1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
//Fluid Systems - By - Shiv Kumar
//Chapter 4 - Pelton Turbine (Impulse Turbine)
//Example 4.12
clc
clear
//Given Data:-
n=2; //Number of Jets
P=5000; //Shaft Power, HP
N=375; //Speed of Shaft, rpm
Hth=200; //Theoretical Head at Base of Nozzle, m
eta_p=90/100; //Efficiency of Power Transmission
D=1.65; //Diameter of the Runner, m
Vel_per=10; //Percentage by which velocity is decreased
Deflection=165; //Jet Deflection, degrees
eta_o=90/100; //Overall Efficiency
Cv=0.98;
//Data Used:-
rho=1000; //Density of water, kg/m^3
g=9.81; //Acceleration due to gravity, m/s^2
//Computations:-
P=P*736; //W
Hact=eta_p*Hth; //Actual Head available at base of Nozzle, m
Vro_by_Vri=1-Vel_per/100; //Vro/Vri
beta_o=180-Deflection; //degrees
u=%pi*D*N/60; //Velocity of Runner, m/s
ui=u;
uo=u;
Vi=Cv*sqrt(2*g*Hact); //m/s
Vwi=Vi;
Vri=Vi-u; //m/s
Vro=Vri*Vro_by_Vri; //m/s
Vrwo=Vro*cosd(beta_o); //m/s
Vwo=uo-Vrwo; //m/s
//(a)Efficiency of Runner, eta_H
eta_H=2*(Vwi-Vwo)*u/Vi^2*100; //In Perecentage
//(b)Diameter of each jet, d
Q=P/(rho*g*Hact*eta_o); //Discharge, m^3/s
d=sqrt(Q/((%pi/4)*n*Vi)); //Diameter of each Jet, m
//Results:-
printf("(a)Efficiency of the Runner, eta_H=%.2f Percent\n",eta_H) //The answer vary due to round off error
printf("(b)Diameter of each Jet , d=%.3f m\n",d)
|