//Fluid system - By - Shiv Kumar //Chapter 4 - Pelton Turbine (Impulse Turbine) //Example 4.3 clc clear //Given Data:- H=30; //Effective Head, m AoD=165; //Jet Deflection Angle, degrees Cv=0.98; //Co-efficient of Velocity Ku=0.45; //Speed ratio d=22; //Diameter of Jet, mm //As relative velocity at outlet is 0.98 times relative velocity at inlet, Vro_by_Vri=0.98; // Vro/Vri //Data Used:- rho=1000; //Density of water, kg/m^3 g=9.81; //Acceleration due to gravity, m/s^2 //Computations:- d=d/1000; //m beta_O=180-AoD; //degrees Vi=Cv*sqrt(2*g*H); //Absolut Velocity of Jet, m/s Vwi=Vi; u=Ku*sqrt(2*g*H); //peripheral velocity of runner, m/s ui=u; uo=u; Vri=Vi-ui; //m/s Vro=Vro_by_Vri*Vri; //m/s Vrwo=Vro*cosd(beta_O); //m/s Vwo=Vrwo-uo; //m/s //(a)Power given by water to runner, P Q=(%pi/4)*d^2*Vi; //m^3/s P=rho*Q*(Vwi+Vwo)*u/1000; //kW //(b)The hydraulic efficiency, eta_H eta_H=2*(Vwi+Vwo)*u/Vi^2*100; //In percentage //Results:- printf("(a)The Power given by water to the runner=%.3f kW \n", P) //The answer vary due to round off error printf("(b)The Hydraulic Efficiency, eta_H=%.2f percent \n", eta_H) //The answer vary due to round off error