/EX4.18/Ex4_18.sce | 45 | ||||
-rw-r--r-- | 3751/CH4/EX4.19/Ex4_19.sce | 43 | ||||
-rw-r--r-- | 3751/CH4/EX4.2/Ex4_2.sce | 38 | ||||
-rw-r--r-- | 3751/CH4/EX4.20/Ex4_20.sce | 42 | ||||
-rw-r--r-- | 3751/CH4/EX4.3/Ex4_3.sce | 44 | ||||
-rw-r--r-- | 3751/CH4/EX4.4/Ex4_4.sce | 39 | ||||
-rw-r--r-- | 3751/CH4/EX4.5/Ex4_5.sce | 30 | ||||
-rw-r--r-- | 3751/CH4/EX4.6/Ex4_6.sce | 57 | ||||
-rw-r--r-- | 3751/CH4/EX4.7/Ex4_7.sce | 39 | ||||
-rw-r--r-- | 3751/CH4/EX4.8/Ex4_8.sce | 49 | ||||
-rw-r--r-- | 3751/CH4/EX4.9/Ex4_9.sce | 32 |
20 files changed, 860 insertions, 0 deletions
diff --git a/3751/CH4/EX4.1/Ex4_1.sce b/3751/CH4/EX4.1/Ex4_1.sce new file mode 100644 index 000000000..bc3c12d25 --- /dev/null +++ b/3751/CH4/EX4.1/Ex4_1.sce @@ -0,0 +1,35 @@ +//Fluid system - By - Shiv Kumar
+//Chapter 4 - Pelton Turbine (Impulse Turbine)
+//Example 4.1
+ clc
+ clear
+
+//Given Data:-
+ P=735.75; //Power Developed, kW
+ H=200; //Head, m
+ N=800; //Speed, rpm
+ eta_O=86/100; //Overall Efficiency
+ d_by_D=1/10; //Ratio of Jet diameter to turbine diameter (d/D)
+ Cv=0.98; //Co-efficienct of velocity
+ Ku=0.45; //Speed ratio
+
+//Data Used:-
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations:-
+ Q=P*1000/(rho*g*H*eta_O); //Net discharge, m^3/s
+ //(a)Diameter of Turbine, D
+ D=60*Ku*sqrt(2*g*H)/(%pi*N); //m
+ d=D*d_by_D; //m
+ //(b)The no. of Jets required
+ q=(%pi/4)*d^2*Cv*sqrt(2*g*H); //Discharge of a single Jet, m^3/s
+ n=round(Q/q); //No. of Jets
+ //(c)Diameter of Jet, d
+ d=d_by_D*D; //m
+
+//Results:-
+ printf("(a)Diameter of Turbine, D=%.4f m \n", D) //The answer vary due to round off error
+ printf("(b)The number of Jets required, n=%.f \n", n)
+ printf("(c)Diameter of Jet, d=%.4f m \n", d)
+
diff --git a/3751/CH4/EX4.10/Ex4_10.sce b/3751/CH4/EX4.10/Ex4_10.sce new file mode 100644 index 000000000..19732303c --- /dev/null +++ b/3751/CH4/EX4.10/Ex4_10.sce @@ -0,0 +1,51 @@ +//Fluid system - By - Shiv Kumar
+//Chapter 4 - Pelton Turbine (Impulse Turbine)
+//Example 4.10
+ clc
+ clear
+
+//Given Data:-
+ N=300; //Speed of runner, rpm
+ H=510; //Head, m
+ d=200; //Diameter of the Jet, mm
+ AoD=165; //Angle of Deflection, degrees
+ Vel_per=15; //percentage by which velocity is reduced
+
+//Data Used:-
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+ Cv=0.98;
+ Ku=0.46;
+
+//Computations:-
+ d=d/1000; //m
+ beta_O=180-AoD; //degrees
+ Vro_by_Vri=1-Vel_per/100; //Vro/Vri
+ Vi=Cv*sqrt(2*g*H); //m/s
+ Vwi=Vi;
+ ui=Ku*sqrt(2*g*H); //m/s
+ uo=ui;
+ u=ui;
+ Vri=Vi-ui; //m/s
+ Vro=Vri*Vro_by_Vri; //m/s
+ Vrwo=Vro*cosd(beta_O); //m/s
+ Vwo=uo-Vrwo; //m/s
+
+ //(i) Water power available at inlet of turbine, P
+ Q=(%pi/4)*d^2*Vi; //m^3.s
+ P=(1/2)*rho*Q*Vi^2/1000; //kW
+ //(ii)Resultant force on the bucket, F
+ F=rho*Q*(Vwi-Vwo)/1000; //kN
+ //(iii)Overall Efficiency, eta_o
+ eta_H=F*u/P; //Hydraulic efficiency
+ //Assume,
+ eta_V=100/100; //Volumetric efficiency is 100%
+ eta_m=98/100 //Mechanical Efficiency is 98%
+
+ eta_O=eta_V*eta_H*eta_m*100; //In percentage
+
+//Results:-
+ printf("(i)Water power available at inlet of turbine=%.2f kW \n", P) //The answer provided in the Textbook is wrong
+ printf("(ii)Resultant force on the bucket, F=%.3f kN \n", F) //The answer vary due to round off error
+ printf("(iii)Overall efficiency, eta_O=%.2f percent", eta_O) //The answer vary due to round off error
+
diff --git a/3751/CH4/EX4.11/Ex4_11.sce b/3751/CH4/EX4.11/Ex4_11.sce new file mode 100644 index 000000000..3cc72e495 --- /dev/null +++ b/3751/CH4/EX4.11/Ex4_11.sce @@ -0,0 +1,57 @@ +//Fluid system - By - Shiv Kumar
+//Chapter 4 - Pelton Turbine (Impulse Turbine)
+//Example 4.11
+
+ clc
+ clear
+
+//Given Data:-
+ N=300; //Speed of runner, rpm
+ H=500; //Head, m
+ d=200; //Diameter of the Jet, mm
+ AoD=165; //Angle of Deflection, degrees
+ Vel_per=15; //percentage by which velocity is reduced
+ Cv=0.98; //Co-efficient of Velocity
+ Ku=0.46; //Speed ratio
+ Loss_per=3; //Percentage of Mechanical losses
+
+//Data Used:-
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+
+//Computations:-
+ d=d/1000; //m
+ beta_O=180-AoD; //degrees
+ Vro_by_Vri=1-Vel_per/100; //Vro/Vri
+ K=Vro_by_Vri;
+ Vi=Cv*sqrt(2*g*H); //m/s
+ Vwi=Vi;
+ ui=Ku*sqrt(2*g*H); //m/s
+ uo=ui;
+ u=ui;
+ Vri=Vi-ui; //m/s
+ Vro=K*Vri; //m/s
+ Vrwo=Vro*cosd(beta_O); //m/s
+ Vwo=uo-Vrwo; //m/s
+
+ //(a) Water power, WP
+ Q=(%pi/4)*d^2*Vi; //m^3.s
+ WP=rho*Q*g*H/1000; //kW
+
+ //(b)The Force on the bucket in the direction of Jet, F
+ F=rho*Q*(Vwi-Vwo)/1000; //kN
+
+ //(c)Shaft Power, SP
+ Pr=F*u; //Power developed by the Runner, W
+ SP=Pr-Loss_per/100*Pr; //kW
+
+ //(d)Overall Efficiency, eta_o
+ eta_o=SP/WP*100; //In percentage
+
+//Results:-
+ printf("(a) Water power, WP=%.2f kW \n",WP) //The answer provided in the Textbook is wrong
+ printf("(b)The Force on the bucket in the direction of Jet=%.3f kN \n", F) //The answer vary due to round off error
+ printf("(c)Shaft Power, SP=%.3f kW\n",SP) //The answer provided in the Textbook is wrong
+ printf("(d)Overall efficiency, eta_o=%.2f percent", eta_o) //The answer vary due to round off error
+
diff --git a/3751/CH4/EX4.12/Ex4_12.sce b/3751/CH4/EX4.12/Ex4_12.sce new file mode 100644 index 000000000..fb6484d45 --- /dev/null +++ b/3751/CH4/EX4.12/Ex4_12.sce @@ -0,0 +1,51 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 4 - Pelton Turbine (Impulse Turbine) +//Example 4.12 + + clc + clear + +//Given Data:- + n=2; //Number of Jets + P=5000; //Shaft Power, HP + N=375; //Speed of Shaft, rpm + Hth=200; //Theoretical Head at Base of Nozzle, m + eta_p=90/100; //Efficiency of Power Transmission + D=1.65; //Diameter of the Runner, m + Vel_per=10; //Percentage by which velocity is decreased + Deflection=165; //Jet Deflection, degrees + eta_o=90/100; //Overall Efficiency + Cv=0.98; + + +//Data Used:- + rho=1000; //Density of water, kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations:- + P=P*736; //W + Hact=eta_p*Hth; //Actual Head available at base of Nozzle, m + Vro_by_Vri=1-Vel_per/100; //Vro/Vri + beta_o=180-Deflection; //degrees + + u=%pi*D*N/60; //Velocity of Runner, m/s + ui=u; + uo=u; + Vi=Cv*sqrt(2*g*Hact); //m/s + Vwi=Vi; + Vri=Vi-u; //m/s + Vro=Vri*Vro_by_Vri; //m/s + Vrwo=Vro*cosd(beta_o); //m/s + Vwo=uo-Vrwo; //m/s + + //(a)Efficiency of Runner, eta_H + eta_H=2*(Vwi-Vwo)*u/Vi^2*100; //In Perecentage + + //(b)Diameter of each jet, d + Q=P/(rho*g*Hact*eta_o); //Discharge, m^3/s + d=sqrt(Q/((%pi/4)*n*Vi)); //Diameter of each Jet, m + +//Results:- + printf("(a)Efficiency of the Runner, eta_H=%.2f Percent\n",eta_H) //The answer vary due to round off error + printf("(b)Diameter of each Jet , d=%.3f m\n",d) + diff --git a/3751/CH4/EX4.13/Ex4_13.sce b/3751/CH4/EX4.13/Ex4_13.sce new file mode 100644 index 000000000..ba0e8dad9 --- /dev/null +++ b/3751/CH4/EX4.13/Ex4_13.sce @@ -0,0 +1,45 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 4 - Pelton Turbine (Impulse Turbine) +//Example 4.13 + + clc + clear + +//Given Data:- + H=62; //Effective Head, m + N=225; //Speed of Runner, rpm + P=133.15; //Shaft Power, HP + Ku=0.45; //Speed Ratio + eta_o=86/100; //Overall Efficiency + Cv=0.98; + + +//Data Used:- + rho=1000; //Density of water, kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations:- + P=P*736; //W + + Vi=Cv*sqrt(2*g*H); //m/s + u=Ku*sqrt(2*g*H); //m/s + ui=u; + uo=u; + Q=P/(rho*g*H*eta_o); //m^3/s + + d=sqrt(Q/((%pi/4)*Vi))*1000; //Diameter of Jet, mm + D=60*u/(%pi*N); //Diameter of Runner, m + //As per designing range, b=3*d to 4*d + b=3.5*d; //Width of Buckets, mm + //As per designing range, b=0.8*d to 1.2*d + T=1.2*d; //Depth of Buckets, mm + Z=round(0.5*D/(d/1000)+15); //Number of Buckets + +//Results:- + printf(" (a)Diameter of Jet, d=%.2f mm \n",d) //The answer vary due to round off error + printf(" (b) Diameter of Runner, D=%.3f m \n",D) + printf(" (c) Width of Buckets, b=%.2f mm \n",b) //The answer vary due to round off error + printf(" (d) Depth of Buckets, T=%.2f mm \n",T) //The answer vary due to round off error + printf(" (e) Number of Buckets , Z=%.f \n",Z) + + diff --git a/3751/CH4/EX4.14/Ex4_14.sce b/3751/CH4/EX4.14/Ex4_14.sce new file mode 100644 index 000000000..b752a5136 --- /dev/null +++ b/3751/CH4/EX4.14/Ex4_14.sce @@ -0,0 +1,61 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 4 - Pelton Turbine (Impulse Turbine) +//Example 4.14 + + clc + clear + +//Given Data:- + H=452; //Net Head, m + m=12; //Jet Ratio (D/d) + Ku=0.46; //Speed Ratio + AoD=165; //Angle of Jet Deflection, degrees + Cv=0.98; //Co-efficient of Velocity + Loss_f=15; //Percentage of Friction Loss of Buckets + eta_o=86/100; //Overall Efficiency + P_G=10200; //Power developed by Generator, HP + eta_G=95/100; //Generator Efficiency + + +//Data Used:- + rho=1000; //Density of water, kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations:- + P_G=P_G*736; //W + Vro_by_Vri=1-Loss_f/100; //Vro/Vri + beta_o=180-AoD; //degrees + + u=Ku*sqrt(2*g*H); //Velocity of Runner, m/s + ui=u; + uo=u; + Vi=Cv*sqrt(2*g*H); //m/s + Vwi=Vi; + Vri=Vi-ui; //m/s + Vro=Vri*Vro_by_Vri; //m/s + Vrwo=Vro*cosd(beta_o); //m/s + Vwo=uo-Vrwo; //m/s + + P=P_G/eta_G; //Shaft Power, W + Q=P/(rho*g*H*eta_o); //Discharge, m^3/s + + //(a) + d=sqrt(Q/((%pi/4)*Vi)); //Diameter of Jet, m + + //(b) + D=m*d; //Diameter of Runner, m + + //(c) + Pr=rho*Q*(Vwi-Vwo)*u/1000; // Power developed by Runner, kW + + //(d) + eta_m=P/(Pr*1000)*100; //Mechanical Efficiency in Percentage + + +//Results:- + printf("(a) Diameter of the Jet, d=%.3f m\n",d) + printf(" (b)Diameter of the Runner, D=%.3f m\n",D) //The answer vary due to round off error + printf(" (c)Power Developed by the Runner=%.3f kW\n",Pr) //The answer provided in the textbook is wrong + printf(" (d)Mechanical Efficiency , eta_m=%.2f Percent\n",eta_m) //The answer vary due to round off error + + diff --git a/3751/CH4/EX4.15/Ex4_15.sce b/3751/CH4/EX4.15/Ex4_15.sce new file mode 100644 index 000000000..2ce45324a --- /dev/null +++ b/3751/CH4/EX4.15/Ex4_15.sce @@ -0,0 +1,35 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 4 - Pelton Turbine (Impulse Turbine) +//Example 4.15 + + clc + clear + +//Given Data:- + H=120; //Head, m + d=74; //Diameter of Jet, mm + Q=200; //Discharge, litres/s + P=202.766; //Shaft Power, kW + P_mr=3.2; //Power lost in mechanical resistance, kW + + +//Data Used:- + rho=1000; //Density of water, kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations:- + Q=Q/1000; //m^3/s + d=d/1000; //m + P=P*1000; //W + P_mr=P_mr*1000; //W + + Vi=Q/((%pi/4)*d^2); //m/s + P_n=(rho*Q*g*H-rho*Q*Vi^2/2)/1000; //Power lost in Nozzle, kW + P_hr=(rho*Q*g*H-(P+P_n*1000+P_mr))/1000; //Power lost due to hydraulic resistance in Runner, kW + + +//Results:- + printf("(a) Power lost in Nozzle=%.3f kW\n",P_n) //The answer vary due to round off error + printf(" (b)Power lost due to Hydraulic Resistance in Runner =%.2f kW\n",P_hr) //The answer vary due to round off error + + diff --git a/3751/CH4/EX4.16/Ex4_16.sce b/3751/CH4/EX4.16/Ex4_16.sce new file mode 100644 index 000000000..5bcd8666d --- /dev/null +++ b/3751/CH4/EX4.16/Ex4_16.sce @@ -0,0 +1,26 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 4 - Pelton Turbine (Impulse Turbine) +//Example 4.16 + + clc + clear + +//Given Data:- + P=4900; //Shaft Power, kW + P_mr=100; //Power absorbed in mechanical resistance, kW + eta_H=92/100; //Hydraulic Efficiency + P_n=415; //Power lost in Nozzle, kW + + + //Computations:- + P_rd=P+P_mr; //Power Devrloped by Runner, kW + P_rs=P_rd/eta_H; //Power Supplied to Runner, kW + P_an=P_n+P_rs; //Power Available at base of Nozzle, kW + eta_o=P/P_an*100; //Overall Efficiency in Percentage + +//Results:- + printf("(a)Power Available at the Base of Nozzle=%.3f kW\n",P_an) //The answer vary due to round off error + printf("(b)Overall Efficiency, eta_o=%.2f Percent\n",eta_o) + + + diff --git a/3751/CH4/EX4.17/Ex4_17.sce b/3751/CH4/EX4.17/Ex4_17.sce new file mode 100644 index 000000000..6eeaa4c4c --- /dev/null +++ b/3751/CH4/EX4.17/Ex4_17.sce @@ -0,0 +1,41 @@ +//Fluid system - By - Shiv Kumar
+//Chapter 4 - Pelton Turbine (Impulse Turbine)
+//Example 4.17
+
+ clc
+ clear
+
+//Given Data:-
+ H_G=510; //Gross Head, m
+ h_f=(1/3)*H_G; //Head lost in friction in penstock, m
+ d=170; //Diameter of Jet, mm
+ AoD=165; //Angle of Deflection of Jet, degrees
+ Ku=0.45; //Speed ratio
+ Cv=0.98; //Co-efficient of Velocity
+
+//Data Used:-
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations:-
+ H=H_G-h_f; //Effective Head, m
+ Vi=Cv*sqrt(2*g*H); //m/s
+ Vwi=Vi;
+ u=Ku*sqrt(2*g*H); //m/s
+ ui=u;
+ uo=u;
+ Vri=Vi-u; //m/s
+ Vro=Vri;
+ beta_o=180-AoD; //degrees
+ Vrwo=Vro*cosd(beta_o); //m/s
+ Vwo=Vrwo-uo; //m/s
+ Q=(%pi/4)*(d/1000)^2*Vi; //Discharge, m^3/s
+ P=rho*Q*(Vwi+Vwo)*u/1000; //Power developed by runner, kW
+ eta_H=2*(Vwi+Vwo)*u/Vi^2*100; //Hydraulic efficiency, In percentage
+
+//Results:-
+ printf("(a)Power developed by the runner=%.3f kW \n",P) //The answer provided in the Textbook is wrong
+ printf("(b)Hydraulic efficiency, eta_H=%.2f percent", eta_H) //The answer vary due to round off error
+
+
+
diff --git a/3751/CH4/EX4.18/Ex4_18.sce b/3751/CH4/EX4.18/Ex4_18.sce new file mode 100644 index 000000000..420110ebd --- /dev/null +++ b/3751/CH4/EX4.18/Ex4_18.sce @@ -0,0 +1,45 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 4 - Pelton Turbine (Impulse Turbine) +//Example 4.18 + + clc + clear + +//Given Data:- + Ns=15; //Specific Speed + P=1200; //Shaft Power, kW + Ht=500; //Total Head at reservoir, m + Loss_per=5; //Percentage of Head loss in Pipe friction + Cv=0.98; //Co-efficient of Velocity + Ku=0.45; //Speed Ratio + eta_o=85/100; //Overall Efficiency + n=2; //Number of Jets + +//Data Used:- + rho=1000; //Density of water, kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations:- + H=Ht-Loss_per/100*Ht; //Effective Head, m + + //(a)Speed of Runner, N + N=Ns*H^(5/4)/sqrt(P/n); //rpm + + //(b)Diameter od each Jet, d + Q=P*1000/(rho*g*H*eta_o); //Net Discharge, m^3/s + q=Q/n; //Net Discharge per Jet, m^3/s + Vi=Cv*sqrt(2*g*H); //m/s + d=sqrt(q/((%pi/4)*Vi)); //m + + //(c)Mean Diameter of Bucket Circle, D + D=Ku*60*sqrt(2*g*H)/(%pi*N); //m + + //(d)Number of Buckets in the Runner, Z + Z=round(0.5*D/d+15); + +//Results:- + printf(" (a)Speed of the Runner, N=%.f rpm\n",N) + printf(" (b)Diameter od each Jet, d =%.3f m\n",d) + printf(" (c)Mean Diameter of Bucket Circle, D =%.3f m\n",D) + printf(" (d)Number of Buckets on the Runner, Z =%.f \n",Z) + diff --git a/3751/CH4/EX4.19/Ex4_19.sce b/3751/CH4/EX4.19/Ex4_19.sce new file mode 100644 index 000000000..3cc34361a --- /dev/null +++ b/3751/CH4/EX4.19/Ex4_19.sce @@ -0,0 +1,43 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 4 - Pelton Turbine (Impulse Turbine) +//Example 4.19 + + clc + clear + +//Given Data:- + Q=2.5; //Total Discharge, m^3/s + Hr=300; //Head from reservoir to base of nozzle, m + n=6; //Total number of Jets + L=1200; //Lenght of Pipe, m + eta_p=92/100; //Efficiency of Power Transmission + eta_o=86/100; //Overall Efficiency + Cv=0.97; //Co-efficient of Velocity + f=0.0025; //Darcy Co-efficient of Friction + + +//Data Used:- + rho=1000; //Density of water, kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations:- + h_f=(1-eta_p)*Hr; //m + H=Hr-h_f; //Effective Head, m + Vi=Cv*sqrt(2*g*H); //Velocity of Jet, m/s + + //(a)Shaft Power, P + P=rho*Q*g*H*eta_o/1000; //kW + + //(b)Diameter of the Jet, d + q=Q/n; //Discharge per Jet, m^3/s + d=sqrt(q/((%pi/4)*Vi)); //m + + //(c)Diameter of the Pipe, D_pipe + D_pipe=(64*f*L*Q^2/(h_f*2*g*%pi^2))^(1/5)*1000; //mm + +//Results:- + printf(" (a)Shaft Power, P=%.3f kW\n",P) + printf(" (b)Diameter of the Jet, d=%.4f m\n",d) + printf(" (c)Diameter of the Pipe, D_pipe=%.2f mm\n",D_pipe) //The answer vary due to round off error + + diff --git a/3751/CH4/EX4.2/Ex4_2.sce b/3751/CH4/EX4.2/Ex4_2.sce new file mode 100644 index 000000000..7901582b4 --- /dev/null +++ b/3751/CH4/EX4.2/Ex4_2.sce @@ -0,0 +1,38 @@ +//Fluid system - By - Shiv Kumar
+//Chapter 4 - Pelton Turbine (Impulse Turbine)
+//Example 4.2
+ clc
+ clear
+
+//Given Data:-
+ u=12; //Speed of bucket, m/s
+ ui=u;
+ uo=u;
+ Q=650; //Discharge, liters/s
+ H=40; //Head of water, m
+ AoD=162; //Angle of Deflection, degrees
+ Cv=0.98; //Co-efficient of Velocity
+
+//Data Used:-
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations:-
+ Q=Q/1000; //m^3/s
+ beta_O=180-AoD; //Blade angle a outlet, degrees
+ Vi=Cv*sqrt(2*g*H); //Velocity of Jet, m/s
+ Vwi=Vi;
+ Vri=Vi-ui; //m/s
+ Vro=Vri;
+ Vrwo=Vro*cosd(beta_O); //m/s
+ Vwo=Vrwo-uo; //m/s
+ //(a)Power given by water to runner, P
+ P=rho*Q*(Vwi+Vwo)*u/1000; //kW
+ //(b)The hydraulic efficiency, eta_H
+ eta_H=2*(Vwi+Vwo)*u/Vi^2*100; //In percentage
+
+//Results:-
+ printf("(a)The Power given by water to the runner=%.3f kW \n", P) //The answer vary due to round off error
+ printf("(b)The Hydraulic Efficiency of Turbine, eta_H=%.2f percent \n", eta_H) //The answer vary due to round off error
+
+
diff --git a/3751/CH4/EX4.20/Ex4_20.sce b/3751/CH4/EX4.20/Ex4_20.sce new file mode 100644 index 000000000..184934bd5 --- /dev/null +++ b/3751/CH4/EX4.20/Ex4_20.sce @@ -0,0 +1,42 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 4 - Pelton Turbine (Impulse Turbine) +//Example 4.20 + + clc + clear + +//Given Data:- + D=1.6; //Mean Diameter of Bucket Circle, m + P=3200; //Power Developed, kW + n=2; //Number of Wheels + H=300; //Effective Head, m + N=410; //Speed, rpm + eta_o=0.89; //Overall Efficiency + Cv=0.98; //Co-efficient of Velocity + + +//Data Used:- + rho=1000; //Density of water, kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations:- + Q=P*1000/(rho*g*H*eta_o); //Discharge, m^3/s + + //(a)Diameter of the Nozzle, d + Vi=Cv*sqrt(2*g*H); //m/s + d=sqrt(Q/((%pi/4)*Vi))*1000; //mm + + //(b)Speed Ratio, Ku + u=%pi*D*N/60; //m/s + Ku=u/sqrt(2*g*H); + + //(c)Specific Speed, Ns + Ns=N*sqrt(P/n)/(H^(5/4)); // In SI Units + + +//Results:- + printf(" (a)Diameter of the Nozzle, d=%.2f mm\n",d) //The answer vary due to round off error + printf(" (b)Speed Ratio, Ku =%.3f \n",Ku) //The answer vary due to round off error + printf(" (c)Specific Speed, Ns =%.f (SI Units)\n",Ns) + + diff --git a/3751/CH4/EX4.3/Ex4_3.sce b/3751/CH4/EX4.3/Ex4_3.sce new file mode 100644 index 000000000..fc2fc5073 --- /dev/null +++ b/3751/CH4/EX4.3/Ex4_3.sce @@ -0,0 +1,44 @@ +//Fluid system - By - Shiv Kumar
+//Chapter 4 - Pelton Turbine (Impulse Turbine)
+//Example 4.3
+ clc
+ clear
+
+//Given Data:-
+ H=30; //Effective Head, m
+ AoD=165; //Jet Deflection Angle, degrees
+ Cv=0.98; //Co-efficient of Velocity
+ Ku=0.45; //Speed ratio
+ d=22; //Diameter of Jet, mm
+ //As relative velocity at outlet is 0.98 times relative velocity at inlet,
+ Vro_by_Vri=0.98; // Vro/Vri
+
+//Data Used:-
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations:-
+ d=d/1000; //m
+ beta_O=180-AoD; //degrees
+ Vi=Cv*sqrt(2*g*H); //Absolut Velocity of Jet, m/s
+ Vwi=Vi;
+ u=Ku*sqrt(2*g*H); //peripheral velocity of runner, m/s
+ ui=u;
+ uo=u;
+ Vri=Vi-ui; //m/s
+ Vro=Vro_by_Vri*Vri; //m/s
+ Vrwo=Vro*cosd(beta_O); //m/s
+ Vwo=Vrwo-uo; //m/s
+
+ //(a)Power given by water to runner, P
+ Q=(%pi/4)*d^2*Vi; //m^3/s
+ P=rho*Q*(Vwi+Vwo)*u/1000; //kW
+
+ //(b)The hydraulic efficiency, eta_H
+ eta_H=2*(Vwi+Vwo)*u/Vi^2*100; //In percentage
+
+//Results:-
+ printf("(a)The Power given by water to the runner=%.3f kW \n", P) //The answer vary due to round off error
+ printf("(b)The Hydraulic Efficiency, eta_H=%.2f percent \n", eta_H) //The answer vary due to round off error
+
+
diff --git a/3751/CH4/EX4.4/Ex4_4.sce b/3751/CH4/EX4.4/Ex4_4.sce new file mode 100644 index 000000000..73f338fc5 --- /dev/null +++ b/3751/CH4/EX4.4/Ex4_4.sce @@ -0,0 +1,39 @@ +//Fluid system - By - Shiv Kumar
+//Chapter 4 - Pelton Turbine (Impulse Turbine)
+//Example 4.4
+ clc
+ clear
+
+//Given Data:-
+ Cv=0.97;
+ Ku=0.46;
+ K=0.98;
+ m=10.2;
+ beta_o=10; //Bucket angle at exit, degrees
+ eta_m=90.5/100; //Mechanical Efficiency
+
+//Data Used:-
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations:-
+ Vi_by_rootH=Cv*sqrt(2*g); //Vi/sqrt(H)
+ Vwi_by_rootH=Vi_by_rootH;
+ ui_by_rootH=Ku*sqrt(2*g); //ui/sqrt(H)
+ Vri_by_rootH=Vi_by_rootH-ui_by_rootH; //Vi/sqrt(H)
+ Vro_by_rootH=K*Vri_by_rootH; //Vro/sqrt(H)
+ Vrwo_by_rootH=Vro_by_rootH*cosd(beta_o); //Vrwo/sqrt(H)
+ Vwo_by_rootH=Vrwo_by_rootH-ui_by_rootH; //Vwo/sqrt(H)
+ Q_by_d2_rootH=(%pi/4)*Vi_by_rootH; //Q/(d^2*sqrt(H))
+ //Pr=Power developed by runner
+ Pr_by_d2_H3_2=rho*Q_by_d2_rootH*(Vwi_by_rootH+Vwo_by_rootH)*ui_by_rootH; //Pr/(d^2*H^(3/2)), P in W
+ //P=Shaft Power
+ P_by_d2_H3_2=eta_m*Pr_by_d2_H3_2/1000; //P/(d^2*H^(3/2)), P in kW
+ N_d_by_rootH=ui_by_rootH*60/(%pi*m); //N*d/sqrt(h), N in rpm
+ Ns=N_d_by_rootH*sqrt(P_by_d2_H3_2); //Specific Speed in SI Units
+
+//Results:-
+ printf("The Specific Speed of the Turbine, Ns=%.f (SI Units)", Ns)
+
+
+
diff --git a/3751/CH4/EX4.5/Ex4_5.sce b/3751/CH4/EX4.5/Ex4_5.sce new file mode 100644 index 000000000..8e86c9580 --- /dev/null +++ b/3751/CH4/EX4.5/Ex4_5.sce @@ -0,0 +1,30 @@ +//Fluid system - By - Shiv Kumar
+//Chapter 4 - Pelton Turbine (Impulse Turbine)
+//Example 4.5
+ clc
+ clear
+
+//Given Data:-
+ n=2; //Number of Jets
+ P=15450; //Shaft Power, kW
+ d=200; //Diameter of each Jet, mm
+ H=400; //Net Head, m
+ Cv=1;
+
+//Data Used:-
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations:-
+ P=P*1000; //W
+ d=d/1000; //m
+ Vi=Cv*sqrt(2*g*H); //Absolute Velocity of Jet at Inlet, m/s
+ q=(%pi/4)*d^2*Vi; //Discharge through each Jet, m^3/s
+ Q=n*q; //Net Discharge
+ eta_O=P/(rho*Q*g*H)*100; //Overall Efficiency, in percentage
+
+//Results:-
+ printf("The Overall Efficiency of the Turbine, eta_o=%.2f percent", eta_O) //The answer vary due to round off error
+
+
+
diff --git a/3751/CH4/EX4.6/Ex4_6.sce b/3751/CH4/EX4.6/Ex4_6.sce new file mode 100644 index 000000000..9664981c7 --- /dev/null +++ b/3751/CH4/EX4.6/Ex4_6.sce @@ -0,0 +1,57 @@ +//Fluid system - By - Shiv Kumar
+//Chapter 4 - Pelton Turbine (Impulse Turbine)
+//Example 4.6
+ clc
+ clear
+//Given Data:-
+ N=300; //Speed of runner, rpm
+ H=510; //Head, m
+ d=200; //Diameter of the Jet, mm
+ AoD=165; //Angle of Jet(Deflection inside bucket), degrees
+ Vel_per=15; //Percentage by which velocity is reduced due to friction
+ Loss_per=3; //Percentage of mechanical Losses (of power Supplied)
+
+//Data Used:-
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+ Cv=0.98; //Co-efficient of Velocity
+ Ku=0.46; //Speed ratio
+
+//Computations:-
+ d=d/1000; //m
+ beta_O=180-AoD; //degrees
+ Vro_by_Vri=1-Vel_per/100; //Vro/Vri
+ Vi=Cv*sqrt(2*g*H); //m/s
+ Vwi=Vi;
+ u=Ku*sqrt(2*g*H); //m/s
+ uo=u;
+ ui=u;
+ Vri=Vi-ui; //m/s
+ Vro=Vri*Vro_by_Vri; //m/s
+ Vrwo=Vro*cosd(beta_O); //m/s
+ Vwo=uo-Vrwo; //m/s
+ Q=(%pi/4)*d^2*Vi; //Discharge, m^3/s
+ //(i) Resultant Force on bucket, F
+ F=rho*Q*(Vwi-Vwo)/1000; //kN
+
+ //Result (i):-
+ printf("(i) Resultant Force on bucket, F=%.3f kN \n", F) //The answer vary due to round off error
+
+ //(ii) Shaft Power, P
+ Pr=F*u; //power developed by runner, kW
+ P=Pr-(Loss_per/100)*Pr; //kW
+
+ //Result (ii)
+ printf("(ii)Shaft Power, P=%.3f kW \n", P) //The answer given in the textbook is wrong (due to round off error in F)
+ //OR
+ eta_m=1-Loss_per/100; //Mechanical Efficiency
+ P=eta_m*Pr; //kW
+
+ //(iii) Overall Efficiency, eta_O
+ eta_O=P*1000/(rho*Q*g*H)*100; //In percentage
+ //Result (iii)
+ printf("(iii)Overall efficiency, eta_O=%.2f percent", eta_O)
+
+
+
+
diff --git a/3751/CH4/EX4.7/Ex4_7.sce b/3751/CH4/EX4.7/Ex4_7.sce new file mode 100644 index 000000000..e9d73eb21 --- /dev/null +++ b/3751/CH4/EX4.7/Ex4_7.sce @@ -0,0 +1,39 @@ +//Fluid system - By - Shiv Kumar
+//Chapter 4 - Pelton Turbine (Impulse Turbine)
+//Example 4.7
+ clc
+ clear
+
+//Given Data:-
+ H_G=500; //Gross Head, m
+ h_f=(1/3)*H_G; //Head lost in friction in penstock, m
+ Q=2; //Discharge, m^3/s
+ AoD=165; //Angle of Deflection of Jet, degrees
+ Ku=0.45; //Speed ratio
+ Cv=1;
+
+//Data Used:-
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations:-
+ H=H_G-h_f; //Working Head, m
+ Vi=Cv*sqrt(2*g*H); //m/s
+ Vwi=Vi;
+ u=Ku*sqrt(2*g*H); //m/s
+ ui=u;
+ uo=u;
+ Vri=Vi-u; //m/s
+ Vro=Vri;
+ beta_o=180-AoD; //degrees
+ Vrwo=Vro*cosd(beta_o); //m/s
+ Vwo=Vrwo-uo; //m/s
+ P=rho*Q*(Vwi+Vwo)*u/1000; //power given by water to runner, kW
+ eta_H=2*(Vwi+Vwo)*u/Vi^2*100; //Hydraulic efficiency, In percentage
+
+//Results:-
+ printf("Power given by water to the runner=%.2f kW \n", P) //The answer vary due to round off error
+ printf("Hydraulic efficiency, eta_H=%.2f percent", eta_H) //The answer vary due to round off error
+
+
+
diff --git a/3751/CH4/EX4.8/Ex4_8.sce b/3751/CH4/EX4.8/Ex4_8.sce new file mode 100644 index 000000000..90e1e33af --- /dev/null +++ b/3751/CH4/EX4.8/Ex4_8.sce @@ -0,0 +1,49 @@ +//Fluid system - By - Shiv Kumar
+//Chapter 4 - Pelton Turbine (Impulse Turbine)
+//Example 4.8
+ clc
+ clear
+
+//Given Data:-
+ Cv=0.97; //Co-efficient of Velocity
+ H_l=400; //Head at lake, m
+ d=80; //Diameter of Jet, mm
+ D_pipe=0.6; //Diameter of pipe, m
+ l=4; //Length of pipe, m
+ f_dash=0.032; //Friction factor
+ AoD=165; //Angle of Deflection, degrees
+ beta_o=180-AoD; //degrees
+ // As bucket runs at 0.48 Jet speed
+ u_by_Vi=0.48; //u/Vi
+ Vel_per=15; //percentage by which velocity is reduced
+ eta_m=90/100; //Mechanical Efficiency
+
+//Data Used:-
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations:-
+ d=d/1000; //m
+ l=l*1000; //m
+ Vro_by_Vri=1-Vel_per/100; //Vro/Vri
+ //using continuity equation,
+ V_by_Vi=(d/D_pipe)^2; //V/Vi
+ Vi=sqrt((2*g*H_l)/(1/Cv^2+f_dash*l*V_by_Vi^2/D_pipe)); //m/s
+ Vwi=Vi;
+ u=Vi*u_by_Vi; //m/s
+ ui=u;
+ uo=u;
+ Vri=Vi-ui; //m/s
+ Vro=Vri*Vro_by_Vri; //m/s
+ Vrwo=Vro*cosd(beta_o); //m/s
+ //(i) Flow Rate, Q
+ Q=(%pi/4)*d^2*Vi; //m^3/s
+ //(ii) Shaft Power, P
+ Vwo=uo-Vrwo; //m/s
+ Pr=rho*Q*(Vwi-Vwo)*u/1000; //Power developed by the runner, kW
+ P=eta_m*Pr; //kW
+
+//Results:-
+ printf("Flow Rate, Q=%.4f m^3/s \n", Q) //The answer vary due to round off error
+ printf("Shaft power, P=%.2f kW", P) //The answer vary due to round off error
+
diff --git a/3751/CH4/EX4.9/Ex4_9.sce b/3751/CH4/EX4.9/Ex4_9.sce new file mode 100644 index 000000000..5d0fc182b --- /dev/null +++ b/3751/CH4/EX4.9/Ex4_9.sce @@ -0,0 +1,32 @@ +//Fluid system - By - Shiv Kumar
+//Chapter 4 - Pelton Turbine (Impulse Turbine)
+//Example 4.9
+ clc
+ clear
+
+//Given Data:-
+ P=3000; //Power developed, kW
+ H=300; //Head, m
+ N=375; //Speed, rpm
+ eta_O=83/100; //Overall efficiency
+ Ku=0.46; //Speed ratio
+ Cv=0.98; //Co-efficient of Velocity
+
+//Data Used:-
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations:-
+ //(i) Diameter of Turbine, D
+ D=60*Ku*sqrt(2*g*H)/(%pi*N); //m
+ //(ii) Diameter of Jet, d
+ Q=P*1000/(rho*g*H*eta_O); //m^3/s
+ Vi=Cv*sqrt(2*g*H); //m/s
+ d=(Q/((%pi/4)*Vi))^(1/2); //m
+
+//Results:-
+ printf("(i) Diameter of the Turbine, D=%.2f m \n", D) //The answer vary due to round off error
+ printf("(ii) Diameter of the Jet, d=%.4f m", d) //The answer vary due to round off error
+
+
+
|