diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3636 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3636')
212 files changed, 2057 insertions, 0 deletions
diff --git a/3636/CH1/EX1.1/Ex1_1.sce b/3636/CH1/EX1.1/Ex1_1.sce new file mode 100644 index 000000000..6bbb40ff6 --- /dev/null +++ b/3636/CH1/EX1.1/Ex1_1.sce @@ -0,0 +1,13 @@ +clc;
+clear;
+V=20000 //potential in Volts
+e=1.602*10^-19 //electronic charge in C
+m=9.1*10^-31 //mass of electron in kg
+c=3*10^8 //speed of light in m/s
+
+//Calculation
+u=sqrt((2*V*e)/m) //speed u after acceleration through a potential V in m/s
+mu=1/sqrt(1-(u/c)^2) //mass of electron moving with velocity mu in kg
+delm=mu-1 //change in mass
+
+mprintf("The percentage change in mass of the electron is %1.1f %%",delm*100)
diff --git a/3636/CH1/EX1.1/Ex1_1.txt b/3636/CH1/EX1.1/Ex1_1.txt new file mode 100644 index 000000000..855958ad8 --- /dev/null +++ b/3636/CH1/EX1.1/Ex1_1.txt @@ -0,0 +1 @@ + The percentage change in mass of the electron is 4.2 %
\ No newline at end of file diff --git a/3636/CH1/EX1.2/Ex1_2.sce b/3636/CH1/EX1.2/Ex1_2.sce new file mode 100644 index 000000000..425f81188 --- /dev/null +++ b/3636/CH1/EX1.2/Ex1_2.sce @@ -0,0 +1,25 @@ +clc;
+clear;
+l=3*10^-3 //distance between two plate in meters
+V=400 //potential difference in Volts
+e=1.602*10^-19 //electronic charge in Joules
+m=9.1*10^-31 //mass of electron in kg
+
+//Calculation
+uB=sqrt((2*V*e)/m) //in m/s
+KEJ=e*V //in Joules
+KEeV=int(e*V/(1.6*10^-19)) //in eV
+tAB=(2*l/uB) //in ns
+
+mprintf("i)")
+mprintf("Velocity with which the electrons strikes the plate =")
+format("e",10)
+disp(uB)
+mprintf("ii)")
+mprintf("Kinetic energy acquired by electron in joules =")
+disp(KEJ)
+mprintf("Kinetic energy acquired by electron in eV =")
+disp(KEeV)
+mprintf("iii)")
+mprintf("transit time in ns = ")//The answers vary due to round off error
+disp(tAB)
diff --git a/3636/CH1/EX1.2/Ex1_2.txt b/3636/CH1/EX1.2/Ex1_2.txt new file mode 100644 index 000000000..bb40dd107 --- /dev/null +++ b/3636/CH1/EX1.2/Ex1_2.txt @@ -0,0 +1,9 @@ + i)Velocity with which the electrons strikes the plate =
+ 1.187D+07
+ii)Kinetic energy acquired by electron in joules =
+ 6.408D-17
+Kinetic energy acquired by electron in eV =
+ 4.000D+02
+iii)transit time in ns =
+ 5.056D-10
+
\ No newline at end of file diff --git a/3636/CH1/EX1.3/Ex1_3.sce b/3636/CH1/EX1.3/Ex1_3.sce new file mode 100644 index 000000000..daa48aee0 --- /dev/null +++ b/3636/CH1/EX1.3/Ex1_3.sce @@ -0,0 +1,13 @@ +clc;
+clear;
+B=0.02 //flux Density in Wb/m^2
+u=5*10^7 //speed of electron in m/s
+e=1.6*10^-19 //electronic charge Joules
+m=9.1*10^-31 //mass of electron in kg
+
+//Calculation
+r=(m*u)/(e*B) //in m
+
+format("e",9)
+disp(r,"radius of the circular path followed by electron is =")
+
diff --git a/3636/CH1/EX1.3/Ex1_3.txt b/3636/CH1/EX1.3/Ex1_3.txt new file mode 100644 index 000000000..9493d6d10 --- /dev/null +++ b/3636/CH1/EX1.3/Ex1_3.txt @@ -0,0 +1,5 @@ +
+ radius of the circular path followed by electron is =
+
+ 1.42D-02
+
\ No newline at end of file diff --git a/3636/CH1/EX1.4/Ex1_4.sce b/3636/CH1/EX1.4/Ex1_4.sce new file mode 100644 index 000000000..be15b8477 --- /dev/null +++ b/3636/CH1/EX1.4/Ex1_4.sce @@ -0,0 +1,11 @@ +clc;
+clear;
+L=3*10^-2 //length of plates in m
+d=4*10^-3 //spacing betweenn plates in m
+l=30*10^-2 //distance in m
+V1=2500 //potential in V
+
+//Calculation
+Se=(L*l)/(2*d*V1)/10^-4
+
+mprintf("Deflection Sensitivity = %1.1f*10^-4 m/V",Se)
diff --git a/3636/CH1/EX1.4/Ex1_4.txt b/3636/CH1/EX1.4/Ex1_4.txt new file mode 100644 index 000000000..35f00f3e7 --- /dev/null +++ b/3636/CH1/EX1.4/Ex1_4.txt @@ -0,0 +1 @@ + Deflection Sensitivity = 4.5*10^-4 m/V
\ No newline at end of file diff --git a/3636/CH1/EX1.5/Ex1_5.sce b/3636/CH1/EX1.5/Ex1_5.sce new file mode 100644 index 000000000..959c746e8 --- /dev/null +++ b/3636/CH1/EX1.5/Ex1_5.sce @@ -0,0 +1,15 @@ +clc;
+clear;
+Ey=3*10^4 //electric field in y-axis in N/C
+Ex=0 //electric field in x-axis in N/C
+q=1.6*10^-19 //electric charge in C
+me=9.1*10^-31 //in kg
+
+//Calculation
+//F=q*E
+Fy=-q*Ey //Force in y direction
+ay=Fy/me
+
+format("e",8)
+disp(ay,"Acceleration of the electron is =")
+//The negative sign tells us that the direction of this acceleration is downward
diff --git a/3636/CH1/EX1.5/Ex1_5.txt b/3636/CH1/EX1.5/Ex1_5.txt new file mode 100644 index 000000000..f9f5ec341 --- /dev/null +++ b/3636/CH1/EX1.5/Ex1_5.txt @@ -0,0 +1,5 @@ +
+ Acceleration of the electron is =
+
+ - 5.3D+15
+
\ No newline at end of file diff --git a/3636/CH1/EX1.6/Ex1_6.sce b/3636/CH1/EX1.6/Ex1_6.sce new file mode 100644 index 000000000..f6e8b8571 --- /dev/null +++ b/3636/CH1/EX1.6/Ex1_6.sce @@ -0,0 +1,11 @@ +clc;
+clear;
+V=2000 //potential in V
+e=1.602*10^-19 //electronic charge in eV
+m=9.1*10^-31 //mass of electron in kg
+
+//Calculation
+u=sqrt((2*V*e)/m)
+
+mprintf("velocity with which electron beam will travel= %.2e m/s",u)
+
diff --git a/3636/CH1/EX1.6/Ex1_6.txt b/3636/CH1/EX1.6/Ex1_6.txt new file mode 100644 index 000000000..73169ef4a --- /dev/null +++ b/3636/CH1/EX1.6/Ex1_6.txt @@ -0,0 +1 @@ + velocity with which electron beam will travel= 2.65e+07 m/s
\ No newline at end of file diff --git a/3636/CH1/EX1.7/Ex1_7.sce b/3636/CH1/EX1.7/Ex1_7.sce new file mode 100644 index 000000000..576e52fd3 --- /dev/null +++ b/3636/CH1/EX1.7/Ex1_7.sce @@ -0,0 +1,10 @@ +clc;
+clear;
+l=5 //length to be covered in cm
+up=26.5*10^8 //in cm/s
+
+//Calculation
+t=(2*l/up)
+
+mprintf("Time taken= %1.1e s",t)
+//The answers vary due to round off error
diff --git a/3636/CH1/EX1.7/Ex1_7.txt b/3636/CH1/EX1.7/Ex1_7.txt new file mode 100644 index 000000000..d06b40e42 --- /dev/null +++ b/3636/CH1/EX1.7/Ex1_7.txt @@ -0,0 +1 @@ + Time taken= 3.8e-09 s
\ No newline at end of file diff --git a/3636/CH10/EX10.1/Ex10_1.sce b/3636/CH10/EX10.1/Ex10_1.sce new file mode 100644 index 000000000..be2f65893 --- /dev/null +++ b/3636/CH10/EX10.1/Ex10_1.sce @@ -0,0 +1,9 @@ +clc;
+clear;
+alpha=10^2 //absorption coefficient in cm^-1
+absorption=0.2 //80% absorption represented in decimal format
+
+//Calculation
+d=(1/alpha)*log(1/absorption)
+
+mprintf("Thickness of silicon= %.3f cm",d)
diff --git a/3636/CH10/EX10.1/Ex10_1.txt b/3636/CH10/EX10.1/Ex10_1.txt new file mode 100644 index 000000000..da6f4bf24 --- /dev/null +++ b/3636/CH10/EX10.1/Ex10_1.txt @@ -0,0 +1 @@ + Thickness of silicon= 0.016 cm
\ No newline at end of file diff --git a/3636/CH10/EX10.10/Ex10_10.sce b/3636/CH10/EX10.10/Ex10_10.sce new file mode 100644 index 000000000..8621ef5f7 --- /dev/null +++ b/3636/CH10/EX10.10/Ex10_10.sce @@ -0,0 +1,13 @@ +clc;
+clear;
+PC=190 //optical Power generated in mW
+I=25*10^-3 //in mA
+V=1.5 //in V
+
+//Calculation
+P=V/I //Electrical Power
+n=PC/P
+
+format("v",5)
+disp(n/10,"Power conversion efficiency (%)= ")
+//The answer provided in the textbook is wrong
diff --git a/3636/CH10/EX10.10/Ex10_10.txt b/3636/CH10/EX10.10/Ex10_10.txt new file mode 100644 index 000000000..67dfc8052 --- /dev/null +++ b/3636/CH10/EX10.10/Ex10_10.txt @@ -0,0 +1,4 @@ +
+ Power conversion efficiency (%)=
+
+ 0.32
\ No newline at end of file diff --git a/3636/CH10/EX10.2/Ex10_2.sce b/3636/CH10/EX10.2/Ex10_2.sce new file mode 100644 index 000000000..38790ab2a --- /dev/null +++ b/3636/CH10/EX10.2/Ex10_2.sce @@ -0,0 +1,21 @@ +clc;
+clear;
+Na=3*10^18 //in cm^-3
+Nd=2*10^16 //in cm^-3
+Dn=25 //in cm^2/s
+Dp=10 //in cm^2/s
+tau_n0=4*10^-7 //in s
+tau_p0=10^-7 //in s
+JL=20*10^-3 //photocurrent density in mA/cm^2
+T=300 //in K
+ni=1.5*10^10 //in cm^-3
+e=1.6*10^-19 //in Joules
+Const=0.026 //constant for KT/e in V
+
+//Calculation
+Ln=sqrt(Dn*tau_n0) //in mmicro-m
+Lp=sqrt(Dp*tau_p0) //in micro-m
+JS=e*ni^2*((Dn/(Ln*Na))+(Dp/(Lp*Nd))) //reverse saturation current density in A/cm^2
+Voc=Const*log(1+(JL/JS))
+
+mprintf("open-circuit voltage Voc= %0.3f V",Voc)
diff --git a/3636/CH10/EX10.2/Ex10_2.txt b/3636/CH10/EX10.2/Ex10_2.txt new file mode 100644 index 000000000..edb87dde2 --- /dev/null +++ b/3636/CH10/EX10.2/Ex10_2.txt @@ -0,0 +1 @@ + open-circuit voltage Voc= 0.541 V
\ No newline at end of file diff --git a/3636/CH10/EX10.3/Ex10_3.sce b/3636/CH10/EX10.3/Ex10_3.sce new file mode 100644 index 000000000..6b4efabd5 --- /dev/null +++ b/3636/CH10/EX10.3/Ex10_3.sce @@ -0,0 +1,14 @@ +clc;
+clear;
+L=80*10^-4 //length in m
+myu_n=1350 //in cm^2/V
+myu_p=480 //in cm^2/V
+V=12 //applied voltage in V
+tau_n=3.95*10^-9 //transit time in sec
+tau_p=2*10^-6 //carrier lifetime in sec
+
+//Calculation
+tn=L^2/(myu_n*V) //transit time in sec
+Gph=(tau_p/tau_n)*(1+(myu_p/myu_n))
+
+mprintf("Gain of the photoconductor= %3.1f",Gph)
diff --git a/3636/CH10/EX10.3/Ex10_3.txt b/3636/CH10/EX10.3/Ex10_3.txt new file mode 100644 index 000000000..8ab269ee7 --- /dev/null +++ b/3636/CH10/EX10.3/Ex10_3.txt @@ -0,0 +1 @@ + Gain of the photoconductor= 686.4
\ No newline at end of file diff --git a/3636/CH10/EX10.4/Ex10_4.sce b/3636/CH10/EX10.4/Ex10_4.sce new file mode 100644 index 000000000..312889b1a --- /dev/null +++ b/3636/CH10/EX10.4/Ex10_4.sce @@ -0,0 +1,23 @@ +clc;
+clear;
+Na=5*10^16 //in cm^3
+Nd=5*10^16 //in cm^3
+Dn=25 //in cm^2/s
+Dp=10 //in cm^2/s
+tau_n0=6*10^-7 //in s
+tau_p0=2*10^-7 //in s
+VR=6 //in V
+GL=5*10^20 //in cm^-3/s
+ni=1.5*10^10 //in cm^-3
+e=1.6*10^-19 //in Joules
+epsilon_s=11.7*8.85*10^-14 //in F/cm
+Const=0.026 //constant for KT/e in V
+
+//Calculation
+Ln=sqrt(Dn*tau_n0) //in mico-m
+Lp=sqrt(Dp*tau_p0) //in micro-m
+Vbi=Const*log((Na*Nd)/ni^2) //in V
+W=(((2*epsilon_s)/e)*((Na+Nd)/(Na*Nd))*(Vbi+VR))^0.5 //in micro-m
+JL=e*GL*(W+Ln+Lp) //photocurrent density
+
+mprintf("steady-state photocurrent density= %0.2f A/cm^2",JL)
diff --git a/3636/CH10/EX10.4/Ex10_4.txt b/3636/CH10/EX10.4/Ex10_4.txt new file mode 100644 index 000000000..b8e28008c --- /dev/null +++ b/3636/CH10/EX10.4/Ex10_4.txt @@ -0,0 +1 @@ + steady-state photocurrent density= 0.43 A/cm^2
\ No newline at end of file diff --git a/3636/CH10/EX10.5/Ex10_5.sce b/3636/CH10/EX10.5/Ex10_5.sce new file mode 100644 index 000000000..88fe9e1af --- /dev/null +++ b/3636/CH10/EX10.5/Ex10_5.sce @@ -0,0 +1,9 @@ +clc;
+clear;
+n1=1
+n2=3.66
+
+//Calculation
+theta_c=asind(n1/n2)
+
+mprintf("Critical angle for GaAs-air interface= %2.1f degrees",theta_c)
diff --git a/3636/CH10/EX10.5/Ex10_5.txt b/3636/CH10/EX10.5/Ex10_5.txt new file mode 100644 index 000000000..6b1eb879e --- /dev/null +++ b/3636/CH10/EX10.5/Ex10_5.txt @@ -0,0 +1 @@ + Critical angle for GaAs-air interface= 15.9 degrees
\ No newline at end of file diff --git a/3636/CH10/EX10.6/Ex10_6.sce b/3636/CH10/EX10.6/Ex10_6.sce new file mode 100644 index 000000000..fd81492a1 --- /dev/null +++ b/3636/CH10/EX10.6/Ex10_6.sce @@ -0,0 +1,38 @@ +clc;
+clear;
+Nd=10^15 //donor atoms in cm^-3
+ni=1.45*10^10 //in cm^-3
+k=8.62*10^-5 //in eV/K
+T=300 //in K
+Const=0.025 //coonstant for kT in eV
+
+//Calculation
+//a)
+n=10^15 //in cm^-3
+p=ni^2/Nd //in cm^-3
+delE=Const*log(n/ni) //in eV
+
+//b)
+n0=10^15 //in cm^-3
+p0=10^12 //in cm^-3
+delE_fni=Const*log(n0/ni) //in eV
+delE_ifp=Const*log(p0/ni) //in eV
+
+//c)
+n1=10^18 //in cm^-3
+p1=10^18 //in cm^-3
+delE_fni1=Const*log(n1/ni) //in eV
+delE_ifp1=Const*log(p1/ni) //in eV
+
+mprintf("a)\nelectron concentration= %.1g cm^-3\n",n)
+mprintf("hole concentration= %.2g cm^-3\n",p)
+mprintf("Fermi level w.r.t intrinsic fermi level= %0.3f eV\n",delE)
+mprintf("b)\nelectron concentration= %.1g cm^-3\n",n0)
+mprintf("hole concentration= %.1g cm^-3\n",p0)
+mprintf("Quasi fermi level for n-type carrier= %0.3f eV\n",delE_fni)
+mprintf("Quasi fermi level for p-type carrier= %0.2f eV\n",delE_ifp)
+mprintf("c)\nelectron concentration= %.1g cm^-3\n",n1)
+mprintf("hole concentration= %.1g cm^-3\n",p1)
+mprintf("Quasi fermi level for n-type carrier= %0.2f eV\n",delE_fni1)
+mprintf("Quasi fermi level for p-type carrier= %0.2f eV\n",delE_ifp1)
+//The answers vary due to round off error
diff --git a/3636/CH10/EX10.6/Ex10_6.txt b/3636/CH10/EX10.6/Ex10_6.txt new file mode 100644 index 000000000..d14709112 --- /dev/null +++ b/3636/CH10/EX10.6/Ex10_6.txt @@ -0,0 +1,14 @@ + a)
+electron concentration= 1e+15 cm^-3
+hole concentration= 2.1e+05 cm^-3
+Fermi level w.r.t intrinsic fermi level= 0.279 eV
+b)
+electron concentration= 1e+15 cm^-3
+hole concentration= 1e+12 cm^-3
+Quasi fermi level for n-type carrier= 0.279 eV
+Quasi fermi level for p-type carrier= 0.11 eV
+c)
+electron concentration= 1e+18 cm^-3
+hole concentration= 1e+18 cm^-3
+Quasi fermi level for n-type carrier= 0.45 eV
+Quasi fermi level for p-type carrier= 0.45 eV
\ No newline at end of file diff --git a/3636/CH10/EX10.7/Ex10_7.sce b/3636/CH10/EX10.7/Ex10_7.sce new file mode 100644 index 000000000..3fe1fceef --- /dev/null +++ b/3636/CH10/EX10.7/Ex10_7.sce @@ -0,0 +1,19 @@ +clc;
+clear;
+h=4.135*10^-15 //plancks constant in eVs
+c=3*10^8 //in m/s
+EgGe=0.67 //in eV
+EgSi=1.124 //in eV
+EgGaAs=1.42 //in eV
+EgSiO2=9 //in eV
+
+//Calculation
+lamda1=(h*c)/EgGe/10^-6 //in micro-m
+lamda2=(h*c)/EgSi/10^-6 //in micro-m
+lamda3=(h*c)/EgGaAs/10^-6 //in micro-m
+lamda4=(h*c)/EgSiO2/10^-6 //in micro-m
+
+mprintf("Wavelength of radiation for germanium= %1.2f micro-m\n",lamda1)
+mprintf("Wavelength of radiation for silicon= %1.2f micro-m\n",lamda2)
+mprintf("Wavelength of radiation for gallium-arsenide= %1.2f micro-m\n",lamda3)
+mprintf("Wavelength of radiation for SiO2= %1.2f micro-m\n",lamda4)
diff --git a/3636/CH10/EX10.7/Ex10_7.txt b/3636/CH10/EX10.7/Ex10_7.txt new file mode 100644 index 000000000..6b1f8c629 --- /dev/null +++ b/3636/CH10/EX10.7/Ex10_7.txt @@ -0,0 +1,4 @@ + Wavelength of radiation for germanium= 1.85 micro-m
+Wavelength of radiation for silicon= 1.10 micro-m
+Wavelength of radiation for gallium-arsenide= 0.87 micro-m
+Wavelength of radiation for SiO2= 0.14 micro-m
\ No newline at end of file diff --git a/3636/CH10/EX10.8/Ex10_8.sce b/3636/CH10/EX10.8/Ex10_8.sce new file mode 100644 index 000000000..69af183e1 --- /dev/null +++ b/3636/CH10/EX10.8/Ex10_8.sce @@ -0,0 +1,34 @@ +clc;
+clear;
+Na=10^18 //in cm^-3
+Nd=10^17 //in cm^-3
+myu_p=471 //in cm^2/Vs
+myu_n=1417 //in cm^2/Vs
+tau_p=10^-8 //in s
+tau_n=10^-6 //in s
+JL=40 //in mA/cm^2
+A=10^-5 //in cm^2
+R1=1000 //in ohm
+e=1.6*10^-19 //in J
+ni=1.45*10^10 //in cm^-3
+Vt=0.02586 //constant for kT/e at 300K in V
+V=0.1 //in V
+n=10 //number of solar cells
+
+//Calculation
+//a)
+Dp=Vt*myu_p //in cm^2/s
+Dn=Vt*myu_n //in cm^2/s
+Ln=sqrt(Dn*tau_n) //in cm
+Lp=sqrt(Dp*tau_p) //in cm
+Js=e*ni^2*((Dp/(Nd*Lp))+(Dn/(Na*Ln))) //in A/cm^2
+Is=Js*10^-5 //in A
+IF=Is*(exp(V/Vt)-1) //in A
+
+//b)
+IL=40*10^-8 //in A
+I=IL-IF //in
+X=((10^-3)/(I))*n
+
+mprintf("a)Current= %.2e A\n",IF) //The answers vary due to round off error
+mprintf("b)Total number of solar cells= %i",X)
diff --git a/3636/CH10/EX10.8/Ex10_8.txt b/3636/CH10/EX10.8/Ex10_8.txt new file mode 100644 index 000000000..8ce0e70dc --- /dev/null +++ b/3636/CH10/EX10.8/Ex10_8.txt @@ -0,0 +1,2 @@ + a)Current= 5.59e-15 A
+b)Total number of solar cells= 25000
\ No newline at end of file diff --git a/3636/CH10/EX10.9/Ex10_9.sce b/3636/CH10/EX10.9/Ex10_9.sce new file mode 100644 index 000000000..709028d7e --- /dev/null +++ b/3636/CH10/EX10.9/Ex10_9.sce @@ -0,0 +1,11 @@ +clc;
+clear;
+Eg=1.43 //Energy band gap in eV
+h=4.14*10^-15 //planck's constant in eV/s
+c=3*10^8 //in m/s
+
+//Calculation
+lamda=(h*c)/Eg
+
+format("v",8)
+disp(lamda,"Wavelength (m)= ") //The answers vary due to round off error
diff --git a/3636/CH10/EX10.9/Ex10_9.txt b/3636/CH10/EX10.9/Ex10_9.txt new file mode 100644 index 000000000..c8b300b23 --- /dev/null +++ b/3636/CH10/EX10.9/Ex10_9.txt @@ -0,0 +1,4 @@ +
+ Wavelength (m)=
+
+ 8.7D-07
\ No newline at end of file diff --git a/3636/CH11/EX11.1/Ex11_1.sce b/3636/CH11/EX11.1/Ex11_1.sce new file mode 100644 index 000000000..36a7b10b3 --- /dev/null +++ b/3636/CH11/EX11.1/Ex11_1.sce @@ -0,0 +1,15 @@ +clear;
+clc;
+RL=8 //in ohm
+VCC=30 //in V
+
+//Calculation
+IC_max=VCC/RL
+VCE_max=VCC
+IC=VCC/(2*RL)
+VCE=VCC-(IC*RL)
+PT=VCE*IC
+
+mprintf("maximum collector current= %1.2f A\n",IC_max)
+mprintf("Maximum collector-emiiter voltage= %i V\n",VCE_max)
+mprintf("Maximum Power rating= %2.2f W",PT)
diff --git a/3636/CH11/EX11.1/Ex11_1.txt b/3636/CH11/EX11.1/Ex11_1.txt new file mode 100644 index 000000000..6f272a934 --- /dev/null +++ b/3636/CH11/EX11.1/Ex11_1.txt @@ -0,0 +1,3 @@ + maximum collector current= 3.75 A
+Maximum collector-emiiter voltage= 30 V
+Maximum Power rating= 28.13 W
\ No newline at end of file diff --git a/3636/CH11/EX11.2/Ex11_2.sce b/3636/CH11/EX11.2/Ex11_2.sce new file mode 100644 index 000000000..0e3294a3e --- /dev/null +++ b/3636/CH11/EX11.2/Ex11_2.sce @@ -0,0 +1,15 @@ +clear;
+clc;
+VDD=25 //voltage axis intersection point in V
+ID=4 //current in A
+
+//Calculation
+RD=VDD/ID
+ID=VDD/(2*RD)
+VDS=VDD-(ID*RD)
+PT=VDS*ID
+
+mprintf("Drain Resistance= %1.2f ohm\n",RD)
+mprintf("Drain current at maximum power ditribution point= %i A\n",ID)
+mprintf("drain-to-source voltage at maximum power dissipation point= %2.1f V\n",VDS)
+mprintf("Maximum power dissipation= %i W",PT)
diff --git a/3636/CH11/EX11.2/Ex11_2.txt b/3636/CH11/EX11.2/Ex11_2.txt new file mode 100644 index 000000000..6fbb76482 --- /dev/null +++ b/3636/CH11/EX11.2/Ex11_2.txt @@ -0,0 +1,4 @@ + Drain Resistance= 6.25 ohm
+Drain current at maximum power ditribution point= 2 A
+drain-to-source voltage at maximum power dissipation point= 12.5 V
+Maximum power dissipation= 25 W
\ No newline at end of file diff --git a/3636/CH11/EX11.3/Ex11_3.sce b/3636/CH11/EX11.3/Ex11_3.sce new file mode 100644 index 000000000..1cae31f75 --- /dev/null +++ b/3636/CH11/EX11.3/Ex11_3.sce @@ -0,0 +1,9 @@ +clear;
+clc;
+beta1=20 //bjt gain
+beta2=20 //bjt gain
+
+//Calculation
+beta0=beta1+beta2+(beta1*beta2)
+
+mprintf("net common-emitter current gain= %g",beta0)
diff --git a/3636/CH11/EX11.3/Ex11_3.txt b/3636/CH11/EX11.3/Ex11_3.txt new file mode 100644 index 000000000..c1ed9d8d5 --- /dev/null +++ b/3636/CH11/EX11.3/Ex11_3.txt @@ -0,0 +1 @@ + net common-emitter current gain= 440
\ No newline at end of file diff --git a/3636/CH11/EX11.4/Ex11_4.sce b/3636/CH11/EX11.4/Ex11_4.sce new file mode 100644 index 000000000..99037e8a9 --- /dev/null +++ b/3636/CH11/EX11.4/Ex11_4.sce @@ -0,0 +1,15 @@ +clear;
+clc;
+TJ_max=150 //in C
+Tamb=27 //in C
+Rth_dp=1.7 //Thermal resistance in C/W
+Rth_pa=40 //in C/W
+Rth_ps=1 //in C/W
+Rth_sa=4 //in C/W
+
+//Calculation
+PD1_max=(TJ_max-Tamb)/(Rth_dp+Rth_pa)
+PD2_max=(TJ_max-Tamb)/(Rth_dp+Rth_sa+Rth_ps)
+
+mprintf("Case(a):No heat sink used :-Maximum power distribution= %1.2f W\n",PD1_max)
+mprintf("Case(b):Heaat sink used :- Maximum power distribution= %2.2f W",PD2_max)
diff --git a/3636/CH11/EX11.4/Ex11_4.txt b/3636/CH11/EX11.4/Ex11_4.txt new file mode 100644 index 000000000..803e2c1df --- /dev/null +++ b/3636/CH11/EX11.4/Ex11_4.txt @@ -0,0 +1,2 @@ + Case(a):No heat sink used :-Maximum power distribution= 2.95 W
+Case(b):Heaat sink used :- Maximum power distribution= 18.36 W
\ No newline at end of file diff --git a/3636/CH11/EX11.5/Ex11_5.sce b/3636/CH11/EX11.5/Ex11_5.sce new file mode 100644 index 000000000..dd4184db3 --- /dev/null +++ b/3636/CH11/EX11.5/Ex11_5.sce @@ -0,0 +1,16 @@ +clear;
+clc;
+B=10 //current gain
+IB=0.6 //in A
+VBE=1 //in V
+RC=10 //in ohm
+VCC=100 //in Vs
+
+//Calculation
+IC=B*IB //in A
+VCE=VCC-(IC*RC) //in V
+VCB=VCE-VBE //in V
+PT=(VCE*IC)+(VBE*IB)
+
+mprintf("Total power dissipation= %.1f W",PT)
+disp("The BJT is working outside the SOA")
diff --git a/3636/CH11/EX11.5/Ex11_5.txt b/3636/CH11/EX11.5/Ex11_5.txt new file mode 100644 index 000000000..789ccabda --- /dev/null +++ b/3636/CH11/EX11.5/Ex11_5.txt @@ -0,0 +1,2 @@ + Total power dissipation= 240.6 W
+ The BJT is working outside the SOA
\ No newline at end of file diff --git a/3636/CH11/EX11.6/Ex11_6.sce b/3636/CH11/EX11.6/Ex11_6.sce new file mode 100644 index 000000000..5276ef8b1 --- /dev/null +++ b/3636/CH11/EX11.6/Ex11_6.sce @@ -0,0 +1,12 @@ +clear;
+clc;
+Beff=250 //effective gain
+B1=25 //current gain of transistor
+B2=8.65 //effective gain of Darlington-pair
+iB=50*10^-3 //in A
+
+//Calculation
+iC2=iB*(Beff-B1)
+iE2=(1+(1/B2))*iC2
+
+mprintf("Emitter current= %2.2f A",iE2)
diff --git a/3636/CH11/EX11.6/Ex11_6.txt b/3636/CH11/EX11.6/Ex11_6.txt new file mode 100644 index 000000000..d179513e3 --- /dev/null +++ b/3636/CH11/EX11.6/Ex11_6.txt @@ -0,0 +1 @@ + Emitter current= 12.55 A
\ No newline at end of file diff --git a/3636/CH11/EX11.7/Ex11_7.sce b/3636/CH11/EX11.7/Ex11_7.sce new file mode 100644 index 000000000..769cae52b --- /dev/null +++ b/3636/CH11/EX11.7/Ex11_7.sce @@ -0,0 +1,11 @@ +clear;
+clc;
+VBB=24 //in V
+r1=3 //in k-ohm
+r2=5 //in k-ohm
+
+//Calculation
+n=r1/(r1+r2)
+VP=(n*VBB)+0.7
+
+mprintf("peak-point voltage= %1.1f V",VP)
diff --git a/3636/CH11/EX11.7/Ex11_7.txt b/3636/CH11/EX11.7/Ex11_7.txt new file mode 100644 index 000000000..be3936183 --- /dev/null +++ b/3636/CH11/EX11.7/Ex11_7.txt @@ -0,0 +1 @@ + peak-point voltage= 9.7 V
\ No newline at end of file diff --git a/3636/CH11/EX11.8/Ex11_8.sce b/3636/CH11/EX11.8/Ex11_8.sce new file mode 100644 index 000000000..001c49ef4 --- /dev/null +++ b/3636/CH11/EX11.8/Ex11_8.sce @@ -0,0 +1,18 @@ +clear;
+clc;
+Rth_sink=4 //resistance in C/W
+Rth_case=1.5 //in C/W
+T2=200 //Temperature in C
+T1=27 //Room temperature in C
+P=20 //power in W
+
+//Calculation
+Rth=(T2-T1)/P
+Tdev=T2
+Tamb=T1
+Rth_dp=Rth
+Rth_ps=Rth_case //case-sink resistance
+Rth_sa=Rth_sink //sink-ambient resistance
+PD=(Tdev-Tamb)/(Rth_dp+Rth_ps+Rth_sa)
+
+mprintf("Actual power dissipation= %2.2f W",PD) //The answers vary due to round off error
diff --git a/3636/CH11/EX11.8/Ex11_8.txt b/3636/CH11/EX11.8/Ex11_8.txt new file mode 100644 index 000000000..48bcb66ff --- /dev/null +++ b/3636/CH11/EX11.8/Ex11_8.txt @@ -0,0 +1 @@ + Actual power dissipation= 12.23 W
\ No newline at end of file diff --git a/3636/CH11/EX11.9/Ex11_9.sce b/3636/CH11/EX11.9/Ex11_9.sce new file mode 100644 index 000000000..a5316bc21 --- /dev/null +++ b/3636/CH11/EX11.9/Ex11_9.sce @@ -0,0 +1,16 @@ +clear;
+clc;
+Tj=400 //junction temperature in Celsius
+TA=50 //ambient temperature in Celsius
+P=90 //power supplied in Watts
+Rth_dp=1.5 //in C/W
+convection_coeff=100 //heat convection cofficient in W/degree-C*m^2
+
+//Calculation
+Rth_sa=((Tj-TA)/P)-Rth_dp
+A=1/(Rth_sa*convection_coeff)
+
+format("v",5)
+disp(Rth_sa,"Maximum thermal temperature of heat sink (C/W)= ") //The answers vary due to round off error
+format("e",8)
+disp(A,"Surface Area (m^2)= ")
diff --git a/3636/CH11/EX11.9/Ex11_9.txt b/3636/CH11/EX11.9/Ex11_9.txt new file mode 100644 index 000000000..135388560 --- /dev/null +++ b/3636/CH11/EX11.9/Ex11_9.txt @@ -0,0 +1,8 @@ +
+ Maximum thermal temperature of heat sink (C/W)=
+
+ 2.39
+
+ Surface Area (m^2)=
+
+ 4.2D-03
\ No newline at end of file diff --git a/3636/CH12/EX12.1/Ex12_1.sce b/3636/CH12/EX12.1/Ex12_1.sce new file mode 100644 index 000000000..d57a8245c --- /dev/null +++ b/3636/CH12/EX12.1/Ex12_1.sce @@ -0,0 +1,14 @@ +clear;
+clc;
+l=100 //length of resistor in micro-m
+w=10 //width of resistor in micro-m
+R=0.9 //sheet resistance in k-ohm/n
+End_points=0.65*2 //Total contribution of two end points
+
+//Calculation
+Total_squares=l/w
+T=Total_squares+End_points //Total effective sqaures
+Reff=T*R
+
+format("v",8)
+disp(Reff,"Effective Resistance (k-ohm)= ")
diff --git a/3636/CH12/EX12.1/Ex12_1.txt b/3636/CH12/EX12.1/Ex12_1.txt new file mode 100644 index 000000000..3bfce2aa2 --- /dev/null +++ b/3636/CH12/EX12.1/Ex12_1.txt @@ -0,0 +1,5 @@ +
+ Effective Resistance (k-ohm)=
+
+ 10.17
+
\ No newline at end of file diff --git a/3636/CH12/EX12.2/Ex12_2.sce b/3636/CH12/EX12.2/Ex12_2.sce new file mode 100644 index 000000000..1421beb51 --- /dev/null +++ b/3636/CH12/EX12.2/Ex12_2.sce @@ -0,0 +1,12 @@ +clc;
+clear;
+epsilon_0=8.85*10^-14 //in F/cm
+epsilon_i=3.9 //in F/cm
+tox=0.5*10^-4 //in cm
+
+//Calculation
+C=(epsilon_0*epsilon_i)/tox
+
+format("e",9)
+disp(C,"Capacitance per unit area (F/cm^2)= ")
+//The answer provided in the textbook is wrong
diff --git a/3636/CH12/EX12.2/Ex12_2.txt b/3636/CH12/EX12.2/Ex12_2.txt new file mode 100644 index 000000000..91e273671 --- /dev/null +++ b/3636/CH12/EX12.2/Ex12_2.txt @@ -0,0 +1,5 @@ +
+
+ Capacitance per unit area (F/cm^2)=
+
+ 6.90D-09
\ No newline at end of file diff --git a/3636/CH12/EX12.3/Ex12_3.sce b/3636/CH12/EX12.3/Ex12_3.sce new file mode 100644 index 000000000..15894b9f9 --- /dev/null +++ b/3636/CH12/EX12.3/Ex12_3.sce @@ -0,0 +1,15 @@ +clear;
+clc;
+Length=4 //in micro-m
+Width=1 //in micro-m
+R=1000 //in ohm
+xj=1*10^-4 //junction depth in cm
+
+//Calculation
+N=Length/Width
+R0=R/N
+rho=R0*xj
+
+mprintf("Sheet resistance= %i ohm\n",R0)
+mprintf("average resistivity= %0.3f ohm-cm",rho)
+
diff --git a/3636/CH12/EX12.3/Ex12_3.txt b/3636/CH12/EX12.3/Ex12_3.txt new file mode 100644 index 000000000..e999ec168 --- /dev/null +++ b/3636/CH12/EX12.3/Ex12_3.txt @@ -0,0 +1,2 @@ + Sheet resistance= 250 ohm
+average resistivity= 0.025 ohm-cm
\ No newline at end of file diff --git a/3636/CH13/EX13.1/Ex13_1.sce b/3636/CH13/EX13.1/Ex13_1.sce new file mode 100644 index 000000000..c2cb39080 --- /dev/null +++ b/3636/CH13/EX13.1/Ex13_1.sce @@ -0,0 +1,18 @@ +clear;
+clc;
+l=10*10^-6 //length in m
+f=10*10^9 //frequency in Hz
+n=2*10^14 // n type doping concentration in cm^-3
+e=1.6*10^-19 //in J
+E=3200 //electric field in V/cm
+
+//Calculation
+vd=l*f //converting from m^2 to cm^2
+J=e*n*vd
+myu=-vd/E
+
+format("v",7)
+disp(vd,"Drift velocity (cms^-1)= ")
+format("v",9)
+disp(J,"current density (A/cm^2)= ")
+disp(myu,"negative electron mobility (cm^2/Vs)= ") //The answer provided in the textbook is wrong
diff --git a/3636/CH13/EX13.1/Ex13_1.txt b/3636/CH13/EX13.1/Ex13_1.txt new file mode 100644 index 000000000..f878f2157 --- /dev/null +++ b/3636/CH13/EX13.1/Ex13_1.txt @@ -0,0 +1,13 @@ +
+ Drift velocity (cms^-1)=
+
+ 1.D+07
+
+ current density (A/cm^2)=
+
+ 320
+
+ negative electron mobility (cm^2/Vs)=
+
+ - 3125
+
\ No newline at end of file diff --git a/3636/CH13/EX13.2/Ex13_2.sce b/3636/CH13/EX13.2/Ex13_2.sce new file mode 100644 index 000000000..ac81561c6 --- /dev/null +++ b/3636/CH13/EX13.2/Ex13_2.sce @@ -0,0 +1,13 @@ +clear;
+clc;
+drift_length=2*10^-4 //in cm
+drift_velocity=2*10^7 //in cm/s
+
+//Calculation
+d=drift_length/drift_velocity
+f=(drift_velocity*10^-2)/(2*drift_length*10^-2)
+
+format("v",8)
+disp(d,"Drift time (s)= ")
+disp(f,"Operating frequency (Hz)= ")
+
diff --git a/3636/CH13/EX13.2/Ex13_2.txt b/3636/CH13/EX13.2/Ex13_2.txt new file mode 100644 index 000000000..f4c051390 --- /dev/null +++ b/3636/CH13/EX13.2/Ex13_2.txt @@ -0,0 +1,9 @@ +
+ Drift time (s)=
+
+ 1.0D-11
+
+ Operating frequency (Hz)=
+
+ 5.0D+10
+
\ No newline at end of file diff --git a/3636/CH13/EX13.3/Ex13_3.sce b/3636/CH13/EX13.3/Ex13_3.sce new file mode 100644 index 000000000..205f41891 --- /dev/null +++ b/3636/CH13/EX13.3/Ex13_3.sce @@ -0,0 +1,13 @@ +clear;
+clc;
+J=20*10^3 //in kA/cm^2
+e=1.6*10^-19 //in C
+Nd=2*10^15 //in cm^-3
+
+//Calculation
+vz=J/(e*Nd)
+
+format("e",9)
+disp(vz,"avalanche-zone velocity is (cm/s)= ")
+
+
diff --git a/3636/CH13/EX13.3/Ex13_3.txt b/3636/CH13/EX13.3/Ex13_3.txt new file mode 100644 index 000000000..4a6cef9f2 --- /dev/null +++ b/3636/CH13/EX13.3/Ex13_3.txt @@ -0,0 +1,4 @@ +
+ avalanche-zone velocity is (cm/s)=
+
+ 6.25D+07
\ No newline at end of file diff --git a/3636/CH13/EX13.4/Ex13_4.sce b/3636/CH13/EX13.4/Ex13_4.sce new file mode 100644 index 000000000..6cd35382e --- /dev/null +++ b/3636/CH13/EX13.4/Ex13_4.sce @@ -0,0 +1,15 @@ +clear;
+clc;
+e=1.6*10^-19 //in eV
+Nd=2.8*10^21 // donor doping concentration in m^-3
+L=6*10^-6 //length in m
+epsilon_s=8.854*10^-12*11.8 // in F/m
+
+//Calculation
+Vbd=(e*Nd*L^2)/epsilon_s
+Ebd=Vbd/L
+
+format("v",7)
+disp(Vbd,"Breakdown voltage is (V)= ")//The answers vary due to round off error
+format("e",9)
+disp(Ebd,"Breakdown electric field is (V/m)= ")
diff --git a/3636/CH13/EX13.4/Ex13_4.txt b/3636/CH13/EX13.4/Ex13_4.txt new file mode 100644 index 000000000..7c201966e --- /dev/null +++ b/3636/CH13/EX13.4/Ex13_4.txt @@ -0,0 +1,8 @@ +
+ Breakdown voltage is (V)=
+
+ 154.37
+
+ Breakdown electric field is (V/m)=
+
+ 2.57D+07
\ No newline at end of file diff --git a/3636/CH14/EX14.1/Ex14_1.sce b/3636/CH14/EX14.1/Ex14_1.sce new file mode 100644 index 000000000..1455001b3 --- /dev/null +++ b/3636/CH14/EX14.1/Ex14_1.sce @@ -0,0 +1,16 @@ +clear;
+clc;
+Vm=100 //voltage in V
+Rf=1*10^3 //resistance in series in ohm
+Rl=4*10^3 //load resistance in ohm
+
+//Calculation
+Im=Vm/(Rf+Rl)
+Idc=Im/%pi
+Irms=Im/2
+
+format("e",8)
+disp(Im,"(a)Maximum current Im is (A)= ")
+format("e",9)
+disp(Idc,"(b)dc component of current Idc is (A)=")
+disp(Irms,"(c)rms value of current Irms (A)= ")
diff --git a/3636/CH14/EX14.1/Ex14_1.txt b/3636/CH14/EX14.1/Ex14_1.txt new file mode 100644 index 000000000..08002ccd4 --- /dev/null +++ b/3636/CH14/EX14.1/Ex14_1.txt @@ -0,0 +1,13 @@ +
+ (a)Maximum current Im is (A)=
+
+ 2.0D-02
+
+ (b)dc component of current Idc is (A)=
+
+ 6.37D-03
+
+ (c)rms value of current Irms (A)=
+
+ 1.00D-02
+
\ No newline at end of file diff --git a/3636/CH14/EX14.2/Ex14_2.sce b/3636/CH14/EX14.2/Ex14_2.sce new file mode 100644 index 000000000..ffd94d35b --- /dev/null +++ b/3636/CH14/EX14.2/Ex14_2.sce @@ -0,0 +1,16 @@ +clear;
+clc;
+Vm=200 //voltage in V
+Rf=500 //resistance in series in ohm
+Rl=1000 //load resistance in ohm
+
+//Calculation
+Im=Vm/(Rf+Rl)
+Idc=(2*Im)/%pi
+Irms=Im/sqrt(2)
+Y=sqrt((Irms/Idc)^2-1)
+
+mprintf("(a)Maximum current Im= %0.3f A\n",Im)
+mprintf("(b)dc component of current Idc= %1.4f A\n",Idc)
+mprintf("(c)rms value of current Irms= %1.3f A\n",Irms)
+mprintf("(d)Ripple Factor Y= %1.3f",Y) //The answers vary due to round off error
diff --git a/3636/CH14/EX14.2/Ex14_2.txt b/3636/CH14/EX14.2/Ex14_2.txt new file mode 100644 index 000000000..0b20dc4ea --- /dev/null +++ b/3636/CH14/EX14.2/Ex14_2.txt @@ -0,0 +1,4 @@ + (a)Maximum current Im= 0.133 A
+(b)dc component of current Idc= 0.0849 A
+(c)rms value of current Irms= 0.094 A
+(d)Ripple Factor Y= 0.483
\ No newline at end of file diff --git a/3636/CH14/EX14.3/Ex14_3.sce b/3636/CH14/EX14.3/Ex14_3.sce new file mode 100644 index 000000000..232868a93 --- /dev/null +++ b/3636/CH14/EX14.3/Ex14_3.sce @@ -0,0 +1,13 @@ +clear;
+clc;
+RL=500 //load resistance in ohm
+C1=100*10^-6 //capacitance in F
+C2=50*10^-6 //capacitance in F
+L=5 //in H
+f=50 //frequency in Hz
+
+//Calculation
+Y=0.216/(RL*C1*C2*L*(2*%pi*f)^3)
+
+format("v",8)
+disp(Y,"Ripple factor Y= ") //The answers vary due to round off error
diff --git a/3636/CH14/EX14.3/Ex14_3.txt b/3636/CH14/EX14.3/Ex14_3.txt new file mode 100644 index 000000000..8a0c52581 --- /dev/null +++ b/3636/CH14/EX14.3/Ex14_3.txt @@ -0,0 +1,4 @@ +
+ Ripple factor Y=
+
+ 0.00056
\ No newline at end of file diff --git a/3636/CH14/EX14.4/Ex14_4.sce b/3636/CH14/EX14.4/Ex14_4.sce new file mode 100644 index 000000000..8ca483a78 --- /dev/null +++ b/3636/CH14/EX14.4/Ex14_4.sce @@ -0,0 +1,9 @@ +clear;
+clc;
+Iz_min=1492.5*10^-3 //Zener diode current in Ampere
+Vz=25 //Zener diode voltage in Volt
+
+//Calculation
+Pmin=Vz*Iz_min
+
+mprintf("Minimum Power Rating p= %2.1f W",Pmin)
diff --git a/3636/CH14/EX14.4/Ex14_4.txt b/3636/CH14/EX14.4/Ex14_4.txt new file mode 100644 index 000000000..811a4a3e6 --- /dev/null +++ b/3636/CH14/EX14.4/Ex14_4.txt @@ -0,0 +1 @@ + Minimum Power Rating p= 37.3 W
\ No newline at end of file diff --git a/3636/CH2/EX2.1/Ex2_1.sce b/3636/CH2/EX2.1/Ex2_1.sce new file mode 100644 index 000000000..486ab5ea6 --- /dev/null +++ b/3636/CH2/EX2.1/Ex2_1.sce @@ -0,0 +1,10 @@ +clc;
+clear;
+disp("Each corner sphere of the bcc unit cell is shared with eigth neighbouring cells.Thus each cell contains one eigth of a sphere at all the eigth corners.Each unit cell also contains one central sphere")
+S=2 //Sphere per unit cell
+
+//Calculation
+f=S*%pi*sqrt(3)/16 //maximum fraction of a unit cell
+
+mprintf("bcc unit cell volume filled with hard sphere= %i %%",round(f*100))
+
diff --git a/3636/CH2/EX2.1/Ex2_1.txt b/3636/CH2/EX2.1/Ex2_1.txt new file mode 100644 index 000000000..f9733f701 --- /dev/null +++ b/3636/CH2/EX2.1/Ex2_1.txt @@ -0,0 +1,2 @@ +Each corner sphere of the bcc unit cell is shared with eigth neighbouring cells.Thus each cell contains one eigth of a sphere at all the eigth corners.Each unit cell also contains one central sphere
+bcc unit cell volume filled with hard sphere= 68 %
\ No newline at end of file diff --git a/3636/CH2/EX2.10/Ex2_10.sce b/3636/CH2/EX2.10/Ex2_10.sce new file mode 100644 index 000000000..df8697a8e --- /dev/null +++ b/3636/CH2/EX2.10/Ex2_10.sce @@ -0,0 +1,10 @@ +clear;
+clc;
+Na=6.02*10^23 // Avagadro Number in mol^-1
+AtWt=28.09 //in g/mole
+Density=5*10^22 //in atoms/cm^-3
+
+//Calculation
+DensityPerUnitVolume=(Density*AtWt)/(Na)
+
+mprintf("Density per unit volume= %1.2f g cm^-3",DensityPerUnitVolume)
diff --git a/3636/CH2/EX2.10/Ex2_10.txt b/3636/CH2/EX2.10/Ex2_10.txt new file mode 100644 index 000000000..60579c628 --- /dev/null +++ b/3636/CH2/EX2.10/Ex2_10.txt @@ -0,0 +1 @@ + Density per unit volume= 2.33 g cm^-3
\ No newline at end of file diff --git a/3636/CH2/EX2.2/Ex2_2.sce b/3636/CH2/EX2.2/Ex2_2.sce new file mode 100644 index 000000000..023554179 --- /dev/null +++ b/3636/CH2/EX2.2/Ex2_2.sce @@ -0,0 +1,14 @@ +clc;
+clear;
+// r = p*a + q*b + s*c
+p=1
+q=2
+s=3
+
+//Calculation
+LCM=lcm({p,q,s}) //LCM for computing miller indices
+rx=1/p*LCM //reciprocals
+ry=1/q*LCM
+rz=1/s*LCM
+
+mprintf("The plane depicted in the figure is denoted by (%i,%i,%i)",rx,ry,rz)
diff --git a/3636/CH2/EX2.2/Ex2_2.txt b/3636/CH2/EX2.2/Ex2_2.txt new file mode 100644 index 000000000..87840a619 --- /dev/null +++ b/3636/CH2/EX2.2/Ex2_2.txt @@ -0,0 +1 @@ +The plane depicted in the figure is denoted by (6,3,2)
\ No newline at end of file diff --git a/3636/CH2/EX2.3/Ex2_3.sce b/3636/CH2/EX2.3/Ex2_3.sce new file mode 100644 index 000000000..039dbc5e8 --- /dev/null +++ b/3636/CH2/EX2.3/Ex2_3.sce @@ -0,0 +1,22 @@ +clear;
+clc;
+//Atomic weigths
+Si=28.1
+Ga=69.7
+As=74.9
+Na=6.02*10^23 // Avagadro Number in mol^-1
+//(a)Si
+a=5.43*10^-8 //in cm
+n=8 //no. of atoms/cell
+
+//(b)GaAs
+a1=5.65*10^-8 //in cm
+
+//Calculation
+N=8/a^3 //Atomic Concentration in atoms/cc
+N1=4/a1^3 //Atomic Concentration in atoms/cc
+Density=(N*Si)/(Na)
+Density1=(N1*(Ga+As))/(Na)
+
+mprintf("Density of Si= %1.2f g/cm^3\n",Density)
+mprintf("Density of GaAs= %1.2f g/cm^3",Density1)
diff --git a/3636/CH2/EX2.3/Ex2_3.txt b/3636/CH2/EX2.3/Ex2_3.txt new file mode 100644 index 000000000..482387273 --- /dev/null +++ b/3636/CH2/EX2.3/Ex2_3.txt @@ -0,0 +1,2 @@ + Density of Si= 2.33 g/cm^3
+Density of GaAs= 5.33 g/cm^3
\ No newline at end of file diff --git a/3636/CH2/EX2.4/Ex2_4.sce b/3636/CH2/EX2.4/Ex2_4.sce new file mode 100644 index 000000000..43af4455c --- /dev/null +++ b/3636/CH2/EX2.4/Ex2_4.sce @@ -0,0 +1,9 @@ +clear;
+clc;
+a=5*10^-10 //lattice constatnt in m
+
+//Calculation
+n111=1/(a^2*sqrt(3))
+
+mprintf("n(111)= %.1e atoms/m^2",n111)
+//2.3e+18 is 2.3*10^18
diff --git a/3636/CH2/EX2.4/Ex2_4.txt b/3636/CH2/EX2.4/Ex2_4.txt new file mode 100644 index 000000000..4a18236a5 --- /dev/null +++ b/3636/CH2/EX2.4/Ex2_4.txt @@ -0,0 +1 @@ + n(111)= 2.3e+18 atoms/m^2
\ No newline at end of file diff --git a/3636/CH2/EX2.5/Ex2_5.sce b/3636/CH2/EX2.5/Ex2_5.sce new file mode 100644 index 000000000..e90ea9749 --- /dev/null +++ b/3636/CH2/EX2.5/Ex2_5.sce @@ -0,0 +1,18 @@ +clear;
+clc;
+Cs=5*10^16 //impurity concentration in solid in atoms/cm^3
+ks=0.35 //segregation coefficient
+d=2.33 //density of Si in g/cm^3
+Na=6.02*10^23 // Avagadro Number in mol^-1
+Si=31 //weight of Si
+loadSi=4000 //initial load in gm
+
+//Calculation
+Cl=Cs/ks //impurity concentration in liquid
+V=loadSi/d //volume of the melt in cm^3
+Nummber_of_atoms=Cl*V //in atoms
+Wt=(Cl*V*Si)/(Na)
+
+mprintf("(a)Cl= %1.2e cm^-3\n",Cl)
+mprintf("(b)Wt of P= %.3e g",Wt) //The answers vary due to round off error
+
diff --git a/3636/CH2/EX2.5/Ex2_5.txt b/3636/CH2/EX2.5/Ex2_5.txt new file mode 100644 index 000000000..8cb53ae46 --- /dev/null +++ b/3636/CH2/EX2.5/Ex2_5.txt @@ -0,0 +1,2 @@ + (a)Cl= 1.43e+17 cm^-3
+(b)Wt of P= 1.263e-02 g
\ No newline at end of file diff --git a/3636/CH2/EX2.7/Ex2_7.sce b/3636/CH2/EX2.7/Ex2_7.sce new file mode 100644 index 000000000..d6514602a --- /dev/null +++ b/3636/CH2/EX2.7/Ex2_7.sce @@ -0,0 +1,14 @@ +clear;
+clc;
+// r = p*a + q*b + s*c
+x=3 //intercept on x axis
+y=4 //intercept on y axis
+z=5 //intercept on z zxis
+
+//Calculation
+LCM=lcm({x,y,z}) //LCM for computing miller indices
+rx=1/x*LCM //reciprocal
+ry=1/y*LCM
+rz=1/z*LCM
+
+mprintf("Miller indices of plane are (%i,%i,%i)",rx,ry,rz)
diff --git a/3636/CH2/EX2.7/Ex2_7.txt b/3636/CH2/EX2.7/Ex2_7.txt new file mode 100644 index 000000000..c5536a97d --- /dev/null +++ b/3636/CH2/EX2.7/Ex2_7.txt @@ -0,0 +1 @@ + Miller indices of plane are (20,15,12)
\ No newline at end of file diff --git a/3636/CH2/EX2.9/Ex2_9.sce b/3636/CH2/EX2.9/Ex2_9.sce new file mode 100644 index 000000000..c160de628 --- /dev/null +++ b/3636/CH2/EX2.9/Ex2_9.sce @@ -0,0 +1,15 @@ +clear;
+clc;
+a=8 //number of atoms shared by 8 cells
+b=6 //number of atoms shared by 2 cells
+c=4 //number of atoms shared by a single cell
+L=5.43*10^-8 //Lattice constant in cm
+
+//Calculation
+N=(a/8)+(b/2)+c //no. of atoms in each cell
+Volume=L^3
+Density=8/Volume
+
+mprintf("(a)no. of atoms in each cell= %i\n",N)
+mprintf("(b)Density of atoms in silicon= %.0e atoms cm^-3",round(Density))
+//The answer provided in the textbook is wrong
diff --git a/3636/CH2/EX2.9/Ex2_9.txt b/3636/CH2/EX2.9/Ex2_9.txt new file mode 100644 index 000000000..276483688 --- /dev/null +++ b/3636/CH2/EX2.9/Ex2_9.txt @@ -0,0 +1,2 @@ + (a)no. of atoms in each cell= 8
+(b)Density of atoms in silicon= 5e+22 atoms cm^-3
\ No newline at end of file diff --git a/3636/CH3/EX3.1/Ex3_1.sce b/3636/CH3/EX3.1/Ex3_1.sce new file mode 100644 index 000000000..a04467ab4 --- /dev/null +++ b/3636/CH3/EX3.1/Ex3_1.sce @@ -0,0 +1,12 @@ +clear;
+clc;
+v=5*10^5 //velocity of electron in cm/s
+m=9.11*10^-31 //mass of electron in kg
+const=1.6*10^-19 //in eV
+
+//Calculation
+delv=0.02 //change in speed in cm/s
+delE=(m*v*delv)/const
+
+mprintf("Increase in kinetic energy of electron= %1.1e eV",delE)
+
diff --git a/3636/CH3/EX3.1/Ex3_1.txt b/3636/CH3/EX3.1/Ex3_1.txt new file mode 100644 index 000000000..be74295f9 --- /dev/null +++ b/3636/CH3/EX3.1/Ex3_1.txt @@ -0,0 +1 @@ + Increase in kinetic energy of electron= 5.7e-08 eV
\ No newline at end of file diff --git a/3636/CH3/EX3.10/Ex3_10.sce b/3636/CH3/EX3.10/Ex3_10.sce new file mode 100644 index 000000000..48fab7893 --- /dev/null +++ b/3636/CH3/EX3.10/Ex3_10.sce @@ -0,0 +1,13 @@ +clear;
+clc;
+J=14.14*10^-14 //current density in A/cm^2
+v1=3*10^7 //hole group drift velocities in cm/s
+v2=5*10^8 //in cm/s
+v3=6*10^8 //in cm/s
+q=1.6*10^-19 //in C
+n=1000 //number of holes
+
+//Calculation
+x=((J/(n*q))-v1-v2-v3)
+
+mprintf("Drift velocity of remaining hole group= %.1e cm s^-1",x)
diff --git a/3636/CH3/EX3.10/Ex3_10.txt b/3636/CH3/EX3.10/Ex3_10.txt new file mode 100644 index 000000000..46c354d5f --- /dev/null +++ b/3636/CH3/EX3.10/Ex3_10.txt @@ -0,0 +1 @@ +Drift velocity of remaining hole group= -1.1e+09 cm s^-1
\ No newline at end of file diff --git a/3636/CH3/EX3.11/Ex3_11.sce b/3636/CH3/EX3.11/Ex3_11.sce new file mode 100644 index 000000000..e7c43a42d --- /dev/null +++ b/3636/CH3/EX3.11/Ex3_11.sce @@ -0,0 +1,17 @@ +clc;
+clear;
+E=1.43 //in eV
+h=4.14*10^-15 //plancks constant in e*V*s
+c=3*10^8 //in m/s
+
+//Calculation
+//a)
+v=E/h
+
+//b)
+lamda=c/v
+
+mprintf("a)minimum frequency= %.3e Hz\n",v)
+mprintf("b)wavelength= %.1e m",lamda) //The answers vary due to round off error
+
+
diff --git a/3636/CH3/EX3.11/Ex3_11.txt b/3636/CH3/EX3.11/Ex3_11.txt new file mode 100644 index 000000000..3271f8e42 --- /dev/null +++ b/3636/CH3/EX3.11/Ex3_11.txt @@ -0,0 +1,2 @@ + a)minimum frequency= 3.454e+14 Hz
+b)wavelength= 8.7e-07 m
\ No newline at end of file diff --git a/3636/CH3/EX3.12/Ex3_12.sce b/3636/CH3/EX3.12/Ex3_12.sce new file mode 100644 index 000000000..d09cb33c7 --- /dev/null +++ b/3636/CH3/EX3.12/Ex3_12.sce @@ -0,0 +1,22 @@ +clc;
+clear;
+R=10*10^3 //Resistance in ohm
+V=5 //Voltage in V
+J=50 //current density in A/cm^2
+E=100 //in V/cm
+q=1.6*10^10 //in eV
+myu_p=410 //in cm^2/V*s
+Nd=5*10^15 //in cm^-3
+
+//Calculation
+I=V/R //ohms law in mA
+A=I/J //Area in cm^2
+L=V/E
+rho=(R*A)/L
+sigma=1/rho //in ohm^-1 cm^-1
+Na=(sigma/(myu_p*q))+Nd
+
+mprintf("a)Limiting electric field= %i V/cm\n",E)
+mprintf("b)Length of resistor= %.1e cm\n",L)
+mprintf("c)Area of cross-section= %.1g cm^2\n",A)
+mprintf("d)Acceptor doping concentration= %.2g cm^-3",Na) //The answer provided in the textbook is wrong
diff --git a/3636/CH3/EX3.12/Ex3_12.txt b/3636/CH3/EX3.12/Ex3_12.txt new file mode 100644 index 000000000..f464b493d --- /dev/null +++ b/3636/CH3/EX3.12/Ex3_12.txt @@ -0,0 +1,4 @@ + a)Limiting electric field= 100 V/cm
+b)Length of resistor= 5.0e-02 cm
+c)Area of cross-section= 1e-05 cm^2
+d)Acceptor doping concentration= 5e+15 cm^-3
\ No newline at end of file diff --git a/3636/CH3/EX3.13/Ex3_13.sce b/3636/CH3/EX3.13/Ex3_13.sce new file mode 100644 index 000000000..ff9c4dfbf --- /dev/null +++ b/3636/CH3/EX3.13/Ex3_13.sce @@ -0,0 +1,25 @@ +clc;
+clear;
+E_fi=0.35 //in eV
+ni=1.5*10^10 //in cm^-3
+q=1.6*10^-19 //in eV
+myu_n=1400 //in cm^2/Vs
+myu_p=500 //in cm^2/Vs
+Const=0.0259 //constant value for kT in eV
+
+//Calculation
+//a)
+n0=ni*exp((E_fi)/Const)
+
+//c)
+//doped substrate
+sigma=q*(myu_n*n0) //in ohm^-1 cm^-1
+rho=1/sigma
+
+//undoped substrate
+sigma1=q*(ni*(myu_n+myu_p))
+rho1=1/sigma1
+
+mprintf("a)Doping value= %1.3e cm^-3\n",n0)
+mprintf("c)resistivity of the doped pieces of silicon= %.4f ohm-cm\n",rho)
+mprintf("c)resistivity of the undoped pieces of silicon= %.1e ohm-cm",rho1) //The answers vary due to round off error
diff --git a/3636/CH3/EX3.13/Ex3_13.txt b/3636/CH3/EX3.13/Ex3_13.txt new file mode 100644 index 000000000..dbcbf2b17 --- /dev/null +++ b/3636/CH3/EX3.13/Ex3_13.txt @@ -0,0 +1,3 @@ + a)Doping value= 1.109e+16 cm^-3
+c)resistivity of the doped pieces of silicon= 0.4025 ohm-cm
+c)resistivity of the undoped pieces of silicon= 2.2e+05 ohm-cm ohm-cm
\ No newline at end of file diff --git a/3636/CH3/EX3.14/Ex3_14.sce b/3636/CH3/EX3.14/Ex3_14.sce new file mode 100644 index 000000000..55afc5b47 --- /dev/null +++ b/3636/CH3/EX3.14/Ex3_14.sce @@ -0,0 +1,11 @@ +clc;
+clear;
+ni=1.5*10^10 //in cm^-3
+Ex=0.6 //position of energy level in eV
+Const=0.0259 //constant value for kT in eV
+
+//Calculation
+n0=ni*exp(Ex/Const)
+
+mprintf("concentration of doping= %.3e cm^-3",n0) //The answers vary due to round off error
+
diff --git a/3636/CH3/EX3.14/Ex3_14.txt b/3636/CH3/EX3.14/Ex3_14.txt new file mode 100644 index 000000000..299f04788 --- /dev/null +++ b/3636/CH3/EX3.14/Ex3_14.txt @@ -0,0 +1 @@ + concentration of doping= 1.726e+20 cm^-3
\ No newline at end of file diff --git a/3636/CH3/EX3.2/Ex3_2.sce b/3636/CH3/EX3.2/Ex3_2.sce new file mode 100644 index 000000000..5a724b8ae --- /dev/null +++ b/3636/CH3/EX3.2/Ex3_2.sce @@ -0,0 +1,15 @@ +clear;
+clc;
+epsilon_r=13.2
+m0=9.11*10^-31 //in kg
+q=1.6*10^-19 //in eV
+epsilon_0=8.85*10^-12 //in F/m
+h=6.63*10^-34 //planck's constant in J/s
+
+//Calculation
+mn=0.067*m0 //in kg
+E=((mn*q^4)/(8*(epsilon_0*epsilon_r)^2*h^2))
+E1=E/q
+
+mprintf("Energy required to excite the donor electron (J)= %.2e J\n",E)
+mprintf("Energy required to excite the donor electron (eV)= %.4f eV",E1)
diff --git a/3636/CH3/EX3.2/Ex3_2.txt b/3636/CH3/EX3.2/Ex3_2.txt new file mode 100644 index 000000000..38b92ad36 --- /dev/null +++ b/3636/CH3/EX3.2/Ex3_2.txt @@ -0,0 +1,2 @@ + Energy required to excite the donor electron (J)= 8.34e-22 J
+Energy required to excite the donor electron (eV)= 0.0052 eV
\ No newline at end of file diff --git a/3636/CH3/EX3.3/Ex3_3.sce b/3636/CH3/EX3.3/Ex3_3.sce new file mode 100644 index 000000000..c1fae7fbd --- /dev/null +++ b/3636/CH3/EX3.3/Ex3_3.sce @@ -0,0 +1,10 @@ +clear;
+clc;
+ml=0.98//*m0
+mt=0.19//*m0
+//rest mass m0 = 9.1*10^-31 kg
+
+//Calculation
+mn=6^(2/3)*(ml*mt^2)^(1/3)
+
+mprintf("Density of states effective mass of electrons in silicon= %1.1f m0",mn)
diff --git a/3636/CH3/EX3.3/Ex3_3.txt b/3636/CH3/EX3.3/Ex3_3.txt new file mode 100644 index 000000000..bea178578 --- /dev/null +++ b/3636/CH3/EX3.3/Ex3_3.txt @@ -0,0 +1 @@ + Density of states effective mass of electrons in silicon= 1.1 m0
\ No newline at end of file diff --git a/3636/CH3/EX3.4/Ex3_4.sce b/3636/CH3/EX3.4/Ex3_4.sce new file mode 100644 index 000000000..5788aabcd --- /dev/null +++ b/3636/CH3/EX3.4/Ex3_4.sce @@ -0,0 +1,12 @@ +clear;
+clc;
+n0=10^16 //doping atoms of P in atoms/cm^3
+ni=1.5*10^10 //in cm^-3
+Const=0.0259 //constant value for kT in eV
+
+//Calculation
+p0=(ni^2)/n0 //in cm^-3
+x=(n0/ni)
+delE=Const*log(x) //difference between energy bands Ef-Ei
+
+mprintf("Ef-Ei= %.3f eV",delE)
diff --git a/3636/CH3/EX3.4/Ex3_4.txt b/3636/CH3/EX3.4/Ex3_4.txt new file mode 100644 index 000000000..ed5abc380 --- /dev/null +++ b/3636/CH3/EX3.4/Ex3_4.txt @@ -0,0 +1 @@ + Ef-Ei= 0.347 eV
\ No newline at end of file diff --git a/3636/CH3/EX3.5/Ex3_5.sce b/3636/CH3/EX3.5/Ex3_5.sce new file mode 100644 index 000000000..86282dfc8 --- /dev/null +++ b/3636/CH3/EX3.5/Ex3_5.sce @@ -0,0 +1,10 @@ +clear;
+clc;
+ml=0.98//*m0
+mt=0.19//*m0
+//rest mass m0 = 9.1*10^-31 kg
+
+//Calculation
+mnc=0.33*(1/ml+2/mt)
+
+mprintf("1/mnc*= %1.2f m0",1/mnc)
diff --git a/3636/CH3/EX3.5/Ex3_5.txt b/3636/CH3/EX3.5/Ex3_5.txt new file mode 100644 index 000000000..25256ead9 --- /dev/null +++ b/3636/CH3/EX3.5/Ex3_5.txt @@ -0,0 +1 @@ + 1/mnc*= 0.26 m0
\ No newline at end of file diff --git a/3636/CH3/EX3.6/Ex3_6.sce b/3636/CH3/EX3.6/Ex3_6.sce new file mode 100644 index 000000000..502eb9798 --- /dev/null +++ b/3636/CH3/EX3.6/Ex3_6.sce @@ -0,0 +1,11 @@ +clear;
+clc;
+Nd=10^14 //in cm^-3
+myu_n=3900 //in cm^2/V
+e=1.6*10^-19 //in J
+
+//Calculation
+p=1/(Nd*e*myu_n)
+
+mprintf("Resistivity of the sample p= %.2f ohm-cm",p)
+
diff --git a/3636/CH3/EX3.6/Ex3_6.txt b/3636/CH3/EX3.6/Ex3_6.txt new file mode 100644 index 000000000..434c84b97 --- /dev/null +++ b/3636/CH3/EX3.6/Ex3_6.txt @@ -0,0 +1 @@ + Resistivity of the sample p= 16.03 ohm-cm
\ No newline at end of file diff --git a/3636/CH3/EX3.7/Ex3_7.sce b/3636/CH3/EX3.7/Ex3_7.sce new file mode 100644 index 000000000..7f2efa757 --- /dev/null +++ b/3636/CH3/EX3.7/Ex3_7.sce @@ -0,0 +1,17 @@ +clear;
+clc;
+n0=5*10^16 //doping level of Si with As in cm^-3
+myu_n=800 //in cm^2/Vs
+Ix=2*10^-3 //in A
+Bz=5*10^-5 //in A
+d=2*10^-2 //in cm
+e=1.6*10^-19 //in J
+
+//Calculation
+p=1/(e*myu_n*n0)
+RH=-1/(e*n0)
+VH=(Ix*Bz*RH)/(d)
+
+mprintf("Resistivity= %0.3f ohm-cm\n",p)
+mprintf("Hall coefficient= %i cm^3/c\n",RH)
+mprintf("Hall Voltage= %.2e V",VH)
diff --git a/3636/CH3/EX3.7/Ex3_7.txt b/3636/CH3/EX3.7/Ex3_7.txt new file mode 100644 index 000000000..ffd995237 --- /dev/null +++ b/3636/CH3/EX3.7/Ex3_7.txt @@ -0,0 +1,3 @@ + Resistivity= 0.156 ohm-cm
+Hall coefficient= -125 cm^3/c
+Hall Voltage= -6.25e-04 V
\ No newline at end of file diff --git a/3636/CH3/EX3.9/Ex3_9.sce b/3636/CH3/EX3.9/Ex3_9.sce new file mode 100644 index 000000000..ee38d6066 --- /dev/null +++ b/3636/CH3/EX3.9/Ex3_9.sce @@ -0,0 +1,10 @@ +clear;
+clc;
+
+Boron_impurity=10^18 //in cm^-3
+Phosphorus_impurity=10^16 //in cm^-3
+
+//Calculation
+Density=Boron_impurity-(8*Phosphorus_impurity)
+
+mprintf("Density of majority carriers(holes)= %1.1e cm^-3",Density)
diff --git a/3636/CH3/EX3.9/Ex3_9.txt b/3636/CH3/EX3.9/Ex3_9.txt new file mode 100644 index 000000000..1d38533a5 --- /dev/null +++ b/3636/CH3/EX3.9/Ex3_9.txt @@ -0,0 +1 @@ + Density of majority carriers(holes)= 9.2e+17 cm^-3
\ No newline at end of file diff --git a/3636/CH4/EX4.1/Ex4_1.sce b/3636/CH4/EX4.1/Ex4_1.sce new file mode 100644 index 000000000..cd601f62e --- /dev/null +++ b/3636/CH4/EX4.1/Ex4_1.sce @@ -0,0 +1,10 @@ +clc;
+clear;
+del_n0=10^16 //concentration of electrons in cm^-3
+tau_n0=5 //excess carrier lifetime in micro-s
+t=1 //time in micro-s
+
+//Calculation
+del_nt=del_n0*exp(-t/tau_n0)
+
+mprintf("excess electron concentration= %.3g cm^-3",del_nt)
diff --git a/3636/CH4/EX4.1/Ex4_1.txt b/3636/CH4/EX4.1/Ex4_1.txt new file mode 100644 index 000000000..13d378bab --- /dev/null +++ b/3636/CH4/EX4.1/Ex4_1.txt @@ -0,0 +1 @@ + excess electron concentration= 8.19e+15 cm^-3
\ No newline at end of file diff --git a/3636/CH4/EX4.2/Ex4_2.sce b/3636/CH4/EX4.2/Ex4_2.sce new file mode 100644 index 000000000..9dbeef87b --- /dev/null +++ b/3636/CH4/EX4.2/Ex4_2.sce @@ -0,0 +1,12 @@ +clc;
+clear;
+del_n0=10^16 //concentration of electrons in cm^-3
+tau_n0=5 //excess carrier lifetime in s
+tau_n01=5*10^-6 //excess carrier lifetime in micro-s
+t=5 //in micro-s
+
+//Calculation
+del_nt=del_n0*exp(-t/tau_n0) //in cm^-3
+Rn1=del_nt/tau_n01
+
+mprintf("Recombination rate= %.1e cm^-3 s^-1",Rn1)
diff --git a/3636/CH4/EX4.2/Ex4_2.txt b/3636/CH4/EX4.2/Ex4_2.txt new file mode 100644 index 000000000..ef81a2881 --- /dev/null +++ b/3636/CH4/EX4.2/Ex4_2.txt @@ -0,0 +1 @@ + Recombination rate= 7.4e+20 cm^-3 s^-1
\ No newline at end of file diff --git a/3636/CH4/EX4.3/Ex4_3.sce b/3636/CH4/EX4.3/Ex4_3.sce new file mode 100644 index 000000000..1dc7ca1c2 --- /dev/null +++ b/3636/CH4/EX4.3/Ex4_3.sce @@ -0,0 +1,20 @@ +clc;
+clear;
+Nd=10^15 //dopant concentration in cm^-3
+Na=0 //in cm^-3
+tau_p0=10*10^-7 //in s
+tau_n0=10*10^-7 //in s
+ni=1.5*10^10 //in cm^-3
+deln=10^14 //in cm^-3
+delp=10^14 //in cm^-3
+nt=1.5*10^15 //in cm^-3
+pt=1.5*10^15 //in cm^-3
+
+//Calculation
+n0=Nd //in cm^-3
+p0=ni^2/Nd //in cm^-3
+n=n0+deln //in cm^-3
+p=p0+delp //in cm^-3
+R=((n*p)-ni^2)/(tau_n0*(n+p))
+
+mprintf("Recombination rate= %1.2e cm^-3 s^-1",R)
diff --git a/3636/CH4/EX4.3/Ex4_3.txt b/3636/CH4/EX4.3/Ex4_3.txt new file mode 100644 index 000000000..e56c86e8a --- /dev/null +++ b/3636/CH4/EX4.3/Ex4_3.txt @@ -0,0 +1 @@ + Recombination rate= 9.17e+19 cm^-3 s^-1
\ No newline at end of file diff --git a/3636/CH4/EX4.4/Ex4_4.sce b/3636/CH4/EX4.4/Ex4_4.sce new file mode 100644 index 000000000..a29d9b8b8 --- /dev/null +++ b/3636/CH4/EX4.4/Ex4_4.sce @@ -0,0 +1,17 @@ +clc;
+clear;
+n0=5*10^15 //carrier concentration in cm^-3
+ni=10^10 //in cm^-3
+p0=2*10^4 //in cm^-3
+deln=5*10^13 //excess carriers in semiconductor in cm^-3
+delp=5*10^13 //in cm^-3
+Const=0.026 //constant value for kT/e in V
+
+//Calculation
+delE1=Const*log(n0/ni)
+delE2=Const*log((n0+deln)/ni)
+delE3=Const*log((p0+delp)/ni)
+
+mprintf("1)\nposition of the Fermi level at thermal equilibrium= %0.4f eV\n",delE1)
+mprintf("2)\nquasi-Fermi level for electrons in non-equilibrium= %0.4f eV\n",delE2)
+mprintf("3)\nquasi-Fermi level for holes in non-equilibrium= %0.4f eV",delE3)
diff --git a/3636/CH4/EX4.4/Ex4_4.txt b/3636/CH4/EX4.4/Ex4_4.txt new file mode 100644 index 000000000..7885212c8 --- /dev/null +++ b/3636/CH4/EX4.4/Ex4_4.txt @@ -0,0 +1,6 @@ + 1)
+position of the Fermi level at thermal equilibrium= 0.3412 eV
+2)
+quasi-Fermi level for electrons in non-equilibrium= 0.3414 eV
+3)
+quasi-Fermi level for holes in non-equilibrium= 0.2214 eV
\ No newline at end of file diff --git a/3636/CH4/EX4.6/Ex4_6.sce b/3636/CH4/EX4.6/Ex4_6.sce new file mode 100644 index 000000000..986565b3c --- /dev/null +++ b/3636/CH4/EX4.6/Ex4_6.sce @@ -0,0 +1,14 @@ +clc;
+clear;
+l=1.8 //distance between plates in cm
+E=3/2 //in V
+t=0.6*10^-3 //time taken by the pulse in s
+del_t=236*10^-6 //pulse width in s
+
+//Calculation
+vd=l/t //in cm/s
+myu_p=vd/E
+Dp=(del_t*l)^2/(16*t^3)
+
+mprintf("1)\nHole mobility= %i cm^2/Vs\n",myu_p)
+mprintf("2)\nDiffusion coefficient= %2.2f cm^2/s",Dp)
diff --git a/3636/CH4/EX4.6/Ex4_6.txt b/3636/CH4/EX4.6/Ex4_6.txt new file mode 100644 index 000000000..2a9636e6e --- /dev/null +++ b/3636/CH4/EX4.6/Ex4_6.txt @@ -0,0 +1,4 @@ +1)
+Hole mobility= 2000 cm^2/Vs
+2)
+Diffusion coefficient= 52.22 cm^2/s
\ No newline at end of file diff --git a/3636/CH4/EX4.7/Ex4_7.sce b/3636/CH4/EX4.7/Ex4_7.sce new file mode 100644 index 000000000..26ecf12e3 --- /dev/null +++ b/3636/CH4/EX4.7/Ex4_7.sce @@ -0,0 +1,38 @@ +clc;
+clear;
+delp=4*10^14 //excess EHP in cm^-3
+deln=4*10^14 //excess EHP in cm^-3
+n0=10^15 //donor atoms in cm^-3
+p0=0 //in cm^-3
+t=0.5*10^-6 //hole-lifetime in s
+myu_n=1200 //mobility of electron in cm^2/V*s
+myu_p=400 //mobility of hole in cm^2/V*s
+q=1.6*10^-19 //electron charge in eV
+ni=1.5*10^10 //in cm^-3
+Const=0.0259 //constant value for kT in eV
+
+//Calculation
+//a)
+gop=delp/t
+
+//b)
+rho_0=(q*n0*myu_n)^-1 //Before illumination
+n=n0+deln //in cm^-3
+p=p0+delp //in cm^-3
+rho=1/(q*((myu_n*n)+(myu_p*p)))//conductivity
+rho1=q*myu_p*delp //in mho/cm
+Pcond=(rho*rho1)*100
+
+//c)
+delE_e=Const*log(n/ni)
+delE_h=Const*log(p/ni)
+
+mprintf("a)\n")
+mprintf("photo generation rate= %g EHPs/cm^3s\n",gop)
+mprintf("b)\n")
+mprintf("resistivity before illumination= %1.2f ohm-cm\n",rho_0)
+mprintf("resistvity after illumination= %1.3f ohm-cm\n",rho)
+mprintf("percent of conductivity= %1.2f percent\n",Pcond) //The answers vary due to round off error
+mprintf("c)\n")
+mprintf("quasi Fermi level due to electron=Efi+%0.3f eV\n",delE_e)
+mprintf("quasi Fermi level due to holes=Efi-%0.3f eV\n",delE_h)
diff --git a/3636/CH4/EX4.7/Ex4_7.txt b/3636/CH4/EX4.7/Ex4_7.txt new file mode 100644 index 000000000..562db4636 --- /dev/null +++ b/3636/CH4/EX4.7/Ex4_7.txt @@ -0,0 +1,10 @@ + a)
+photo generation rate= 8e+20 EHPs/cm^3s
+b)
+resistivity before illumination= 5.21 ohm-cm
+resistvity after illumination= 3.397 ohm-cm
+percent of conductivity= 8.70 percent
+c)
+quasi Fermi level due to electron=Efi+0.296 eV
+quasi Fermi level due to holes=Efi-0.264 eV
+
\ No newline at end of file diff --git a/3636/CH4/EX4.8/Ex4_8.sce b/3636/CH4/EX4.8/Ex4_8.sce new file mode 100644 index 000000000..e06753442 --- /dev/null +++ b/3636/CH4/EX4.8/Ex4_8.sce @@ -0,0 +1,29 @@ +clc;
+clear;
+n0=10^16 //donor atoms in cm^-3
+q=1.6*10^-19 //electron charge in J
+ni=1.5*10^10 //in cm^-3
+Nd=10^16 //Donors added to silicon to make it n-type) in cm^-3
+GT=2.25*10^10 //Thermal generation rate of carriers under equilibrium cm^-3/s
+gop=10^21 //in cm^-3/s
+tau_n=10^-6 //in s
+tau_t=2.5*10^-3 //transit time in s
+V=1 //in V
+
+//Calculation
+//a)
+alpha_r=GT/ni^2
+tau_p=(alpha_r*n0)^-1
+
+//b)
+delp=gop*tau_n
+
+//c)
+delI=(q*V*gop*tau_n)/tau_t
+
+mprintf("a)\n")
+mprintf("lifetime of both type of carriers= %g s\n",tau_p)
+mprintf("b)\n")
+mprintf("excess carrier concentration= %g cm^-3\n",delp)
+mprintf("c)\n")
+mprintf("Induced change in current= %.3f A",delI)
diff --git a/3636/CH4/EX4.8/Ex4_8.txt b/3636/CH4/EX4.8/Ex4_8.txt new file mode 100644 index 000000000..0ca88fc8f --- /dev/null +++ b/3636/CH4/EX4.8/Ex4_8.txt @@ -0,0 +1,6 @@ + a)
+lifetime of both type of carriers= 1e-06 s
+b)
+excess carrier concentration= 1e+15 cm^-3
+c)
+Induced change in current= 0.064 A
\ No newline at end of file diff --git a/3636/CH4/EX4.9/Ex4_9.sce b/3636/CH4/EX4.9/Ex4_9.sce new file mode 100644 index 000000000..7827b9d30 --- /dev/null +++ b/3636/CH4/EX4.9/Ex4_9.sce @@ -0,0 +1,30 @@ +clc;
+clear;
+E1000=8.48*10^5 //Current density for 1000 V in A/cm^2
+delE=0.1 //in eV
+q=1.6*10^-19 //electron charge in eV
+ni=1.5*10^10 //in cm^-3
+Nd=10^16 //Donors added to silicon to make it n-type) in cm^-3
+gop=10^19 //in cm^-3/s
+tau=10^-5 //in s
+Const=0.0259 //constant value for kT in eV
+
+//Calculation
+//a)
+E10000=E1000
+
+//b)
+n0=ni*exp(delE/Const)
+
+//c)
+deln=gop*tau //in cm^-3
+n=n0 //in cm^-3
+p=deln //in cm^-3s
+delE_np=Const*log((n*p)/ni^2)
+
+mprintf("a)\n")
+mprintf("Current density for 1000V potential= %1.2e A/cm^2\n",E10000)
+mprintf("b)\n")
+mprintf("Doping concentration= %1.1e cm^-3\n",n0) //The answer provided in the textbook is wrong"
+mprintf("c)\n")
+mprintf("Energy gap= %0.4f eV",delE_np) //The answer provided in the textbook is wrong"
diff --git a/3636/CH4/EX4.9/Ex4_9.txt b/3636/CH4/EX4.9/Ex4_9.txt new file mode 100644 index 000000000..4ed6be264 --- /dev/null +++ b/3636/CH4/EX4.9/Ex4_9.txt @@ -0,0 +1,6 @@ + a)
+Current density for 1000V potential= 8.48e+05 A/cm^2
+b)
+Doping concentration= 7.1e+11 cm^-3
+c)
+Energy gap= 0.3280 eV
\ No newline at end of file diff --git a/3636/CH5/EX5.1/Ex5_1.sce b/3636/CH5/EX5.1/Ex5_1.sce new file mode 100644 index 000000000..d77bb0f84 --- /dev/null +++ b/3636/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,21 @@ +clc;
+clear;
+rho=10 //resistivity in ohm-cm
+myu_n=1300 //electron mobility in cm^2/V*s
+e=1.6*10^-19 //in eV
+Cs=5*10^18 //constant surface concentartion in cm^-3
+t=1 //in hour
+x=1 //depth in micro-m
+
+//Calculation
+sigma=1/rho //in (ohm-cm)^-1
+n=sigma/(myu_n*e) //in cm^-3
+n_Cs=n/Cs
+erfc1_y=n_Cs //error function
+y=2.75 //reference page 181 from fig 5.1.1. value obtained by plotting erfc1_y (Complementary error function) as a function of y
+rootD=x/(2*y*sqrt(t))
+T=1100 //reference page 168 from fig 5.10(b)
+
+mprintf("rootD = %.2f micro-m/h^-2\n",rootD)
+mprintf("Temperature at diffusion should be carried out= %i Celsius\n",T)
+mprintf("The temperature value was choosen by determing the value of T against root(D) in the figure of Diffusivity of acceptor impurities in silicon versus T")
diff --git a/3636/CH5/EX5.1/Ex5_1.txt b/3636/CH5/EX5.1/Ex5_1.txt new file mode 100644 index 000000000..028d3a6e7 --- /dev/null +++ b/3636/CH5/EX5.1/Ex5_1.txt @@ -0,0 +1,3 @@ + rootD = 0.18 micro-m/h^-2
+Temperature at diffusion should be carried out= 1100 Celsius
+The temperature value was choosen by determing the value of T agains root(D) in the figure of Diffusivity of acceptor impurities in silicon versus T
\ No newline at end of file diff --git a/3636/CH5/EX5.10/Ex5_10.sce b/3636/CH5/EX5.10/Ex5_10.sce new file mode 100644 index 000000000..a96d6f675 --- /dev/null +++ b/3636/CH5/EX5.10/Ex5_10.sce @@ -0,0 +1,13 @@ +clc;
+clear;
+Cj=12*10^-12 //Capacitance in F/cm^2
+A=10^-4 //junction Area in A/cm^2
+Vr=20 //in V
+e=1.6*10^-19 //in J
+epsilon_r=11.8 //in F/cm
+epsilon_0=8.85*10^-14 //in F/cm
+
+//Calculation
+Nd=((2*Cj)/A)^2*(Vr/(2*epsilon_r*epsilon_0*e))
+
+mprintf("Donor Concentration= %1.3e cm^-3",Nd)
diff --git a/3636/CH5/EX5.10/Ex5_10.txt b/3636/CH5/EX5.10/Ex5_10.txt new file mode 100644 index 000000000..3d9fdb555 --- /dev/null +++ b/3636/CH5/EX5.10/Ex5_10.txt @@ -0,0 +1 @@ + Donor Concentration= 3.447e+18 cm^-3
\ No newline at end of file diff --git a/3636/CH5/EX5.11/Ex5_11.sce b/3636/CH5/EX5.11/Ex5_11.sce new file mode 100644 index 000000000..e89c74e33 --- /dev/null +++ b/3636/CH5/EX5.11/Ex5_11.sce @@ -0,0 +1,20 @@ +clc;
+clear;
+Na=4.22*10^14 //doping densities in cm^-3
+Nd=4.22*10^16 //in cm^3
+e=1.6*10^-19 //in eV
+Vbi=0.65 //breakdown voltage in V
+ni=1.5*10^10 //in cm^-3
+epsilon_si=11.7 //in F/cm
+epsilon_0=8.85*10^-14 //in F/cm
+V=10 //applied voltage in V
+Const=0.0259 //value for kT/e in V
+
+//Calculation
+Nd=sqrt((exp(Vbi/Const)*ni^2)/100)
+Na=100*Nd
+W=(((2*epsilon_0*epsilon_si*(Vbi+V))*(Na+Nd))/(e*Na*Nd))^0.5
+Cj=(epsilon_0*epsilon_si)/W
+
+mprintf("Depletion capacitance per unit area= %1.3e F/cm^2\n",Cj) //The answers vary due to round off error
+mprintf("Width of depletion region= %1.2e cm",W) //The answers vary due to round off error
diff --git a/3636/CH5/EX5.11/Ex5_11.txt b/3636/CH5/EX5.11/Ex5_11.txt new file mode 100644 index 000000000..3fa884d8b --- /dev/null +++ b/3636/CH5/EX5.11/Ex5_11.txt @@ -0,0 +1,2 @@ + Depletion capacitance per unit area= 1.804e-09 F/cm^2
+Width of depletion region= 5.74e-04 cm
\ No newline at end of file diff --git a/3636/CH5/EX5.2/Ex5_2.sce b/3636/CH5/EX5.2/Ex5_2.sce new file mode 100644 index 000000000..b138df010 --- /dev/null +++ b/3636/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,11 @@ +clc;
+clear;
+Na=5*10^18 //doping densities in cm^-3
+Nd=5*10^15 //in cm^-3
+ni=1.5*10^10 //in cm^-3
+Const=0.026//constant for kT/e in V
+
+//Calculation
+Vbi=Const*log((Na*Nd)/ni^2)
+
+mprintf("built-in potential= %0.3f V",Vbi) //The answers vary due to round off error
diff --git a/3636/CH5/EX5.2/Ex5_2.txt b/3636/CH5/EX5.2/Ex5_2.txt new file mode 100644 index 000000000..27f1c52b7 --- /dev/null +++ b/3636/CH5/EX5.2/Ex5_2.txt @@ -0,0 +1 @@ + built-in potential= 0.841 V
\ No newline at end of file diff --git a/3636/CH5/EX5.3/Ex5_3.sce b/3636/CH5/EX5.3/Ex5_3.sce new file mode 100644 index 000000000..38dd2fddb --- /dev/null +++ b/3636/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,14 @@ +clc;
+clear;
+Na=5*10^18 //doping densities in cm^-3
+Nd=5*10^15 //in cm^-3
+ni=1.5*10^10 //in cm^-3
+epsilon_s=11.7 //in F/cm
+epsilon_0=8.85*10^-14 //in F/cm
+Vbi=0.838 //built-in potential in V
+e=1.6*10^-19 //in J
+
+//Calculation
+W=((2*epsilon_s*epsilon_0*Vbi*(Na+Nd))/(e*Na*Nd))^0.5
+
+mprintf("Total space-charge width= %0.2e m",W)
diff --git a/3636/CH5/EX5.3/Ex5_3.txt b/3636/CH5/EX5.3/Ex5_3.txt new file mode 100644 index 000000000..45d416838 --- /dev/null +++ b/3636/CH5/EX5.3/Ex5_3.txt @@ -0,0 +1 @@ + Total space-charge width= 4.66e-05 m
\ No newline at end of file diff --git a/3636/CH5/EX5.4/Ex5_4.sce b/3636/CH5/EX5.4/Ex5_4.sce new file mode 100644 index 000000000..f0c6e42a9 --- /dev/null +++ b/3636/CH5/EX5.4/Ex5_4.sce @@ -0,0 +1,15 @@ +clc;
+clear;
+Na=5*10^18 //doping densities in cm^-3
+Nd=5*10^15 //in cm^-3
+ni=1.5*10^10 //in cm^-3
+VR=4 //voltage in V
+epsilon_s=11.7 //in F/cm
+epsilon_0=8.85*10^-14 //in F/cm
+Vbi=0.838 //built-in potential in V
+e=1.6*10^-19 //in J
+
+//Calculation
+W=((2*epsilon_s*epsilon_0*(Vbi+VR)*(Na+Nd))/(e*Na*Nd))^0.5
+
+mprintf("Total space-charge width= %1.2e cm",W)
diff --git a/3636/CH5/EX5.4/Ex5_4.txt b/3636/CH5/EX5.4/Ex5_4.txt new file mode 100644 index 000000000..ad55f2430 --- /dev/null +++ b/3636/CH5/EX5.4/Ex5_4.txt @@ -0,0 +1 @@ + Total space-charge width= 1.12e-04 cm
\ No newline at end of file diff --git a/3636/CH5/EX5.5/Ex5_5.sce b/3636/CH5/EX5.5/Ex5_5.sce new file mode 100644 index 000000000..3f51676da --- /dev/null +++ b/3636/CH5/EX5.5/Ex5_5.sce @@ -0,0 +1,18 @@ +clc;
+clear;
+Na=5*10^18 //doping densities in cm^-3
+Nd=5*10^15 //in cm^-3
+ni=1.5*10^10 //in cm^-3
+VR=3 //voltage in V
+epsilon_s=11.7 //in F/cm
+epsilon_0=8.85*10^-14 //in F/cm
+Vbi=0.838 //built-in potential in V
+e=1.6*10^-19 //in J
+A=5*10^-4 //Area in cm^2
+
+//Calculation
+Cdep=((e*epsilon_s*epsilon_0*Na*Nd)/(2*(Vbi+VR)*(Na+Nd)))^0.5 //junction capacitance
+Cdep1=Cdep*A
+
+mprintf("Junction Capacitance= %.0g F/cm^2\n",Cdep)
+mprintf("Depletion Capacitance= %.0g F",Cdep1)
diff --git a/3636/CH5/EX5.5/Ex5_5.txt b/3636/CH5/EX5.5/Ex5_5.txt new file mode 100644 index 000000000..dc7d42947 --- /dev/null +++ b/3636/CH5/EX5.5/Ex5_5.txt @@ -0,0 +1,2 @@ + Junction Capacitance= 1e-08 F/cm^2
+Depletion Capacitance= 5e-12 F
\ No newline at end of file diff --git a/3636/CH5/EX5.7/Ex5_7.sce b/3636/CH5/EX5.7/Ex5_7.sce new file mode 100644 index 000000000..9a5562200 --- /dev/null +++ b/3636/CH5/EX5.7/Ex5_7.sce @@ -0,0 +1,12 @@ +clc;
+clear;
+Na=10^17 //in cm^-3
+epsilon_0=8.85*10^-14 //in F/cm
+Emax=5*10^5 //peak electric field in V/cm
+e=1.6*10^-19 //in J
+epsilon_si=88.76*10^-14 //in F/cm
+
+//Calculation
+E=(Emax*Emax*epsilon_si)/(e*Na)
+
+mprintf("Breakdown voltage= %2.2f V",E) //The answers vary due to round off error
diff --git a/3636/CH5/EX5.7/Ex5_7.txt b/3636/CH5/EX5.7/Ex5_7.txt new file mode 100644 index 000000000..cbb4b8e38 --- /dev/null +++ b/3636/CH5/EX5.7/Ex5_7.txt @@ -0,0 +1 @@ + Breakdown voltage= 13.87 V
\ No newline at end of file diff --git a/3636/CH5/EX5.8/Ex5_8.sce b/3636/CH5/EX5.8/Ex5_8.sce new file mode 100644 index 000000000..37b47d278 --- /dev/null +++ b/3636/CH5/EX5.8/Ex5_8.sce @@ -0,0 +1,13 @@ +clc;
+clear;
+Na=10^19 //doping densities in cm^-3
+Nd=10^15 //in cm^-3
+epsilon_s=88.76*10^-14 //in F/cm
+e=1.6*10^-19 //in J
+Vbi=300 //breakdown voltage in V
+
+//Calculation
+xn=((2*epsilon_s*Na*Vbi)/(e*Nd*(Na+Nd)))^0.5
+
+mprintf("a)\n")
+mprintf(" As %.4e cm is less than the given length of the n-region i.e 22 micro-m, device will only have avalanche breakdown",xn)
diff --git a/3636/CH5/EX5.8/Ex5_8.txt b/3636/CH5/EX5.8/Ex5_8.txt new file mode 100644 index 000000000..2faba222d --- /dev/null +++ b/3636/CH5/EX5.8/Ex5_8.txt @@ -0,0 +1,2 @@ + a)
+ As 1.8243e-03 cm is less than the given length of the n-region i.e 22 micro-m, device will only have avalanche breakdown
\ No newline at end of file diff --git a/3636/CH5/EX5.9/Ex5_9.sce b/3636/CH5/EX5.9/Ex5_9.sce new file mode 100644 index 000000000..b2836059f --- /dev/null +++ b/3636/CH5/EX5.9/Ex5_9.sce @@ -0,0 +1,26 @@ +clc;
+clear;
+Na=10^15 //doping densities in cm^-3
+Nd=10^17 //in cm^-3
+V=0.5 //in V
+e=1.6*10^-19 //in J
+nn0=10^17 //in cm^-3
+ni=1.5*10^10 //in cm^-3
+Si_bandgap=1.1 //bandgap of silicon in eV
+Const=0.0259 //constant value for kT/e in J
+
+//Calculation
+//a)
+pn0=ni^2/nn0 //in cm^-3
+pn=pn0*exp((V)/Const)
+
+//b)
+
+Vbi=0.6949 //breakdown voltage in V
+Vp=Vbi-V //potential already present in V
+Vz=Si_bandgap-Vp //Zener breakdown voltage in V
+
+mprintf("a)\n")
+mprintf("Total concentration of holes= %.2e cm^-3\n",pn)
+mprintf("b)\n")
+mprintf("Additional voltage required= %.4f V",Vz)
diff --git a/3636/CH5/EX5.9/Ex5_9.txt b/3636/CH5/EX5.9/Ex5_9.txt new file mode 100644 index 000000000..be6e7448a --- /dev/null +++ b/3636/CH5/EX5.9/Ex5_9.txt @@ -0,0 +1,4 @@ + a)
+Total concentration of holes= 5.45e+11 cm^-3
+b)
+Additional voltage required= 0.9051 V
\ No newline at end of file diff --git a/3636/CH6/EX6.1/Ex6_1.sce b/3636/CH6/EX6.1/Ex6_1.sce new file mode 100644 index 000000000..5f08ffc3d --- /dev/null +++ b/3636/CH6/EX6.1/Ex6_1.sce @@ -0,0 +1,12 @@ +clc;
+clear;
+ni=1.5*10^10 //in cm^-3
+Nd=5*10^16 //doping density in cm^-3
+V=0.55 //in V
+Const=0.026 //constant for kT/e in V
+
+//Calculation
+Pn0=ni^2/Nd //in cm^-3
+Pn=Pn0*exp(V/Const)
+
+mprintf("minority carrier concentration= %1.2e cm^-3",Pn)
diff --git a/3636/CH6/EX6.1/Ex6_1.txt b/3636/CH6/EX6.1/Ex6_1.txt new file mode 100644 index 000000000..ddcf844c4 --- /dev/null +++ b/3636/CH6/EX6.1/Ex6_1.txt @@ -0,0 +1 @@ + minority carrier concentration= 6.92e+12 cm^-3
\ No newline at end of file diff --git a/3636/CH6/EX6.2/Ex6_2.sce b/3636/CH6/EX6.2/Ex6_2.sce new file mode 100644 index 000000000..7ebe55c6e --- /dev/null +++ b/3636/CH6/EX6.2/Ex6_2.sce @@ -0,0 +1,15 @@ +clc;
+clear;
+ni=1.5*10^10 //in cm^-3
+e=1.6*10^-19 //in J
+Na=10^16 //doping density in cm^-3
+Nd=5*10^16 //in cm^-3
+Dn=25 //in cm^2/s
+Dp=10 //in cm^2/s
+tau_p0=4*10^-7 //in s
+tau_n0=2*10^-7 //in s
+
+//Calculation
+Js=e*ni^2*((1/Na)*sqrt(Dn/tau_n0)+(1/Nd)*sqrt(Dp/tau_p0))
+
+mprintf("Reverse saturation current density= %1.2e A/cm^2",Js) //The answers vary due to round off error
diff --git a/3636/CH6/EX6.2/Ex6_2.txt b/3636/CH6/EX6.2/Ex6_2.txt new file mode 100644 index 000000000..17eb63950 --- /dev/null +++ b/3636/CH6/EX6.2/Ex6_2.txt @@ -0,0 +1 @@ + Reverse saturation current density= 4.38e-11 A/cm^2
\ No newline at end of file diff --git a/3636/CH6/EX6.3/Ex6_3.sce b/3636/CH6/EX6.3/Ex6_3.sce new file mode 100644 index 000000000..44e7ee7b5 --- /dev/null +++ b/3636/CH6/EX6.3/Ex6_3.sce @@ -0,0 +1,34 @@ +clc;
+clear;
+sigma_p=1000 //conductivity of p-junction in ohm^-1*m^-1
+sigma_n=20 //conductivity of n-junction in ohm^-1*m^-1
+myu_p=0.05 //in m^2/V*s
+myu_n=0.13 //in m^2/V*s
+K=8.61*10^-5 //Boltzmann constant in eV/K
+T=300 //in K
+V=0.4 //forward bias voltage in V
+e=1.602*10^-19 //in J
+ni=1.5*10^16 //in m^-3
+tau_n=10^-6 //minority carrier lifetime in s
+tau_p=5*10^-6 //in s
+Const=0.026 //constant for kT/e in V
+hole_current=0.603*10^-6 //in A
+electron_current=0.016*10^-6 //in A
+
+//Calculation
+pp0=sigma_p/(e*myu_p) //majority carrier densities in m^-3
+nn0=sigma_n/(e*myu_n) //in m^-3
+np0=ni^2/pp0 //minority carrier densities in m^-3
+pn0=ni^2/nn0 //in m^-3
+Dn=myu_n*K*T //in m^2/s
+Dp=myu_p*K*T //in m^2/s
+Ln=sqrt(Dn*tau_n) //in m
+Lp=sqrt(Dp*tau_p) //in m
+Js=(((e*np0*Ln)/tau_n)+((e*pn0*Lp)/tau_p))
+Ratio=(hole_current)/(electron_current)
+J=Js*(exp(V/Const)-1)
+
+mprintf("1)\nReverse bias stauration current density= %0.3e A/m^2\n",Js) //The answers vary due to round off error
+mprintf("2)\nRatio of hole to electron current= %2.2f \n",Ratio)
+mprintf("3)\nTotal current density= %2.2f A/m^2",J) //The answers vary due to round off error
+
diff --git a/3636/CH6/EX6.3/Ex6_3.txt b/3636/CH6/EX6.3/Ex6_3.txt new file mode 100644 index 000000000..157902e24 --- /dev/null +++ b/3636/CH6/EX6.3/Ex6_3.txt @@ -0,0 +1,6 @@ + 1)
+Reverse bias stauration current density= 6.200e-07 A/m^2
+2)
+Ratio of hole to electron current= 37.69
+3)
+Total current density= 2.98 A/m^2
\ No newline at end of file diff --git a/3636/CH6/EX6.4/Ex6_4.sce b/3636/CH6/EX6.4/Ex6_4.sce new file mode 100644 index 000000000..7cdbad1f7 --- /dev/null +++ b/3636/CH6/EX6.4/Ex6_4.sce @@ -0,0 +1,11 @@ +clc;
+clear;
+Ip0=0.5*10^-3 //in A
+tau_p0=5*10^-7 //in s
+Const=0.026 //constant for kT/e in V
+
+//Calculation
+Cd0=(1/(2*Const))*tau_p0*Ip0
+
+mprintf("Diffusion Capacitance= %.1e F",Cd0)
+//The answers vary due to round off error
diff --git a/3636/CH6/EX6.4/Ex6_4.txt b/3636/CH6/EX6.4/Ex6_4.txt new file mode 100644 index 000000000..7ad1891ce --- /dev/null +++ b/3636/CH6/EX6.4/Ex6_4.txt @@ -0,0 +1 @@ + Diffusion Capacitance= 4.8e-09 F
\ No newline at end of file diff --git a/3636/CH6/EX6.5/Ex6_5.sce b/3636/CH6/EX6.5/Ex6_5.sce new file mode 100644 index 000000000..f7d8deb01 --- /dev/null +++ b/3636/CH6/EX6.5/Ex6_5.sce @@ -0,0 +1,17 @@ +clc;
+clear;
+ni=1.5*10^10 //in cm^-3
+epsilon_si=11.7 //in F/cm
+epsilon_0=8.85*10^-14 //in F/cm
+e=1.6*10^-19 //in J
+Na=10^16 //in cm^-3
+Nd=5*10^16 //in cm^-3
+tau_p0=4*10^-7 //in s
+tau_n0=2*10^-7 //in s
+
+//Calculation
+W=(((2*epsilon_si*epsilon_0)*(Na+Nd)*4)/(e*Na*Nd))^0.5 //in micro-m
+tau_m=(tau_p0+tau_n0)/2 //in s
+Jgen=(e*ni*W)/(2*tau_m)
+
+mprintf("reverse-bias generation current density= %1.2e A/cm^2",Jgen) //The answers vary due to round off error
diff --git a/3636/CH6/EX6.5/Ex6_5.txt b/3636/CH6/EX6.5/Ex6_5.txt new file mode 100644 index 000000000..f4192bd40 --- /dev/null +++ b/3636/CH6/EX6.5/Ex6_5.txt @@ -0,0 +1 @@ + reverse-bias generation current density= 3.15e-07 A/cm^2
\ No newline at end of file diff --git a/3636/CH6/EX6.6/Ex6_6.sce b/3636/CH6/EX6.6/Ex6_6.sce new file mode 100644 index 000000000..51a5b17af --- /dev/null +++ b/3636/CH6/EX6.6/Ex6_6.sce @@ -0,0 +1,25 @@ +clc;
+clear;
+Jn=20 //in A/cm^2
+Jp=5 //in A/cm^2
+Va=0.65 //in V
+Dn=25 //in cm^2/s
+Dp=10 ///in cm^2/s
+tau_n0=5*10^-7 //in s
+tau_p0=5*10^-7 //in s
+epsilon_r=11.8 //in F/cm
+epsilon_0=8.85*10^-14 //in F/cm
+e=1.6*10^-19 //in eV
+ni=1.5*10^10 //in cm^-3
+Const=0.0259 //constant for kT/e in V
+
+//Calculation
+Lp=sqrt(Dp*tau_p0) //in cm
+pn0=(Jp*Lp)/(e*Dp*(exp(Va/Const)-1)) //law of mass action in cm^-3
+Nd=(ni^2/pn0)
+Ln=sqrt(Dn*tau_n0) //in cm
+np0=(Jn*Ln)/(e*Dn*(exp((Va/Const))-1)) //in cm^-3
+Na=ni^2/np0
+
+mprintf("Nd= %1.2e cm^-3\n",Nd) //The answers vary due to round off error
+mprintf("Na= %1.2e cm^-3",Na)
diff --git a/3636/CH6/EX6.6/Ex6_6.txt b/3636/CH6/EX6.6/Ex6_6.txt new file mode 100644 index 000000000..6e4a6e85c --- /dev/null +++ b/3636/CH6/EX6.6/Ex6_6.txt @@ -0,0 +1,2 @@ + Nd= 2.55e+15 cm^-3
+Na= 1.01e+15 cm^-3
\ No newline at end of file diff --git a/3636/CH6/EX6.7/Ex6_7.sce b/3636/CH6/EX6.7/Ex6_7.sce new file mode 100644 index 000000000..534bd57fa --- /dev/null +++ b/3636/CH6/EX6.7/Ex6_7.sce @@ -0,0 +1,14 @@ +clc;
+clear;
+ni=1.5*10^10 //in cm^-3
+Nd=1*10^16 //n-type doping in cm^-3
+V=0.6 //forward bias current in V
+e=1.6*10^-19 //in eV
+Const=0.0259 //constant for kT/e in V
+
+//Calculation
+Pn0=ni^2/Nd //in cm^-3
+Pn=Pn0*exp(V/Const)
+
+
+mprintf("Minority carrier hole concentration= %1.2e cm^-3",Pn)
diff --git a/3636/CH6/EX6.7/Ex6_7.txt b/3636/CH6/EX6.7/Ex6_7.txt new file mode 100644 index 000000000..8472e576f --- /dev/null +++ b/3636/CH6/EX6.7/Ex6_7.txt @@ -0,0 +1 @@ + Minority carrier hole concentration= 2.59e+14 cm^-3
\ No newline at end of file diff --git a/3636/CH6/EX6.8/Ex6_8.sce b/3636/CH6/EX6.8/Ex6_8.sce new file mode 100644 index 000000000..af0e51468 --- /dev/null +++ b/3636/CH6/EX6.8/Ex6_8.sce @@ -0,0 +1,17 @@ +clc;
+clear;
+ni=1.5*10^10 //in cm^-3
+Nd=5*10^16 //n-type doping in cm^-3
+V=0.5 //forward bias current in V
+e=1.6*10^-19 //in eV
+tau_p=1*10^-6 //in s
+Dp=10 //in cm^2/s
+A=10^-3 //cross-sectional area in cm^2
+Const=0.0259 //constant for kT/e in V
+
+//Calculation
+pn=ni^2/Nd //in cm^-3
+Lp=sqrt(Dp*tau_p) //in cm
+I=e*A*(Dp/Lp)*pn*(exp(V/Const))
+
+mprintf("Current= %.1e micro-Ampere",I)
diff --git a/3636/CH6/EX6.8/Ex6_8.txt b/3636/CH6/EX6.8/Ex6_8.txt new file mode 100644 index 000000000..43869970c --- /dev/null +++ b/3636/CH6/EX6.8/Ex6_8.txt @@ -0,0 +1 @@ + Current= 5.5e-07 micro-Ampere
\ No newline at end of file diff --git a/3636/CH6/EX6.9/Ex6_9.sce b/3636/CH6/EX6.9/Ex6_9.sce new file mode 100644 index 000000000..be644dff2 --- /dev/null +++ b/3636/CH6/EX6.9/Ex6_9.sce @@ -0,0 +1,28 @@ +clc;
+clear;
+ni=1.5*10^10 //in cm^-3
+e=1.6*10^-19 //in eV
+Na=10^16 //doping density in cm^-3
+Nd=10^16 //in cm^-3
+tau_p0=5*10^-7 //in s
+tau_n0=5*10^-7 //in s
+Dn=25 //in cm^2/s
+Dp=10 //in cm^2/s
+epsilon_r=11.7 //in F/cm
+epsilon_0=8.85*10^-14 //in F/cm
+myu_n=1350 //in cm^2/V*s
+myu_p=450 //in cm^2/V*s
+V=0.65 //in V
+Const=0.0259 //constant for kT/e in V
+
+//Calculation
+pn0=ni^2/Nd //in cm^-3
+np0=ni^2/Na //in cm^-3
+Lp=sqrt(Dp*tau_p0) //in cm
+Ln=sqrt(Dn*tau_n0) //in cm
+Js=(((e*Dp*pn0)/Lp)+((e*Dn*pn0)/Lp)) //in A/cm^2
+J=Js*(exp(V/Const)-1) //Total current density in A/cm^2
+sigma=e*myu_n*Nd //in mho/cm
+E=J/sigma
+
+mprintf("Electric field value= %1.2f V/cm",E) //The answer provided in the textbook is wrong
diff --git a/3636/CH6/EX6.9/Ex6_9.txt b/3636/CH6/EX6.9/Ex6_9.txt new file mode 100644 index 000000000..dca782dbc --- /dev/null +++ b/3636/CH6/EX6.9/Ex6_9.txt @@ -0,0 +1 @@ + Electric field value= 2.07 V/cm
\ No newline at end of file diff --git a/3636/CH7/EX7.1/Ex7_1.sce b/3636/CH7/EX7.1/Ex7_1.sce new file mode 100644 index 000000000..a14d7a7d9 --- /dev/null +++ b/3636/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,21 @@ +clc;
+clear;
+Nd=5*10^16 //Doping level of n-type silicon in cm^-3
+Nc=2.8*10^19 //in cm^-3
+e=1.6*10^-19 //in J
+phi_B0=1.09 //in eV
+epsilon_r=11.7 //in F/cm
+epsilon_0=8.85*10^-14 //in F/cm
+Const=0.026 //constant for kT/e in V
+
+//Calculation
+phi_n=Const*log(Nc/Nd) //in eV
+Vbi=(phi_B0-phi_n) //in eV
+xn=((2*epsilon_r*epsilon_0*Vbi)/(e*Nd))^0.5
+Emax=(e*Nd*xn)/(epsilon_r*epsilon_0)
+
+mprintf("a) Ideal Schottky barrier height= %0.3f eV\n",phi_n)
+mprintf("b) Built-in potential barrier= %0.3f V\n",Vbi)
+mprintf("c) Space charge width at zero bias= %1.3e cm\n",xn)//The answers vary due to round off error
+mprintf("d) maximum electric field= %2.2e V cm^-1",Emax) //The answers vary due to round off error
+
diff --git a/3636/CH7/EX7.1/Ex7_1.txt b/3636/CH7/EX7.1/Ex7_1.txt new file mode 100644 index 000000000..fd61cc8dd --- /dev/null +++ b/3636/CH7/EX7.1/Ex7_1.txt @@ -0,0 +1,4 @@ + a) Ideal Schottky barrier height= 0.165 eV
+b) Built-in potential barrier= 0.925 V
+c) Space charge width at zero bias= 1.548e-05 cm
+d) maximum electric field= 1.20e+05 V cm^-1
\ No newline at end of file diff --git a/3636/CH7/EX7.10/Ex7_10.sce b/3636/CH7/EX7.10/Ex7_10.sce new file mode 100644 index 000000000..1863394d2 --- /dev/null +++ b/3636/CH7/EX7.10/Ex7_10.sce @@ -0,0 +1,36 @@ +clc;
+clear;
+ni=1.5*10^10 //in cm^-3
+delE_iF=0.0259 //in eV
+delE_cF=0.29 //in eV
+phi_G=4.8 //in eV
+impurity_conc=9.9*10^14 //in cm^-3
+affinity=0.55 //in eV
+Const=0.0259 //constant value for kT in eV
+x=4.05 //electron affinity for silicon in eV
+
+//Calculation
+//a)
+n0=ni*exp(delE_iF/Const) //in cm^-3
+phi_s=x+delE_cF
+
+//b)
+Ptype_conc=impurity_conc-n0 //net concentration of p-type on B side in cm^-3
+delE_iF_Bside=Const*log(Ptype_conc/ni) //in eV
+phi_s_Bside=x+delE_iF_Bside+affinity
+
+//d)
+ni1=8*10^12 //increased ni in cm^-3
+delE_iF1=Const*log(n0/ni1) //in eV
+phi_s1=x+(affinity-delE_iF1)
+
+mprintf("electron doping concentration = %.1e cm^-3\n",n0) //The answer provided in the textbook is wrong
+mprintf("workfuntion of the semiconductor = %.2f eV\n",phi_s)
+mprintf("workfuntion of the semiconductor on B side = %.2f eV\n",phi_s_Bside) //The answer provided in the textbook is wrong
+mprintf("workfuntion of the semiconductor at 400K = %.2f eV ",phi_s1) //The answer provided in the textbook is wrong
+
+
+
+
+
+
diff --git a/3636/CH7/EX7.10/Ex7_10.txt b/3636/CH7/EX7.10/Ex7_10.txt new file mode 100644 index 000000000..00805cab1 --- /dev/null +++ b/3636/CH7/EX7.10/Ex7_10.txt @@ -0,0 +1,4 @@ + electron doping concentration = 4.1e+10 cm^-3
+workfuntion of the semiconductor = 4.34 eV
+workfuntion of the semiconductor on B side = 4.89 eV
+workfuntion of the semiconductor at 400K = 4.74 eV
\ No newline at end of file diff --git a/3636/CH7/EX7.2/Ex7_2.sce b/3636/CH7/EX7.2/Ex7_2.sce new file mode 100644 index 000000000..94372d1dc --- /dev/null +++ b/3636/CH7/EX7.2/Ex7_2.sce @@ -0,0 +1,17 @@ +clc;
+clear;
+Nd=2.01*10^7 //Doping level of n-type silicon in cm^-3
+Nc=2.8*10^19 //in cm^-3
+e=1.6*10^-19 //in J
+epsilon_r=11.7 //in F/cm
+epsilon_0=8.85*10^-14 //in F/cm
+slope=6*10^13
+Vbi=0.45 //in V
+Const=0.026 //constant for kT/e in V
+
+//Calculation
+Nd=2/(e*epsilon_r*epsilon_0*slope) //in cm^-3
+phi_n=Const*log(Nc/Nd) //in V
+phi_Bn=Vbi+phi_n
+
+mprintf("Actual barrier height= %0.3f V",phi_Bn)
diff --git a/3636/CH7/EX7.2/Ex7_2.txt b/3636/CH7/EX7.2/Ex7_2.txt new file mode 100644 index 000000000..ebaa54a84 --- /dev/null +++ b/3636/CH7/EX7.2/Ex7_2.txt @@ -0,0 +1 @@ + Actual barrier height= 0.578 V
\ No newline at end of file diff --git a/3636/CH7/EX7.3/Ex7_3.sce b/3636/CH7/EX7.3/Ex7_3.sce new file mode 100644 index 000000000..38590239e --- /dev/null +++ b/3636/CH7/EX7.3/Ex7_3.sce @@ -0,0 +1,13 @@ +clc;
+clear;
+E=10^4 //Electric field in V/cm
+e=1.6*10^-19 //in J
+epsilon_r=11.7 //in F/cm
+epsilon_0=8.85*10^-14 //in F/cm
+
+//Calculation
+del_phi=sqrt((e*E)/(4*%pi*epsilon_r*epsilon_0))
+xm=sqrt(e/(16*%pi*epsilon_r*epsilon_0*E))
+
+mprintf("Schottkybarrier-lowering for Si-metal contact= %0.3f V\n",del_phi)
+mprintf("maximum barrier height= %1.2e cm",xm)
diff --git a/3636/CH7/EX7.3/Ex7_3.txt b/3636/CH7/EX7.3/Ex7_3.txt new file mode 100644 index 000000000..41a4b3f1b --- /dev/null +++ b/3636/CH7/EX7.3/Ex7_3.txt @@ -0,0 +1,2 @@ + Schottkybarrier-lowering for Si-metal contact= 0.011 V
+maximum barrier height= 5.54e-07 cm
\ No newline at end of file diff --git a/3636/CH7/EX7.4/Ex7_4.sce b/3636/CH7/EX7.4/Ex7_4.sce new file mode 100644 index 000000000..423682c4b --- /dev/null +++ b/3636/CH7/EX7.4/Ex7_4.sce @@ -0,0 +1,13 @@ +clc;
+clear;
+A=114 //effective Richardson constant A/K^2*cm^2
+e=1.6*10^-19 //in J
+T=300 //in K
+phi_Bn=0.82 //in eV
+const=0.026 //value for kT/e in V
+
+//Calculation
+J0=A*T^2*exp(-(phi_Bn/const))
+
+mprintf("Reverse saturation current density= %1.2e A/cm^2",J0)
+
diff --git a/3636/CH7/EX7.4/Ex7_4.txt b/3636/CH7/EX7.4/Ex7_4.txt new file mode 100644 index 000000000..4e9719630 --- /dev/null +++ b/3636/CH7/EX7.4/Ex7_4.txt @@ -0,0 +1 @@ + Reverse saturation current density= 2.06e-07 A/cm^2
\ No newline at end of file diff --git a/3636/CH7/EX7.5/Ex7_5.sce b/3636/CH7/EX7.5/Ex7_5.sce new file mode 100644 index 000000000..0c7c9436a --- /dev/null +++ b/3636/CH7/EX7.5/Ex7_5.sce @@ -0,0 +1,13 @@ +clc;
+clear;
+xGe=4.13 //in eV
+xGaAs=4.07 //in eV
+Eg_Ge=0.7 //in eV
+Eg_GaAs=1.45 //in eV
+
+//Calculation
+delE_c=xGe-xGaAs
+delE_v=(Eg_GaAs-Eg_Ge)-delE_c
+
+mprintf("Conduction band= %1.2f eV\n",delE_c)
+mprintf("Valence band= %1.2f eV",delE_v)
diff --git a/3636/CH7/EX7.5/Ex7_5.txt b/3636/CH7/EX7.5/Ex7_5.txt new file mode 100644 index 000000000..c8c136200 --- /dev/null +++ b/3636/CH7/EX7.5/Ex7_5.txt @@ -0,0 +1,2 @@ + Conduction band= 0.06 eV
+Valence band= 0.69 eV
\ No newline at end of file diff --git a/3636/CH7/EX7.6/Ex7_6.sce b/3636/CH7/EX7.6/Ex7_6.sce new file mode 100644 index 000000000..81933a1e4 --- /dev/null +++ b/3636/CH7/EX7.6/Ex7_6.sce @@ -0,0 +1,24 @@ +clc;
+clear;
+Nd=3*10^15 //Doping level of n-type silicon in cm^-3
+Nc=2.8*10^19 //in cm^-3
+e=1.6*10^-19 //in J
+phi_m=4.5 //work function for chromium in eV
+epsilon_si=11.7 //in F/cm
+epsilon_0=8.854*10^-14 //in F/cm
+xsi=4.01 //electron affinity for Si in eV
+Vbi=5 //reverse bias voltage in V
+VR=0 //in V
+
+//Calculation
+phi_B=phi_m-xsi //in eV
+xn=((2*epsilon_si*epsilon_0*(Vbi+VR))/(e*Nd))^0.5 //in cm
+Emax=(e*Nd*xn)/(epsilon_si*epsilon_0)
+CJ=((e*epsilon_si*epsilon_0*Nd)/(2*(Vbi+VR)))^0.5
+
+mprintf("a)\n")
+mprintf("ideal schottky barrier height= %1.2f ev\n",phi_B)
+mprintf("b)\n")
+mprintf("peak electric field= %1.2e V/cm\n",Emax)
+mprintf("c)\n")
+mprintf("depletion layer capacitance per unit area= %1.2e F/cm^2",CJ) //The answer provided in the textbook is wrong
diff --git a/3636/CH7/EX7.6/Ex7_6.txt b/3636/CH7/EX7.6/Ex7_6.txt new file mode 100644 index 000000000..4bd00dd47 --- /dev/null +++ b/3636/CH7/EX7.6/Ex7_6.txt @@ -0,0 +1,6 @@ + a)
+ideal schottky barrier height= 0.49 ev
+b)
+peak electric field= 6.81e+04 V/cm
+c)
+depletion layer capacitance per unit area= 7.05e-09 F/cm^2
\ No newline at end of file diff --git a/3636/CH7/EX7.9/Ex7_9.sce b/3636/CH7/EX7.9/Ex7_9.sce new file mode 100644 index 000000000..edd66c27d --- /dev/null +++ b/3636/CH7/EX7.9/Ex7_9.sce @@ -0,0 +1,25 @@ +clc;
+clear;
+phi_m=4.3 //work function in eV
+xsi=4 //electron affinity in eV
+p0=10^17 //in cm^-3
+Na=10^17 //in cm^-3
+ni=1.5*10^10 //in cm^-3
+delE_fc=0.957 //in eV
+Const=0.0259 //constant value for kT in eV
+
+//Calculation
+delE_if=Const*log(p0/ni)
+
+//a) Before contact
+phi_s=xsi+delE_fc
+
+//b) After contact
+phi_B=phi_m-xsi
+eV0=phi_s-phi_m
+
+mprintf("Energy state difference= %.3f eV\n",delE_if)
+mprintf(" a)phi_s= %.3f eV\n",phi_s)
+mprintf(" b)Forward Bias (phi_B)= %.1f eV\n",phi_B)
+mprintf(" eV0= %.3f eV",eV0) //The answer provided in the textbook is wrong
+
diff --git a/3636/CH7/EX7.9/Ex7_9.txt b/3636/CH7/EX7.9/Ex7_9.txt new file mode 100644 index 000000000..e0913a844 --- /dev/null +++ b/3636/CH7/EX7.9/Ex7_9.txt @@ -0,0 +1,4 @@ + Energy state difference= 0.407 eV
+ a)phi_s= 4.957 eV
+ b)Forward Bias (phi_B)= 0.3 eV
+ eV0= 0.657 eV
\ No newline at end of file diff --git a/3636/CH8/EX8.1/Ex8_1.sce b/3636/CH8/EX8.1/Ex8_1.sce new file mode 100644 index 000000000..9f485a2dc --- /dev/null +++ b/3636/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,9 @@ +clc;
+clear;
+iC=21 //collector current in mA
+iE=21.4 //Emitter current in mA
+
+//Calculation
+alpha=iC/iE
+
+mprintf("common-base current gain= %1.2f",alpha)
diff --git a/3636/CH8/EX8.1/Ex8_1.txt b/3636/CH8/EX8.1/Ex8_1.txt new file mode 100644 index 000000000..5ed9814bf --- /dev/null +++ b/3636/CH8/EX8.1/Ex8_1.txt @@ -0,0 +1 @@ + common-base current gain= 0.98
\ No newline at end of file diff --git a/3636/CH8/EX8.2/Ex8_2.sce b/3636/CH8/EX8.2/Ex8_2.sce new file mode 100644 index 000000000..d2c630d75 --- /dev/null +++ b/3636/CH8/EX8.2/Ex8_2.sce @@ -0,0 +1,25 @@ +clc;
+clear;
+ni=1.5*10^10 //in cm^3
+Na=5*10^16 //in cm^3
+Nd=5*10^18 //in cm^3
+VBE=0.6 //in V
+WB=3*10^-4 //in cm
+Const=0.026 //constant for kT/e in V
+
+//Calculation
+//a)
+np0=ni^2/Na //in cm^-3
+deln_x=(np0/WB)*(((exp(VBE/Const)-1)*(2/3*WB))-WB/3)
+
+//b)
+deln_x1=(np0/WB)*(exp(VBE/Const)-1)*WB
+
+mprintf("Excess minority carrier concentration at x=WB/3 = %1.2e cm^-3\n",deln_x) //The answers vary due to round off error
+mprintf("Excess minority carrier concentration at x=0 = %1.2e cm^-3\n",deln_x1) //The answers vary due to round off error
+
+
+
+
+
+
diff --git a/3636/CH8/EX8.2/Ex8_2.txt b/3636/CH8/EX8.2/Ex8_2.txt new file mode 100644 index 000000000..a1bc0123b --- /dev/null +++ b/3636/CH8/EX8.2/Ex8_2.txt @@ -0,0 +1,2 @@ + Excess minority carrier concentration at x=WB/3 = 3.16e+13 cm^-3
+Excess minority carrier concentration at x=0 = 4.74e+13 cm^-3
\ No newline at end of file diff --git a/3636/CH8/EX8.3/Ex8_3.sce b/3636/CH8/EX8.3/Ex8_3.sce new file mode 100644 index 000000000..66d1f929b --- /dev/null +++ b/3636/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,12 @@ +clc;
+clear;
+alpha_F=0.98
+alpha_R=0.18
+IC=2 //current in mA
+IB=0.06 //current in mA
+Const=0.026 //constant for kT/e in V
+
+//Calculation
+VCE=Const*log((((IC*(1-alpha_R))+IB)/((alpha_F*IB)-((1-alpha_F)*IC)))*(alpha_F/alpha_R))
+
+mprintf("Collector-emitter voltage at saturation= %1.2f V",VCE)
diff --git a/3636/CH8/EX8.3/Ex8_3.txt b/3636/CH8/EX8.3/Ex8_3.txt new file mode 100644 index 000000000..40c48cda2 --- /dev/null +++ b/3636/CH8/EX8.3/Ex8_3.txt @@ -0,0 +1 @@ + Collector-emitter voltage at saturation= 0.16 V
\ No newline at end of file diff --git a/3636/CH8/EX8.4/Ex8_4.sce b/3636/CH8/EX8.4/Ex8_4.sce new file mode 100644 index 000000000..d11789698 --- /dev/null +++ b/3636/CH8/EX8.4/Ex8_4.sce @@ -0,0 +1,14 @@ +clc;
+clear;
+RL=3 //load resistor in ohm
+hie=1*10^3 //in ohm
+hre=2*10^-4 //in mho
+hfe=25 //in mho
+hoe=15*10^-6 //in mho
+
+//Calculation
+gm=hfe/hie
+Ave=-gm*RL*10^3
+
+mprintf("Transconductannce= %0.3f mho\n",gm)
+mprintf("Voltage gain= %0.2i",Ave)
diff --git a/3636/CH8/EX8.4/Ex8_4.txt b/3636/CH8/EX8.4/Ex8_4.txt new file mode 100644 index 000000000..3d0741033 --- /dev/null +++ b/3636/CH8/EX8.4/Ex8_4.txt @@ -0,0 +1,2 @@ + Transconductannce= 0.025 mho
+Voltage gain= -75
\ No newline at end of file diff --git a/3636/CH8/EX8.5/Ex8_5.sce b/3636/CH8/EX8.5/Ex8_5.sce new file mode 100644 index 000000000..92f0bad4e --- /dev/null +++ b/3636/CH8/EX8.5/Ex8_5.sce @@ -0,0 +1,24 @@ +clc;
+clear;
+IE=1.5*10^-3 //in mA
+Cje=1.2*10^-12 //in F
+Dn=25 //in cm^2/s
+WB=0.4*10^-4 //in cm
+Wdc=2.5*10^-4 //in cm
+vs=10^7 //in cm/s
+Rc=25 //in ohm
+CBC=0.15*10^-12 //in F
+CS=0.12*10^-12 //in F
+Const=0.026 //constant for kT/e in V
+
+//Calculation
+Re=Const*(1/IE) //in ohm
+tau_e=Re*Cje //emitter-base junction charging in s
+tau_b=WB^2/(2*Dn) //transit time in the base in s
+tau_d=Wdc/vs //collector depletion region transit time in s
+tau_c=Rc*(CBC+CS) //collector capacitance charging time in s
+tau_D=tau_e+tau_b+tau_d+tau_c
+fT=1/(2*%pi*(tau_D))
+
+mprintf("Total emitter-to-collector delay time= %0.2e s\n",tau_D)
+mprintf("cut-of frequency of transistor= %0.2e Hz",fT)
diff --git a/3636/CH8/EX8.5/Ex8_5.txt b/3636/CH8/EX8.5/Ex8_5.txt new file mode 100644 index 000000000..08ad14c0e --- /dev/null +++ b/3636/CH8/EX8.5/Ex8_5.txt @@ -0,0 +1,2 @@ + Total emitter-to-collector delay time= 84.6 ps
+cut-of frequency of transistor= 1.88 GHz
\ No newline at end of file diff --git a/3636/CH8/EX8.7/Ex8_7.sce b/3636/CH8/EX8.7/Ex8_7.sce new file mode 100644 index 000000000..acf9a8173 --- /dev/null +++ b/3636/CH8/EX8.7/Ex8_7.sce @@ -0,0 +1,11 @@ +clc;
+clear;
+Wb=0.5*10^-6 //width of base region in m
+Dp=15*10^-4 // in m^2/s
+
+//Calculation
+tau_n=Wb^2/(2*Dp) //in s
+tau_B=tau_n //in s
+fT=1/(2*%pi*tau_B)
+
+mprintf("a) upper frequency limit= %1.2e Hz",fT)
diff --git a/3636/CH8/EX8.7/Ex8_7.txt b/3636/CH8/EX8.7/Ex8_7.txt new file mode 100644 index 000000000..0874a0dca --- /dev/null +++ b/3636/CH8/EX8.7/Ex8_7.txt @@ -0,0 +1 @@ + a) upper frequency limit= 1.91e+09 Hz
\ No newline at end of file diff --git a/3636/CH9/EX9.1/Ex9_1.sce b/3636/CH9/EX9.1/Ex9_1.sce new file mode 100644 index 000000000..662f17408 --- /dev/null +++ b/3636/CH9/EX9.1/Ex9_1.sce @@ -0,0 +1,24 @@ +clc;
+clear;
+Nd=5*10^16 //in cm^-3
+Na=10^19 //in cm^-3
+d=1.2*10^-4 //in cm
+e=1.6*10^-19// in J
+epsilon_r=11.7 //in F/cm
+epsilon_0=8.85*10^-14 //in F/cm
+L=18*10^-4 //in cm
+W=80*10^-4 //in micro-W
+myu_n=1350 //in cm^2/V*s
+ni=1.5*10^10 //in cm^3
+VGS=0 //in V
+Const=0.026 //constant for kT/e in V
+
+//Calculation
+Vp=(e*Nd*d^2)/(2*epsilon_r*epsilon_0) //Pitch-off voltage in V
+Ip=(W*myu_n*e^2*Nd^2*d^3)/(epsilon_r*epsilon_0*L) //Pitch-off current in A
+Vbi=Const*log((Na*Nd)/ni^2) //in V
+ID=Ip*(1/3-((VGS+Vbi)/Vp)+(2/3)*((VGS+Vbi)/Vp)^3/2)
+
+mprintf("a) Pitch-off voltage= %1.1f V\n",Vp)
+mprintf("b) Pitch-off current= %.3e A\n",Ip)
+mprintf("c) Drain current at pinch-off= %.2e A",ID) //The answers vary dueto round off error
diff --git a/3636/CH9/EX9.1/Ex9_1.txt b/3636/CH9/EX9.1/Ex9_1.txt new file mode 100644 index 000000000..c395a188a --- /dev/null +++ b/3636/CH9/EX9.1/Ex9_1.txt @@ -0,0 +1,3 @@ + a) Pitch-off voltage= 55.6 V
+b) Pitch-off current= 6.408e-01 A
+c) Drain current at pinch-off= 2.03e-01 A
\ No newline at end of file diff --git a/3636/CH9/EX9.2/Ex9_2.sce b/3636/CH9/EX9.2/Ex9_2.sce new file mode 100644 index 000000000..278c8e394 --- /dev/null +++ b/3636/CH9/EX9.2/Ex9_2.sce @@ -0,0 +1,19 @@ +clc;
+clear;
+e=1.6*10^-19 //in eV
+epsilon_r=13.1 //in F/cm
+epsilon_0=8.85*10^-14 //in F/cm
+Nc=4.7*10^17 //in cm^-3
+Nd=3*10^15 //in cm^-3
+phi_Bn=0.9 //barrier height in V
+VT=0.3 //threshold voltage in V
+Const=0.026 //constant for kT/e in V
+
+//Calculation
+phi_n=Const*log(Nc/Nd) //in V
+Vbi=phi_Bn-phi_n //built-in voltage in V
+Vp=Vbi-VT //pinch-off voltage in V
+d=sqrt((2*epsilon_r*epsilon_0*Vp)/(e*Nd))
+
+mprintf("Channel thickness= %0.2e m",d)
+//The answer provided in the textbook is wrong
diff --git a/3636/CH9/EX9.2/Ex9_2.txt b/3636/CH9/EX9.2/Ex9_2.txt new file mode 100644 index 000000000..d66267cf2 --- /dev/null +++ b/3636/CH9/EX9.2/Ex9_2.txt @@ -0,0 +1 @@ + Channel thickness= 4.76e-05 m
\ No newline at end of file diff --git a/3636/CH9/EX9.3/Ex9_3.sce b/3636/CH9/EX9.3/Ex9_3.sce new file mode 100644 index 000000000..5f2a74898 --- /dev/null +++ b/3636/CH9/EX9.3/Ex9_3.sce @@ -0,0 +1,15 @@ +clc;
+clear;
+e=1.6*10^-19 //in J
+epsilon_r=11.7 //in F/cm
+epsilon_0=8.85*10^-14 //in F/cm
+Na=5*10^16 //in cm^-3
+ni=1.5*10^10 //in cm^-3
+Const=0.026 //constant for kT/e in V
+
+//Calculation
+phi_pF=Const*log(Na/ni) //in V
+WdT=((4*epsilon_r*epsilon_0*phi_pF)/(e*Na))^0.5
+
+mprintf("Maximum space-charge width= %0.2e meter",WdT)
+//The answer provided in the textbook is wrong
diff --git a/3636/CH9/EX9.3/Ex9_3.txt b/3636/CH9/EX9.3/Ex9_3.txt new file mode 100644 index 000000000..3f84f27d3 --- /dev/null +++ b/3636/CH9/EX9.3/Ex9_3.txt @@ -0,0 +1 @@ + Maximum space-charge width= 1.42e-05 meter
\ No newline at end of file diff --git a/3636/CH9/EX9.4/Ex9_4.sce b/3636/CH9/EX9.4/Ex9_4.sce new file mode 100644 index 000000000..4aa1d6e7d --- /dev/null +++ b/3636/CH9/EX9.4/Ex9_4.sce @@ -0,0 +1,15 @@ +clc;
+clear;
+phi_m=3.20 //in V
+Na=10^15 //in cm^-3
+ni=1.5*10^10 //in cm^-3
+x=3.25
+Eg=1.11 //in eV
+e=1.6*10^-19 //in J
+Const=0.026 //constant for kT/e in V
+
+//Calculation
+phi_pF=Const*log(Na/ni) //in V
+phi_ms=(phi_m-(x+(Eg/2)+phi_pF))
+
+mprintf("work-function difference= %0.3f V",phi_ms)
diff --git a/3636/CH9/EX9.4/Ex9_4.txt b/3636/CH9/EX9.4/Ex9_4.txt new file mode 100644 index 000000000..b370a44cc --- /dev/null +++ b/3636/CH9/EX9.4/Ex9_4.txt @@ -0,0 +1 @@ + work-function difference= -0.894 V
\ No newline at end of file diff --git a/3636/CH9/EX9.5/Ex9_5.sce b/3636/CH9/EX9.5/Ex9_5.sce new file mode 100644 index 000000000..479d623f3 --- /dev/null +++ b/3636/CH9/EX9.5/Ex9_5.sce @@ -0,0 +1,13 @@ +clc;
+clear;
+ID_sat=5*10^-3 //in mA
+L=1.3*10^-4 //in micro-m
+myu_n=660 //in cm^2/V*s
+Cox=7*10^-8 //in F/cm^2
+VGS=5 //in V
+VT=0.66 //in V
+
+//Calculaation
+Z=(ID_sat*2*L)/(myu_n*Cox*(VGS-VT)^2)
+
+mprintf("Channel width= %.2e cm",Z)
diff --git a/3636/CH9/EX9.5/Ex9_5.txt b/3636/CH9/EX9.5/Ex9_5.txt new file mode 100644 index 000000000..5fceca028 --- /dev/null +++ b/3636/CH9/EX9.5/Ex9_5.txt @@ -0,0 +1 @@ + Channel width= 1.49e-03 cm
\ No newline at end of file diff --git a/3636/CH9/EX9.6/Ex9_6.sce b/3636/CH9/EX9.6/Ex9_6.sce new file mode 100644 index 000000000..a2806ad39 --- /dev/null +++ b/3636/CH9/EX9.6/Ex9_6.sce @@ -0,0 +1,28 @@ +clc;
+clear;
+epsilon_0=8.854*10^-14 //in F/cm
+epsilon_r=11.8 //in F/cm
+epsilon_i=3.9 //in F/cm
+d=100*10^-8 //gate oxide thickness in cm
+phi_ms=-1.5 //in V
+Qi=5*10^10*1.6*10^-19 //fixed oxide charge in C/cm^2
+Na=10^18 //in cm^-3
+ni=1.5*10^10 //in cm^-3
+e=1.6*10^-19 //in J
+VB=2.5 //in V
+const=0.0259 //value for kT/e in V
+
+//Calculation
+Ci=(epsilon_0*epsilon_i)/d //in F/cm^2
+VFB=phi_ms-(Qi/Ci) //in V
+phi_F=const*log(Na/ni) //in V
+W=sqrt((2*epsilon_0*epsilon_r*(2*phi_F))/(e*Na)) //in cm
+Qd=-e*Na*W //in C
+VT=VFB+(2*phi_F)-(Qd/Ci) //in V
+Wm=sqrt((2*epsilon_0*epsilon_r*((2*phi_F)+VB))/(e*Na)) //in cm
+Qd1=-e*Na*Wm //in C
+VT1=VFB+(2*phi_F)-(Qd1/Ci) //in V
+
+mprintf("Voltage of n-channel Si(1)= %1.2f V\n",VT)
+mprintf("Voltage of n-channel Si(2)= %1.3f V",VT1) //The answers vary due to round off error
+
diff --git a/3636/CH9/EX9.6/Ex9_6.txt b/3636/CH9/EX9.6/Ex9_6.txt new file mode 100644 index 000000000..36d979a6f --- /dev/null +++ b/3636/CH9/EX9.6/Ex9_6.txt @@ -0,0 +1,2 @@ + Voltage of n-channel Si(1)= 1.03 V
+Voltage of n-channel Si(2)= 2.518 V
\ No newline at end of file diff --git a/3636/CH9/EX9.7/Ex9_7.sce b/3636/CH9/EX9.7/Ex9_7.sce new file mode 100644 index 000000000..99c45d64a --- /dev/null +++ b/3636/CH9/EX9.7/Ex9_7.sce @@ -0,0 +1,21 @@ +clc;
+clear;
+epsilon_0=8.854*10^-14 //in F/cm
+epsilon_r=11.8 //in F/cm
+epsilon_i=3.9 //in F/cm
+d=80*10^-8 //gate oxide thickness in cm
+phi_ms=-0.15 //work-function difference in V
+Qi=10^11*1.6*10^-19 //fixed oxide charge in C/cm^2
+Nd=5*10^17 //in cm^-3
+ni=1.5*10^10 //in cm^-3
+e=1.6*10^-19 //in J
+const=0.0259 //value for kT/e in V
+
+//Calculation
+phi_F=const*log(Nd/ni) //in V
+Wm=2*sqrt((epsilon_0*epsilon_r*abs(phi_F))/(e*Nd)) //in cm
+Qd=e*Nd*Wm //depletion charges in C
+Ci=(epsilon_0*epsilon_i)/d //in F/cm^2
+VT=phi_ms-(Qi/Ci)-(Qd/Ci)-(2*phi_F)
+
+mprintf("Voltage of n-channel= %1.2f V",VT)
diff --git a/3636/CH9/EX9.7/Ex9_7.txt b/3636/CH9/EX9.7/Ex9_7.txt new file mode 100644 index 000000000..7fcf37a29 --- /dev/null +++ b/3636/CH9/EX9.7/Ex9_7.txt @@ -0,0 +1 @@ + Voltage of n-channel= -1.98 V
\ No newline at end of file |