1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
//Fluid Systems - By - Shiv Kumar
//Chapter 4 - Pelton Turbine (Impulse Turbine)
//Example 4.19
clc
clear
//Given Data:-
Q=2.5; //Total Discharge, m^3/s
Hr=300; //Head from reservoir to base of nozzle, m
n=6; //Total number of Jets
L=1200; //Lenght of Pipe, m
eta_p=92/100; //Efficiency of Power Transmission
eta_o=86/100; //Overall Efficiency
Cv=0.97; //Co-efficient of Velocity
f=0.0025; //Darcy Co-efficient of Friction
//Data Used:-
rho=1000; //Density of water, kg/m^3
g=9.81; //Acceleration due to gravity, m/s^2
//Computations:-
h_f=(1-eta_p)*Hr; //m
H=Hr-h_f; //Effective Head, m
Vi=Cv*sqrt(2*g*H); //Velocity of Jet, m/s
//(a)Shaft Power, P
P=rho*Q*g*H*eta_o/1000; //kW
//(b)Diameter of the Jet, d
q=Q/n; //Discharge per Jet, m^3/s
d=sqrt(q/((%pi/4)*Vi)); //m
//(c)Diameter of the Pipe, D_pipe
D_pipe=(64*f*L*Q^2/(h_f*2*g*%pi^2))^(1/5)*1000; //mm
//Results:-
printf(" (a)Shaft Power, P=%.3f kW\n",P)
printf(" (b)Diameter of the Jet, d=%.4f m\n",d)
printf(" (c)Diameter of the Pipe, D_pipe=%.2f mm\n",D_pipe) //The answer vary due to round off error
|