//Fluid Systems - By - Shiv Kumar //Chapter 11- Centrifugal Pumps //Example 11.13 //To Find (i)The Discharge of the Pump (ii)The Pressure at Suction and Delivery side of the Pump. clc clear //Given Data:- h_st=35; //Static Head, m h_s=4; //Suction Head, m D=150; //Diameter of Pipes, mm Ds=D; //Diameter of Suction Pipe, mm Dd=D; //Diameter of Delivery Pipe, mm h_fs=1.6; //Head loss in Suction pipe, m h_fd=6.5; //Head loss in Delivery Pipe, m Do=380; //Diameter of Impeller at Outlet, mm bo=25; //Width of Impeller at Outlet, mm N=1200; //Speed, rpm beta_o=35; //Ezxit Blade Angle, degrees eta_man=80/100; //Manometric Efficiency //Data Used:- g=9.81; //Acceleration due to gravity, m/s^2 //Computations:- Do=Do/1000; //m D=D/1000; //m Ds=Ds/1000; //m Dd=Dd/1000; //m bo=bo/1000; //m Hm=h_st+h_fs+h_fd; // Manometric Head, m uo=%pi*Do*N/60; // Tangential velocity of Impeller at Outlet, m/s Vwo=g*Hm/(uo*eta_man); //m/s Vfo=(uo-Vwo)*tand(beta_o); //m/s //(i)The Discharge of the Pump, Q Q=%pi*Do*bo*Vfo*1000; //litres/s // (ii)The Pressure at Suction and Delivery side of the Pump A=(%pi/4)*D^2; //m^2 Vd=Q*10^-3/A; //m/s Vs=Vd; //m/s Hs=h_s+h_fs+Vs^2/(2*g); //Pressure on Suction Side, m of water h_d=h_st-h_s; //m Hd=h_d+h_fd+Vd^2/(2*g); //Pressure on Delivery Side, m of water //Result:- printf(" (i)The Discharge of the Pump, Q =%.2f litres/s\n",Q) //The answer vary due to round off error printf(" (ii) Pressure on Suction Side, Hs =-%.3f m of water \n",Hs) //The answer vary due to round off error printf(" Pressure on Delivery Side, Hd =%.2f m of water \n",Hd) //The answer vary due to round off error