summaryrefslogtreecommitdiff
path: root/3751/CH11
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3751/CH11
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '3751/CH11')
-rw-r--r--3751/CH11/EX11.1/Ex11_1.sce37
-rw-r--r--3751/CH11/EX11.10/Ex11_10.sce58
-rw-r--r--3751/CH11/EX11.11/Ex11_11.sce34
-rw-r--r--3751/CH11/EX11.12/Ex11_12.sce48
-rw-r--r--3751/CH11/EX11.13/Ex11_13.sce56
-rw-r--r--3751/CH11/EX11.14/Ex11_14.sce59
-rw-r--r--3751/CH11/EX11.15/Ex11_15.sce31
-rw-r--r--3751/CH11/EX11.16/Ex11_16.sce33
-rw-r--r--3751/CH11/EX11.17/Ex11_17.sce40
-rw-r--r--3751/CH11/EX11.18/Ex11_18.sce51
-rw-r--r--3751/CH11/EX11.19/Ex11_19.sce49
-rw-r--r--3751/CH11/EX11.2/Ex11_2.sce36
-rw-r--r--3751/CH11/EX11.20/Ex11_20.sce48
-rw-r--r--3751/CH11/EX11.21/Ex11_21.sce40
-rw-r--r--3751/CH11/EX11.22/Ex11_22.sce35
-rw-r--r--3751/CH11/EX11.23/Ex11_23.sce30
-rw-r--r--3751/CH11/EX11.24/Ex11_24.sce31
-rw-r--r--3751/CH11/EX11.25/Ex11_25.sce32
-rw-r--r--3751/CH11/EX11.26/Ex11_26.sce37
-rw-r--r--3751/CH11/EX11.3/Ex11_3.sce27
-rw-r--r--3751/CH11/EX11.4/Ex11_4.sce50
-rw-r--r--3751/CH11/EX11.5/Ex11_5.sce33
-rw-r--r--3751/CH11/EX11.6/Ex11_6.sce59
-rw-r--r--3751/CH11/EX11.7/Ex11_7.sce44
-rw-r--r--3751/CH11/EX11.8/Ex11_8.sce37
-rw-r--r--3751/CH11/EX11.9/Ex11_9.sce49
26 files changed, 1084 insertions, 0 deletions
diff --git a/3751/CH11/EX11.1/Ex11_1.sce b/3751/CH11/EX11.1/Ex11_1.sce
new file mode 100644
index 000000000..c899a7b12
--- /dev/null
+++ b/3751/CH11/EX11.1/Ex11_1.sce
@@ -0,0 +1,37 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11- Centrifugal Pumps
+//Example 11.1
+//To Find the Work done by the Impeller on the water per unit weight of water.
+
+ clc
+ clear
+
+//Given Data:-
+ Di=210; //Internal diameter of Impeller, mm
+ Do=420; // External diameter of Impeller, mm
+ N=1100; //speed, rpm
+ beta_i=20; //Vane Angle at Inlet, degrees
+ beta_o=30; //Vane Angle at Outlet, degrees
+ //As water enters the impeller radially,
+ alpha_i=90; //degrees
+
+
+//Data Used:-
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+
+//Computations:-
+ Di=Di/1000; //m
+ Do=Do/1000; //m
+
+ ui=%pi*Di*N/60; //m/s
+ uo=%pi*Do*N/60; //m/s
+ Vfi=ui*tand(beta_i); //m/s
+ Vfo=Vfi;
+ Vwo=uo-Vfo/tand(beta_o); //m/s
+ Work=Vwo*uo/g; //N-m/N
+
+//Result:-
+ printf(" The Work done by the Impeller on the water per unit weight of water =%.2f N-m/N \n",Work) //The answer vary due to round off error
+
+
diff --git a/3751/CH11/EX11.10/Ex11_10.sce b/3751/CH11/EX11.10/Ex11_10.sce
new file mode 100644
index 000000000..435caed65
--- /dev/null
+++ b/3751/CH11/EX11.10/Ex11_10.sce
@@ -0,0 +1,58 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11- Centrifugal Pumps
+//Example 11.10
+//To Find (i)Manometric Head (ii)Manometric Efficiency (iii)Overall Efficiency of the Pump.
+
+ clc
+ clear
+
+//Given Data:-
+ Do=480; //External Diameter of the Impeller, mm
+ Di=240; //Internal Diameter of the Impeller, mm
+ N=1000; //Speed, rpm
+ Q=0.0576; //Rate of Flow, m^3/s
+ Vfo=2.4; //Velocity of Flow, m/s
+ Vfi=Vfo;
+ Ds=180; //Diameter of Suction Pipe, mm
+ Dd=120; //Diameter of Delivery Pipe, mm
+ h_s=6.2; //Suction Head, m of water (abs)
+ h_d=30.2; //Delivery Head, m of water (abs)
+ P=35; //Power required to drive the pump, kW
+ beta_o=45; //Vane Angle at outlet, degrees
+
+
+//Data Used:-
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations:-
+ Do=Do/1000; //m
+ Di=Di/1000; //m
+ Ds=Ds/1000; //m
+ Dd=Dd/1000; //m
+ P=P*1000; //W
+
+ //(i)Manometric Head, Hm
+
+ As=(%pi/4)*Ds^2; //m^2
+ Ad=(%pi/4)*Dd^2; //m^2
+ Vd=Q/Ad; //m/s
+ Vs=Q/As; //m/s
+ Hm=(h_d+Vd^2/(2*g))-(h_s+Vs^2/(2*g)); //m
+
+
+ uo=%pi*Do*N/60; // Tangential velocity of Impeller at Outlet, m/s
+ Vwo=uo-Vfo/tand(beta_o); //m/s
+
+ //(ii) Manometric Efficiency, eta_man
+ eta_man=g*Hm/(Vwo*uo)*100; //In Percentage
+
+ //(iii) The Overall Efficiency of the Pump, eta_o
+ eta_o=rho*Q*g*Hm/P*100; //In percentage
+
+//Results:-
+ printf(" (i)Manometric Head, Hm =%.2f m \n ",Hm)
+ printf(" (ii) Manometric Efficiency, eta_man =%.2f Percent \n ",eta_man) //The answer vary due to round off error
+ printf(" (iii) The Overall Efficiency of the Pump, eta_o =%.2f Percent \n ",eta_o) //The answer vary due to round off error
+
+
diff --git a/3751/CH11/EX11.11/Ex11_11.sce b/3751/CH11/EX11.11/Ex11_11.sce
new file mode 100644
index 000000000..508265377
--- /dev/null
+++ b/3751/CH11/EX11.11/Ex11_11.sce
@@ -0,0 +1,34 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11- Centrifugal Pumps
+//Example 11.11
+//To Find Vane Angle at Outer periphery of Impeller.
+
+ clc
+ clear
+
+//Given Data:-
+ Q=0.118; //discharge, m^3/s
+ N=1450; //Speed, rpm
+ Hm=25; //Manometric Head, m
+ Do=250; //Diameter of the Impeller at Outlet, mm
+ bo=50; //Width at Outlet, mm
+ eta_man=75/100; //Manometric Efficiency
+
+
+//Data Used:-
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations:-
+ Do=Do/1000; //m
+ bo=bo/1000; //m
+
+ uo=%pi*Do*N/60; // Tangential velocity of Impeller at Outlet, m/s
+ Vwo=g*Hm/(uo*eta_man); //m/s
+ Vfo=Q/(%pi*Do*bo); //m/s
+ beta_o=atand(Vfo/(uo-Vwo)); //degrees
+
+//Results:-
+ printf(" Vane Angle at Outlet, beta_o=%.2f Degrees \n ",beta_o) //The answer vary due to round off error
+
+
+
diff --git a/3751/CH11/EX11.12/Ex11_12.sce b/3751/CH11/EX11.12/Ex11_12.sce
new file mode 100644
index 000000000..0f946d77d
--- /dev/null
+++ b/3751/CH11/EX11.12/Ex11_12.sce
@@ -0,0 +1,48 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11- Centrifugal Pumps
+//Example 11.12
+//To Determine (i)Manometric Efficiency (ii)Vane Angle at Inlet (iii)The Least Speed at which the pump commence to work.
+
+ clc
+ clear
+
+//Given Data:-
+ Do=0.5; //Outer Diameter of the Impeller, m
+ N=600; //Speed, rpm
+ Q=8000; //Discharge, litres/min.
+ Hm=8.5; //Manometric Head, m
+ Di=0.25; //Inner Diameter of Impeller, m
+ beta_o=45; //Vane Angle at outlet, degrees
+ Af=0.06; //Area of Flow, m^2
+
+
+//Data Used:-
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations:-
+ Q=Q/60000; //m^3/s
+
+ Vfo=Q/Af; //m/s
+ Vfi=Vfo;
+ ui=%pi*Di*N/60; //Tangential velocity of Impeller at Inlet,m/s
+ uo=%pi*Do*N/60; // Tangential velocity of Impeller at Outlet, m/s
+ Vwo=uo-Vfo/tand(beta_o); //m/s
+
+ //(i) Manometric Efficiency, eta_man
+ eta_man=g*Hm/(Vwo*uo)*100; //In Percentage
+
+
+ //(ii) Vane Angle at Inlet, beta_i
+ beta_i=atand(Vfi/ui); //degrees
+
+ //(iii) The Least Speed at which the pump commence to work, Nmin
+ Nmin=120*Vwo*Do*(eta_man/100)/(%pi*(Do^2-Di^2)); //rpm
+
+
+
+//Results:-
+ printf(" (i) Manometric Efficiency, eta_man =%.2f Percent \n ",eta_man ) //The answer vary due to round off error
+ printf(" (ii) Vane Angle at Inlet, beta_i=%.2f Degrees \n ",beta_i ) //The answer vary due to round off error
+ printf(" (iii) The Least Speed at which the pump commence to work, Nmin=%.2f rpm \n",Nmin ) //The answer vary due to round off error
+
+
diff --git a/3751/CH11/EX11.13/Ex11_13.sce b/3751/CH11/EX11.13/Ex11_13.sce
new file mode 100644
index 000000000..0dde95b26
--- /dev/null
+++ b/3751/CH11/EX11.13/Ex11_13.sce
@@ -0,0 +1,56 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11- Centrifugal Pumps
+//Example 11.13
+//To Find (i)The Discharge of the Pump (ii)The Pressure at Suction and Delivery side of the Pump.
+
+ clc
+ clear
+
+//Given Data:-
+ h_st=35; //Static Head, m
+ h_s=4; //Suction Head, m
+ D=150; //Diameter of Pipes, mm
+ Ds=D; //Diameter of Suction Pipe, mm
+ Dd=D; //Diameter of Delivery Pipe, mm
+ h_fs=1.6; //Head loss in Suction pipe, m
+ h_fd=6.5; //Head loss in Delivery Pipe, m
+ Do=380; //Diameter of Impeller at Outlet, mm
+ bo=25; //Width of Impeller at Outlet, mm
+ N=1200; //Speed, rpm
+ beta_o=35; //Ezxit Blade Angle, degrees
+ eta_man=80/100; //Manometric Efficiency
+
+
+//Data Used:-
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations:-
+ Do=Do/1000; //m
+ D=D/1000; //m
+ Ds=Ds/1000; //m
+ Dd=Dd/1000; //m
+ bo=bo/1000; //m
+
+ Hm=h_st+h_fs+h_fd; // Manometric Head, m
+ uo=%pi*Do*N/60; // Tangential velocity of Impeller at Outlet, m/s
+ Vwo=g*Hm/(uo*eta_man); //m/s
+ Vfo=(uo-Vwo)*tand(beta_o); //m/s
+
+ //(i)The Discharge of the Pump, Q
+ Q=%pi*Do*bo*Vfo*1000; //litres/s
+
+ // (ii)The Pressure at Suction and Delivery side of the Pump
+
+ A=(%pi/4)*D^2; //m^2
+ Vd=Q*10^-3/A; //m/s
+ Vs=Vd; //m/s
+ Hs=h_s+h_fs+Vs^2/(2*g); //Pressure on Suction Side, m of water
+ h_d=h_st-h_s; //m
+ Hd=h_d+h_fd+Vd^2/(2*g); //Pressure on Delivery Side, m of water
+
+
+//Result:-
+ printf(" (i)The Discharge of the Pump, Q =%.2f litres/s\n",Q) //The answer vary due to round off error
+ printf(" (ii) Pressure on Suction Side, Hs =-%.3f m of water \n",Hs) //The answer vary due to round off error
+ printf(" Pressure on Delivery Side, Hd =%.2f m of water \n",Hd) //The answer vary due to round off error
+
diff --git a/3751/CH11/EX11.14/Ex11_14.sce b/3751/CH11/EX11.14/Ex11_14.sce
new file mode 100644
index 000000000..bc0da4a1d
--- /dev/null
+++ b/3751/CH11/EX11.14/Ex11_14.sce
@@ -0,0 +1,59 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11- Centrifugal Pumps
+//Example 11.14
+//To Find (a)Vane Angle of Impeller at Inlet (b) Overall Efficiency of the Pump (c) Manometric Efficiency of the Pump.
+
+ clc
+ clear
+
+//Given Data:-
+ Do=400; //Diameter of the Impeller at Outlet, mm
+ Di=200; //Diameter of the Impeller at Inlet, mm
+ N=1000; //Speed, rpm
+ Q=39; //Discharge, litres/s
+ Vfo=2.2; //Velocity of Flow, m/s
+ Vfi=Vfo;
+ Ds=150; //Diameter of Suction Pipe, mm
+ Dd=100; //Diameter of Delivery Pipe, mm
+ h_s=6; //Suction Head, m of water (abs)
+ h_d=30; //Delivery Head, m of water (abs)
+ P=15.75; //Power required to drive the pump, kW
+ beta_o=45; //Vane Angle at outlet, degrees
+
+
+//Data Used:-
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations:-
+ Do=Do/1000; //m
+ Di=Di/1000; //m
+ Ds=Ds/1000; //m
+ Dd=Dd/1000; //m
+ Q=Q/1000; //m^3/s
+ P=P*1000; //W
+
+ //(a)Vane Angle of Impeller at Inlet, beta_i
+ ui=%pi*Di*N/60; //m/s
+ beta_i=atand(Vfi/ui); //degrees
+
+ // (b) Overall Efficiency of the Pump
+ As=(%pi/4)*Ds^2; //m^2
+ Ad=(%pi/4)*Dd^2; //m^2
+ Vd=Q/Ad; //m/s
+ Vs=Q/As; //m/s
+ Hm=(h_d+Vd^2/(2*g))-(h_s+Vs^2/(2*g)); //m
+ eta_o=rho*Q*g*Hm/P*100; //In percentage
+
+
+ // (c) Manometric Efficiency of the Pump, eta_man
+ uo=%pi*Do*N/60; // Tangential velocity of Impeller at Outlet, m/s
+ Vwo=uo-Vfo/tand(beta_o); //m/s
+ eta_man=g*Hm/(Vwo*uo)*100; //In Percentage
+
+
+//Results:-
+ printf(" (a)Vane Angle of Impeller at Inlet, beta_i=%.2f Degrees \n ",beta_i) //The answer vary due to round off error
+ printf(" (b) The Overall Efficiency of the Pump, eta_o =%.2f Percent \n ",eta_o) //The answer vary due to round off error
+ printf(" (c) Manometric Efficiency of the Pump, eta_man =%.2f Percent \n ",eta_man) //The answer vary due to round off error
+
diff --git a/3751/CH11/EX11.15/Ex11_15.sce b/3751/CH11/EX11.15/Ex11_15.sce
new file mode 100644
index 000000000..76183f367
--- /dev/null
+++ b/3751/CH11/EX11.15/Ex11_15.sce
@@ -0,0 +1,31 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11- Centrifugal Pumps
+//Example 11.15
+//To Determine Minimum Starting Speed of the Pump.
+
+ clc
+ clear
+
+//Given Data:-
+ Di=300; //Diameter of Impeller at Inlet, mm
+ Do=600; //Diameter of the Impeller at Outlet, mm
+ Vfo=2.6; //Velocity of Flow at Outlet, m/s
+ beta_o=42; //Vane Angle at outlet, degrees
+ eta_man=65/100; //Manomwtric Efficiency, m^2
+
+
+//Computations:-
+ Di=Di/1000; //m
+ Do=Do/1000; //m
+
+ uo_by_N=%pi*Do/60; // uo/N
+
+ //Minimum Starting Speed of The Centrifugal Pump, Nmin
+ Nmin=(120*Do*eta_man*Vfo/(tand(beta_o)*%pi*(Do^2-Di^2)))/(120*eta_man*Do*uo_by_N/(%pi*(Do^2-Di^2))-1); //rpm
+
+
+
+//Results:-
+ printf("The Minimum Starting Speed of the Centrifugal Pump, Nmin =%.2f rpm \n",Nmin ) //The answer vary due to round off error
+
+
diff --git a/3751/CH11/EX11.16/Ex11_16.sce b/3751/CH11/EX11.16/Ex11_16.sce
new file mode 100644
index 000000000..e7435d7a1
--- /dev/null
+++ b/3751/CH11/EX11.16/Ex11_16.sce
@@ -0,0 +1,33 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11- Centrifugal Pumps
+//Example 11.16
+//To Determine Minimum Starting Speed of the Pump.
+
+ clc
+ clear
+
+//Given Data:-
+ Di=200; //Diameter of Impeller at Inlet, mm
+ Do=400; //Diameter of the Impeller at Outlet, mm
+ Hm=25; //Manometric Head, m
+
+//Data Used:-
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+
+//Computations:-
+ Di=Di/1000; //m
+ Do=Do/1000; //m
+
+ uo_by_Nmin=%pi*Do/60; // uo/Nmin
+ ui_by_Nmin=%pi*Di/60; // ui/Nmin
+
+ //Minimum Starting Speed of The Centrifugal Pump, Nmin
+ Nmin=sqrt(2*g*Hm/(uo_by_Nmin^2-ui_by_Nmin^2)); //rpm
+
+
+
+//Results:-
+ printf("The Minimum Starting Speed of the Centrifugal Pump, Nmin =%.f rpm \n",Nmin ) //The answer vary due to round off error
+
+
diff --git a/3751/CH11/EX11.17/Ex11_17.sce b/3751/CH11/EX11.17/Ex11_17.sce
new file mode 100644
index 000000000..7380fdca4
--- /dev/null
+++ b/3751/CH11/EX11.17/Ex11_17.sce
@@ -0,0 +1,40 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11- Centrifugal Pumps
+//Example 11.17
+//To Find (a)Manometric Efficiency. (b)Minimum Starting Speed
+
+ clc
+ clear
+
+//Given Data:-
+ Di=1200; //Inner Diameter of the Impeller, mm
+ Do=600; //Outer Diameter of the Impeller, mm
+ N=200; //Speed, rpm
+ Hm=6; //Manometric Head, m
+ beta_o=26; // Vane Angle at Outlet, degrees
+ Vfo=2.5; // Velocity of flow at Outlet, m/s
+
+
+//Data Used: -
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+
+//Computations:-
+ Di=Di/1000; //m
+ Do=Do/1000; //m
+
+ uo=%pi*Di*N/60; //Tangential Velocity of Impeller at Outlet, m/s
+ Vwo=uo-Vfo/tand(beta_o); //m/s
+
+ //(a)Manometric Efficiency, eta_man
+ eta_man=g*Hm/(Vwo*uo)*100; //In Percentage
+
+ //(b) Minimum Starting Speed, Nmin
+ Nmin =sqrt(2*g*Hm*60^2/(%pi^2*(Di^2-Do^2))); //rpm
+
+
+//Results:-
+ printf("(a)Manometric Efficiency =%.2f Percent \n",eta_man) //The answer vary due to round off error
+ printf(" (b)Minimum Starting Speed, Nmin =%.f rpm",Nmin) //The answer vary due to round off error
+
+
diff --git a/3751/CH11/EX11.18/Ex11_18.sce b/3751/CH11/EX11.18/Ex11_18.sce
new file mode 100644
index 000000000..f4fdce99e
--- /dev/null
+++ b/3751/CH11/EX11.18/Ex11_18.sce
@@ -0,0 +1,51 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11- Centrifugal Pumps
+//Example 11.18
+//To Find (a)Manometric Efficiency. (b)Inlet Vane Angles. (c)Loss of Head at Inlet of Impeller
+
+ clc
+ clear
+
+//Given Data:-
+ Q=0.21; //Discharge, m^3/s
+ Af=0.085; //Cross-sectional Area of Flow, m^2
+ Di=300; //Inner Diameter of the Impeller, mm
+ Do=600; //Outer Diameter of the Impeller, mm
+ N=600; //Speed, rpm
+ Hm=19; //Manometric Head, m
+ beta_o=35; //degrees
+ Q_per=30; //Percentage by which Discharge is reduced
+
+
+//Data Used: -
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+
+//Computations:-
+ Di=Di/1000; //m
+ Do=Do/1000; //m
+
+ ui=%pi*Di*N/60; //Tangential Velocity of Impeller at Inlet, m/s
+ uo=%pi*Do*N/60; //Tangential Velocity of Impeller at Outlet, m/s
+ Vfo=Q/Af; //Velocity of Flow, m/s
+ Vfi= Vfo;
+ Vwo=uo-Vfo/tand(beta_o); //m/s
+
+ //(a)Manometric Efficiency, eta_man
+ eta_man=g*Hm/(Vwo*uo)*100; //In Percentage
+
+ //(b)Inlet Vane Angle, beta_i
+ beta_i=atand(Vfi/ui); //degrees
+
+ //(c)Loss of Head at inlet, H_L
+ Q_dash=Q-Q_per/100*Q; //m^3/s
+ Vfi_dash=Q_dash/Af; //m/s
+ H_L=(ui-Vfi_dash*cotd(beta_i) )^2/(2*g); // m of water
+
+//Results
+ printf("(a)Manometric Efficiency, eta_man =%.2f Percent \n",eta_man) //The answer vary due to round off error
+ printf ("(b)Inlet Vane Angle, beta_i =%.2f Degrees \n",beta_i) //The answer vary due to round off error
+ printf ("(c)Loss of Head at Inlet to the Impeller =%.3f m of water", H_L) //The answer vary due to round off error
+
+
+
diff --git a/3751/CH11/EX11.19/Ex11_19.sce b/3751/CH11/EX11.19/Ex11_19.sce
new file mode 100644
index 000000000..90e4e142b
--- /dev/null
+++ b/3751/CH11/EX11.19/Ex11_19.sce
@@ -0,0 +1,49 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11- Centrifugal Pumps
+//Example 11.19
+//To Find (a)Head generated and (b)Power consumed
+
+ clc
+ clear
+
+//Given Data:-
+ n=2; //Number of Stages
+ Q=100; //Discharge, litres/s
+ N=1000; //Speed, rpm
+ Do=500; //Diameter of the Impeller at Outlet, mm
+ bo=25; //Width of Impeller at outlet, mm
+ beta_o=30; //degrees
+ Area_per=10; //Percentage of Total Area which is covered due to blade thickness
+ eta_o=78/100; //Overall Efficiency
+ eta_man=85/100; //Manometric Efficiency
+
+
+//Data Used: -
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+
+//Computations:-
+ Q=Q/1000; //m^3/s
+ Do=Do/1000; //m
+ bo=bo/1000; //m
+ A=%pi*Do*bo*(1-Area_per/100); //Actual Area of Flow, m^2
+
+ uo=%pi*Do*N/60; //Tangential Velocity of Impeller at Outlet, m/s
+ Vfo=Q/A; //Velocity of Flow, m/s
+ Vfi= Vfo;
+ Vwo=uo-Vfo/tand(beta_o); //m/s
+
+ //(a)Head generated, H_Tm
+ Hm=eta_man*Vwo*uo/g; //m
+ H_Tm=n*Hm; //m
+
+ //(b) Power consumed, P
+ P=rho*Q*g*H_Tm/(eta_o*1000); //kW
+
+
+//Results:-
+ printf("(a)Head Generated, H_Tm=%.2f m \n",H_Tm) //The answer vary due to round off error
+ printf(" (b)Power consumed, P =%.2f kW \n",P) //The answer vary due to round off error
+
+
diff --git a/3751/CH11/EX11.2/Ex11_2.sce b/3751/CH11/EX11.2/Ex11_2.sce
new file mode 100644
index 000000000..570404a98
--- /dev/null
+++ b/3751/CH11/EX11.2/Ex11_2.sce
@@ -0,0 +1,36 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11- Centrifugal Pumps
+//Example 11.2
+//To Find the Vane Angle at Outer Periphery of the Impeller.
+
+ clc
+ clear
+
+//Given Data:-
+ N=1470; //Speed, rpm
+ Q=100; //Discharge, litres/s
+ Hm=24; //manometric Head, m
+ Do=240; // Diameter of Impeller at Outlet, mm
+ b_o=50; //Width of Impeller at Outlet, mm
+ eta_man=76/100; //Manometric EEfficiency
+
+
+//Data Used:-
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+
+//Computations:-
+ Q=Q/1000; //m^3/s
+ Do=Do/1000; //m
+ b_o=b_o/1000; //m
+
+ uo=%pi*Do*N/60; //m/s
+ Vwo=g*Hm/(uo*eta_man); //m/s
+ Vfo=Q/(%pi*Do*b_o); //m/s
+ //From Outlet Velocity Triangle (OVT),
+ beta_o=atand(Vfo/(uo-Vwo)); //degrees
+
+//Result:-
+ printf("The Vane Angle at Outer Periphery of Impeller, beta_o=%.2f Degrees \n",beta_o) //The answer vary due to round off error
+
+
diff --git a/3751/CH11/EX11.20/Ex11_20.sce b/3751/CH11/EX11.20/Ex11_20.sce
new file mode 100644
index 000000000..98e25858e
--- /dev/null
+++ b/3751/CH11/EX11.20/Ex11_20.sce
@@ -0,0 +1,48 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11- Centrifugal Pumps
+//Example 11.20
+//To Determine (i)Head generated by the Pump (ii)Shaft Power required to run the Pump.
+
+ clc
+ clear
+
+//Given Data:-
+ n=3; //Number of Stages
+ Do=400; //Diameter of the Impeller at Outlet, mm
+ bo=20; //Width of Impeller at outlet, mm
+ beta_o=45; //degrees
+ Area_per=10; //Percentage of Total Area which is reduced.
+ eta_o=80/100; //Overall Efficiency
+ eta_man=90/100; //Manometric Efficiency
+ N=1000; //Speed, rpm
+ Q=0.05; //Discharge, m^3/s
+
+
+//Data Used: -
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+
+//Computations:-
+ Do=Do/1000; //m
+ bo=bo/1000; //m
+ A=%pi*Do*bo*(1-Area_per/100); //Actual Area of Flow, m^2
+
+ uo=%pi*Do*N/60; //Tangential Velocity of Impeller at Outlet, m/s
+ Vfo=Q/A; //Velocity of Flow, m/s
+ Vfi= Vfo;
+ Vwo=uo-Vfo/tand(beta_o); //m/s (Value given in book is wrong due to incorrect value of beta_o is used)
+
+ // (i)Head generated by the Pump , H_Tm
+ Hm=eta_man*Vwo*uo/g; //m
+ H_Tm=n*Hm; //m
+
+ //(ii) Shaft Power required to run the Pump , P
+ P=rho*Q*g*H_Tm/(eta_o*1000); //kW
+
+
+//Results:-
+ printf(" (i)Head generated by the Pump , H_Tm=%.2f m \n",H_Tm) //The answer provided in the textbook is wrong
+ printf(" (ii) Shaft Power required to run the Pump , P =%.2f kW \n",P) //The answer provided in the textbook is wrong
+
+
diff --git a/3751/CH11/EX11.21/Ex11_21.sce b/3751/CH11/EX11.21/Ex11_21.sce
new file mode 100644
index 000000000..4421e1019
--- /dev/null
+++ b/3751/CH11/EX11.21/Ex11_21.sce
@@ -0,0 +1,40 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11- Centrifugal Pumps
+//Example 11.21
+//To Find the Manometric Efficiency
+ clc
+ clear
+
+//Given Data:-
+ n=4; //Number of Pumps
+ N=400; //Speed, rpm
+ H_Tm=40; //Total Manometric Head, m
+ Q=0.2; //Discharge, m^3/s
+ beta_o=40; //Vane Angle at Outlet, degrees
+ Do=600; //Diameter of the Impeller at Outlet, mm
+ bo=50; //Width of Impeller at outlet, mm
+
+
+//Data Used: -
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+
+//Computations:-
+ Do=Do/1000; //m
+ bo=bo/1000; //m
+ A=%pi*Do*bo; //Area of Flow, m^2
+ Hm=H_Tm/n; //Manometric Head of each Pump, m
+
+ uo=%pi*Do*N/60; //Tangential Velocity of Impeller at Outlet, m/s
+ Vfo=Q/A; //Velocity of Flow, m/s
+ Vfi= Vfo;
+ Vwo=uo-Vfo/tand(beta_o); //m/s
+
+ eta_man=g*Hm/(Vwo*uo)*100; //Manometric Efficiency in Percentage
+
+
+//Results:-
+ printf("Manometric Efficiency, eta_man=%.2f Percent \n",eta_man) //The answer vary due to round off error
+
+
diff --git a/3751/CH11/EX11.22/Ex11_22.sce b/3751/CH11/EX11.22/Ex11_22.sce
new file mode 100644
index 000000000..9137c0ef3
--- /dev/null
+++ b/3751/CH11/EX11.22/Ex11_22.sce
@@ -0,0 +1,35 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11 - Centrifugal Pumps
+//Example 11.22
+
+ clc
+ clear
+
+//Given Data:-
+ //For Model,
+ H_mM=7.5; //Manometric Head, m
+ Nm=1000; //Speed, rpm
+ Pm=25; //Shaft Power, kW
+
+ //For Prototype,
+ H_mP=23; //Manometric Head, m
+
+ Dm_by_Dp=1/6; //Scale Ratio
+
+
+//Computations:-
+
+ // (a)Working Speed of the Prototype, Np
+ Np=Nm*Dm_by_Dp*sqrt(H_mP/H_mM); //rpm
+
+ // (b)Shaft Power of the Prototype, Pp
+ Pp=Pm*(Np/Nm)^3*(1/Dm_by_Dp)^5; //kW
+
+ // (c)Ratio of Flow Rates handled by the protoytpe and the Model, Qp/Qm
+ Qp_by_Qm=(Np/Nm)*(1/Dm_by_Dp)^3;
+
+//Results:-
+ printf(" (a)Working Speed of the Prototype, Np =%.2f rpm\n",Np) //The answer vary due to round off error
+ printf(" (b)Shaft Power of the Prototype, Pp =%.2f kW\n",Pp) //The answer vary due to round off error
+ printf(" (c)Ratio of Flow Rates handled by the protoytpe and the Model=%.2f ",Qp_by_Qm) //The answer provided in the textbook is wrong
+
diff --git a/3751/CH11/EX11.23/Ex11_23.sce b/3751/CH11/EX11.23/Ex11_23.sce
new file mode 100644
index 000000000..4697d140a
--- /dev/null
+++ b/3751/CH11/EX11.23/Ex11_23.sce
@@ -0,0 +1,30 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11 - Centrifugal Pumps
+//Example 11.23
+//To Find the Head and Impeller Diameter of the other Pump.
+
+ clc
+ clear
+
+//Given Data:-
+ //For Pump-1,
+ N1=1000; //Speed, rpm
+ D1=320; //Impeller Diameter, mm
+ Hm1=16; //Manometric Head, m
+ Q1=0.021; //Discharge, m^3/s
+
+ //For Pump-2,
+ N2=1000; //Speed, rpm
+ //As other Pump has to deliver half the discharge,
+ Q2=Q1/2; //m^3/s
+
+
+//Computations:-
+ Hm2=Hm1*(N2/N1)*sqrt(Q2/Q1); //m
+ D2=D1*(N1/N2)*sqrt(Hm2/Hm1); //mm
+
+//Results:-
+ printf("Head of the other Pump(Pump-2), Hm2=%.2f m\n",Hm2)
+ printf("Impeller Diameter of the other Pump(Pump-2), D2=%.2f mm\n",D2) //The answer vary due to round off error
+
+
diff --git a/3751/CH11/EX11.24/Ex11_24.sce b/3751/CH11/EX11.24/Ex11_24.sce
new file mode 100644
index 000000000..0023dda33
--- /dev/null
+++ b/3751/CH11/EX11.24/Ex11_24.sce
@@ -0,0 +1,31 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11 - Centrifugal Pumps
+//Example 11.24
+//To Find the the number of stages and Diameter of each Impeller of the similar multistage Pump.
+
+ clc
+ clear
+
+//Given Data:-
+ //For Single Stage Pump,
+ N1=2000; //Speed, rpm
+ D1=300; //Impeller Diameter, mm
+ Hm1=32; //Manometric Head, m
+ Q1=3; //Discharge, m^3/s
+
+ //For Multi Stage Pump,
+ N2=1600; //Speed, rpm
+ H_mT2=200; //Total Manometric Head, m
+ Q2=5; //Discharge, m^3/s
+
+
+//Computations:-
+ Hm2=Hm1*(N2/N1)*sqrt(Q2/Q1); //m
+ n=round(H_mT2/Hm2); //No. of stages
+ D2=D1*(N1/N2)*sqrt(Hm2/Hm1); //Diameter of Each Impeller, mm
+
+//Results:-
+ printf("Number of the Stages for the Multi stage Pump, n=%.f \n",n)
+ printf("Diameter of each Impeller for the Multi stage Pump, D2=%.2f mm\n",D2) //The answer vary due to round off error
+
+
diff --git a/3751/CH11/EX11.25/Ex11_25.sce b/3751/CH11/EX11.25/Ex11_25.sce
new file mode 100644
index 000000000..cf6b0ffeb
--- /dev/null
+++ b/3751/CH11/EX11.25/Ex11_25.sce
@@ -0,0 +1,32 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11 - Centrifugal Pumps
+//Example 11.25
+//To Find the Discharge and Head of the Pump at Condition '2' and '3' and Compare the Power Consumed in all the cases.
+
+ clc
+ clear
+
+//Given Data:-
+ //At Condition '1'
+ N1=750; //Speed, rpm
+ Q1=60; //Discharge, l/s
+ H1=20; //Head, m
+
+ //At Condition '2'
+ N2=1200; //Speed, rpm
+
+ //At Condition '3'
+ N3=4200; //Speed, rpm
+
+//Computations:-
+ Q2=Q1*(N2/N1); // l/s
+ H2=H1*(N2/N1)^2; //m
+ Q3=Q1*(N3/N1); // l/s
+ H3=H1*(N3/N1)^2; //m
+
+//Results:-
+ printf("At Condition -2 Discharge, Q2=%.f l/s and Head, H2=%.1f m\n",Q2,H2)
+ printf(" At Condition -3 Discharge, Q3=%.f l/s and Head, H3=%.1f m\n",Q3,H3)
+ printf(" P1: P2 : P3 = 1 : %.2f : %.2f ",Q2*H2/(Q1*H1),Q3*H3/(Q1*H1)) //The answer vary due to round off error
+
+
diff --git a/3751/CH11/EX11.26/Ex11_26.sce b/3751/CH11/EX11.26/Ex11_26.sce
new file mode 100644
index 000000000..742e16626
--- /dev/null
+++ b/3751/CH11/EX11.26/Ex11_26.sce
@@ -0,0 +1,37 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11 - Centrifugal Pumps
+//Example 11.26
+//To Calculate the Specific Speed of Pump and the Power Input and Find the Head, Discharge and Power required at 900 rpm.
+
+ clc
+ clear
+
+//Given Data:-
+
+ N=1500; //Speed, rpm
+ Q=0.2; //Discharge, m^3/s
+ H=15; //Head, m
+ eta_o=0.68; //Overall Efficiency
+ N2=900; //Speed, rpm
+
+ //Data Used:-
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleratio due to gravity, m/s^2
+
+
+//Computations:-
+ Ns=N*Q^(1/2)/(H^(3/4)); //Specific Speed of Pump, SI Units
+ P=rho*g*Q*H /eta_o; //Power Input, W
+
+ Q1=Q; H1=H; N1=N; P1=P;
+ Q2=Q1*(N2/N1); // m^3/s
+ H2=H1*(N2/N1)^2; //m
+ P2=P1*(N2/N1)^3; //W
+
+//Results:-
+ printf("Specific Speed of Pump, Ns=%.2f (SI Units)\n",Ns)
+ printf(" Power Input, P=%.2f W\n",P)
+ printf(" At 900 rpm (Condition 2)\n\t ")
+ printf(" Head, H2=%.1f m \n\t Discharge, Q2=%.2f m^3/s,\n\t Power required, P2=%.2f W",H2,Q2,P2)
+
+
diff --git a/3751/CH11/EX11.3/Ex11_3.sce b/3751/CH11/EX11.3/Ex11_3.sce
new file mode 100644
index 000000000..338c6ec47
--- /dev/null
+++ b/3751/CH11/EX11.3/Ex11_3.sce
@@ -0,0 +1,27 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11- Centrifugal Pumps
+//Example 11.3
+//To Find the Power of the Pump.
+
+ clc
+ clear
+
+//Given Data:-
+ H=40; //Total Head, m
+ Q=50; //Discharge, litres/s
+ eta_o=62/100; //Overall EEfficiency
+
+
+//Data Used:-
+ rho=1000; //Density of Water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+
+//Computations:-
+ Q=Q/1000; //m^3/s
+
+ P=rho*Q*g*H/(eta_o*1000); //kW
+
+//Result:-
+ printf("The Power of the Pump, P=%.3f kW \n",P)
+
diff --git a/3751/CH11/EX11.4/Ex11_4.sce b/3751/CH11/EX11.4/Ex11_4.sce
new file mode 100644
index 000000000..da9fce543
--- /dev/null
+++ b/3751/CH11/EX11.4/Ex11_4.sce
@@ -0,0 +1,50 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11- Centrifugal Pumps
+//Example 11.4
+//To Find (a)Vane Angle at Inlet (b)Work done by Impeller on water per second (c)Manometric Efficiency
+
+ clc
+ clear
+
+//Given Data:-
+ //As Outer Diameter equals two times Inner Diameter,
+ Do_by_Di=2; //Do/Di
+ N=980; //Speed, rpm
+ Hm=52; //Manometric Head, m
+ Vfo=2.6; //Velocity of Flow, m/s
+ Vfi=Vfo;
+ beta_o=42; //Vane Angle at outlet, degrees
+ Do=600; //Outer Diameter of the Impeller, mm
+ bo=60; //Width at Outlet, mm
+
+
+//Data Used:-
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations:-
+ Do=Do/1000; //m
+ bo=bo/1000; //m
+
+ Di=Do/Do_by_Di; //Diameter at Inlet of Impeller, m
+ ui=%pi*Di*N/60; //Tangential velocity of Impeller at Inlet,m/s
+ uo=%pi*Do*N/60; // Tangential velocity of Impeller at Outlet, m/s
+ Q=%pi*Do*bo*Vfo; //Discharge, m^3/s
+
+ //(a)Vane Angle at Inlet, beta_i
+ beta_i=atand(Vfi/ui); //degrees
+
+ //(b) Work done by Impeller on water per sec, W
+ Vwo=uo-Vfo/tand(beta_o); //m/s
+ W=rho*Q*Vwo*uo/1000; //kN-m/s
+
+ //(c) Manometric Efficiency, eta_man
+ eta_man=g*Hm/(Vwo*uo)*100; //In Percentage
+
+
+//Results:-
+ printf(" (a)Vane Angle at Inlet, beta_i=%.2f Degrees \n ",beta_i)
+ printf(" (b) Work done by Impeller on water per sec =%.3f kN-m/s \n ",W) //The answer provided in the textbook is wrong.
+ printf(" (c) Manometric Efficiency, eta_man =%.2f Percent \n ",eta_man) //The answer provided in the textbook is wrong.
+
+
diff --git a/3751/CH11/EX11.5/Ex11_5.sce b/3751/CH11/EX11.5/Ex11_5.sce
new file mode 100644
index 000000000..f927b863d
--- /dev/null
+++ b/3751/CH11/EX11.5/Ex11_5.sce
@@ -0,0 +1,33 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11- Centrifugal Pumps
+//Example 11.5
+//To Find the Discharge of Pump.
+
+ clc
+ clear
+
+//Given Data:-
+ Hm=14.5; //Manometric Head, m
+ N=1000; //Speed, rpm
+ beta_o=30; //Vane Angle at outlet, degrees
+ Do=300; //Outer Diameter of the Impeller, mm
+ bo=50; //Width at Outlet, mm
+ eta_man=95/100; //Manometric Efficiency
+
+
+//Data Used:-
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations:-
+ Do=Do/1000; //m
+ bo=bo/1000; //m
+
+ uo=%pi*Do*N/60; //m/s
+ Vwo=g*Hm/(uo*eta_man); //m/s
+ Vfo=tand(beta_o)*(uo-Vwo); //m/s
+ Q=%pi*Do*bo*Vfo*1000; //Discharge, litres/s
+
+//Results:-
+ printf("The Discharge of the Pump=%.2f litres/s\n",Q) //The answer vary due to round off error
+
+
diff --git a/3751/CH11/EX11.6/Ex11_6.sce b/3751/CH11/EX11.6/Ex11_6.sce
new file mode 100644
index 000000000..7c8c9871e
--- /dev/null
+++ b/3751/CH11/EX11.6/Ex11_6.sce
@@ -0,0 +1,59 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11- Centrifugal Pumps
+//Example 11.6
+//To Calculate the Blade angle at Outlet, Power Required and Overall Efficiency of Pump.
+
+ clc
+ clear
+
+//Given Data:-
+ Do=80; //Outer Diameter of the Impeller, cm
+ Q=1; //Discharge, m^3/s
+ H=80; //Head, m
+ N=1000; //Speed, rpm
+ bo=8; //Width at Outlet, cm
+ Delta_Q_per=3; //Percentage of Leakage Loss(of the Discharge)
+ Delta_P=10; //Mechanical Loss, kW
+ eta_H=80/100; //Hydraulic Efficiency
+
+
+//Data Used:-
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations:-
+ Do=Do/100; //m
+ bo=bo/100; //m
+
+ uo=%pi*Do*N/60; //m/s
+ Vfo=Q/(%pi*Do*bo); //m/s
+ Vwo=g*H/(uo*eta_H); //m/s
+ Vrwo=uo-Vwo; //m/s
+
+ //(a)
+ beta_o=atand(Vfo/Vrwo); //Blade Angle at Outlet, degrees
+
+ //Result1
+ printf(" Blade Angle at Outlet, beta_o=%.2f Degrees \n",beta_o) //The answer vary due to round off error
+
+ //(b)Power Required
+ Pi=rho*(1+Delta_Q_per/100)*Q*Vwo*uo; //Power delivered by the Impeller, W
+ P=Pi/1000+Delta_P; //Power required, kW
+
+ //Result2
+ printf(" Power Required, P =%.3f kW \n",P) //The answer vary due to round off error
+
+ //(c)Overall Efficiency, eta_o
+ eta_V=1/(1+Delta_Q_per/100); //Volumetric Efficiency
+ eta_m=(P-Delta_P)/P; //Mechanical Efficiency
+ eta_o=eta_H*eta_V*eta_m*100; //In Percentage
+
+ //Result3
+ printf(" Overall Efficiency, eta_o =%.2f Percent \n",eta_o) //The answer vary due to round off error
+
+ //Also, Overall Efficiency
+ eta_o=rho*Q*g*H/(P*1000)*100; //In Percentage
+
+ printf("Also, Overall Efficiency, eta_o=%.2f Percent\n",eta_o)
+
+
diff --git a/3751/CH11/EX11.7/Ex11_7.sce b/3751/CH11/EX11.7/Ex11_7.sce
new file mode 100644
index 000000000..f1e0d183f
--- /dev/null
+++ b/3751/CH11/EX11.7/Ex11_7.sce
@@ -0,0 +1,44 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11- Centrifugal Pumps
+//Example 11.7
+//To Determine the Impeller Speed and Torque produced by it.
+
+ clc
+ clear
+
+//Given Data:-
+ Q=60; //Discharge, litres/s
+ Ri=75; //Radius of the Impeller at Inlet, mm
+ Ro=150; //Radius of the Impeller at Outlet, cm
+ beta_o=30; //Vane Angle at Outlet, degrees
+ beta_i=30; //Vane Angle at Inlet, degrees
+ Ai=0.025; //Impeller Area at Inlet, m^2
+
+
+//Data Used:-
+ rho=1000; //Density of water, kg/m^3
+
+
+//Computations:-
+ Q=Q/1000; //m^3/s
+ Ri=Ri/1000; //m
+ Ro=Ro/1000; //m
+
+ Di=2*Ri; //m
+ Do=2*Ro; //m
+ Vfi=Q/Ai; //m/s
+ Vfo=Vfi;
+ ui=Vfi/tand(beta_i); //m/s
+ N=ui*60/(%pi*Di); //rpm
+
+ uo=%pi*Do*N/60; //m/s
+ Vrwo=Vfo/tand(beta_o); //m/s
+ Vwo=uo-Vrwo; //m/s
+ P=rho*Q*Vwo*uo; //Impeller Power, W
+ Ti=P*60/(2*%pi*N); //Impeller Torque, N-m
+
+//Results:-
+ printf("Impeller Speed, N=%.2f rpm\n",N) //The answer vary due to round off error
+ printf("Impeller Torque, Ti=%.2f N-m\n",Ti) //The answer vary due to round off error
+
+
diff --git a/3751/CH11/EX11.8/Ex11_8.sce b/3751/CH11/EX11.8/Ex11_8.sce
new file mode 100644
index 000000000..0cae0067a
--- /dev/null
+++ b/3751/CH11/EX11.8/Ex11_8.sce
@@ -0,0 +1,37 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11- Centrifugal Pumps
+//Example 11.8
+//To Determine the Power Required to drive the centrifugal Pump.
+
+ clc
+ clear
+
+//Given Data:-
+ Q=40; //Discharge, litres/s
+ Hst=20; //Static Head, m
+ D=150; //Diameter of Pipe, mm
+ L=100; //length of pipe, m
+ eta_o=70/100; //Overall Efficiency
+ f=0.015; //Coefficient of friction
+
+
+//Data Used:-
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+
+//Computations:-
+ Q=Q/1000; //m^3/s
+ D=D/1000; //m
+
+ A=(%pi/4)*D^2; //m^2
+ V=Q/A; //m/s
+ Vd=V;
+
+ h_f=4*f*L*V^2/(2*g*D); //Frictional Head Loss in Pipe, m
+ Hm=Hst+h_f+Vd^2/(2*g); //Manometric Head, m
+ P=rho*Q*g*Hm/(eta_o*1000); //kW
+
+//Result:-
+ printf("Power Required to drive the Centrifugal Pump=%.3f kW\n",P) //The answer vary due to round off error
+
diff --git a/3751/CH11/EX11.9/Ex11_9.sce b/3751/CH11/EX11.9/Ex11_9.sce
new file mode 100644
index 000000000..67c4b0361
--- /dev/null
+++ b/3751/CH11/EX11.9/Ex11_9.sce
@@ -0,0 +1,49 @@
+//Fluid Systems - By - Shiv Kumar
+//Chapter 11- Centrifugal Pumps
+//Example 11.9
+//To Find (i)Vane Angle at Inlet (ii)Work done by Impeller on water per second and (iii)Manometric Efficiency.
+
+ clc
+ clear
+
+//Given Data:-
+ Do=500; //Outer Diameter of the Impeller, mm
+ Di=250; //Inner Diameter of the Impeller, mm
+ N=1000; //Speed, rpm
+ Hm=40; //Manometric Head, m
+ Vfo=2.5; //Velocity of Flow, m/s
+ Vfi=Vfo;
+ beta_o=40; //Vane Angle at outlet, degrees
+ bo=50; //Width at Outlet, mm
+
+
+//Data Used:-
+ rho=1000; //Density of water, kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations:-
+ Do=Do/1000; //m
+ Di=Di/1000; //m
+ bo=bo/1000; //m
+
+ ui=%pi*Di*N/60; //Tangential velocity of Impeller at Inlet,m/s
+ uo=%pi*Do*N/60; // Tangential velocity of Impeller at Outlet, m/s
+ Q=%pi*Do*bo*Vfo; //Discharge, m^3/s
+
+ //(i)Vane Angle at Inlet, beta_i
+ beta_i=atand(Vfi/ui); //degrees
+
+ //(ii) Work done by Impeller on water per sec, W
+ Vwo=uo-Vfo/tand(beta_o); //m/s
+ W=rho*Q*Vwo*uo/1000; //kN-m/s
+
+ //(iii) Manometric Efficiency, eta_man
+ eta_man=g*Hm/(Vwo*uo)*100; //In Percentage
+
+
+//Results:-
+ printf(" (i)Vane Angle at Inlet, beta_i=%.2f Degrees \n ",beta_i) //The answer vary due to round off error
+ printf(" (ii) Work done by Impeller on water per sec =%.3f kN-m/s \n ",W) //The answer vary due to round off error
+ printf(" (iii) Manometric Efficiency, eta_man =%.2f Percent \n ",eta_man) //The answer vary due to round off error
+
+