1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
//Fluid system - By - Shiv Kumar
//Chapter 4 - Pelton Turbine (Impulse Turbine)
//Example 4.1
clc
clear
//Given Data:-
P=735.75; //Power Developed, kW
H=200; //Head, m
N=800; //Speed, rpm
eta_O=86/100; //Overall Efficiency
d_by_D=1/10; //Ratio of Jet diameter to turbine diameter (d/D)
Cv=0.98; //Co-efficienct of velocity
Ku=0.45; //Speed ratio
//Data Used:-
rho=1000; //Density of water, kg/m^3
g=9.81; //Acceleration due to gravity, m/s^2
//Computations:-
Q=P*1000/(rho*g*H*eta_O); //Net discharge, m^3/s
//(a)Diameter of Turbine, D
D=60*Ku*sqrt(2*g*H)/(%pi*N); //m
d=D*d_by_D; //m
//(b)The no. of Jets required
q=(%pi/4)*d^2*Cv*sqrt(2*g*H); //Discharge of a single Jet, m^3/s
n=round(Q/q); //No. of Jets
//(c)Diameter of Jet, d
d=d_by_D*D; //m
//Results:-
printf("(a)Diameter of Turbine, D=%.4f m \n", D) //The answer vary due to round off error
printf("(b)The number of Jets required, n=%.f \n", n)
printf("(c)Diameter of Jet, d=%.4f m \n", d)
|