blob: fc2fc5073b813ffd25bec9819fd0e8d68e2fddb6 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
//Fluid system - By - Shiv Kumar
//Chapter 4 - Pelton Turbine (Impulse Turbine)
//Example 4.3
clc
clear
//Given Data:-
H=30; //Effective Head, m
AoD=165; //Jet Deflection Angle, degrees
Cv=0.98; //Co-efficient of Velocity
Ku=0.45; //Speed ratio
d=22; //Diameter of Jet, mm
//As relative velocity at outlet is 0.98 times relative velocity at inlet,
Vro_by_Vri=0.98; // Vro/Vri
//Data Used:-
rho=1000; //Density of water, kg/m^3
g=9.81; //Acceleration due to gravity, m/s^2
//Computations:-
d=d/1000; //m
beta_O=180-AoD; //degrees
Vi=Cv*sqrt(2*g*H); //Absolut Velocity of Jet, m/s
Vwi=Vi;
u=Ku*sqrt(2*g*H); //peripheral velocity of runner, m/s
ui=u;
uo=u;
Vri=Vi-ui; //m/s
Vro=Vro_by_Vri*Vri; //m/s
Vrwo=Vro*cosd(beta_O); //m/s
Vwo=Vrwo-uo; //m/s
//(a)Power given by water to runner, P
Q=(%pi/4)*d^2*Vi; //m^3/s
P=rho*Q*(Vwi+Vwo)*u/1000; //kW
//(b)The hydraulic efficiency, eta_H
eta_H=2*(Vwi+Vwo)*u/Vi^2*100; //In percentage
//Results:-
printf("(a)The Power given by water to the runner=%.3f kW \n", P) //The answer vary due to round off error
printf("(b)The Hydraulic Efficiency, eta_H=%.2f percent \n", eta_H) //The answer vary due to round off error
|