diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3751/CH11 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3751/CH11')
26 files changed, 1084 insertions, 0 deletions
diff --git a/3751/CH11/EX11.1/Ex11_1.sce b/3751/CH11/EX11.1/Ex11_1.sce new file mode 100644 index 000000000..c899a7b12 --- /dev/null +++ b/3751/CH11/EX11.1/Ex11_1.sce @@ -0,0 +1,37 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11- Centrifugal Pumps +//Example 11.1 +//To Find the Work done by the Impeller on the water per unit weight of water. + + clc + clear + +//Given Data:- + Di=210; //Internal diameter of Impeller, mm + Do=420; // External diameter of Impeller, mm + N=1100; //speed, rpm + beta_i=20; //Vane Angle at Inlet, degrees + beta_o=30; //Vane Angle at Outlet, degrees + //As water enters the impeller radially, + alpha_i=90; //degrees + + +//Data Used:- + g=9.81; //Acceleration due to gravity, m/s^2 + + +//Computations:- + Di=Di/1000; //m + Do=Do/1000; //m + + ui=%pi*Di*N/60; //m/s + uo=%pi*Do*N/60; //m/s + Vfi=ui*tand(beta_i); //m/s + Vfo=Vfi; + Vwo=uo-Vfo/tand(beta_o); //m/s + Work=Vwo*uo/g; //N-m/N + +//Result:- + printf(" The Work done by the Impeller on the water per unit weight of water =%.2f N-m/N \n",Work) //The answer vary due to round off error + + diff --git a/3751/CH11/EX11.10/Ex11_10.sce b/3751/CH11/EX11.10/Ex11_10.sce new file mode 100644 index 000000000..435caed65 --- /dev/null +++ b/3751/CH11/EX11.10/Ex11_10.sce @@ -0,0 +1,58 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11- Centrifugal Pumps +//Example 11.10 +//To Find (i)Manometric Head (ii)Manometric Efficiency (iii)Overall Efficiency of the Pump. + + clc + clear + +//Given Data:- + Do=480; //External Diameter of the Impeller, mm + Di=240; //Internal Diameter of the Impeller, mm + N=1000; //Speed, rpm + Q=0.0576; //Rate of Flow, m^3/s + Vfo=2.4; //Velocity of Flow, m/s + Vfi=Vfo; + Ds=180; //Diameter of Suction Pipe, mm + Dd=120; //Diameter of Delivery Pipe, mm + h_s=6.2; //Suction Head, m of water (abs) + h_d=30.2; //Delivery Head, m of water (abs) + P=35; //Power required to drive the pump, kW + beta_o=45; //Vane Angle at outlet, degrees + + +//Data Used:- + rho=1000; //Density of water, kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations:- + Do=Do/1000; //m + Di=Di/1000; //m + Ds=Ds/1000; //m + Dd=Dd/1000; //m + P=P*1000; //W + + //(i)Manometric Head, Hm + + As=(%pi/4)*Ds^2; //m^2 + Ad=(%pi/4)*Dd^2; //m^2 + Vd=Q/Ad; //m/s + Vs=Q/As; //m/s + Hm=(h_d+Vd^2/(2*g))-(h_s+Vs^2/(2*g)); //m + + + uo=%pi*Do*N/60; // Tangential velocity of Impeller at Outlet, m/s + Vwo=uo-Vfo/tand(beta_o); //m/s + + //(ii) Manometric Efficiency, eta_man + eta_man=g*Hm/(Vwo*uo)*100; //In Percentage + + //(iii) The Overall Efficiency of the Pump, eta_o + eta_o=rho*Q*g*Hm/P*100; //In percentage + +//Results:- + printf(" (i)Manometric Head, Hm =%.2f m \n ",Hm) + printf(" (ii) Manometric Efficiency, eta_man =%.2f Percent \n ",eta_man) //The answer vary due to round off error + printf(" (iii) The Overall Efficiency of the Pump, eta_o =%.2f Percent \n ",eta_o) //The answer vary due to round off error + + diff --git a/3751/CH11/EX11.11/Ex11_11.sce b/3751/CH11/EX11.11/Ex11_11.sce new file mode 100644 index 000000000..508265377 --- /dev/null +++ b/3751/CH11/EX11.11/Ex11_11.sce @@ -0,0 +1,34 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11- Centrifugal Pumps +//Example 11.11 +//To Find Vane Angle at Outer periphery of Impeller. + + clc + clear + +//Given Data:- + Q=0.118; //discharge, m^3/s + N=1450; //Speed, rpm + Hm=25; //Manometric Head, m + Do=250; //Diameter of the Impeller at Outlet, mm + bo=50; //Width at Outlet, mm + eta_man=75/100; //Manometric Efficiency + + +//Data Used:- + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations:- + Do=Do/1000; //m + bo=bo/1000; //m + + uo=%pi*Do*N/60; // Tangential velocity of Impeller at Outlet, m/s + Vwo=g*Hm/(uo*eta_man); //m/s + Vfo=Q/(%pi*Do*bo); //m/s + beta_o=atand(Vfo/(uo-Vwo)); //degrees + +//Results:- + printf(" Vane Angle at Outlet, beta_o=%.2f Degrees \n ",beta_o) //The answer vary due to round off error + + + diff --git a/3751/CH11/EX11.12/Ex11_12.sce b/3751/CH11/EX11.12/Ex11_12.sce new file mode 100644 index 000000000..0f946d77d --- /dev/null +++ b/3751/CH11/EX11.12/Ex11_12.sce @@ -0,0 +1,48 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11- Centrifugal Pumps +//Example 11.12 +//To Determine (i)Manometric Efficiency (ii)Vane Angle at Inlet (iii)The Least Speed at which the pump commence to work. + + clc + clear + +//Given Data:- + Do=0.5; //Outer Diameter of the Impeller, m + N=600; //Speed, rpm + Q=8000; //Discharge, litres/min. + Hm=8.5; //Manometric Head, m + Di=0.25; //Inner Diameter of Impeller, m + beta_o=45; //Vane Angle at outlet, degrees + Af=0.06; //Area of Flow, m^2 + + +//Data Used:- + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations:- + Q=Q/60000; //m^3/s + + Vfo=Q/Af; //m/s + Vfi=Vfo; + ui=%pi*Di*N/60; //Tangential velocity of Impeller at Inlet,m/s + uo=%pi*Do*N/60; // Tangential velocity of Impeller at Outlet, m/s + Vwo=uo-Vfo/tand(beta_o); //m/s + + //(i) Manometric Efficiency, eta_man + eta_man=g*Hm/(Vwo*uo)*100; //In Percentage + + + //(ii) Vane Angle at Inlet, beta_i + beta_i=atand(Vfi/ui); //degrees + + //(iii) The Least Speed at which the pump commence to work, Nmin + Nmin=120*Vwo*Do*(eta_man/100)/(%pi*(Do^2-Di^2)); //rpm + + + +//Results:- + printf(" (i) Manometric Efficiency, eta_man =%.2f Percent \n ",eta_man ) //The answer vary due to round off error + printf(" (ii) Vane Angle at Inlet, beta_i=%.2f Degrees \n ",beta_i ) //The answer vary due to round off error + printf(" (iii) The Least Speed at which the pump commence to work, Nmin=%.2f rpm \n",Nmin ) //The answer vary due to round off error + + diff --git a/3751/CH11/EX11.13/Ex11_13.sce b/3751/CH11/EX11.13/Ex11_13.sce new file mode 100644 index 000000000..0dde95b26 --- /dev/null +++ b/3751/CH11/EX11.13/Ex11_13.sce @@ -0,0 +1,56 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11- Centrifugal Pumps +//Example 11.13 +//To Find (i)The Discharge of the Pump (ii)The Pressure at Suction and Delivery side of the Pump. + + clc + clear + +//Given Data:- + h_st=35; //Static Head, m + h_s=4; //Suction Head, m + D=150; //Diameter of Pipes, mm + Ds=D; //Diameter of Suction Pipe, mm + Dd=D; //Diameter of Delivery Pipe, mm + h_fs=1.6; //Head loss in Suction pipe, m + h_fd=6.5; //Head loss in Delivery Pipe, m + Do=380; //Diameter of Impeller at Outlet, mm + bo=25; //Width of Impeller at Outlet, mm + N=1200; //Speed, rpm + beta_o=35; //Ezxit Blade Angle, degrees + eta_man=80/100; //Manometric Efficiency + + +//Data Used:- + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations:- + Do=Do/1000; //m + D=D/1000; //m + Ds=Ds/1000; //m + Dd=Dd/1000; //m + bo=bo/1000; //m + + Hm=h_st+h_fs+h_fd; // Manometric Head, m + uo=%pi*Do*N/60; // Tangential velocity of Impeller at Outlet, m/s + Vwo=g*Hm/(uo*eta_man); //m/s + Vfo=(uo-Vwo)*tand(beta_o); //m/s + + //(i)The Discharge of the Pump, Q + Q=%pi*Do*bo*Vfo*1000; //litres/s + + // (ii)The Pressure at Suction and Delivery side of the Pump + + A=(%pi/4)*D^2; //m^2 + Vd=Q*10^-3/A; //m/s + Vs=Vd; //m/s + Hs=h_s+h_fs+Vs^2/(2*g); //Pressure on Suction Side, m of water + h_d=h_st-h_s; //m + Hd=h_d+h_fd+Vd^2/(2*g); //Pressure on Delivery Side, m of water + + +//Result:- + printf(" (i)The Discharge of the Pump, Q =%.2f litres/s\n",Q) //The answer vary due to round off error + printf(" (ii) Pressure on Suction Side, Hs =-%.3f m of water \n",Hs) //The answer vary due to round off error + printf(" Pressure on Delivery Side, Hd =%.2f m of water \n",Hd) //The answer vary due to round off error + diff --git a/3751/CH11/EX11.14/Ex11_14.sce b/3751/CH11/EX11.14/Ex11_14.sce new file mode 100644 index 000000000..bc0da4a1d --- /dev/null +++ b/3751/CH11/EX11.14/Ex11_14.sce @@ -0,0 +1,59 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11- Centrifugal Pumps +//Example 11.14 +//To Find (a)Vane Angle of Impeller at Inlet (b) Overall Efficiency of the Pump (c) Manometric Efficiency of the Pump. + + clc + clear + +//Given Data:- + Do=400; //Diameter of the Impeller at Outlet, mm + Di=200; //Diameter of the Impeller at Inlet, mm + N=1000; //Speed, rpm + Q=39; //Discharge, litres/s + Vfo=2.2; //Velocity of Flow, m/s + Vfi=Vfo; + Ds=150; //Diameter of Suction Pipe, mm + Dd=100; //Diameter of Delivery Pipe, mm + h_s=6; //Suction Head, m of water (abs) + h_d=30; //Delivery Head, m of water (abs) + P=15.75; //Power required to drive the pump, kW + beta_o=45; //Vane Angle at outlet, degrees + + +//Data Used:- + rho=1000; //Density of water, kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations:- + Do=Do/1000; //m + Di=Di/1000; //m + Ds=Ds/1000; //m + Dd=Dd/1000; //m + Q=Q/1000; //m^3/s + P=P*1000; //W + + //(a)Vane Angle of Impeller at Inlet, beta_i + ui=%pi*Di*N/60; //m/s + beta_i=atand(Vfi/ui); //degrees + + // (b) Overall Efficiency of the Pump + As=(%pi/4)*Ds^2; //m^2 + Ad=(%pi/4)*Dd^2; //m^2 + Vd=Q/Ad; //m/s + Vs=Q/As; //m/s + Hm=(h_d+Vd^2/(2*g))-(h_s+Vs^2/(2*g)); //m + eta_o=rho*Q*g*Hm/P*100; //In percentage + + + // (c) Manometric Efficiency of the Pump, eta_man + uo=%pi*Do*N/60; // Tangential velocity of Impeller at Outlet, m/s + Vwo=uo-Vfo/tand(beta_o); //m/s + eta_man=g*Hm/(Vwo*uo)*100; //In Percentage + + +//Results:- + printf(" (a)Vane Angle of Impeller at Inlet, beta_i=%.2f Degrees \n ",beta_i) //The answer vary due to round off error + printf(" (b) The Overall Efficiency of the Pump, eta_o =%.2f Percent \n ",eta_o) //The answer vary due to round off error + printf(" (c) Manometric Efficiency of the Pump, eta_man =%.2f Percent \n ",eta_man) //The answer vary due to round off error + diff --git a/3751/CH11/EX11.15/Ex11_15.sce b/3751/CH11/EX11.15/Ex11_15.sce new file mode 100644 index 000000000..76183f367 --- /dev/null +++ b/3751/CH11/EX11.15/Ex11_15.sce @@ -0,0 +1,31 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11- Centrifugal Pumps +//Example 11.15 +//To Determine Minimum Starting Speed of the Pump. + + clc + clear + +//Given Data:- + Di=300; //Diameter of Impeller at Inlet, mm + Do=600; //Diameter of the Impeller at Outlet, mm + Vfo=2.6; //Velocity of Flow at Outlet, m/s + beta_o=42; //Vane Angle at outlet, degrees + eta_man=65/100; //Manomwtric Efficiency, m^2 + + +//Computations:- + Di=Di/1000; //m + Do=Do/1000; //m + + uo_by_N=%pi*Do/60; // uo/N + + //Minimum Starting Speed of The Centrifugal Pump, Nmin + Nmin=(120*Do*eta_man*Vfo/(tand(beta_o)*%pi*(Do^2-Di^2)))/(120*eta_man*Do*uo_by_N/(%pi*(Do^2-Di^2))-1); //rpm + + + +//Results:- + printf("The Minimum Starting Speed of the Centrifugal Pump, Nmin =%.2f rpm \n",Nmin ) //The answer vary due to round off error + + diff --git a/3751/CH11/EX11.16/Ex11_16.sce b/3751/CH11/EX11.16/Ex11_16.sce new file mode 100644 index 000000000..e7435d7a1 --- /dev/null +++ b/3751/CH11/EX11.16/Ex11_16.sce @@ -0,0 +1,33 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11- Centrifugal Pumps +//Example 11.16 +//To Determine Minimum Starting Speed of the Pump. + + clc + clear + +//Given Data:- + Di=200; //Diameter of Impeller at Inlet, mm + Do=400; //Diameter of the Impeller at Outlet, mm + Hm=25; //Manometric Head, m + +//Data Used:- + g=9.81; //Acceleration due to gravity, m/s^2 + + +//Computations:- + Di=Di/1000; //m + Do=Do/1000; //m + + uo_by_Nmin=%pi*Do/60; // uo/Nmin + ui_by_Nmin=%pi*Di/60; // ui/Nmin + + //Minimum Starting Speed of The Centrifugal Pump, Nmin + Nmin=sqrt(2*g*Hm/(uo_by_Nmin^2-ui_by_Nmin^2)); //rpm + + + +//Results:- + printf("The Minimum Starting Speed of the Centrifugal Pump, Nmin =%.f rpm \n",Nmin ) //The answer vary due to round off error + + diff --git a/3751/CH11/EX11.17/Ex11_17.sce b/3751/CH11/EX11.17/Ex11_17.sce new file mode 100644 index 000000000..7380fdca4 --- /dev/null +++ b/3751/CH11/EX11.17/Ex11_17.sce @@ -0,0 +1,40 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11- Centrifugal Pumps +//Example 11.17 +//To Find (a)Manometric Efficiency. (b)Minimum Starting Speed + + clc + clear + +//Given Data:- + Di=1200; //Inner Diameter of the Impeller, mm + Do=600; //Outer Diameter of the Impeller, mm + N=200; //Speed, rpm + Hm=6; //Manometric Head, m + beta_o=26; // Vane Angle at Outlet, degrees + Vfo=2.5; // Velocity of flow at Outlet, m/s + + +//Data Used: - + g=9.81; //Acceleration due to gravity, m/s^2 + + +//Computations:- + Di=Di/1000; //m + Do=Do/1000; //m + + uo=%pi*Di*N/60; //Tangential Velocity of Impeller at Outlet, m/s + Vwo=uo-Vfo/tand(beta_o); //m/s + + //(a)Manometric Efficiency, eta_man + eta_man=g*Hm/(Vwo*uo)*100; //In Percentage + + //(b) Minimum Starting Speed, Nmin + Nmin =sqrt(2*g*Hm*60^2/(%pi^2*(Di^2-Do^2))); //rpm + + +//Results:- + printf("(a)Manometric Efficiency =%.2f Percent \n",eta_man) //The answer vary due to round off error + printf(" (b)Minimum Starting Speed, Nmin =%.f rpm",Nmin) //The answer vary due to round off error + + diff --git a/3751/CH11/EX11.18/Ex11_18.sce b/3751/CH11/EX11.18/Ex11_18.sce new file mode 100644 index 000000000..f4fdce99e --- /dev/null +++ b/3751/CH11/EX11.18/Ex11_18.sce @@ -0,0 +1,51 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11- Centrifugal Pumps +//Example 11.18 +//To Find (a)Manometric Efficiency. (b)Inlet Vane Angles. (c)Loss of Head at Inlet of Impeller + + clc + clear + +//Given Data:- + Q=0.21; //Discharge, m^3/s + Af=0.085; //Cross-sectional Area of Flow, m^2 + Di=300; //Inner Diameter of the Impeller, mm + Do=600; //Outer Diameter of the Impeller, mm + N=600; //Speed, rpm + Hm=19; //Manometric Head, m + beta_o=35; //degrees + Q_per=30; //Percentage by which Discharge is reduced + + +//Data Used: - + g=9.81; //Acceleration due to gravity, m/s^2 + + +//Computations:- + Di=Di/1000; //m + Do=Do/1000; //m + + ui=%pi*Di*N/60; //Tangential Velocity of Impeller at Inlet, m/s + uo=%pi*Do*N/60; //Tangential Velocity of Impeller at Outlet, m/s + Vfo=Q/Af; //Velocity of Flow, m/s + Vfi= Vfo; + Vwo=uo-Vfo/tand(beta_o); //m/s + + //(a)Manometric Efficiency, eta_man + eta_man=g*Hm/(Vwo*uo)*100; //In Percentage + + //(b)Inlet Vane Angle, beta_i + beta_i=atand(Vfi/ui); //degrees + + //(c)Loss of Head at inlet, H_L + Q_dash=Q-Q_per/100*Q; //m^3/s + Vfi_dash=Q_dash/Af; //m/s + H_L=(ui-Vfi_dash*cotd(beta_i) )^2/(2*g); // m of water + +//Results + printf("(a)Manometric Efficiency, eta_man =%.2f Percent \n",eta_man) //The answer vary due to round off error + printf ("(b)Inlet Vane Angle, beta_i =%.2f Degrees \n",beta_i) //The answer vary due to round off error + printf ("(c)Loss of Head at Inlet to the Impeller =%.3f m of water", H_L) //The answer vary due to round off error + + + diff --git a/3751/CH11/EX11.19/Ex11_19.sce b/3751/CH11/EX11.19/Ex11_19.sce new file mode 100644 index 000000000..90e4e142b --- /dev/null +++ b/3751/CH11/EX11.19/Ex11_19.sce @@ -0,0 +1,49 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11- Centrifugal Pumps +//Example 11.19 +//To Find (a)Head generated and (b)Power consumed + + clc + clear + +//Given Data:- + n=2; //Number of Stages + Q=100; //Discharge, litres/s + N=1000; //Speed, rpm + Do=500; //Diameter of the Impeller at Outlet, mm + bo=25; //Width of Impeller at outlet, mm + beta_o=30; //degrees + Area_per=10; //Percentage of Total Area which is covered due to blade thickness + eta_o=78/100; //Overall Efficiency + eta_man=85/100; //Manometric Efficiency + + +//Data Used: - + rho=1000; //Density of water, kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + + +//Computations:- + Q=Q/1000; //m^3/s + Do=Do/1000; //m + bo=bo/1000; //m + A=%pi*Do*bo*(1-Area_per/100); //Actual Area of Flow, m^2 + + uo=%pi*Do*N/60; //Tangential Velocity of Impeller at Outlet, m/s + Vfo=Q/A; //Velocity of Flow, m/s + Vfi= Vfo; + Vwo=uo-Vfo/tand(beta_o); //m/s + + //(a)Head generated, H_Tm + Hm=eta_man*Vwo*uo/g; //m + H_Tm=n*Hm; //m + + //(b) Power consumed, P + P=rho*Q*g*H_Tm/(eta_o*1000); //kW + + +//Results:- + printf("(a)Head Generated, H_Tm=%.2f m \n",H_Tm) //The answer vary due to round off error + printf(" (b)Power consumed, P =%.2f kW \n",P) //The answer vary due to round off error + + diff --git a/3751/CH11/EX11.2/Ex11_2.sce b/3751/CH11/EX11.2/Ex11_2.sce new file mode 100644 index 000000000..570404a98 --- /dev/null +++ b/3751/CH11/EX11.2/Ex11_2.sce @@ -0,0 +1,36 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11- Centrifugal Pumps +//Example 11.2 +//To Find the Vane Angle at Outer Periphery of the Impeller. + + clc + clear + +//Given Data:- + N=1470; //Speed, rpm + Q=100; //Discharge, litres/s + Hm=24; //manometric Head, m + Do=240; // Diameter of Impeller at Outlet, mm + b_o=50; //Width of Impeller at Outlet, mm + eta_man=76/100; //Manometric EEfficiency + + +//Data Used:- + g=9.81; //Acceleration due to gravity, m/s^2 + + +//Computations:- + Q=Q/1000; //m^3/s + Do=Do/1000; //m + b_o=b_o/1000; //m + + uo=%pi*Do*N/60; //m/s + Vwo=g*Hm/(uo*eta_man); //m/s + Vfo=Q/(%pi*Do*b_o); //m/s + //From Outlet Velocity Triangle (OVT), + beta_o=atand(Vfo/(uo-Vwo)); //degrees + +//Result:- + printf("The Vane Angle at Outer Periphery of Impeller, beta_o=%.2f Degrees \n",beta_o) //The answer vary due to round off error + + diff --git a/3751/CH11/EX11.20/Ex11_20.sce b/3751/CH11/EX11.20/Ex11_20.sce new file mode 100644 index 000000000..98e25858e --- /dev/null +++ b/3751/CH11/EX11.20/Ex11_20.sce @@ -0,0 +1,48 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11- Centrifugal Pumps +//Example 11.20 +//To Determine (i)Head generated by the Pump (ii)Shaft Power required to run the Pump. + + clc + clear + +//Given Data:- + n=3; //Number of Stages + Do=400; //Diameter of the Impeller at Outlet, mm + bo=20; //Width of Impeller at outlet, mm + beta_o=45; //degrees + Area_per=10; //Percentage of Total Area which is reduced. + eta_o=80/100; //Overall Efficiency + eta_man=90/100; //Manometric Efficiency + N=1000; //Speed, rpm + Q=0.05; //Discharge, m^3/s + + +//Data Used: - + rho=1000; //Density of water, kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + + +//Computations:- + Do=Do/1000; //m + bo=bo/1000; //m + A=%pi*Do*bo*(1-Area_per/100); //Actual Area of Flow, m^2 + + uo=%pi*Do*N/60; //Tangential Velocity of Impeller at Outlet, m/s + Vfo=Q/A; //Velocity of Flow, m/s + Vfi= Vfo; + Vwo=uo-Vfo/tand(beta_o); //m/s (Value given in book is wrong due to incorrect value of beta_o is used) + + // (i)Head generated by the Pump , H_Tm + Hm=eta_man*Vwo*uo/g; //m + H_Tm=n*Hm; //m + + //(ii) Shaft Power required to run the Pump , P + P=rho*Q*g*H_Tm/(eta_o*1000); //kW + + +//Results:- + printf(" (i)Head generated by the Pump , H_Tm=%.2f m \n",H_Tm) //The answer provided in the textbook is wrong + printf(" (ii) Shaft Power required to run the Pump , P =%.2f kW \n",P) //The answer provided in the textbook is wrong + + diff --git a/3751/CH11/EX11.21/Ex11_21.sce b/3751/CH11/EX11.21/Ex11_21.sce new file mode 100644 index 000000000..4421e1019 --- /dev/null +++ b/3751/CH11/EX11.21/Ex11_21.sce @@ -0,0 +1,40 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11- Centrifugal Pumps +//Example 11.21 +//To Find the Manometric Efficiency + clc + clear + +//Given Data:- + n=4; //Number of Pumps + N=400; //Speed, rpm + H_Tm=40; //Total Manometric Head, m + Q=0.2; //Discharge, m^3/s + beta_o=40; //Vane Angle at Outlet, degrees + Do=600; //Diameter of the Impeller at Outlet, mm + bo=50; //Width of Impeller at outlet, mm + + +//Data Used: - + rho=1000; //Density of water, kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + + +//Computations:- + Do=Do/1000; //m + bo=bo/1000; //m + A=%pi*Do*bo; //Area of Flow, m^2 + Hm=H_Tm/n; //Manometric Head of each Pump, m + + uo=%pi*Do*N/60; //Tangential Velocity of Impeller at Outlet, m/s + Vfo=Q/A; //Velocity of Flow, m/s + Vfi= Vfo; + Vwo=uo-Vfo/tand(beta_o); //m/s + + eta_man=g*Hm/(Vwo*uo)*100; //Manometric Efficiency in Percentage + + +//Results:- + printf("Manometric Efficiency, eta_man=%.2f Percent \n",eta_man) //The answer vary due to round off error + + diff --git a/3751/CH11/EX11.22/Ex11_22.sce b/3751/CH11/EX11.22/Ex11_22.sce new file mode 100644 index 000000000..9137c0ef3 --- /dev/null +++ b/3751/CH11/EX11.22/Ex11_22.sce @@ -0,0 +1,35 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11 - Centrifugal Pumps +//Example 11.22 + + clc + clear + +//Given Data:- + //For Model, + H_mM=7.5; //Manometric Head, m + Nm=1000; //Speed, rpm + Pm=25; //Shaft Power, kW + + //For Prototype, + H_mP=23; //Manometric Head, m + + Dm_by_Dp=1/6; //Scale Ratio + + +//Computations:- + + // (a)Working Speed of the Prototype, Np + Np=Nm*Dm_by_Dp*sqrt(H_mP/H_mM); //rpm + + // (b)Shaft Power of the Prototype, Pp + Pp=Pm*(Np/Nm)^3*(1/Dm_by_Dp)^5; //kW + + // (c)Ratio of Flow Rates handled by the protoytpe and the Model, Qp/Qm + Qp_by_Qm=(Np/Nm)*(1/Dm_by_Dp)^3; + +//Results:- + printf(" (a)Working Speed of the Prototype, Np =%.2f rpm\n",Np) //The answer vary due to round off error + printf(" (b)Shaft Power of the Prototype, Pp =%.2f kW\n",Pp) //The answer vary due to round off error + printf(" (c)Ratio of Flow Rates handled by the protoytpe and the Model=%.2f ",Qp_by_Qm) //The answer provided in the textbook is wrong + diff --git a/3751/CH11/EX11.23/Ex11_23.sce b/3751/CH11/EX11.23/Ex11_23.sce new file mode 100644 index 000000000..4697d140a --- /dev/null +++ b/3751/CH11/EX11.23/Ex11_23.sce @@ -0,0 +1,30 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11 - Centrifugal Pumps +//Example 11.23 +//To Find the Head and Impeller Diameter of the other Pump. + + clc + clear + +//Given Data:- + //For Pump-1, + N1=1000; //Speed, rpm + D1=320; //Impeller Diameter, mm + Hm1=16; //Manometric Head, m + Q1=0.021; //Discharge, m^3/s + + //For Pump-2, + N2=1000; //Speed, rpm + //As other Pump has to deliver half the discharge, + Q2=Q1/2; //m^3/s + + +//Computations:- + Hm2=Hm1*(N2/N1)*sqrt(Q2/Q1); //m + D2=D1*(N1/N2)*sqrt(Hm2/Hm1); //mm + +//Results:- + printf("Head of the other Pump(Pump-2), Hm2=%.2f m\n",Hm2) + printf("Impeller Diameter of the other Pump(Pump-2), D2=%.2f mm\n",D2) //The answer vary due to round off error + + diff --git a/3751/CH11/EX11.24/Ex11_24.sce b/3751/CH11/EX11.24/Ex11_24.sce new file mode 100644 index 000000000..0023dda33 --- /dev/null +++ b/3751/CH11/EX11.24/Ex11_24.sce @@ -0,0 +1,31 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11 - Centrifugal Pumps +//Example 11.24 +//To Find the the number of stages and Diameter of each Impeller of the similar multistage Pump. + + clc + clear + +//Given Data:- + //For Single Stage Pump, + N1=2000; //Speed, rpm + D1=300; //Impeller Diameter, mm + Hm1=32; //Manometric Head, m + Q1=3; //Discharge, m^3/s + + //For Multi Stage Pump, + N2=1600; //Speed, rpm + H_mT2=200; //Total Manometric Head, m + Q2=5; //Discharge, m^3/s + + +//Computations:- + Hm2=Hm1*(N2/N1)*sqrt(Q2/Q1); //m + n=round(H_mT2/Hm2); //No. of stages + D2=D1*(N1/N2)*sqrt(Hm2/Hm1); //Diameter of Each Impeller, mm + +//Results:- + printf("Number of the Stages for the Multi stage Pump, n=%.f \n",n) + printf("Diameter of each Impeller for the Multi stage Pump, D2=%.2f mm\n",D2) //The answer vary due to round off error + + diff --git a/3751/CH11/EX11.25/Ex11_25.sce b/3751/CH11/EX11.25/Ex11_25.sce new file mode 100644 index 000000000..cf6b0ffeb --- /dev/null +++ b/3751/CH11/EX11.25/Ex11_25.sce @@ -0,0 +1,32 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11 - Centrifugal Pumps +//Example 11.25 +//To Find the Discharge and Head of the Pump at Condition '2' and '3' and Compare the Power Consumed in all the cases. + + clc + clear + +//Given Data:- + //At Condition '1' + N1=750; //Speed, rpm + Q1=60; //Discharge, l/s + H1=20; //Head, m + + //At Condition '2' + N2=1200; //Speed, rpm + + //At Condition '3' + N3=4200; //Speed, rpm + +//Computations:- + Q2=Q1*(N2/N1); // l/s + H2=H1*(N2/N1)^2; //m + Q3=Q1*(N3/N1); // l/s + H3=H1*(N3/N1)^2; //m + +//Results:- + printf("At Condition -2 Discharge, Q2=%.f l/s and Head, H2=%.1f m\n",Q2,H2) + printf(" At Condition -3 Discharge, Q3=%.f l/s and Head, H3=%.1f m\n",Q3,H3) + printf(" P1: P2 : P3 = 1 : %.2f : %.2f ",Q2*H2/(Q1*H1),Q3*H3/(Q1*H1)) //The answer vary due to round off error + + diff --git a/3751/CH11/EX11.26/Ex11_26.sce b/3751/CH11/EX11.26/Ex11_26.sce new file mode 100644 index 000000000..742e16626 --- /dev/null +++ b/3751/CH11/EX11.26/Ex11_26.sce @@ -0,0 +1,37 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11 - Centrifugal Pumps +//Example 11.26 +//To Calculate the Specific Speed of Pump and the Power Input and Find the Head, Discharge and Power required at 900 rpm. + + clc + clear + +//Given Data:- + + N=1500; //Speed, rpm + Q=0.2; //Discharge, m^3/s + H=15; //Head, m + eta_o=0.68; //Overall Efficiency + N2=900; //Speed, rpm + + //Data Used:- + rho=1000; //Density of water, kg/m^3 + g=9.81; //Acceleratio due to gravity, m/s^2 + + +//Computations:- + Ns=N*Q^(1/2)/(H^(3/4)); //Specific Speed of Pump, SI Units + P=rho*g*Q*H /eta_o; //Power Input, W + + Q1=Q; H1=H; N1=N; P1=P; + Q2=Q1*(N2/N1); // m^3/s + H2=H1*(N2/N1)^2; //m + P2=P1*(N2/N1)^3; //W + +//Results:- + printf("Specific Speed of Pump, Ns=%.2f (SI Units)\n",Ns) + printf(" Power Input, P=%.2f W\n",P) + printf(" At 900 rpm (Condition 2)\n\t ") + printf(" Head, H2=%.1f m \n\t Discharge, Q2=%.2f m^3/s,\n\t Power required, P2=%.2f W",H2,Q2,P2) + + diff --git a/3751/CH11/EX11.3/Ex11_3.sce b/3751/CH11/EX11.3/Ex11_3.sce new file mode 100644 index 000000000..338c6ec47 --- /dev/null +++ b/3751/CH11/EX11.3/Ex11_3.sce @@ -0,0 +1,27 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11- Centrifugal Pumps +//Example 11.3 +//To Find the Power of the Pump. + + clc + clear + +//Given Data:- + H=40; //Total Head, m + Q=50; //Discharge, litres/s + eta_o=62/100; //Overall EEfficiency + + +//Data Used:- + rho=1000; //Density of Water, kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + + +//Computations:- + Q=Q/1000; //m^3/s + + P=rho*Q*g*H/(eta_o*1000); //kW + +//Result:- + printf("The Power of the Pump, P=%.3f kW \n",P) + diff --git a/3751/CH11/EX11.4/Ex11_4.sce b/3751/CH11/EX11.4/Ex11_4.sce new file mode 100644 index 000000000..da9fce543 --- /dev/null +++ b/3751/CH11/EX11.4/Ex11_4.sce @@ -0,0 +1,50 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11- Centrifugal Pumps +//Example 11.4 +//To Find (a)Vane Angle at Inlet (b)Work done by Impeller on water per second (c)Manometric Efficiency + + clc + clear + +//Given Data:- + //As Outer Diameter equals two times Inner Diameter, + Do_by_Di=2; //Do/Di + N=980; //Speed, rpm + Hm=52; //Manometric Head, m + Vfo=2.6; //Velocity of Flow, m/s + Vfi=Vfo; + beta_o=42; //Vane Angle at outlet, degrees + Do=600; //Outer Diameter of the Impeller, mm + bo=60; //Width at Outlet, mm + + +//Data Used:- + rho=1000; //Density of water, kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations:- + Do=Do/1000; //m + bo=bo/1000; //m + + Di=Do/Do_by_Di; //Diameter at Inlet of Impeller, m + ui=%pi*Di*N/60; //Tangential velocity of Impeller at Inlet,m/s + uo=%pi*Do*N/60; // Tangential velocity of Impeller at Outlet, m/s + Q=%pi*Do*bo*Vfo; //Discharge, m^3/s + + //(a)Vane Angle at Inlet, beta_i + beta_i=atand(Vfi/ui); //degrees + + //(b) Work done by Impeller on water per sec, W + Vwo=uo-Vfo/tand(beta_o); //m/s + W=rho*Q*Vwo*uo/1000; //kN-m/s + + //(c) Manometric Efficiency, eta_man + eta_man=g*Hm/(Vwo*uo)*100; //In Percentage + + +//Results:- + printf(" (a)Vane Angle at Inlet, beta_i=%.2f Degrees \n ",beta_i) + printf(" (b) Work done by Impeller on water per sec =%.3f kN-m/s \n ",W) //The answer provided in the textbook is wrong. + printf(" (c) Manometric Efficiency, eta_man =%.2f Percent \n ",eta_man) //The answer provided in the textbook is wrong. + + diff --git a/3751/CH11/EX11.5/Ex11_5.sce b/3751/CH11/EX11.5/Ex11_5.sce new file mode 100644 index 000000000..f927b863d --- /dev/null +++ b/3751/CH11/EX11.5/Ex11_5.sce @@ -0,0 +1,33 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11- Centrifugal Pumps +//Example 11.5 +//To Find the Discharge of Pump. + + clc + clear + +//Given Data:- + Hm=14.5; //Manometric Head, m + N=1000; //Speed, rpm + beta_o=30; //Vane Angle at outlet, degrees + Do=300; //Outer Diameter of the Impeller, mm + bo=50; //Width at Outlet, mm + eta_man=95/100; //Manometric Efficiency + + +//Data Used:- + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations:- + Do=Do/1000; //m + bo=bo/1000; //m + + uo=%pi*Do*N/60; //m/s + Vwo=g*Hm/(uo*eta_man); //m/s + Vfo=tand(beta_o)*(uo-Vwo); //m/s + Q=%pi*Do*bo*Vfo*1000; //Discharge, litres/s + +//Results:- + printf("The Discharge of the Pump=%.2f litres/s\n",Q) //The answer vary due to round off error + + diff --git a/3751/CH11/EX11.6/Ex11_6.sce b/3751/CH11/EX11.6/Ex11_6.sce new file mode 100644 index 000000000..7c8c9871e --- /dev/null +++ b/3751/CH11/EX11.6/Ex11_6.sce @@ -0,0 +1,59 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11- Centrifugal Pumps +//Example 11.6 +//To Calculate the Blade angle at Outlet, Power Required and Overall Efficiency of Pump. + + clc + clear + +//Given Data:- + Do=80; //Outer Diameter of the Impeller, cm + Q=1; //Discharge, m^3/s + H=80; //Head, m + N=1000; //Speed, rpm + bo=8; //Width at Outlet, cm + Delta_Q_per=3; //Percentage of Leakage Loss(of the Discharge) + Delta_P=10; //Mechanical Loss, kW + eta_H=80/100; //Hydraulic Efficiency + + +//Data Used:- + rho=1000; //Density of water, kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations:- + Do=Do/100; //m + bo=bo/100; //m + + uo=%pi*Do*N/60; //m/s + Vfo=Q/(%pi*Do*bo); //m/s + Vwo=g*H/(uo*eta_H); //m/s + Vrwo=uo-Vwo; //m/s + + //(a) + beta_o=atand(Vfo/Vrwo); //Blade Angle at Outlet, degrees + + //Result1 + printf(" Blade Angle at Outlet, beta_o=%.2f Degrees \n",beta_o) //The answer vary due to round off error + + //(b)Power Required + Pi=rho*(1+Delta_Q_per/100)*Q*Vwo*uo; //Power delivered by the Impeller, W + P=Pi/1000+Delta_P; //Power required, kW + + //Result2 + printf(" Power Required, P =%.3f kW \n",P) //The answer vary due to round off error + + //(c)Overall Efficiency, eta_o + eta_V=1/(1+Delta_Q_per/100); //Volumetric Efficiency + eta_m=(P-Delta_P)/P; //Mechanical Efficiency + eta_o=eta_H*eta_V*eta_m*100; //In Percentage + + //Result3 + printf(" Overall Efficiency, eta_o =%.2f Percent \n",eta_o) //The answer vary due to round off error + + //Also, Overall Efficiency + eta_o=rho*Q*g*H/(P*1000)*100; //In Percentage + + printf("Also, Overall Efficiency, eta_o=%.2f Percent\n",eta_o) + + diff --git a/3751/CH11/EX11.7/Ex11_7.sce b/3751/CH11/EX11.7/Ex11_7.sce new file mode 100644 index 000000000..f1e0d183f --- /dev/null +++ b/3751/CH11/EX11.7/Ex11_7.sce @@ -0,0 +1,44 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11- Centrifugal Pumps +//Example 11.7 +//To Determine the Impeller Speed and Torque produced by it. + + clc + clear + +//Given Data:- + Q=60; //Discharge, litres/s + Ri=75; //Radius of the Impeller at Inlet, mm + Ro=150; //Radius of the Impeller at Outlet, cm + beta_o=30; //Vane Angle at Outlet, degrees + beta_i=30; //Vane Angle at Inlet, degrees + Ai=0.025; //Impeller Area at Inlet, m^2 + + +//Data Used:- + rho=1000; //Density of water, kg/m^3 + + +//Computations:- + Q=Q/1000; //m^3/s + Ri=Ri/1000; //m + Ro=Ro/1000; //m + + Di=2*Ri; //m + Do=2*Ro; //m + Vfi=Q/Ai; //m/s + Vfo=Vfi; + ui=Vfi/tand(beta_i); //m/s + N=ui*60/(%pi*Di); //rpm + + uo=%pi*Do*N/60; //m/s + Vrwo=Vfo/tand(beta_o); //m/s + Vwo=uo-Vrwo; //m/s + P=rho*Q*Vwo*uo; //Impeller Power, W + Ti=P*60/(2*%pi*N); //Impeller Torque, N-m + +//Results:- + printf("Impeller Speed, N=%.2f rpm\n",N) //The answer vary due to round off error + printf("Impeller Torque, Ti=%.2f N-m\n",Ti) //The answer vary due to round off error + + diff --git a/3751/CH11/EX11.8/Ex11_8.sce b/3751/CH11/EX11.8/Ex11_8.sce new file mode 100644 index 000000000..0cae0067a --- /dev/null +++ b/3751/CH11/EX11.8/Ex11_8.sce @@ -0,0 +1,37 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11- Centrifugal Pumps +//Example 11.8 +//To Determine the Power Required to drive the centrifugal Pump. + + clc + clear + +//Given Data:- + Q=40; //Discharge, litres/s + Hst=20; //Static Head, m + D=150; //Diameter of Pipe, mm + L=100; //length of pipe, m + eta_o=70/100; //Overall Efficiency + f=0.015; //Coefficient of friction + + +//Data Used:- + rho=1000; //Density of water, kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + + +//Computations:- + Q=Q/1000; //m^3/s + D=D/1000; //m + + A=(%pi/4)*D^2; //m^2 + V=Q/A; //m/s + Vd=V; + + h_f=4*f*L*V^2/(2*g*D); //Frictional Head Loss in Pipe, m + Hm=Hst+h_f+Vd^2/(2*g); //Manometric Head, m + P=rho*Q*g*Hm/(eta_o*1000); //kW + +//Result:- + printf("Power Required to drive the Centrifugal Pump=%.3f kW\n",P) //The answer vary due to round off error + diff --git a/3751/CH11/EX11.9/Ex11_9.sce b/3751/CH11/EX11.9/Ex11_9.sce new file mode 100644 index 000000000..67c4b0361 --- /dev/null +++ b/3751/CH11/EX11.9/Ex11_9.sce @@ -0,0 +1,49 @@ +//Fluid Systems - By - Shiv Kumar +//Chapter 11- Centrifugal Pumps +//Example 11.9 +//To Find (i)Vane Angle at Inlet (ii)Work done by Impeller on water per second and (iii)Manometric Efficiency. + + clc + clear + +//Given Data:- + Do=500; //Outer Diameter of the Impeller, mm + Di=250; //Inner Diameter of the Impeller, mm + N=1000; //Speed, rpm + Hm=40; //Manometric Head, m + Vfo=2.5; //Velocity of Flow, m/s + Vfi=Vfo; + beta_o=40; //Vane Angle at outlet, degrees + bo=50; //Width at Outlet, mm + + +//Data Used:- + rho=1000; //Density of water, kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations:- + Do=Do/1000; //m + Di=Di/1000; //m + bo=bo/1000; //m + + ui=%pi*Di*N/60; //Tangential velocity of Impeller at Inlet,m/s + uo=%pi*Do*N/60; // Tangential velocity of Impeller at Outlet, m/s + Q=%pi*Do*bo*Vfo; //Discharge, m^3/s + + //(i)Vane Angle at Inlet, beta_i + beta_i=atand(Vfi/ui); //degrees + + //(ii) Work done by Impeller on water per sec, W + Vwo=uo-Vfo/tand(beta_o); //m/s + W=rho*Q*Vwo*uo/1000; //kN-m/s + + //(iii) Manometric Efficiency, eta_man + eta_man=g*Hm/(Vwo*uo)*100; //In Percentage + + +//Results:- + printf(" (i)Vane Angle at Inlet, beta_i=%.2f Degrees \n ",beta_i) //The answer vary due to round off error + printf(" (ii) Work done by Impeller on water per sec =%.3f kN-m/s \n ",W) //The answer vary due to round off error + printf(" (iii) Manometric Efficiency, eta_man =%.2f Percent \n ",eta_man) //The answer vary due to round off error + + |