diff options
Diffstat (limited to '3751/CH4/EX4.19/Ex4_19.sce')
-rw-r--r-- | 3751/CH4/EX4.19/Ex4_19.sce | 43 |
1 files changed, 43 insertions, 0 deletions
diff --git a/3751/CH4/EX4.19/Ex4_19.sce b/3751/CH4/EX4.19/Ex4_19.sce new file mode 100644 index 000000000..3cc34361a --- /dev/null +++ b/3751/CH4/EX4.19/Ex4_19.sce @@ -0,0 +1,43 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 4 - Pelton Turbine (Impulse Turbine) +//Example 4.19 + + clc + clear + +//Given Data:- + Q=2.5; //Total Discharge, m^3/s + Hr=300; //Head from reservoir to base of nozzle, m + n=6; //Total number of Jets + L=1200; //Lenght of Pipe, m + eta_p=92/100; //Efficiency of Power Transmission + eta_o=86/100; //Overall Efficiency + Cv=0.97; //Co-efficient of Velocity + f=0.0025; //Darcy Co-efficient of Friction + + +//Data Used:- + rho=1000; //Density of water, kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations:- + h_f=(1-eta_p)*Hr; //m + H=Hr-h_f; //Effective Head, m + Vi=Cv*sqrt(2*g*H); //Velocity of Jet, m/s + + //(a)Shaft Power, P + P=rho*Q*g*H*eta_o/1000; //kW + + //(b)Diameter of the Jet, d + q=Q/n; //Discharge per Jet, m^3/s + d=sqrt(q/((%pi/4)*Vi)); //m + + //(c)Diameter of the Pipe, D_pipe + D_pipe=(64*f*L*Q^2/(h_f*2*g*%pi^2))^(1/5)*1000; //mm + +//Results:- + printf(" (a)Shaft Power, P=%.3f kW\n",P) + printf(" (b)Diameter of the Jet, d=%.4f m\n",d) + printf(" (c)Diameter of the Pipe, D_pipe=%.2f mm\n",D_pipe) //The answer vary due to round off error + + |