1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
//Fluid Systems - By - Shiv Kumar
//Chapter 11- Centrifugal Pumps
//Example 11.13
//To Find (i)The Discharge of the Pump (ii)The Pressure at Suction and Delivery side of the Pump.
clc
clear
//Given Data:-
h_st=35; //Static Head, m
h_s=4; //Suction Head, m
D=150; //Diameter of Pipes, mm
Ds=D; //Diameter of Suction Pipe, mm
Dd=D; //Diameter of Delivery Pipe, mm
h_fs=1.6; //Head loss in Suction pipe, m
h_fd=6.5; //Head loss in Delivery Pipe, m
Do=380; //Diameter of Impeller at Outlet, mm
bo=25; //Width of Impeller at Outlet, mm
N=1200; //Speed, rpm
beta_o=35; //Ezxit Blade Angle, degrees
eta_man=80/100; //Manometric Efficiency
//Data Used:-
g=9.81; //Acceleration due to gravity, m/s^2
//Computations:-
Do=Do/1000; //m
D=D/1000; //m
Ds=Ds/1000; //m
Dd=Dd/1000; //m
bo=bo/1000; //m
Hm=h_st+h_fs+h_fd; // Manometric Head, m
uo=%pi*Do*N/60; // Tangential velocity of Impeller at Outlet, m/s
Vwo=g*Hm/(uo*eta_man); //m/s
Vfo=(uo-Vwo)*tand(beta_o); //m/s
//(i)The Discharge of the Pump, Q
Q=%pi*Do*bo*Vfo*1000; //litres/s
// (ii)The Pressure at Suction and Delivery side of the Pump
A=(%pi/4)*D^2; //m^2
Vd=Q*10^-3/A; //m/s
Vs=Vd; //m/s
Hs=h_s+h_fs+Vs^2/(2*g); //Pressure on Suction Side, m of water
h_d=h_st-h_s; //m
Hd=h_d+h_fd+Vd^2/(2*g); //Pressure on Delivery Side, m of water
//Result:-
printf(" (i)The Discharge of the Pump, Q =%.2f litres/s\n",Q) //The answer vary due to round off error
printf(" (ii) Pressure on Suction Side, Hs =-%.3f m of water \n",Hs) //The answer vary due to round off error
printf(" Pressure on Delivery Side, Hd =%.2f m of water \n",Hd) //The answer vary due to round off error
|