diff options
Diffstat (limited to '3673')
302 files changed, 5241 insertions, 0 deletions
diff --git a/3673/CH1/EX1.1/Ex1_1.sce b/3673/CH1/EX1.1/Ex1_1.sce new file mode 100644 index 000000000..d477f8cb2 --- /dev/null +++ b/3673/CH1/EX1.1/Ex1_1.sce @@ -0,0 +1,7 @@ +//Example 1_1 page no:1
+clc
+clear
+W=70;//Energy in joule
+Q=30;//charge in coloumb
+V=W/Q;
+disp(V,"Voltage(in volts):")
diff --git a/3673/CH1/EX1.10/Ex1_10.sce b/3673/CH1/EX1.10/Ex1_10.sce new file mode 100644 index 000000000..6d066640d --- /dev/null +++ b/3673/CH1/EX1.10/Ex1_10.sce @@ -0,0 +1,5 @@ +//Example 1_10 page no:13
+clc
+V=50*(10/(10+5))//applying voltage divider rule to the given circuit
+disp(V,"Voltage across 10ohm resistor(in V)")
+//in textbook the voltage is rounded to 1 digit
diff --git a/3673/CH1/EX1.11/Ex1_11.sce b/3673/CH1/EX1.11/Ex1_11.sce new file mode 100644 index 000000000..bea2e202f --- /dev/null +++ b/3673/CH1/EX1.11/Ex1_11.sce @@ -0,0 +1,8 @@ +//Example 1_11 page no:14
+clc
+V=100;//supply voltage
+R1=1;//resistance in kilo_ohm
+R2=5;//resistance in kilo_ohm
+R3=4;//resistance in kilo_ohm
+v=V*(R2+R3)/(R1+R2+R3);
+disp(v,"Voltage across A and B (in volts)")
diff --git a/3673/CH1/EX1.12/Ex1_12.sce b/3673/CH1/EX1.12/Ex1_12.sce new file mode 100644 index 000000000..6aaf038a7 --- /dev/null +++ b/3673/CH1/EX1.12/Ex1_12.sce @@ -0,0 +1,19 @@ +//Example 1_12 page no:14
+clc
+R1=5;//Resistance in ohm
+R2=2;//Resistance in ohm
+R3=1;//Resistance in ohm
+R4=2;//Resistance in ohm
+V=50;//supply voltage
+Rt=R1+R2+R3+R4;//total resistance
+P=V*V/Rt;//calculating total power
+disp(P,"Total power in the circuit (in watts)")
+current=V/Rt;
+P1=current^2*R1;
+disp(P1,"power absorbed in 5 ohms (in watts)")
+P2=current^2*R2;
+disp(P2,"power absorbed in 2 ohms (in watts)")
+P3=current^2*R3;
+disp(P3,"power absorbed in 1 ohms (in watts)")
+P4=current^2*R4;
+disp(P4,"power absorbed in 2 ohms (in watts)")
diff --git a/3673/CH1/EX1.13/Ex1_13.sce b/3673/CH1/EX1.13/Ex1_13.sce new file mode 100644 index 000000000..99ddc353b --- /dev/null +++ b/3673/CH1/EX1.13/Ex1_13.sce @@ -0,0 +1,14 @@ +//Example 1_13 page no:16
+clc
+//apply kirchoff's law to the given circuit
+I=50//current in ampere
+R1=2;//resistance in ohm
+R2=1;//resistance in ohm
+R3=5;//resistance in ohm
+V=I/(1/2+1/1+1/5)
+I1=V/R1;
+disp(I1,"Current flowing in 2 ohm resistor is (in ampere)")
+I2=V/R2;
+disp(I2,"Current flowing in 1 ohm resistor is (in ampere)")
+I3=V/R3;
+disp(I3,"Current flowing in 5 ohm resistor is (in ampere)")
diff --git a/3673/CH1/EX1.14/Ex1_14.sce b/3673/CH1/EX1.14/Ex1_14.sce new file mode 100644 index 000000000..747d24ada --- /dev/null +++ b/3673/CH1/EX1.14/Ex1_14.sce @@ -0,0 +1,15 @@ +//Example 1_14 page no:16
+clc
+I=10;//supply current in ampere
+//apply kirchof law to the circuit
+V=5/(1/5+1/10+1/2+1)
+disp(V,"Voltage across 10 ohm resistor (in volts)")
+R1=5;//resistance in ohm
+R2=10;//resistance in ohm
+R3=2;//resistance in ohm
+R4=1;//resistance in ohm
+I1=V/R1;
+I2=V/R2;
+I3=V/R3;
+I4=V/R4;
+disp(I2,"Current flowing in 10 ohm resistor (in ampere)")
diff --git a/3673/CH1/EX1.15/Ex1_15.sce b/3673/CH1/EX1.15/Ex1_15.sce new file mode 100644 index 000000000..9e2dde80b --- /dev/null +++ b/3673/CH1/EX1.15/Ex1_15.sce @@ -0,0 +1,8 @@ +//Example 1_15 page no:17
+clc
+//apply kirchoff law to the circuit
+It=50;//total current in milli ampere
+I1=30;
+I2=10;
+I3=It-I1-I2;
+disp(I3,"current flowing in R3 (in milli ampere)")
diff --git a/3673/CH1/EX1.16/Ex1_16.sce b/3673/CH1/EX1.16/Ex1_16.sce new file mode 100644 index 000000000..91557b9cf --- /dev/null +++ b/3673/CH1/EX1.16/Ex1_16.sce @@ -0,0 +1,9 @@ +//Example 1_16 page no:18
+clc
+R1=10;//Resistance in ohm
+R2=20;//Resistance in ohm
+R3=30;//Resistance in ohm
+R4=40;//Resistance in ohm
+R=(1/R1+1/R2+1/R3+1/R4)
+Rt=1/R
+disp(Rt,"Total resistance (in ohm)")
diff --git a/3673/CH1/EX1.17/Ex1_17.sce b/3673/CH1/EX1.17/Ex1_17.sce new file mode 100644 index 000000000..7a5c2ebb1 --- /dev/null +++ b/3673/CH1/EX1.17/Ex1_17.sce @@ -0,0 +1,13 @@ +//Example 1_17 page no:20
+clc
+I=12;//total current in circuit(in ampere)
+R1=4;//Resistance in ohm
+R2=4;//Resistance in ohm
+R3=4;//Resistance in ohm
+R=R2*R3/(R2+R3)
+I1=I*R/(R+R1)
+disp(I1,"Current in resistor R1(in ampere)")
+I2=I*R/(R+R2)
+disp(I1,"Current in resistor R1(in ampere)")
+I3=I*R/(R+R3)
+disp(I1,"Current in resistor R1(in ampere)")
diff --git a/3673/CH1/EX1.2/Ex1_2.sce b/3673/CH1/EX1.2/Ex1_2.sce new file mode 100644 index 000000000..0637f8f2c --- /dev/null +++ b/3673/CH1/EX1.2/Ex1_2.sce @@ -0,0 +1,7 @@ +//Example 1_2 page no:2
+clc
+clear
+t=2;//time in second
+Q=5;//charge in coloumb
+I=Q/t;
+disp(I,"The current flowing through the conductor(in A):")
diff --git a/3673/CH1/EX1.3/Ex1_3.sce b/3673/CH1/EX1.3/Ex1_3.sce new file mode 100644 index 000000000..56fe9e9dc --- /dev/null +++ b/3673/CH1/EX1.3/Ex1_3.sce @@ -0,0 +1,7 @@ +//Example 1_3 page no:3
+clc
+clear
+E=50;//Energy in joules
+t=2.5;//Time in second
+P=E/t;
+disp(P,"Power(in watts):")
diff --git a/3673/CH1/EX1.4/Ex1_4.sce b/3673/CH1/EX1.4/Ex1_4.sce new file mode 100644 index 000000000..c0d7943ea --- /dev/null +++ b/3673/CH1/EX1.4/Ex1_4.sce @@ -0,0 +1,7 @@ +//Example 1_4 page no:5
+clc
+clear
+R=10;//Resistance in ohm
+V=12;//Voltage in volt
+I=V/R;
+disp(I,"current flowing through resistor(in A):")
diff --git a/3673/CH1/EX1.5/Ex1_5.sce b/3673/CH1/EX1.5/Ex1_5.sce new file mode 100644 index 000000000..7aa4abd7f --- /dev/null +++ b/3673/CH1/EX1.5/Ex1_5.sce @@ -0,0 +1,11 @@ +//Example 1_5 page no:6
+clc
+clear
+L=2;//Inductance in henry
+di=2;//Current variation in amps/sec
+di=2*2;//current change in 2 seconds
+t=2;//time in sec
+v=L*di;
+disp(v,"1) voltage across inductor(in volt)")
+W=0.5*(L*di^2);
+disp(W,"2) energy stored in magnetic field(in joules)")
diff --git a/3673/CH1/EX1.6/Ex1_6.sce b/3673/CH1/EX1.6/Ex1_6.sce new file mode 100644 index 000000000..9f9e915a8 --- /dev/null +++ b/3673/CH1/EX1.6/Ex1_6.sce @@ -0,0 +1,7 @@ +//Example 1_6 page no:8
+clc
+clear
+C=2*(10^-6);//capacitance in micro farad
+V=1000;//Voltage in volts
+W=0.5*(C)*(V^2);
+disp(W,"Energy stored(in joules)")
diff --git a/3673/CH1/EX1.7/Ex1_7.sce b/3673/CH1/EX1.7/Ex1_7.sce new file mode 100644 index 000000000..117e21c0b --- /dev/null +++ b/3673/CH1/EX1.7/Ex1_7.sce @@ -0,0 +1,5 @@ +//Example 1_7 page no:11
+clc
+clear
+v=30-2-1-3-5;//applying kirchof law to the given circuit
+disp(v,"unknown voltage drop(in volt)")
diff --git a/3673/CH1/EX1.8/Ex1_8.sce b/3673/CH1/EX1.8/Ex1_8.sce new file mode 100644 index 000000000..c28002e82 --- /dev/null +++ b/3673/CH1/EX1.8/Ex1_8.sce @@ -0,0 +1,11 @@ +//Example 1_8 page no:11
+clc
+I=10/5//by applying ohms law to the given ciruit
+V1m=1*I;
+disp(V1m,"voltage across resistor V1m(in V)");
+V3_1m=3.1*I;
+disp(V3_1m,"voltage across resistor V1m(in V)");
+V400m=0.4*I;
+disp(V400m,"voltage across resistor V1m(in V)");
+V500m=0.5*I;
+disp(V500m,"voltage across resistor V1m(in V)");
diff --git a/3673/CH1/EX1.9/Ex1_9.sce b/3673/CH1/EX1.9/Ex1_9.sce new file mode 100644 index 000000000..ec2ebb749 --- /dev/null +++ b/3673/CH1/EX1.9/Ex1_9.sce @@ -0,0 +1,7 @@ +//Example 1_9 page no:12
+clc
+I=(100-40)/40//By applying ohms law to the given circuit
+R=30//reisistance in ohm
+V=I*R
+disp(I,"Current across 30ohm resistor(in A):")
+disp(V,"Voltage across 30ohm resistor(in V):")
diff --git a/3673/CH1/EX1.a.1/Example_a_1_1.sce b/3673/CH1/EX1.a.1/Example_a_1_1.sce new file mode 100644 index 000000000..34e4d5c2d --- /dev/null +++ b/3673/CH1/EX1.a.1/Example_a_1_1.sce @@ -0,0 +1,19 @@ +//Example 1_1 page no:20
+clc;
+Rt=1.7*10^3;
+R=3*10^3;
+It=6/Rt;
+It=It*1000;//converting to milli Ampere
+I10k=6/(10*10^3);
+I10k=I10k*1000;//converting to milli Ampere
+I3k=6/(3*10^3);
+I3k=I3k*1000;//converting to milli Ampere
+I4k=It-(I3k+I10k);
+I4_7k=I4k*(5/(5+4.7));
+V3k=I3k*R*10^-3;
+disp(It,"the total current is (in mA)");
+disp(I10k,"the current through 10k resistor is (in mA)");
+disp(I3k,"the current through 3k resistor is (in mA)");
+disp(I4k,"the current through 4k resistor is (in mA)");
+disp(I4_7k,"the current through 4.7k resistor is (in mA)");
+disp(V3k,"the voltage across 3k resistor is (in V)");
diff --git a/3673/CH1/EX1.a.10/Example_a_1_10.sce b/3673/CH1/EX1.a.10/Example_a_1_10.sce new file mode 100644 index 000000000..765699bbb --- /dev/null +++ b/3673/CH1/EX1.a.10/Example_a_1_10.sce @@ -0,0 +1,11 @@ +//Example 1_10 page no:28
+clc;
+It=4;
+Rt=7;
+R2=2;
+R10=10;
+I10=It*(Rt/(Rt+R10));
+disp(I10,"the current flowing through 10 ohm resistor is (in A)");
+I5=It*(R10/(R10+Rt));
+V=I5*R2;//the voltage across 2 ohm resistor Vs
+disp(V,"the voltage across 2 ohm resistor Vs is (in V)");
diff --git a/3673/CH1/EX1.a.11/Example_a_1_11.sce b/3673/CH1/EX1.a.11/Example_a_1_11.sce new file mode 100644 index 000000000..4af08c460 --- /dev/null +++ b/3673/CH1/EX1.a.11/Example_a_1_11.sce @@ -0,0 +1,15 @@ +//Example 1_11 page no:28
+clc;
+R1=5;
+R2=25;
+R3=10;
+V=50;
+It=6;
+//current in branch ADB
+I30=V/(R2+R1);
+disp(I30,"the current in branch ADB is (in A)");
+//current in branch ACB
+I10=It-I30;
+disp(I10,"the current in branch ACB is (in A)");
+R=(V/I10)-R3;
+disp(R,"the resistance R is (in ohm)");
diff --git a/3673/CH1/EX1.a.12/Example_a_1_12.sce b/3673/CH1/EX1.a.12/Example_a_1_12.sce new file mode 100644 index 000000000..325b46cf5 --- /dev/null +++ b/3673/CH1/EX1.a.12/Example_a_1_12.sce @@ -0,0 +1,19 @@ +//Example 1_12 page no:29
+clc;
+V=10
+R1=3;
+R2=6;
+R3=5;
+R4=5;
+R5=4;
+R6=2.5;
+R7=2;
+R8=1/((1/R3)+(1/R4));//calculating the resistance values
+R9=1/((1/R2)+(1/R7));
+R10=1/((1/R6)+(1/R8));
+R11=R1+R9;
+R12=R5+R10;
+Rt=1/((1/R11)+(1/R12));
+I=V/Rt;
+P=V*I;//calculating the power delivered by the source
+disp(P,"the power delivered by the source (in W)");
diff --git a/3673/CH1/EX1.a.13/Example_a_1_13.sce b/3673/CH1/EX1.a.13/Example_a_1_13.sce new file mode 100644 index 000000000..edae37750 --- /dev/null +++ b/3673/CH1/EX1.a.13/Example_a_1_13.sce @@ -0,0 +1,9 @@ +//Example 1_13 page no:30
+clc;
+I1=10;
+I2=15'
+R1=20;
+R2=10;
+R3=5;
+V=(I1+I2)/((1/20)+(1/10)+(1/5));//voltage calculation
+disp(V,"the voltage across 10 ohm resistor is (in V)");
diff --git a/3673/CH1/EX1.a.14/Example_a_1_14.sce b/3673/CH1/EX1.a.14/Example_a_1_14.sce new file mode 100644 index 000000000..08cb4011a --- /dev/null +++ b/3673/CH1/EX1.a.14/Example_a_1_14.sce @@ -0,0 +1,18 @@ +//Example 1_14 page no:31
+clc;
+I1=1;
+I2=5;
+Va=70;
+V=100;
+//calculating R1 and R2
+V5=5*60;
+Va=100-30;
+R2=(70-30)/I2;
+R1=(70-50)/I1;
+disp(R1,"the resistance R1 is (in ohm)");
+disp(R2,"the resistance R2 is (in ohm)");
+//calculating R2 when current in R1 is zero
+Va=50;
+I2=(100-Va)/5;
+R2=20/I2;
+disp(R2,"the resistance R2 when current flowing through R1 is zero (in ohm)");
diff --git a/3673/CH1/EX1.a.15/Example_a_1_15.sce b/3673/CH1/EX1.a.15/Example_a_1_15.sce new file mode 100644 index 000000000..ed1dcf75f --- /dev/null +++ b/3673/CH1/EX1.a.15/Example_a_1_15.sce @@ -0,0 +1,15 @@ +//Example 1_15 page no:32
+clc;
+I1=10;
+I2=5;
+R1=3;
+R2=2;
+R3=5;
+R4=10;
+R5=2;
+R6=1;
+R11=4.43;
+R22=2.67;
+Va=(I1-I2)/((1/R11)+(1/R22));
+Vout=Va;//here Vout is equal to Vout
+disp(Vout,"the output voltage Vout is (in V)");
diff --git a/3673/CH1/EX1.a.16/Example_a_1_16.sce b/3673/CH1/EX1.a.16/Example_a_1_16.sce new file mode 100644 index 000000000..ac51dd351 --- /dev/null +++ b/3673/CH1/EX1.a.16/Example_a_1_16.sce @@ -0,0 +1,25 @@ +//Example 1_16 page no:33
+clc;
+R1=5
+R2=6
+R3=3
+R4=3
+R5=10
+R6=6
+R7=2
+R8=4
+V=100;
+R9=1/((1/(R7+R8))+(1/R6));//calculating the resistances
+R10=1/((1/(R3+R4))+(1/R2));
+Rt=1/((1/13)+(1/8));
+It=V/Rt;
+I8=20.2*(13/(13+8));
+I13=20.2*(8/(13+8));
+I5=I8;
+I10=I13;
+I4=3.845;
+I3=6.25;
+Va=I3*3;
+Vb=I4*4;
+Vab=Va-Vb;//voltage calculation
+disp(Vab,"the voltage Vab is (in V)");
diff --git a/3673/CH1/EX1.a.17/Example_a_1_17.sce b/3673/CH1/EX1.a.17/Example_a_1_17.sce new file mode 100644 index 000000000..77d92666b --- /dev/null +++ b/3673/CH1/EX1.a.17/Example_a_1_17.sce @@ -0,0 +1,9 @@ +//Example 1_17 page no:34
+clc;
+Va=1;//here Va is assumed to be one hence it will canceled out in calculation
+R=1;//here R is assumed to be one it will be assigned correct value on the flow of calculation
+V10=Va*(10/15);
+Vr=Va*R/(20+R);
+R=(10/15)*(20*3);//here 3 is included to show that R is canceled in calculation
+//hence 3R-2R=R for simplicity we introduced 3 in calculation
+disp(R,"the resistance R in the circuit is(in ohm)");
diff --git a/3673/CH1/EX1.a.18/Example_a_1_18.sce b/3673/CH1/EX1.a.18/Example_a_1_18.sce new file mode 100644 index 000000000..461890252 --- /dev/null +++ b/3673/CH1/EX1.a.18/Example_a_1_18.sce @@ -0,0 +1,22 @@ +//Example 1_18 page no:34
+clc;
+V=-10;
+Iv=2;
+P10v=V*Iv;
+disp(P10v,"the power absorbed across 10V is (in W)");
+V1=24;
+I1=2;
+P1=V1*I1;
+disp(P1,"the power absorbed at R1 is (in W)");
+V2=14;
+I2=7;
+P2=V2*I2;
+disp(P2,"the power absorbed at R2 is (in W)");
+V3=-7;
+I3=9;
+P3=V3*I3;
+disp(P3,"the power absorbed at R3 is (in W)");
+V=1*-7;
+I=9;
+P=V*I;
+disp(P,"the power absorbed by dependent voltage source is (in W)");
diff --git a/3673/CH1/EX1.a.19/Example_a_1_19.sce b/3673/CH1/EX1.a.19/Example_a_1_19.sce new file mode 100644 index 000000000..bc42bf133 --- /dev/null +++ b/3673/CH1/EX1.a.19/Example_a_1_19.sce @@ -0,0 +1,22 @@ +//Example 1_19 page no:35
+clc;
+V1=-4;
+I1=2;
+P1=V1*I1;
+disp(P1,"the power absorbed by 2A current source is (in W)");
+V2=-4;
+I2=1;
+P2=V2*I2;
+disp(P2,"the power absorbed by 4V voltage source is (in W)");
+V3=2;
+I3=3;
+P3=V3*I3;
+disp(P3,"the power absorbed by 2V voltage source is (in W)");
+V4=7;
+I4=2;
+P4=V4*I4;
+disp(P4,"the power absorbed by 7A current source is (in W)");
+V5=2;
+I5=2;
+P5=-2*V5*I5;
+disp(P5,"the power absorbed by 2xi independent current source is (in W)");
diff --git a/3673/CH1/EX1.a.2/Example_a_1_2.sce b/3673/CH1/EX1.a.2/Example_a_1_2.sce new file mode 100644 index 000000000..958bcd2d0 --- /dev/null +++ b/3673/CH1/EX1.a.2/Example_a_1_2.sce @@ -0,0 +1,12 @@ +//Example 1_2 page no:21
+clc;
+I8=20/8;
+I15=(2.5*11)/(11+28);
+V28=0.71*28;
+V19=2.5*19;
+emf=V28+V19;//calculating the emf
+disp(I8,"the current flowing through 8 ohm resistor is (in A)");
+disp(I15,"the current flowing through 15 ohm resistor is (in A)");
+disp(V28,"the voltage across 28 ohm resistor is (in V)");
+disp(V19,"the voltage across 19 ohm resistor is (in V)");
+disp(emf,"the emf of the battery is (in V)");
diff --git a/3673/CH1/EX1.a.20/Example_a_1_20.sce b/3673/CH1/EX1.a.20/Example_a_1_20.sce new file mode 100644 index 000000000..c1799b048 --- /dev/null +++ b/3673/CH1/EX1.a.20/Example_a_1_20.sce @@ -0,0 +1,21 @@ +//Example 1_20 page no:35
+clc;
+V=12;
+R=1;
+R=4;
+R=3;
+I=6;
+P=-V*I;
+disp(P,"the power absorbed by 12V source is (in W)");
+V1=6;
+P1=V1*I;
+disp(P1,"the power absorbed by 1ohm resistor is (in W)");
+V2=-2*3*6;
+P2=V2*I;
+disp(P2,"the power absorbed by 2v1 independent voltage source is (in W)");
+V3=18;
+P3=V3*I;
+disp(P3,"the power absorbed by 3ohm resistor is (in W)");
+V=4*6;
+P4=V*I;
+disp(P4,"the power absorbed by 4ohm resistor is (in W)");
diff --git a/3673/CH1/EX1.a.21/Example_a_1_21.sce b/3673/CH1/EX1.a.21/Example_a_1_21.sce new file mode 100644 index 000000000..3e27b887b --- /dev/null +++ b/3673/CH1/EX1.a.21/Example_a_1_21.sce @@ -0,0 +1,18 @@ +//Example 1_21 page no:36
+clc;
+R1=3;
+R2=2;
+V=12/((1/3)+1+(1/2));
+i3=V/R1;
+i2=-V/R2;
+P3=V*i3;
+disp(P3,"the power absorbed by P3 is (in W)");
+P12=-V*12;
+disp(P12,"the power absorbed by 12A current source is (in W)");
+P2i=-V*2*i2;
+disp(P2i,"the power absorbed by 2i dependent current source is (in W)");
+P2=-V*i2;
+disp(P2,"the power absorbed by 2 ohm resistor is (in W)");
+//the result displayed varies slightly with the text book hence in text book
+//V,i3,i2 values are rounded off and they produce approximated result
+//here the values are used directly without approxiamtion
diff --git a/3673/CH1/EX1.a.3/Example_a_1_3.sce b/3673/CH1/EX1.a.3/Example_a_1_3.sce new file mode 100644 index 000000000..db8067a97 --- /dev/null +++ b/3673/CH1/EX1.a.3/Example_a_1_3.sce @@ -0,0 +1,14 @@ +//Example 1_3 page no:22
+clc;
+V=10;
+R1=1;
+I1=V/R1;
+I2=V/(2+((7*5)/(7+5)));
+It=I1+I2;//calculating the total current
+V2=2*2;
+I5=(2*7)/(5+7);//calculating the current flowing through 5 ohm resistor
+disp(I1,"the current flowing through 1 ohm resistor is (in A)");
+disp(I2,"the current flowing through series parallel branch between terminals A and C is (in A)");
+disp(It,"the total current is (in A)");
+disp(V2,"the voltage across 2 ohm resistor is (in V)");
+disp(I5,"the current flowing through 5 ohm resistor is (in A)");
diff --git a/3673/CH1/EX1.a.4/Example_a_1_4.sce b/3673/CH1/EX1.a.4/Example_a_1_4.sce new file mode 100644 index 000000000..d0cbe6d93 --- /dev/null +++ b/3673/CH1/EX1.a.4/Example_a_1_4.sce @@ -0,0 +1,16 @@ +//Example 1_4 page no:22
+clc;
+I3=2;
+I6=6;
+V2=12;
+V3=6;
+V=20
+I4=I3+I6;
+V4=4*I4;
+V=V4-V2;
+Vs=V4-V;
+Vin=-(30-V-V3);
+P4=V4*I6;//dependent power source
+disp(Vs,"the voltage Vs is (in V)");
+disp(Vin,"the voltage Vin is (in V)");
+disp(P4,"the power provided by dependent source is (in W)");
diff --git a/3673/CH1/EX1.a.5/Example_a_1_5.sce b/3673/CH1/EX1.a.5/Example_a_1_5.sce new file mode 100644 index 000000000..09f9204f6 --- /dev/null +++ b/3673/CH1/EX1.a.5/Example_a_1_5.sce @@ -0,0 +1,15 @@ +//Example 1_5 page no:23
+clc;
+//applying kirchoff law
+V=-20*10^-3/(-4.25*10^-3);
+P3=66.55;
+P20=-20*V;
+P4=V*V/(4);
+P=V*V/1;
+disp(P3,"the power absorbed by 3i current source is (in mW)");
+disp(P20,"the power absorbed by 20mA current source is (in mW)");
+disp(P4,"the power absorbed by 4 kilo ohm current source is (in mW)");
+disp(P,"the power absorbed by 1 kilo ohm current source is (in mW)");
+//in text book V value is rounded off but here the value is not rounded and used directly
+//so power result varies slightly
+//in text book V is rounded to 4.71 V
diff --git a/3673/CH1/EX1.a.6/Example_a_1_6.sce b/3673/CH1/EX1.a.6/Example_a_1_6.sce new file mode 100644 index 000000000..90e3b7edd --- /dev/null +++ b/3673/CH1/EX1.a.6/Example_a_1_6.sce @@ -0,0 +1,11 @@ +//Example 1_6 page no:24
+clc;
+Vs=30;
+R1=5;
+R2=4;
+R3=2;
+R4=4;
+R5=1/((1/(R2))+(1/(R3))+(1/(R4)));
+Rt=R1+R5;
+It=Vs/Rt;//calculating the total current
+disp(It,"the total current is (in A)");
diff --git a/3673/CH1/EX1.a.7/Example_a_1_7.sce b/3673/CH1/EX1.a.7/Example_a_1_7.sce new file mode 100644 index 000000000..acbd760ca --- /dev/null +++ b/3673/CH1/EX1.a.7/Example_a_1_7.sce @@ -0,0 +1,14 @@ +//Example 1_7 page no:25
+clc;
+I5=4;
+I6=1;
+V=30;
+R6=6;
+V6=24;
+V10=50;
+I10=I5+I6;
+Vc=-V6;
+V1=V10-Vc;
+disp(I10,"the current through 10 ohm resistance is (in A)");
+Vs=I10-V+Vc;//calculating the source voltage
+disp(Vs,"the source voltage Vs is (in V)");
diff --git a/3673/CH1/EX1.a.8/Example_a_1_8.sce b/3673/CH1/EX1.a.8/Example_a_1_8.sce new file mode 100644 index 000000000..894a1218a --- /dev/null +++ b/3673/CH1/EX1.a.8/Example_a_1_8.sce @@ -0,0 +1,14 @@ +//Example 1_8 page no:25
+clc;
+R1=6;
+R2=4;
+R3=10;
+V1=6;
+V2=12;
+I1=V1/(R1+R2);
+I2=V2/(R2+R3);
+Va=I1*R2;
+Vb=I2*R2;
+Vab=-Va+V2+Vb;
+disp(Vab,"the voltage across a and b is (in V)");
+//value of I2 is rounded off in text book so result varies slightly
diff --git a/3673/CH1/EX1.a.9/Example_a_1_9.sce b/3673/CH1/EX1.a.9/Example_a_1_9.sce new file mode 100644 index 000000000..112a119e2 --- /dev/null +++ b/3673/CH1/EX1.a.9/Example_a_1_9.sce @@ -0,0 +1,21 @@ +//Example 1_9 page no:26
+clc;
+V=30;
+R1=2;
+R2=2;
+R3=2;
+R4=2;
+R5=1;
+R6=1;
+R7=2;
+R8=2;
+R9=4;
+R10=R2+R3;
+R11=R4+R3;
+R12=1/((1/R10)+(1/R9));
+R13=1/((1/R11)+(1/R8));
+R14=1/((1/(R12+R13))+(1/R7));
+Rt=1/((1/(R14+R6))+(1/R1));
+I=V/Rt;
+disp(I,"the current delivered by the sourve is (in A)");
+//in text book Rt value is rounded to 1.05 here the value is not rounded so result varies slightly
diff --git a/3673/CH10/EX10.1/Ex10_1.sce b/3673/CH10/EX10.1/Ex10_1.sce new file mode 100644 index 000000000..aadced27a --- /dev/null +++ b/3673/CH10/EX10.1/Ex10_1.sce @@ -0,0 +1,6 @@ +//Example 10_1 page no:436
+clc;
+//given
+I1=1;
+V2=3/2;
+disp(V2/I1,"the mutual impedence is (in ohm)");
diff --git a/3673/CH10/EX10.10/Ex10_10.sce b/3673/CH10/EX10.10/Ex10_10.sce new file mode 100644 index 000000000..7b2f136f4 --- /dev/null +++ b/3673/CH10/EX10.10/Ex10_10.sce @@ -0,0 +1,23 @@ +//Example 10_10 page no:455
+clc;
+//given
+K=0.9;
+L1=10^-6;
+L2=100*10^-6;
+C=0.1*10^-6;
+Rs=10;
+R2=10;
+Vi=15;
+//calculating the resonance frequency
+M=K*sqrt(L1*L2);
+Wr=1/sqrt(L2*C);
+Fr=Wr/(2*%pi);
+Fr=Fr/1000;//converting to kilo Hz
+disp(Fr,"the resonant frequency is (in kHz)");
+//calculating the output voltage
+Vo=M*Vi/(C*((Rs*R2)+(Wr^2*M)));
+Vo=Vo*1000;
+disp(Vo,"the output voltage is (in mV)");
+//maximum value of output voltage
+Vom=Vi/(2*Wr*C*sqrt(Rs*R2));
+disp(Vom,"maximum value of output voltage is (in V)");
diff --git a/3673/CH10/EX10.11/Ex10_11.sce b/3673/CH10/EX10.11/Ex10_11.sce new file mode 100644 index 000000000..d17bf7472 --- /dev/null +++ b/3673/CH10/EX10.11/Ex10_11.sce @@ -0,0 +1,20 @@ +//Example 10_11 page no:462
+clc;
+//given
+N=1000;
+I=2;
+mu=4*%pi*10^-7;
+A=0.025*10^-4;
+//calculating the mmf
+mmf=N*I;
+disp(mmf,"the mmf of the cirucit is (in AT)");
+//calculating magnetic intensity
+H=mmf/I;
+disp(H,"the magnetic field intensity is (in AT/m)");
+//calculating flux density
+B=mu*H;
+b=B*1000;//converting to milli weber
+disp(b,"the flux density is (in mWb/m^2)");
+//calculating total flux
+phi=B*A;
+disp(phi,"the total flux density is (in Wb)");
diff --git a/3673/CH10/EX10.12/Ex10_12.sce b/3673/CH10/EX10.12/Ex10_12.sce new file mode 100644 index 000000000..8a28a7f1e --- /dev/null +++ b/3673/CH10/EX10.12/Ex10_12.sce @@ -0,0 +1,19 @@ +//Example 10_12 page no:462
+clc;
+//given
+area=100*10^-4;
+B=5*10^-3*10^4/100;
+mu=4*%pi*10^-7;
+phi=5*10^-3;
+H=B/mu;
+len=2.5*10^-3;
+mmf_required=H*len;//in text book H of the gap is rounded so mmf_required varies greatly
+area1=150*10^-4;
+flux_den=phi/area1;
+mr=800;
+H=flux_den/(mu*mr);
+len=0.5;
+mmf_required1=len*H;
+tot_mmf=mmf_required+mmf_required1;
+disp(tot_mmf,"the mmf required is (in AT)");
+//H of the air gap is rounded off greatly in textbook so the answer is inaccurate, here the accurate value is used for the calculation
diff --git a/3673/CH10/EX10.4/Ex10_4.sce b/3673/CH10/EX10.4/Ex10_4.sce new file mode 100644 index 000000000..f6da78e67 --- /dev/null +++ b/3673/CH10/EX10.4/Ex10_4.sce @@ -0,0 +1,14 @@ +//Example 10_2 page no:442
+clc;
+//given
+K=0.5;
+L1=50*10^-3;
+L2=200*10^-3;
+//calculating the mutual inductance
+M=K*sqrt(L1*L2);
+M=M*1000;//converting to milli henry
+disp(M,"the value of mutual inducatance between coil is (in mH)");
+//calculating the maximum inductance when K=1
+M=sqrt(L1*L2);
+M=M*1000;//converting to milli henry
+disp(M,"the maximum value of inducatance is (in mH)");
diff --git a/3673/CH10/EX10.6/Ex10_6.sce b/3673/CH10/EX10.6/Ex10_6.sce new file mode 100644 index 000000000..2fc6f533f --- /dev/null +++ b/3673/CH10/EX10.6/Ex10_6.sce @@ -0,0 +1,22 @@ +//Example 10_6 page no:446
+clc;
+//given
+output_imp=1936;
+load_imp=4;
+I1=20*10^-3;
+//calculating the turn ratio
+den=output_imp/load_imp;
+den=sqrt(den);
+num=1;
+function [x] = frac(n, d)
+ x = (n*%s)/(d*%s);
+endfunction;
+x=frac(num,den);
+disp(x,"the desired ratio for an ideal transformer to connect the two systems is");
+//calculating the rms current
+a=1/22;
+rms_current=I1/a;
+disp(rms_current,"the RMS value of the current in the secondary winding is (in A)");
+//calculatin the delivered power
+del_pow=(rms_current^2)*load_imp;
+disp(del_pow,"the power delivered to the load is (in W)");
diff --git a/3673/CH10/EX10.9/Ex10_9.sce b/3673/CH10/EX10.9/Ex10_9.sce new file mode 100644 index 000000000..fe956f74e --- /dev/null +++ b/3673/CH10/EX10.9/Ex10_9.sce @@ -0,0 +1,9 @@ +//Example 10_9 page no:451
+clc;
+//given
+L=[1,2,//here L1+L2 is kept as L
+1,-2];
+a=[0.4,
+0.2];
+X=inv(L)*a;
+disp(X(2),"the mutual inductance of the coil is (in H)");
diff --git a/3673/CH10/EX10.a.10/Example_a_10_10.sce b/3673/CH10/EX10.a.10/Example_a_10_10.sce new file mode 100644 index 000000000..1c0c3391f --- /dev/null +++ b/3673/CH10/EX10.a.10/Example_a_10_10.sce @@ -0,0 +1,12 @@ +//Example_a_10_10 page no:471
+clc;
+R=10;
+X1=[(-%i*11),10
+ (%i*18),0];
+X2=[-(%i*11),(%i*18)
+ (%i*18),(10-(%i*3))];
+i2=det(X1/X2);
+i2mag=sqrt(real(i2)^2+imag(i2)^2);
+v2=i2mag*R;
+v2=det(v2);
+disp(v2,"the voltage across 10 ohm resistor is (in V)");
diff --git a/3673/CH10/EX10.a.11/Example_a_10_11.sce b/3673/CH10/EX10.a.11/Example_a_10_11.sce new file mode 100644 index 000000000..ddb4b9626 --- /dev/null +++ b/3673/CH10/EX10.a.11/Example_a_10_11.sce @@ -0,0 +1,14 @@ +//Example_a_10_11 page no:472
+clc;
+omega_r=1000;
+C1=1*10^-6;
+C2=2*10^-6;
+R1=5;
+R2=3;
+L1=1/(omega_r^2*C1);
+L2=1/(omega_r^2*C2);
+M=sqrt(R1*R2)/omega_r;
+M=M*1000;//converting to milli Henry
+disp(L1,"the inductance L1 is (in H)");
+disp(L2,"the inductance L2 is (in H)");
+disp(M,"the optimum value of mutual inductance is (in mH)");
diff --git a/3673/CH10/EX10.a.12/Example_a_10_12.sce b/3673/CH10/EX10.a.12/Example_a_10_12.sce new file mode 100644 index 000000000..f5499b648 --- /dev/null +++ b/3673/CH10/EX10.a.12/Example_a_10_12.sce @@ -0,0 +1,13 @@ +//Example_a_10_12 page no:473
+clc;
+R1=0.01;
+R2=0.1;
+Rs=0.1;
+V=2;
+L1=2*10^-6;
+L2=25*10^-6;
+omega_r=10^4;
+Mc=sqrt(R2*(R1+R2))/omega_r;
+C2=1/(omega_r^2*L2);
+Vo=V/(2*omega_r^2*C2*Mc);
+disp(Vo,"the maximum output voltage at resonance is (in V)");
diff --git a/3673/CH10/EX10.a.13/Example_a_10_13.sce b/3673/CH10/EX10.a.13/Example_a_10_13.sce new file mode 100644 index 000000000..1be171321 --- /dev/null +++ b/3673/CH10/EX10.a.13/Example_a_10_13.sce @@ -0,0 +1,39 @@ +//Example_a_10_13 page no:473
+clc;
+D=10;
+len_of_flux_path=%pi*D;
+len_of_flux_path=len_of_flux_path/100;//converting to meter
+area_of_flux_path=15*10^-4;
+air_gap=2*10^-3;
+B=1.5;
+mu_not=4*%pi*10^-7;
+mu_r=500;
+H=B/(mu_not*mu_r);
+mmf=750;
+T=250;
+N=250;
+A=15*10^-4;
+exciting_current=mmf/T;
+reluctance=len_of_flux_path/(mu_not*mu_r*A);
+self_inductance=N^2/reluctance;//calculating the self inductance
+Energy=(1/2)*self_inductance*exciting_current^2;//calculating the stored energy
+disp("without air gap");
+disp(exciting_current,"the exciting current is (in A)");
+disp(self_inductance,"the inductance is (in H)");
+disp(Energy,"the stored energy is (in joules)");
+reluctance_of_gap=air_gap/(mu_not*A);
+total_reluctance=reluctance+reluctance_of_gap;
+mmf=B*area_of_flux_path*total_reluctance;
+Exciting_current=mmf/N;
+L=N^2/total_reluctance;
+L=L*1000;//converting to milli Henry
+E=(1/2)*L*10^-3*Exciting_current^2;
+disp("with air gap");
+disp(reluctance_of_gap,"the reluctance of air gap is (in A/Wb)");
+disp(total_reluctance,"the total reluctance is (in A/Wb)");
+disp(mmf,"the mmf is (in AT)");
+disp(Exciting_current,"the exciting current is (in A)");
+disp(L,"the inductance is (in mH)");
+disp(E,"the energy is (in joules)");
+//mmf varies slightly with text book because total reluctance is rounded off in text book
+//exciting current varies slightly with text book because mmf is rounded off in text book
diff --git a/3673/CH10/EX10.a.14/Example_a_10_14.sce b/3673/CH10/EX10.a.14/Example_a_10_14.sce new file mode 100644 index 000000000..97e5ed708 --- /dev/null +++ b/3673/CH10/EX10.a.14/Example_a_10_14.sce @@ -0,0 +1,26 @@ +//Example_a_10_14 page no:475
+clc;
+turn=700;
+mu_o=4*%pi*10^-7;
+mu_r=600;
+phi_g=1.8*10^-3;
+Ag=4*4&10^-4;
+Bg=(1.8*10^-3)/(16*10^-4);
+Ig=0.001;
+Hg=Bg/mu_o;
+mmf_gap=Hg*Ig;
+phi_c=1.8*10^-3;
+Ac=4*4*10^-4;
+Bc=1.125;
+Ic=0.24;
+Is=0.6;
+Hc=Bc/(mu_o*mu_r);
+mmf_central_limb=Hc*Ic;
+phi_s=(1/2)*phi_g;
+Bs=phi_s/(16*10^-4);
+Hs=Bs/(mu_o*mu_r);
+//calculating the mmf
+mmf_side_limb=Hs*Is;
+mmf_t=mmf_gap+mmf_central_limb+mmf_side_limb;
+current_required=mmf_t/turn;
+disp(current_required,"the required current is (in A)");
diff --git a/3673/CH10/EX10.a.16/Example_a_10_16.sce b/3673/CH10/EX10.a.16/Example_a_10_16.sce new file mode 100644 index 000000000..a45074bb5 --- /dev/null +++ b/3673/CH10/EX10.a.16/Example_a_10_16.sce @@ -0,0 +1,8 @@ +//Example_a_10_16 page no:477
+clc;
+t=2;
+V1=(0.5*((t*(-2)*exp(-2*t))+exp(-2*t)))+(0.2*(((t^2)*(-1)*exp(-t))+(2*(t)*exp(-t))));
+disp(V1,"the value of V1(t) is (in V)");//the value of V1 is wrong in text book, correct calculation is done here
+V2=-0.125*((2*2*exp(-2))-(2^2*exp(-2)))+(0.2*(exp(-2*2)-(2*2*exp(-2*2))));
+disp(V2,"the value of V2(t) is (in V)");
+//calculation of V1 is wrong in textbook
diff --git a/3673/CH10/EX10.a.18/Example_a_10_18.sce b/3673/CH10/EX10.a.18/Example_a_10_18.sce new file mode 100644 index 000000000..4875123b3 --- /dev/null +++ b/3673/CH10/EX10.a.18/Example_a_10_18.sce @@ -0,0 +1,14 @@ +//Example_a_10_18 page no:479
+clc;
+l=0.6;
+r=l/(2*%pi);
+N=300;
+I=1;
+AT=300;
+a=%pi*r^2;
+mu=4*%pi*10^-7
+R=l/(mu*N*a);
+lg=90.345/299;
+disp(lg,"the air gap is (in m)");
+disp(R,"the reluctance is (in AT/wb)");
+//reluctance value varies in the textbook hence area and radius is rounded off in text book
diff --git a/3673/CH10/EX10.a.19/Example_a_10_19.sce b/3673/CH10/EX10.a.19/Example_a_10_19.sce new file mode 100644 index 000000000..dac1a51cb --- /dev/null +++ b/3673/CH10/EX10.a.19/Example_a_10_19.sce @@ -0,0 +1,16 @@ +//Example_a_10_18 page no:479
+clc;
+N=500;
+l1=(20+20)*10^-2;
+l2=(20+8)*10^-2;
+l3=1*10^-3;
+mu1=800*4*%pi*10^-7;
+mu2=800*4*%pi*10^-7;
+mu3=4*%pi*10^-7;
+A1=16*10^-4;
+A2=64*10^-4;
+A3=64*10^-4;
+phi=1*10^-3;
+I=(((l1/(A1*mu1))+(l2/(A2*mu2))+(l3/(A3*mu3)))*phi)/500;
+disp(I,"the current to be passed through the coil "'C"' is (in A)");
+//the calculation in text book is wrong,here the value of current is correctly calculated, calculation at one of the denominator is wrong in text book
diff --git a/3673/CH10/EX10.a.3/Example_a_10_3.sce b/3673/CH10/EX10.a.3/Example_a_10_3.sce new file mode 100644 index 000000000..fe6c4252c --- /dev/null +++ b/3673/CH10/EX10.a.3/Example_a_10_3.sce @@ -0,0 +1,13 @@ +//Example_a_10_3 page no:465
+clc;
+K=0.5;
+L1L2=36;
+M=K*sqrt(L1L2);
+t=0;
+//calculating the voltages
+V1=20*(-sind((50*t-30))*50)-6*(-sind((50*t)-30)*50);
+V2=-15*(-sind((50*t-30))*50)+18*(-sind((50*t)-30)*50);
+W=(((1/2)*4*(5*cosd((50*t)-30))^2)+((1/2)*9*(2*cosd((50*t)-30))^2)-(3*(5*cosd((50*t)-30)*2*cosd((50*t)-30))))*%i;
+disp(V1,"the value of V1 is (in V)");
+disp(V2,"the value of V2 is (in V)");
+disp(W,"the total energy stored in the system is (in W)");
diff --git a/3673/CH10/EX10.a.6/Example_a_10_6.sce b/3673/CH10/EX10.a.6/Example_a_10_6.sce new file mode 100644 index 000000000..597efd432 --- /dev/null +++ b/3673/CH10/EX10.a.6/Example_a_10_6.sce @@ -0,0 +1,15 @@ +//Example_a_10_6 page no:467
+clc;
+V1=10;
+R2=400;
+X1=[(10+(%i*500)),10
+ (-%i*250),0];
+X2=[(10+(%i*500)),(-%i*250)
+ (-%i*250),(400+(%i*5000))];
+i2=det(X1/X2);
+V2=i2*R2;
+V2mag=sqrt(real(V2)^2+imag(V2)^2);
+V2ang=atand(imag(V2)/real(V2));
+output_ratio=V2mag/V1;
+disp(output_ratio,"the magnitude of ratio of output voltage of the source voltage is ");
+disp(V2ang,"the angle of ratio of output voltage of the source voltage is (in degree)");
diff --git a/3673/CH16/EX16.10/Ex16_10.sce b/3673/CH16/EX16.10/Ex16_10.sce new file mode 100644 index 000000000..2fe3f8ac1 --- /dev/null +++ b/3673/CH16/EX16.10/Ex16_10.sce @@ -0,0 +1,14 @@ +//Example 16_10 page no:762
+clc;
+//given
+Y11=2.5;
+Y21=-1;
+Y12=-1;
+Y22=5;
+Y1=Y11+Y21;
+Y2=-Y12;
+Y3=Y22+Y12;
+disp(Y1,"the parameter Y1 is (in mho)");
+disp(Y2,"the parameter Y2 is (in mho)");
+disp(Y3,"the parameter Y3 is (in mho)");
+//in text book Y12 is calculated wrongly
diff --git a/3673/CH16/EX16.11/Ex16_11.sce b/3673/CH16/EX16.11/Ex16_11.sce new file mode 100644 index 000000000..819149a53 --- /dev/null +++ b/3673/CH16/EX16.11/Ex16_11.sce @@ -0,0 +1,12 @@ +//Example 16_11 page no:767
+clc;
+//given
+Z11=2.5;
+Z21=1;
+Z22=2;
+Z12=1;
+Zl=2;
+Zs=1;
+Z1=Z11-((Z12*Z21)/(Zl+Z22));
+Zin=Zs+Z1;
+disp(Zin,"the input impedence is (in ohm)");
diff --git a/3673/CH16/EX16.12/Ex16_12.sce b/3673/CH16/EX16.12/Ex16_12.sce new file mode 100644 index 000000000..121c8534f --- /dev/null +++ b/3673/CH16/EX16.12/Ex16_12.sce @@ -0,0 +1,13 @@ +//Example 16_12 page no:768
+clc;
+//given
+Y11=1/2;
+Y22=5/8;
+Y21=-1/4;
+Y12=-1/4;
+Ys=1;
+I2_V2=((Y22*Ys)+(Y22*Y11)-(Y21*Y21))/(Ys+Y11);
+Z22=1/I2_V2;
+disp(Z22,"the output impedance of the network Z22 is (in ohm)");
+//in text book output unit is wrongly mentioned
+//in text book output is displayed in ratio here the same value is displayed in fraction
diff --git a/3673/CH16/EX16.13/Ex16_13.sce b/3673/CH16/EX16.13/Ex16_13.sce new file mode 100644 index 000000000..ae5f26921 --- /dev/null +++ b/3673/CH16/EX16.13/Ex16_13.sce @@ -0,0 +1,11 @@ +//Example 16_13 page no:771
+clc;
+//given
+Z11=3;
+Z12=2;
+Z21=2;
+Z22=3;
+Za=Z11-Z12;
+Zb=Z11+Z12;
+disp(Za,"the parameter Za of the lattice netwrok is (in ohm)");
+disp(Zb,"the parameter Zb of the lattice netwrok is (in ohm)");
diff --git a/3673/CH16/EX16.14/Ex16_14.sce b/3673/CH16/EX16.14/Ex16_14.sce new file mode 100644 index 000000000..5bb08778d --- /dev/null +++ b/3673/CH16/EX16.14/Ex16_14.sce @@ -0,0 +1,11 @@ +//Example 16_14 page no:771
+clc;
+//given
+Z11=6;
+Z22=6;
+Z12=4;
+Z21=4;
+Za=Z11-Z12;
+Zb=Z11+Z12;
+disp(Za,"the parameter Za of the lattice network is (in ohm)");
+disp(Zb,"the parameter Zb of the lattice network is (in ohm)");
diff --git a/3673/CH16/EX16.15/Ex16_15.sce b/3673/CH16/EX16.15/Ex16_15.sce new file mode 100644 index 000000000..b02815c55 --- /dev/null +++ b/3673/CH16/EX16.15/Ex16_15.sce @@ -0,0 +1,13 @@ +//Example 16_15 page no:775
+clc;
+//given
+A=6/5;
+B=17/5;
+C=1/5;
+D=7/5;
+Zl1=sqrt((A*B)/(C*D));
+disp(Zl1,"the parameter Zl1 is (in ohm)");
+Zl2=sqrt((B*D)/(A*C));
+disp(Zl2,"the parameter Zl2 is (in ohm)");
+phi=atanh(sqrt((B*C)/(A*D)));
+disp(phi,"the angle is");
diff --git a/3673/CH16/EX16.3/Ex16_3.sce b/3673/CH16/EX16.3/Ex16_3.sce new file mode 100644 index 000000000..44210f90d --- /dev/null +++ b/3673/CH16/EX16.3/Ex16_3.sce @@ -0,0 +1,22 @@ +//Example 16_1 page no:739
+clc;
+//given
+I1=1;//here I1 is assumed to 1 hence it will cancel out in simplifications
+I2=1;//here I1 is assumed to 1 hence it will cancel out in simplifications
+V1=6*I1;
+V2=5*I1;
+function [x] = frac(n, d)
+ x = (n*%s)/(d*%s);
+endfunction;
+x=frac(V1,V2);
+disp(x,"the parameter A is");
+x=frac(I1,V2);
+disp(x,"the parameter C is");
+V1=-17;
+I2=5;
+x=frac(-V1,I2);
+disp(x,"the parameter B is");
+V1=-7;
+I2=5;
+x=frac(-V1,I2);
+disp(x,"the parameter C is");
diff --git a/3673/CH16/EX16.4/Ex16_4.sce b/3673/CH16/EX16.4/Ex16_4.sce new file mode 100644 index 000000000..9592b28d5 --- /dev/null +++ b/3673/CH16/EX16.4/Ex16_4.sce @@ -0,0 +1,19 @@ +//Example 16_4 page no:748
+clc;
+//calculating h11
+V1=2;
+I1=1;//here I1 is assumed to be 1 hence it will cancel
+h11=V1/I1;
+disp(h11,"the parameter h11 is");
+I2=-1;
+I1=2;
+h21=I2/I1;
+disp(h21,"the parameter h21 is");
+V1=1;
+V2=2;
+h12=V1/V2;
+disp(h12,"the parameter h12 is");
+I2=1;
+V2=2;
+h22=I2/V2;
+disp(h22,"the parameter h22 is");
diff --git a/3673/CH16/EX16.5/Ex16_5.sce b/3673/CH16/EX16.5/Ex16_5.sce new file mode 100644 index 000000000..f050ef7c0 --- /dev/null +++ b/3673/CH16/EX16.5/Ex16_5.sce @@ -0,0 +1,8 @@ +//Example 16_5 page no:752
+clc;
+Z=[3,1,
+2,1];
+y=[1,-1,
+-2,3];
+x=det(Z)*det(y);
+disp(x,"the product of delta x and delta y is");
diff --git a/3673/CH16/EX16.7/Ex16_7.sce b/3673/CH16/EX16.7/Ex16_7.sce new file mode 100644 index 000000000..0ea220bd7 --- /dev/null +++ b/3673/CH16/EX16.7/Ex16_7.sce @@ -0,0 +1,20 @@ +//Example 16_7 page no:758
+clc;
+//given
+Z11x=3;
+Z12x=2;
+Z21x=2;
+Z22x=3;
+Z11y=15;
+Z21y=5;
+Z22y=25;
+Z12y=5;
+//calculating the parameters
+Z11=Z11x+Z11y;
+Z12=Z12x+Z12y;
+Z21=Z21x+Z21y;
+Z22=Z22x+Z22y;
+disp(Z11,"the parameter Z11 is (in ohm)");
+disp(Z21,"the parameter Z21 is (in ohm)");
+disp(Z22,"the parameter Z22 is (in ohm)");
+disp(Z12,"the parameter Z12 is (in ohm)");
diff --git a/3673/CH16/EX16.8/Ex16_8.sce b/3673/CH16/EX16.8/Ex16_8.sce new file mode 100644 index 000000000..038a646d9 --- /dev/null +++ b/3673/CH16/EX16.8/Ex16_8.sce @@ -0,0 +1,16 @@ +//Example 16_8 page no:759
+clc;
+//given
+Y11=1/2;
+Y21=-1/4;
+Y22=5/8;
+Y12=-1/4;
+//if two identical sections of the network is connected in parallel then Y parameters are calculated as
+Y11=2*Y11;
+Y21=2*Y21;
+Y22=2*Y22;
+Y12=2*Y12;
+disp(Y11,"the parameter Y11 is(in mho)");
+disp(Y21,"the parameter Y21 is(in mho)");
+disp(Y12,"the parameter Y12 is(in mho)");
+disp(Y22,"the parameter Y22 is(in mho)");
diff --git a/3673/CH16/EX16.a.10/Example_a_16_10.sce b/3673/CH16/EX16.a.10/Example_a_16_10.sce new file mode 100644 index 000000000..ac5711c7a --- /dev/null +++ b/3673/CH16/EX16.a.10/Example_a_16_10.sce @@ -0,0 +1,15 @@ +//Example_a_16_10 page no:787
+clc;
+Za=1;
+Zb=3;
+Zc=5;
+Zd=2;
+//calculating the Z values
+Z11=((Za+Zb)*(Zd+Zc))/(Za+Zb+Zc+Zd);
+Z21=((Zb*Zc)-(Za*Zd))/(Za+Zb+Zc+Zd);
+Z12=Z21;
+Z22=((Za+Zc)*(Zd+Zb))/(Za+Zb+Zc+Zd);
+disp(Z11,"the value of Z11 is (in ohm)");
+disp(Z21,"the value of Z21 is (in ohm)");
+disp(Z12,"the value of Z12 is (in ohm)");
+disp(Z22,"the value of Z22 is (in ohm)");
diff --git a/3673/CH16/EX16.a.15/Example_a_16_15.sce b/3673/CH16/EX16.a.15/Example_a_16_15.sce new file mode 100644 index 000000000..7b56cf2a4 --- /dev/null +++ b/3673/CH16/EX16.a.15/Example_a_16_15.sce @@ -0,0 +1,20 @@ +//Example_a_16_15 page no:792
+clc;
+Y11_t=6/7;
+Y22_t=5/7;
+Y12_t=-4/7;
+Y21_t=-4/7;
+Y11_pi=2;
+Y12_pi=-1;
+Y22_pi=3;
+Y21_pi=-1;
+//calculating the admittance values
+Y11=Y11_t+Y11_pi;
+Y12=Y12_t+Y12_pi;
+Y21=Y21_t+Y21_pi;
+Y22=Y22_t+Y22_pi;
+disp(Y11,"the value of Y11 is ");
+disp(Y12,"the value of Y12 is ");
+disp(Y21,"the value of Y21 is ");
+disp(Y22,"the value of Y22 is ");
+//Y12 and Y21 are calculated wrongly in textbook, the correct calculation is done here
diff --git a/3673/CH16/EX16.a.19/Example_a_16_19.sce b/3673/CH16/EX16.a.19/Example_a_16_19.sce new file mode 100644 index 000000000..b2a221454 --- /dev/null +++ b/3673/CH16/EX16.a.19/Example_a_16_19.sce @@ -0,0 +1,22 @@ +//Example_a_16_19 page no:793
+clc;
+I1=1;//assume I1=1 hence it will be canceled in solving the equation
+V1=I1*(8+2*%i);
+V2=I1*(3-4*%i);
+A=V1/V2;
+C=I1/V2;
+I2=(I1*(3-4*%i))/(6-4*%i);
+V1=I1*((5+6*%i)+(((3-4*%i)*3))/((3-4*%i)+3));
+B=V1/I2;//B value slightly varies with textbook, hence values are rounded off in textbook
+D=I1/I2;
+reciprocity_con=(A*D)-(B*C);
+reciprocity_con_mag=sqrt(real(reciprocity_con)^2+imag(reciprocity_con)^2);
+reciprocity_con_ang=atand(imag(reciprocity_con)/real(reciprocity_con));
+disp(A,"the value of A is ");
+disp(B,"the value of B is ");
+disp(C,"the value of C is ");
+disp(D,"the value of D is ");
+disp(reciprocity_con_mag,"the magnitude of reciprocity condition is ");
+disp(reciprocity_con_ang,"the angle of reciprocity condition is ");
+disp("hence reciprocity is verified");
+//here reciprocity conditon is exactly satisfied hence magnitude is 1 and angle is 0 but scilab cannot produce 0(document released by scilab:SCILAB IS NAIVE, page no:3) and also the reslut slightly varies with text book hence values are rounded off in text book
diff --git a/3673/CH16/EX16.a.6/Example_a_16_6.sce b/3673/CH16/EX16.a.6/Example_a_16_6.sce new file mode 100644 index 000000000..81914ad0e --- /dev/null +++ b/3673/CH16/EX16.a.6/Example_a_16_6.sce @@ -0,0 +1,9 @@ +//Example_a_16_6 page no:784
+clc;
+current_gain=(25*0.05*10^6)/(1500+0.05*10^6);
+V2_coeff=-6.6*10^-4+0.1*10^-4-0.2*10^-4;
+V1_coeff=0.05;
+voltage_gain=V1_coeff/V2_coeff;
+disp(current_gain,"the current gain is ");
+disp(voltage_gain,"the voltage gain is ");
+//voltage gain value is calculated wrongly in text book
diff --git a/3673/CH16/EX16.a.7/Example_a_16_7.sce b/3673/CH16/EX16.a.7/Example_a_16_7.sce new file mode 100644 index 000000000..10abf6138 --- /dev/null +++ b/3673/CH16/EX16.a.7/Example_a_16_7.sce @@ -0,0 +1,23 @@ +//Example_a_16_7 page no:785
+clc;
+h11=1*10^3;
+h12=0.003;
+h21=100;
+h22=50*10^-6;
+R=500;
+Vs=10*10^-3;
+I1=10*10^-3/954.54;
+V1=Vs-(I1*R);
+V2=(V1-(h11*I1))/(h12);
+disp(V2,"the value of V2 is (in V)");
+delta_h=(h11*h22)-(h21*h12);
+Z11=delta_h/h22;
+Z12=h12/h22;
+Z21=-h21/h22;
+Z22=1/h22;
+disp("the Z parameters of the network are");
+disp(Z11,"the value of Z11 is (in ohm)");
+disp(Z12,"the value of Z12 is (in ohm)");
+disp(Z21,"the value of Z21 is (in ohm)");
+disp(Z22,"the value of Z22 is (in ohm)");
+//V2 varies slightlly with text book hence I1 and V1 values are rounded off in text book which produce approximate result
diff --git a/3673/CH16/EX16.a.8/Example_a_16_8.sce b/3673/CH16/EX16.a.8/Example_a_16_8.sce new file mode 100644 index 000000000..626a2caf0 --- /dev/null +++ b/3673/CH16/EX16.a.8/Example_a_16_8.sce @@ -0,0 +1,18 @@ +//Example_a_16_8 page no:786
+clc;
+Zl=20
+Z11=10;
+Z22=10;
+Z12=4;
+Z21=4;
+V1=20;
+Vs=20;
+Zl=20;
+I1=V1/(Z11-((Z12*Z21)/(Zl+Z22)));
+I2=-I1*Z21/(Zl+Z22);
+V2=-I2*20;
+Zin=V1/I1;
+disp(I1,"the current I1 is (in A)");
+disp(I2,"the current I2 is (in A)");
+disp(V2,"the voltage V2 is (in V)");
+disp(Zin,"the input impedence is (in ohm)");
diff --git a/3673/CH16/EX16.a.9/Example_a_16_9.sce b/3673/CH16/EX16.a.9/Example_a_16_9.sce new file mode 100644 index 000000000..54b12fd2a --- /dev/null +++ b/3673/CH16/EX16.a.9/Example_a_16_9.sce @@ -0,0 +1,9 @@ +//Example_a_16_9 page no:787
+clc;
+Y11=6;
+Y22=6;
+Y21=4;
+Y12=4;
+Ys=1;
+driv_pt_admt=((Y22*Ys)+(Y22*Y11)-(Y21*Y12))/(Ys+Y11);
+disp(driv_pt_admt,"the driving point admittance is (in mho)");
diff --git a/3673/CH17/EX17.1/Ex17_1.sce b/3673/CH17/EX17.1/Ex17_1.sce new file mode 100644 index 000000000..f36c9b1ce --- /dev/null +++ b/3673/CH17/EX17.1/Ex17_1.sce @@ -0,0 +1,11 @@ +//Example 17_1 page no:823
+clc;
+//given
+k=500;//load resistance in ohm
+fc=2000;//frequency in Hz
+L=k/(%pi*fc);
+L=L*1000;//converting to milli Henry
+C=1/(%pi*fc*k);
+C=C*10^6;//converting to micro farad
+disp(L,"the inductance for low pass filter is (in mH)");
+disp(C,"the capacitance for low pass filter is (in microFarad)");
diff --git a/3673/CH17/EX17.10/Ex17_10.sce b/3673/CH17/EX17.10/Ex17_10.sce new file mode 100644 index 000000000..29c9b78db --- /dev/null +++ b/3673/CH17/EX17.10/Ex17_10.sce @@ -0,0 +1,9 @@ +//Example 17_10 page no:849
+clc;
+D=20;
+R0=500;
+N=10^(D/20);
+Ra=R0*(N-1)
+Rb=R0/(N-1);
+disp(Ra,"the resistance Ra is (in ohm)");
+disp(Rb,"the resistance Rb is (in ohm)");
diff --git a/3673/CH17/EX17.11/Ex17_11.sce b/3673/CH17/EX17.11/Ex17_11.sce new file mode 100644 index 000000000..55763bccf --- /dev/null +++ b/3673/CH17/EX17.11/Ex17_11.sce @@ -0,0 +1,9 @@ +//Example 17_11 page no:850
+clc;
+D=20;
+N=10^(D/20);
+R0=600;
+R1=R0*(N-1)/N;
+R2=(R0/(N-1));
+disp(R1,"the resistance R1 is (in ohm)");
+disp(R2,"the resistance R2 is (in ohm)");
diff --git a/3673/CH17/EX17.2/Ex17_2.sce b/3673/CH17/EX17.2/Ex17_2.sce new file mode 100644 index 000000000..37ba58758 --- /dev/null +++ b/3673/CH17/EX17.2/Ex17_2.sce @@ -0,0 +1,13 @@ +//Example 17_2 page no:826
+clc;
+//given
+Rl=600;
+k=600;
+fc=1000;
+//calculating the impedence and capacitance
+L=k/(4*%pi*fc);
+L=L*1000;//converting to milli henry
+C=1/(4*%pi*fc*k);
+C=C*10^6;//converting to micro farad
+disp(L,"the inductance required for high pass filter is (in mH)");
+disp(C,"the capacitance required for high pass filter is (in microFarad)");
diff --git a/3673/CH17/EX17.3/Ex17_3.sce b/3673/CH17/EX17.3/Ex17_3.sce new file mode 100644 index 000000000..c1bfe85fb --- /dev/null +++ b/3673/CH17/EX17.3/Ex17_3.sce @@ -0,0 +1,32 @@ +//Example 17_3 page no:831
+clc;
+//given
+k=400;
+fc=1000;
+fx=1100;
+//calculating m,L,C
+m=sqrt(1-(fc/fx)^2)
+L=k/(%pi*fc);
+C=1/(%pi*k*fc);
+//calculating T-section elements are
+L1=m*L/2;
+L1=L1*1000;//converting to milliHenry
+C1=m*C;
+C1=C1*10^6;//converting to microFarad
+L2=(1-(m^2))*L/(4*m);
+L2=L2*1000;//converting to milliHenry
+disp("the values of T-section elements are");
+disp(L1,"the inductance between which capacitance is connected is (in mH)");
+disp(C1,"the capacitance connected between inductor is (in microFarad)");
+disp(L2,"the inductance connected in series with capacitance is (in mH)");
+//calculating the pi section elements are
+C1=m*C/2;
+C1=C1*10^6;//converting to microFarad
+C2=(1-m^2)*C/(4*m);
+C2=C2*10^6;//converting to microFarad
+L1=m*L;
+L1=L1*1000;//converting to milliHenry
+disp("the values of pi section elements are");
+disp(C1,"the capacitance connected in parallel is (in microFarad)");
+disp(C2,"the capacitance connected in parallel to inductor is (in microFarad)");
+disp(L1,"the inductor connected in parallel to capacitance is (in mH)");
diff --git a/3673/CH17/EX17.4/Ex17_4.sce b/3673/CH17/EX17.4/Ex17_4.sce new file mode 100644 index 000000000..9835a88e3 --- /dev/null +++ b/3673/CH17/EX17.4/Ex17_4.sce @@ -0,0 +1,31 @@ +//Example 17_4 page no:834
+clc;
+//given
+k=500;
+fc=10000;
+m=0.4;
+//Calculating the impedence and capacitance
+L=k/(4*%pi*fc);
+C=1/(4*%pi*fc*k);
+//calculating T-section elements
+C1=2*C/m;
+L1=L/m;
+C2=(4*m)*C/(1-m^2);
+C1=C1*10^6;//converting to microFarad
+L1=L1*1000;//converting to milliHenry
+C2=C2*10^6;//converting to microFarad
+disp("the T-section elements are");
+disp(C1,"the capacitance between which inductance is connected is (in microFarad)");
+disp(L1,"the inducatance connected in parallel is (in mH)");
+disp(C2,"the capacitance connected in series is (in microFarad)");
+//calculating the pi-section elements
+L1=2*L/m;
+L2=(4*m)*L/(1-m^2);
+C1=C/m;
+C1=C1*10^6;//converting to microFarad
+L1=L1*1000;//converting to milliHenry
+L2=L2*1000;//converting to milliHenry
+disp("the value of pi section elements are");
+disp(C1,"the capacitance connected in parallel to inductor is(in microFarad)");
+disp(L1,"the inductance connected parallel to each other is (in mH)");
+disp(L2,"the inductance connected parallel to capacitor is(in mH)");
diff --git a/3673/CH17/EX17.5/Ex17_5.sce b/3673/CH17/EX17.5/Ex17_5.sce new file mode 100644 index 000000000..6eab4fc67 --- /dev/null +++ b/3673/CH17/EX17.5/Ex17_5.sce @@ -0,0 +1,32 @@ +//Example 17_5 page no:838
+clc;
+k=500;
+f1=1000;
+f2=10000;
+L1=k/(%pi*(f2-f1));
+C1=(f2-f1)/(4*%pi*k*f1*f2);
+L2=C1*k^2;
+C2=L1/k^2;
+//calculating the T-section filter
+L11=16.68/2;//inductance of T-section filter is calculated wrongly in text book
+L11=L11;//converting to milliHenry
+disp("the value of T-section element is");
+disp(L11,"the inductance is (in mH)");
+C11=2*C1;
+C11=C11*10^6;//converting to microFarad
+disp(C11,"the capacitance is (in microFarad)");
+C2=0.0707;
+L2=3.57;
+disp(C2,"the shunt element capacitance is (in microFarad)");
+disp(L2,"the shunt element inductance is (in mH)");
+//calculating the pi-section filter
+C1=0.143;
+L1=16.68;
+C2=0.0707/2;
+L2=2*0.0358;
+disp("the value of pi seciton element is");
+disp(L11*2,"the inductance is (in mH)");
+disp(C11/2,"the capacitance is (in microFarad)");
+disp(C2,"the capacitance is(in microFarad)");
+disp(L2,"the inductance is (in mH)");
+//inductance of T-section filter is calculated wrongly in text book
diff --git a/3673/CH17/EX17.6/Ex17_6.sce b/3673/CH17/EX17.6/Ex17_6.sce new file mode 100644 index 000000000..cd4f87a5f --- /dev/null +++ b/3673/CH17/EX17.6/Ex17_6.sce @@ -0,0 +1,31 @@ +//Example 17_6 page no:842
+clc;
+f1=2000;
+f2=6000;
+k=600;
+L1=k*(f2-f1)/(%pi*(f2*f1));
+C1=1/(4*%pi*k*(f2-f1));
+L2=1/(4*%pi*k*(f2-f1));
+C2=1*(f2-f1)/(k*%pi*(f1*f2));
+//calculating T-section filter
+L11=L1/2;
+C11=2*C1;
+L2=12;
+C2=0.176;
+L11=L11*1000;//converting to milliHenry
+C11=C11*10^6;//converting to microFarad
+disp("the T-section filter elements are");
+disp(L11,"the inductace is (in mH)");
+disp(C11,"the capacitance is (in microFarad)");
+disp(L2,"the inductane is (in mH)");
+disp(C2,"the capacitance is (in microFarad)");
+//calculating the pi-section filter
+L1=63;
+C1=0.033;
+L2=2*L2;
+C2=C2/2;
+disp("the pi section filter elements are");
+disp(L1,"the inductace is (in mH)");
+disp(C1,"the capacitance is (in microFarad)");
+disp(L2,"the inductane is (in mH)");
+disp(C2,"the capacitance is (in microFarad)");
diff --git a/3673/CH17/EX17.7/Ex17_7.sce b/3673/CH17/EX17.7/Ex17_7.sce new file mode 100644 index 000000000..392bc1cd0 --- /dev/null +++ b/3673/CH17/EX17.7/Ex17_7.sce @@ -0,0 +1,10 @@ +//Example 17_7 page no:845
+clc;
+D=60;
+I2=20;
+R0=500;
+N=10^(D/20);
+R1=R0*(N-1)/(N+1);
+R2=(2*N)*R0/(N^2-1);
+disp(R1,"Each of the series arm is given by (in ohm)");
+disp(R2,"the shunt arm resistor R2 is given by (in ohm)");
diff --git a/3673/CH17/EX17.8/Ex17_8.sce b/3673/CH17/EX17.8/Ex17_8.sce new file mode 100644 index 000000000..f31b0d659 --- /dev/null +++ b/3673/CH17/EX17.8/Ex17_8.sce @@ -0,0 +1,9 @@ +//Example 17_8 page no:846
+clc;
+R0=100;
+D=20;
+N=10^(D/20);
+R1=R0*(N^2-1)/(2*N);
+R2=R0*(N+1)/(N-1);
+disp(R1,"the resistance R1 is (in ohm)");
+disp(R2,"the resistance R2 is (in ohm)");
diff --git a/3673/CH17/EX17.9/Ex17_9.sce b/3673/CH17/EX17.9/Ex17_9.sce new file mode 100644 index 000000000..1b80bd5bf --- /dev/null +++ b/3673/CH17/EX17.9/Ex17_9.sce @@ -0,0 +1,9 @@ +//Example 17_9 page no:847
+clc;
+R0=800;
+D=20;
+N=10^(D/20);
+R1=R0*(N-1)/(N+1);
+R2=R0*(N+1)/(N-1);
+disp(R1,"the resistance R1 is (in ohm)");
+disp(R2,"the resistance R2 is (in ohm)");
diff --git a/3673/CH17/EX17.a.1/Example_a_17_1.sce b/3673/CH17/EX17.a.1/Example_a_17_1.sce new file mode 100644 index 000000000..e0f11fc17 --- /dev/null +++ b/3673/CH17/EX17.a.1/Example_a_17_1.sce @@ -0,0 +1,10 @@ +//Example_a_17_1 page no:863
+clc;
+fc=2*10^3;
+K=400;
+L=K/(%pi*fc);
+L=L*1000;
+C=1/(K*%pi*fc);
+C=C*10^6;
+disp(L,"the inductance is (in mH)");
+disp(C,"the capacitance is (in microFarad)");
diff --git a/3673/CH17/EX17.a.10/Example_a_17_10.sce b/3673/CH17/EX17.a.10/Example_a_17_10.sce new file mode 100644 index 000000000..b72f69fce --- /dev/null +++ b/3673/CH17/EX17.a.10/Example_a_17_10.sce @@ -0,0 +1,12 @@ +//Example_a_17_10 page no:869
+clc;
+Ro=600;
+atten_const=10;
+f=600;
+D=10;
+N=10^(D/10);
+L1=(Ro*sqrt(N-1))/(2*%pi*f);
+C1=sqrt(N-1)/(2*%pi*Ro*f);
+C1=C1*10^6;
+disp(L1,"the inductance is (in H)");
+disp(C1,"the capacitance is (in microFarad)");
diff --git a/3673/CH17/EX17.a.11/Example_a_17_11.sce b/3673/CH17/EX17.a.11/Example_a_17_11.sce new file mode 100644 index 000000000..630f74075 --- /dev/null +++ b/3673/CH17/EX17.a.11/Example_a_17_11.sce @@ -0,0 +1,10 @@ +//Example_a_17_11 page no:870
+clc;
+R1=2000;
+L1=30*10^-3;
+R2=300;
+Ro=sqrt(R1*R2);
+C1=L1/Ro^2;
+C1=C1*10^6;
+disp(Ro,"the value of resistance Ro is (in ohm)");
+disp(C1,"the value of capacitance C1 is (in microFarad)");
diff --git a/3673/CH17/EX17.a.12/Example_a_17_12.sce b/3673/CH17/EX17.a.12/Example_a_17_12.sce new file mode 100644 index 000000000..6aef70ee1 --- /dev/null +++ b/3673/CH17/EX17.a.12/Example_a_17_12.sce @@ -0,0 +1,10 @@ +//Example_a_17_12 page no:871
+clc;
+R2=2;
+C2=0.1;
+Ro=2;
+R1=Ro^2/R2;
+L1=C2*Ro^2;
+disp(R1,"the resistance is (in ohm)");
+disp(C2,"the capacitance is (in F)");
+disp(L1,"the inductance is (in H)");
diff --git a/3673/CH17/EX17.a.2/Example_a_17_2.sce b/3673/CH17/EX17.a.2/Example_a_17_2.sce new file mode 100644 index 000000000..601d532bf --- /dev/null +++ b/3673/CH17/EX17.a.2/Example_a_17_2.sce @@ -0,0 +1,31 @@ +//Example_a_17_2 page no:864
+clc;
+fc=1.5*10^3;
+k=500;
+fa=1600;
+m=sqrt(1-(fc/fa)^2);
+L=k/(%pi*fc);
+C=1/(%pi*k*fc);
+//calculating T-section elements
+L_t=m*L/2;
+L_t=L_t*1000;
+C_t=m*C;
+C_t=C_t*10^6;
+L1_t=(1-m^2)*L/(4*m);//the inductance value is wrong in text book, correct calculation is done here
+L1_t=L1_t*1000;
+//calculating pi-section elements
+C_pi=m*C/2;
+C_pi=C_pi*10^6;
+L_pi=m*L;
+L_pi=L_pi*1000;
+C1_pi=(1-m^2)*C/(4*m);
+C1_pi=C1_pi*10^6;
+disp("the elements of T-section are");
+disp(L_t,"the inductance is (in mH)");
+disp(L1_t,"the inductance connected in serial with capacitor is (in mH)");
+disp(C_t,"the capacitance is (in microFarad)");
+disp("the elements of pi-section are");
+disp(C_pi,"the capacitance is (in microFarad)");
+disp(C1_pi,"the capacitance connected in parallel with inductor is (in microFarad)");
+disp(L_pi,"the inductance is (in mH)");
+//the inductance value is wrong in text book, correct calculation is done here
diff --git a/3673/CH17/EX17.a.3/Example_a_17_3.sce b/3673/CH17/EX17.a.3/Example_a_17_3.sce new file mode 100644 index 000000000..51e9249a7 --- /dev/null +++ b/3673/CH17/EX17.a.3/Example_a_17_3.sce @@ -0,0 +1,19 @@ +//Example_a_17_3 page no:865
+clc;
+f1=1000;
+f2=5*10^3;
+k=500;
+f0=sqrt(f1*f2);
+B_omega=f2-f1;
+//calculating T-section elements
+L1=k*(f2-f1)/(%pi*f1*f2);
+C1=1/(4*%pi*k*(f2-f1));
+//calculating pi-section elements
+L2=k/(4*%pi*(f2-f1));
+C2=(f2-f1)/(%pi*k*(f2*f1));
+disp("T-Section filter is given by");
+disp(L2*1000,"the inductance is (in mH)");
+disp(C2*10^6,"the capacitance is (in microFarad)");
+disp("pi-Section filter is given by");
+disp(2*L2*1000,"the inductance is (in mH)");
+disp(C2*10^6/2,"the capacitance is (in microFarad)");
diff --git a/3673/CH17/EX17.a.4/Example_a_17_4.sce b/3673/CH17/EX17.a.4/Example_a_17_4.sce new file mode 100644 index 000000000..760f6ded1 --- /dev/null +++ b/3673/CH17/EX17.a.4/Example_a_17_4.sce @@ -0,0 +1,11 @@ +//Example_a_17_4 page no:866
+clc;
+f=1.5*10^3;
+L=40*10^-3;
+C=0.12*10^-6;
+fc=1/(%pi*sqrt(L*C));
+ZoT=sqrt(L/C)*sqrt(1-(f/fc)^2);
+phase_shift=2*asind(f/fc);
+disp(fc/1000,"the cut off frequency is (in kHz)");
+disp(ZoT,"the iterative impedence is (in ohm)");
+disp(phase_shift,"the phase shift is (in degree)");
diff --git a/3673/CH17/EX17.a.6/Example_a_17_6.sce b/3673/CH17/EX17.a.6/Example_a_17_6.sce new file mode 100644 index 000000000..e720b93a6 --- /dev/null +++ b/3673/CH17/EX17.a.6/Example_a_17_6.sce @@ -0,0 +1,16 @@ +//Example_a_17_6 page no:867
+clc;
+fc=6000;
+k=500;
+fa=1.75*fc;
+L=k/(%pi*fc);
+C=1/(%pi*k*fc);
+m=sqrt(1-(fc/fa)^2);
+L_t=m*L/2;//inductance value varie slightly with text book, hence values are rounded off in text book
+C_t=m*C;
+L1_t=(1-m^2)*L/(4*m);
+disp("the elements of m-derived LPF(T-Section) are");
+disp(L_t*1000,"the inductance is (in mH)");
+disp(C_t*10^6,"the capacitance is (in microFarad)");
+disp(L1_t*1000,"the inductance connected in series with capacitance is (in mH)");
+//inductance value varie slightly with text book, hence values are rounded off in text book
diff --git a/3673/CH17/EX17.a.7/Example_a_17_7.sce b/3673/CH17/EX17.a.7/Example_a_17_7.sce new file mode 100644 index 000000000..e8ee1f972 --- /dev/null +++ b/3673/CH17/EX17.a.7/Example_a_17_7.sce @@ -0,0 +1,11 @@ +//Example_a_17_7 page no:867
+clc;
+f=12*10^3;
+L=10*10^-3;
+C=0.32*10^-6;
+fc=1/(%pi*sqrt(L*C));
+k=sqrt(L/C);
+atten_cont=2*acosh(f/fc);
+disp(fc/1000,"the cut off frequency is (in kHz)");
+disp(k,"nominal impedance is (in ohm)");
+disp(atten_cont,"the attenuation constant is (in nepers)");
diff --git a/3673/CH17/EX17.a.8/Example_a_17_8.sce b/3673/CH17/EX17.a.8/Example_a_17_8.sce new file mode 100644 index 000000000..c0b1408af --- /dev/null +++ b/3673/CH17/EX17.a.8/Example_a_17_8.sce @@ -0,0 +1,12 @@ +//Example_a_17_8 page no:868
+clc;
+L=60*10^-3;
+C=0.16*10^-6;
+f=2*10^3;
+fc=1/(%pi*sqrt(L*C));
+Zot=sqrt(L/C)*sqrt(1-(f/fc));
+phase_shift=2*asind(f/fc);
+disp(fc/1000,"the cut off frequency is (in kHz)");
+disp(Zot,"nominal impedance is (in ohm)");
+disp(phase_shift,"the attenuation constant is (in nepers)");
+//impedence varie slightly henc fc value is rounded off in text book
diff --git a/3673/CH17/EX17.a.9/Example_a_17_9.sce b/3673/CH17/EX17.a.9/Example_a_17_9.sce new file mode 100644 index 000000000..16214224e --- /dev/null +++ b/3673/CH17/EX17.a.9/Example_a_17_9.sce @@ -0,0 +1,11 @@ +//Example_a_17_9 page no:869
+clc;
+Ro=600;
+omega=800;
+atten_const=12;
+N=10^(atten_const/10);
+L1=(Ro*sqrt(N-1))/(2*%pi*omega);
+C1=L1/Ro^2;
+C1=C1*10^6;
+disp(L1,"the inductance is (in H)");
+disp(C1,"the capacitance is (in microFarad)");
diff --git a/3673/CH18/EX18.1/Ex18_1.sce b/3673/CH18/EX18.1/Ex18_1.sce new file mode 100644 index 000000000..b935f946a --- /dev/null +++ b/3673/CH18/EX18.1/Ex18_1.sce @@ -0,0 +1,33 @@ +//Example 18_1 page no:889
+clc;
+//calculating for first foster network
+s=0;
+P0=5*(s^2+4)*(s^2+25)/(s^2+16);
+s=-%i*4;
+P2=5*(s^2+4)*(s^2+25)/(s*(s-(%i*4)));
+H=5;
+Wn=8;
+C0=1/P0;
+Lx=H;
+C2=1/(2*P2);
+L2=2*P2/Wn^2*4;
+disp("here the results are displayed in decimal values");
+disp("the elements of first foster network is");
+disp(C0,"the capacitance C0 is (in Farad)");
+disp(Lx,"the inductance Linfinity is (in H)");
+disp(C2,"the capacitance C2 is (in Farad)");
+disp(L2,"the inductance L2 is(in H)");
+//calculating for second foster network
+s=-%i*2;
+P1=1*(s*(s^2+16))/(5*(s+(-%i*2))*(s^2+25));
+s=-%i*2;
+P2=1*(s*(s^2+16))/(5*(s+(-%i*2))*(s^2+25));
+L1=1/(2*P1);
+C1=(2*P1)/4;
+L2=(1/(1.5*P2));
+C2=2*3/(70*25);
+disp("the elements of second foster network is");
+disp(C1,"the capacitance C1 is (in Farad)");
+disp(L1,"the inductance L1 is (in H)");
+disp(C2,"the capacitance C2 is (in Farad)");
+disp(L2,"the inductance L2 is(in H)");
diff --git a/3673/CH2/EX2.10/Ex2_10.sce b/3673/CH2/EX2.10/Ex2_10.sce new file mode 100644 index 000000000..f28079e1f --- /dev/null +++ b/3673/CH2/EX2.10/Ex2_10.sce @@ -0,0 +1,8 @@ +//Example 2_10 page no:74
+clc
+//mesh equation for the given circuit is
+resistance=[15,-10,-5;-15,12,6;0,1,-1]
+U=[40.0005,23.3326,-11.3332]
+II=inv(resistance)'*U'//calculating current I1 I2 I3
+current=II(1,1)-II(3,1)
+disp(current,"current flowing through 5 ohms (in ampere)")
diff --git a/3673/CH2/EX2.11/Ex2_11.sce b/3673/CH2/EX2.11/Ex2_11.sce new file mode 100644 index 000000000..189621cd8 --- /dev/null +++ b/3673/CH2/EX2.11/Ex2_11.sce @@ -0,0 +1,10 @@ +//Example 2_11 page no:74
+clc
+//mesh equation for the circuit is
+I1=10;//current in ampere
+resistance=[5,-2;-2,3]
+volt=[20,10]
+current=inv(resistance)'*volt'//calculating current I1 I2 I3
+disp(I1,"the current I1 is (in ampere)")
+disp(current(1),"the current I2 is (in ampere)")
+disp(current(2),"the current I3 is (in ampere)")
diff --git a/3673/CH2/EX2.12/Ex2_12.sce b/3673/CH2/EX2.12/Ex2_12.sce new file mode 100644 index 000000000..ddf9e86a8 --- /dev/null +++ b/3673/CH2/EX2.12/Ex2_12.sce @@ -0,0 +1,22 @@ +//Example 2_12 page no:76
+clc
+//applying kirchoff's law to the given circuit
+R1=10//resistance in ohm
+R2=3//resistance in ohm
+R3=5//resistance in ohm
+R4=1//resistance in ohm
+V=10//source voltage
+resistance=[(1/10+1/3),-1/3;-1/3,(1/3+1/5+1)]
+current=[5,10]
+volt=inv(resistance)'*current'//calculating V1 V2
+disp(volt(1),"voltage across node 1 is (in V)")
+disp(volt(2),"voltage across node 2 is (in V)")
+I1=volt(1,1)/R1;
+disp(I1,"current in branch I10 (in ampere)")
+I2=(volt(1,1)-volt(2,1))/R2;
+disp(I2,"current in branch I3 (in ampere)")
+I3=volt(2,1)/R3
+disp(I3,"current in branch I5 (in ampere)")
+I4=(volt(2,1)-V)/R4
+disp(I4,"current in branch I1 (in ampere)")
+//in textbook node voltages are rounded off so that current in each branches are more approximated in text book so current values varies slightly with textbook
diff --git a/3673/CH2/EX2.13/Ex2_13.sce b/3673/CH2/EX2.13/Ex2_13.sce new file mode 100644 index 000000000..00a225209 --- /dev/null +++ b/3673/CH2/EX2.13/Ex2_13.sce @@ -0,0 +1,10 @@ +//Example 2_13 page no:77
+clc
+//applying kirchhoff's law
+resistance=[0.96,-0.66,0;-0.66,1.16,-0.5;0,-0.5,1.66]
+current=[1,5,0]
+volt=inv(resistance)'*current'//calculating V1 V2 V3
+disp(volt(1),"voltage at node_1 V1 is (in V)")
+disp(volt(2),"voltage at node_2 V2 is (in V)")
+disp(volt(3),"voltage at node_3 V3 is (in V)")
+//values of V1 and V3 varies slightly with text book hence voltages are rounded off in text book calculation
diff --git a/3673/CH2/EX2.15/Ex2_15.sce b/3673/CH2/EX2.15/Ex2_15.sce new file mode 100644 index 000000000..b221bf375 --- /dev/null +++ b/3673/CH2/EX2.15/Ex2_15.sce @@ -0,0 +1,11 @@ +//Example 2_15 page no:81
+clc
+//applying kirchoff law to node 1
+R5=5//resistance in ohm
+V=10//source voltge
+resistance=[0.83,-0.5,0;-0.5,1.5,0.7;0.01,1,-1]
+current=[10,2,20]
+volt=inv(resistance)'*current'//calculating V1 V2 V3
+I3=(volt(3,1)-8.8)/R5
+disp(I3,"current flowing through 5 ohm resistor is (in ampere)")
+disp("negative sign indicate flow of current in opposite direction")
diff --git a/3673/CH2/EX2.16/Ex2_16.sce b/3673/CH2/EX2.16/Ex2_16.sce new file mode 100644 index 000000000..5a90d06e4 --- /dev/null +++ b/3673/CH2/EX2.16/Ex2_16.sce @@ -0,0 +1,6 @@ +//Example 2_16 page no:84
+clc
+current_source=5//in ampere
+source_resistance=5//in ohm
+equ_src_volt=current_source*source_resistance
+disp(equ_src_volt,"equivalent source voltage is (in volt)")
diff --git a/3673/CH2/EX2.17/Ex2_17.sce b/3673/CH2/EX2.17/Ex2_17.sce new file mode 100644 index 000000000..9d4295452 --- /dev/null +++ b/3673/CH2/EX2.17/Ex2_17.sce @@ -0,0 +1,6 @@ +//Example 2_17 page no:84
+clc
+src_volt=50//in volt
+internal_resistance=30//in ohm
+equ_current_src=src_volt/internal_resistance
+disp(equ_current_src,"equivalent current source is (in ampere)")
diff --git a/3673/CH2/EX2.7/Ex2_7.sce b/3673/CH2/EX2.7/Ex2_7.sce new file mode 100644 index 000000000..c8603c397 --- /dev/null +++ b/3673/CH2/EX2.7/Ex2_7.sce @@ -0,0 +1,7 @@ +//Example 2_7 page no:69
+clc
+//mesh current equation for the circuit
+resistance=[7,-2;-2,12]
+volt=[10,-50]
+current=inv(resistance)'*volt'//calculating current I1 I2 I3
+disp(current,"current flowing in the circuit I1 and I2 (in ampere)")
diff --git a/3673/CH2/EX2.8/Ex2_8.sce b/3673/CH2/EX2.8/Ex2_8.sce new file mode 100644 index 000000000..79465d56a --- /dev/null +++ b/3673/CH2/EX2.8/Ex2_8.sce @@ -0,0 +1,9 @@ +//Example 2_8 page no:69
+clc
+//mesh equations for the cirucuit is
+resistance=[18,5,-3;5,8,1;-3,1,4]
+volt=[50,10,-5]
+current=inv(resistance)'*volt'//calculating current I1 I2 I3
+disp(current(1),"the mesh current I1 in the circuit are (in ampere)")
+disp(current(2),"the mesh current I2 in the circuit are (in ampere)")
+disp(current(3),"the mesh current I3 in the circuit are (in ampere)")
diff --git a/3673/CH2/EX2.a.1/Example_a_2_1.sce b/3673/CH2/EX2.a.1/Example_a_2_1.sce new file mode 100644 index 000000000..e858d50d1 --- /dev/null +++ b/3673/CH2/EX2.a.1/Example_a_2_1.sce @@ -0,0 +1,29 @@ +//Example 2_1 page no:85
+clc;
+delta=[3,-1,-1,
+ -1,3,-1,
+ -1,-1,3];
+delta1=[10,-1,-1,
+ 5,3,-1,
+ 5,-1,3];
+delta2=[3,10,-1,
+ -1,5,-1,
+ -1,5,3];
+delta3=[3,-1,10,
+ -1,3,5,
+ -1,-1,5];
+ia=det(delta1)/det(delta);
+ib=det(delta2)/det(delta);
+ic=det(delta3)/det(delta);
+I=ia;
+I1=ia-ib;
+I2=ib;
+I3=ib-ic;
+I4=ic;
+I5=ia-ic;
+disp(I,"the branch current I is (in A)");
+disp(I1,"the branch current I1 is (in A)");
+disp(I2,"the branch current I2 is (in A)");
+disp(I3,"the branch current I3 is (in A)");
+disp(I4,"the branch current I4 is (in A)");
+disp(I5,"the branch current I5 is (in A)");
diff --git a/3673/CH2/EX2.a.10/Example_a_2_10.sce b/3673/CH2/EX2.a.10/Example_a_2_10.sce new file mode 100644 index 000000000..11dbf8873 --- /dev/null +++ b/3673/CH2/EX2.a.10/Example_a_2_10.sce @@ -0,0 +1,14 @@ +//Example 2_10 page no:95
+clc;
+A=[0.34,1.2,-1.34,
+ -0.34,-1,1.83,
+ 1,-1,0];
+B=[3,
+ 0,
+ 10];
+X=inv(A)*B;
+V1=X(1);
+V2=X(2);
+V3=X(3);
+P=V2*5;
+disp(P,"the power delivered by the current source(5A) is (in W)");
diff --git a/3673/CH2/EX2.a.11/Example_a_2_11.sce b/3673/CH2/EX2.a.11/Example_a_2_11.sce new file mode 100644 index 000000000..93467ad37 --- /dev/null +++ b/3673/CH2/EX2.a.11/Example_a_2_11.sce @@ -0,0 +1,7 @@ +//Example 2_11 page no:96
+clc;
+V=50;
+V1=23.33/(0.2+0.5+0.33);
+I=(V-V1)/5;
+P=V*I;
+disp(P,"the power delivered by the 50V voltage source is (in W)");
diff --git a/3673/CH2/EX2.a.12/Example_a_2_12.sce b/3673/CH2/EX2.a.12/Example_a_2_12.sce new file mode 100644 index 000000000..59b253630 --- /dev/null +++ b/3673/CH2/EX2.a.12/Example_a_2_12.sce @@ -0,0 +1,18 @@ +//Example 2_12 page no:96
+clc;
+//current source are parallel so added them up
+I1=5;
+I2=5;
+I3=10;
+I=I1+I2+I3;
+R1=2;
+R2=2;
+R3=3;
+R4=2;
+R5=1;
+R=1/((1/R1)+(1/R2)+(1/R3)+(1/R4)+(1/R5));
+V=I*R;
+disp(V,"the voltage source is (in V)");
+disp(R,"the resistance connected in series is (in ohm)");
+//in text book resistance calculationg is wrong
+//R valus is 0.35
diff --git a/3673/CH2/EX2.a.13/Example_a_2_13.sce b/3673/CH2/EX2.a.13/Example_a_2_13.sce new file mode 100644 index 000000000..46ed9c8fb --- /dev/null +++ b/3673/CH2/EX2.a.13/Example_a_2_13.sce @@ -0,0 +1,14 @@ +//Example 2_13 page no:97
+clc;
+delta=[1.08,-0.75,
+ -4.75,5.75];
+delta1=[-6.25,-0.75,
+ 21.25,5.75];
+delta2=[1.08,-6.25,
+ -4.75,21.25];
+V1=det(delta1)/det(delta);
+V2=det(delta2)/det(delta);
+Vx=V1+5-V2;
+disp(V1,"the voltage V1 is");
+disp(V2,"the voltage V2 is");
+disp(Vx,"the voltage across 4 ohm resistor is (in V)");
diff --git a/3673/CH2/EX2.a.14/Example_a_2_14.sce b/3673/CH2/EX2.a.14/Example_a_2_14.sce new file mode 100644 index 000000000..1a8cc66e4 --- /dev/null +++ b/3673/CH2/EX2.a.14/Example_a_2_14.sce @@ -0,0 +1,5 @@ +//Example 2_14 page no:98
+clc;
+V=48;
+I=(V-30)/5;
+disp(I,"the current in 5ohm resistor is (in A)");
diff --git a/3673/CH2/EX2.a.15/Example_a_2_15.sce b/3673/CH2/EX2.a.15/Example_a_2_15.sce new file mode 100644 index 000000000..34112eb2c --- /dev/null +++ b/3673/CH2/EX2.a.15/Example_a_2_15.sce @@ -0,0 +1,15 @@ +//Example 2_15 page no:99
+clc;
+A=[12,6,-5,
+ -1,1,0,
+ 0,0,1]
+B=[4,
+ 5,
+ -2];
+X=inv(A)*B;
+I1=X(1);
+I2=X(2);
+V2=2*I1;
+P4=4*I2;
+disp(V2,"the voltage across 2 ohm resistor is (in V)");
+disp(P4,"the power delivered by 4V source is (in W)");
diff --git a/3673/CH2/EX2.a.16/Example_a_2_16.sce b/3673/CH2/EX2.a.16/Example_a_2_16.sce new file mode 100644 index 000000000..1cbc024c9 --- /dev/null +++ b/3673/CH2/EX2.a.16/Example_a_2_16.sce @@ -0,0 +1,11 @@ +//Example 2_16 page no:99
+clc;
+A=[10,5,4,
+ 1,-1,0,
+ -2,-1,1];
+B=[35,
+ 2,
+ 0];
+X=inv(A)*B;
+I1=X(1);
+disp(I1,"the current in the 10 ohm resistor is (in A)");
diff --git a/3673/CH2/EX2.a.2/Example_a_2_2.sce b/3673/CH2/EX2.a.2/Example_a_2_2.sce new file mode 100644 index 000000000..2f298a6e8 --- /dev/null +++ b/3673/CH2/EX2.a.2/Example_a_2_2.sce @@ -0,0 +1,5 @@ +//Example 2_2 page no:86
+clc;
+V1=(4.8+2+3.6)/((1/5)+(1/20)+(1/10));
+I=(V1-24)/5;
+disp(I,"the current delivered by the 24V source is");
diff --git a/3673/CH2/EX2.a.3/Example_a_2_3.sce b/3673/CH2/EX2.a.3/Example_a_2_3.sce new file mode 100644 index 000000000..497a8bb0e --- /dev/null +++ b/3673/CH2/EX2.a.3/Example_a_2_3.sce @@ -0,0 +1,15 @@ +//Example 2_3 page no:87
+clc;
+delta3=[360,-2,-1.5,
+ -60,9,-1,
+ 0,-1,10.5];
+delta5=[15.5,-2,360,
+ -2,9,-60,
+ -1.5,-1,0];
+delta=[15.5,-2,-1.5,
+ -2,9,-1,
+ -1.5,-1,10.5];
+I3=det(delta3)/det(delta);
+I5=det(delta5)/det(delta);
+I=I3-I5;
+disp(I,"the current I in the loop is (in A)");
diff --git a/3673/CH2/EX2.a.4/Example_a_2_4.sce b/3673/CH2/EX2.a.4/Example_a_2_4.sce new file mode 100644 index 000000000..6ba2f684a --- /dev/null +++ b/3673/CH2/EX2.a.4/Example_a_2_4.sce @@ -0,0 +1,12 @@ +//Example 2_4 page no:88
+clc;
+A=[1.25,-0.75,
+ -4.75,5.75];
+B=[-12.5,
+ 42.5];
+X=inv(A)*B;
+Va=X(1);
+Vb=X(2);
+I10=(Va-Vb+10)/4;
+P=10*I10;
+disp(P,"the power supplied by 10V source is (in W)");
diff --git a/3673/CH2/EX2.a.5/Example_a_2_5.sce b/3673/CH2/EX2.a.5/Example_a_2_5.sce new file mode 100644 index 000000000..5a4d10cd5 --- /dev/null +++ b/3673/CH2/EX2.a.5/Example_a_2_5.sce @@ -0,0 +1,12 @@ +//Example 2_5 page no:90
+clc;
+R=16.67;
+A=[75,-25,
+ -58.35,25];
+B=[25,
+ 10];
+X=inv(A)*B;
+I1=X(1);
+I2=X(2);
+Vx=I1*R;
+disp(Vx,"the voltage across 16.67 ohm resistor is (in V)");
diff --git a/3673/CH2/EX2.a.6/Example_a_2_6.sce b/3673/CH2/EX2.a.6/Example_a_2_6.sce new file mode 100644 index 000000000..ae1890576 --- /dev/null +++ b/3673/CH2/EX2.a.6/Example_a_2_6.sce @@ -0,0 +1,9 @@ +//Example 2_6 page no:91
+clc;
+Va=11;
+Vout=6;
+V=Va/Vout;
+Vin=9.53;
+Vout=1;
+Vrat=Vout/Vin;
+disp(Vrat,"the ratio Vout/Vin is ");
diff --git a/3673/CH2/EX2.a.7/Example_a_2_7.sce b/3673/CH2/EX2.a.7/Example_a_2_7.sce new file mode 100644 index 000000000..60d809936 --- /dev/null +++ b/3673/CH2/EX2.a.7/Example_a_2_7.sce @@ -0,0 +1,11 @@ +//Example 2_7 page no:91
+clc;
+A=[0.93,-0.1,
+ -0.1,0.443];
+B=[17.29,
+ 7.143];
+X=inv(A)*B;
+V1=X(1);
+V2=X(2);
+V=3*((0.93*V1)-(0.1*V2));
+disp(V,"the voltage V in the cicuit is (in V)");
diff --git a/3673/CH2/EX2.a.8/Example_a_2_8.sce b/3673/CH2/EX2.a.8/Example_a_2_8.sce new file mode 100644 index 000000000..3a3826e74 --- /dev/null +++ b/3673/CH2/EX2.a.8/Example_a_2_8.sce @@ -0,0 +1,17 @@ +//Example 2_8 page no:92
+clc;
+R6=6;
+delta=[1.83,-1,-0.5,
+ -1,-1.167,-0.167,
+ -0.5,-0.167,0.867];
+delta2=[1.83,6.67,-0.5,
+ -1,5,-0.167,
+ -0.5,0,0.867];
+delta3=[1.83,-1,6.67,
+ -1,-1.167,5,
+ -0.5,-0.167,0];
+V2=det(delta2)/det(delta);
+V3=det(delta3)/det(delta);
+I6=(V2-V3)/6;
+P=I6^2*R6;
+disp(P,"the power absorbed or dissipated is (in W))");
diff --git a/3673/CH2/EX2.a.9/Example_a_2_9.sce b/3673/CH2/EX2.a.9/Example_a_2_9.sce new file mode 100644 index 000000000..8c7713a70 --- /dev/null +++ b/3673/CH2/EX2.a.9/Example_a_2_9.sce @@ -0,0 +1,17 @@ +//Example 2_9 page no:94
+clc;
+R5=5;
+A=[0.42,-0.167,-0.25,
+ -0.42,0.5,0.45,
+ 0,-1,1]
+B=[18,
+ -15,
+ 20];
+X=inv(A)*B;
+V1=X(1);
+V2=X(2);
+V3=X(3);
+I5=V3/5;
+P=I5^2*R5;
+disp(P,"the power absorbed by 5 ohm resistor is (in W)");
+//in text book value of I5^2 is rounded up so result vary slightly
diff --git a/3673/CH3/EX3.1/Ex3_1.sce b/3673/CH3/EX3.1/Ex3_1.sce new file mode 100644 index 000000000..e0cae4a6b --- /dev/null +++ b/3673/CH3/EX3.1/Ex3_1.sce @@ -0,0 +1,11 @@ +//Example 3_1 page no:112
+clc
+r1=13//resistance in ohm
+r2=12//resistance in ohm
+r3=14//resistance in ohm
+R1=r1*r2/(r1+r2+r3)
+disp(R1,"resistance R1 is (in ohm)")
+R2=r3*r1/(r1+r2+r3)
+disp(R2,"resistance R2 is (in ohm)")
+R3=r2*r3/(r1+r2+r3)
+disp(R3,"resistance R3 is (in ohm)")
diff --git a/3673/CH3/EX3.10/Ex3_10.sce b/3673/CH3/EX3.10/Ex3_10.sce new file mode 100644 index 000000000..3f395e13c --- /dev/null +++ b/3673/CH3/EX3.10/Ex3_10.sce @@ -0,0 +1,10 @@ +//Example 3_10 page no:129
+clc
+V1=10;
+G1=1/2;
+V2=20;
+G2=1/5;
+V0=((V1*G1)+(V2*G2))/(G1+G2)
+R0=1/(G1+G2)
+I=V0/(3+R0)
+disp(I,"the current is (in ampere)")
diff --git a/3673/CH3/EX3.2/Ex3_2.sce b/3673/CH3/EX3.2/Ex3_2.sce new file mode 100644 index 000000000..37c43c067 --- /dev/null +++ b/3673/CH3/EX3.2/Ex3_2.sce @@ -0,0 +1,11 @@ +//Example 3_2 page no:113
+clc
+R1=10//resistance in ohm
+R2=5//resistance in ohm
+R3=20//resistance in ohm
+r1=((R1*R2)+(R2*R3)+(R3*R1))/R3
+disp(r1,"resistance r1 is (in ohm)")
+r2=((R1*R2)+(R2*R3)+(R3*R1))/R1
+disp(r2,"resistance r2 is (in ohm)")
+r3=((R1*R2)+(R2*R3)+(R3*R1))/R2
+disp(r3,"resistance r3 is (in ohm)")
diff --git a/3673/CH3/EX3.3/Ex3_3.sce b/3673/CH3/EX3.3/Ex3_3.sce new file mode 100644 index 000000000..a5e5be9dd --- /dev/null +++ b/3673/CH3/EX3.3/Ex3_3.sce @@ -0,0 +1,12 @@ +//Example 3_3 page no:115
+clc
+//apply super position theorem to the given circuit
+V=1/(0.1+0.05+0.143)
+V1=(V/7)*2//voltage across 2 ohm resistor due to 10 volt
+V=2.86/(0.143+0.05+0.1)
+V2=((V-20)/7)*2//voltage across 2 ohm resistor due to 20 volt
+I=2*(5/(5+8.67))
+V3=I*2//voltage due to 2A current source in 2 ohm resistor
+V=V1+V2-V3
+disp(V,"voltage across 2 ohm resistor is (in volt)")
+disp("negative sign indicates that the voltage is in opposite direction")
diff --git a/3673/CH3/EX3.4/Ex3_4.sce b/3673/CH3/EX3.4/Ex3_4.sce new file mode 100644 index 000000000..64111e5d6 --- /dev/null +++ b/3673/CH3/EX3.4/Ex3_4.sce @@ -0,0 +1,13 @@ +//Example 3_4 page no:118
+clc
+//to find Vth and Rth
+R1=10//resistance in ohm
+R2=5//resistance in ohm
+V=50//source voltage
+I=25/15//current flowing in the circuit
+V1=I*10//voltage across 10 ohm resistor
+V2=I*5//voltage across 5 ohm resistor
+Vth=V-V1;
+disp(Vth,"the thevenin voltage is (in volt)")
+Rth=(R1*R2)/(R1+R2);
+disp(Rth,"the thevenin resistance is (in ohm)")
diff --git a/3673/CH3/EX3.5/Example_a_3_5.sce b/3673/CH3/EX3.5/Example_a_3_5.sce new file mode 100644 index 000000000..691a759e0 --- /dev/null +++ b/3673/CH3/EX3.5/Example_a_3_5.sce @@ -0,0 +1,6 @@ +//Example_a_3_5 page no:135
+clc;
+Vab=(4+3)/(0.05+0.2+0.17);
+Rab=(((18.75*5)/(18.75+5))*6)/(((18.75*5)/(18.75+5))+6);
+disp(Vab,"the thevenin voltage is (in V)");
+disp(Rab,"the thevenin resistance is (in ohm)");
diff --git a/3673/CH3/EX3.6/Ex3_6.sce b/3673/CH3/EX3.6/Ex3_6.sce new file mode 100644 index 000000000..e180c6b3c --- /dev/null +++ b/3673/CH3/EX3.6/Ex3_6.sce @@ -0,0 +1,14 @@ +//Example 3_6 page no:121
+clc
+Rt=2+((3*(2+((2*2)/(2+2))))/(3+(2+((2*2)/(2+2)))))//total resistance
+disp(Rt,"total resistance (in ohms)")
+It=20/3.5
+disp(It,"total current (in ampere)")
+I1=1.43//current in branch cd
+disp(I1,"current in branch cd (in A)")
+//after interchanging the source voltage
+Rt=3.23//total resistance
+It=20/3.23//total current drawn
+I2=1.43//current in branch ab
+disp(I2,"current in branch ab (in A)")
+disp("In both cases the ratio of input to response is the same")
diff --git a/3673/CH3/EX3.7/Ex3_7.sce b/3673/CH3/EX3.7/Ex3_7.sce new file mode 100644 index 000000000..8bda22445 --- /dev/null +++ b/3673/CH3/EX3.7/Ex3_7.sce @@ -0,0 +1,16 @@ +//Example 3_7 page no:122
+clc
+R4=4//resistance in ohm
+R3=3//resistance in ohm
+R6=6//resistance in ohm
+Rt=((R3*R6)/(R3+R6))//resistance in parallel
+//after adding ammeter
+R3=4
+RT=R4+((R3*R6)/(R3+R6))//total resistance
+It=10/(4+((6*3)/(6+3)))//total current
+I3=It*Rt/R3
+V=It*1
+Ia=V/RT;
+Ia=1.21-Ia;
+disp(Ia,"current flowing in ammeter is (in A)")
+//current in ammeter has more decimal places hence values are rounded off in text book
diff --git a/3673/CH3/EX3.8/Ex3_8.sce b/3673/CH3/EX3.8/Ex3_8.sce new file mode 100644 index 000000000..7094fad40 --- /dev/null +++ b/3673/CH3/EX3.8/Ex3_8.sce @@ -0,0 +1,7 @@ +//Example 3_8 page no:125
+clc
+Rs=25//resistance in ohm
+Rl=Rs//according to maximum power transfet theorem
+I=50/(Rl+Rs)
+P=I^2*Rl
+disp(P,"the maximum power delivered to the load is (in watts)")
diff --git a/3673/CH3/EX3.a.1/Example_a_3_1.sce b/3673/CH3/EX3.a.1/Example_a_3_1.sce new file mode 100644 index 000000000..0f3960b2c --- /dev/null +++ b/3673/CH3/EX3.a.1/Example_a_3_1.sce @@ -0,0 +1,7 @@ +//Example 3_1 page no:129
+clc;
+V=(10/2.92)/((1/4.31)+(1/6.77)+(1/2.92));
+Va=V*(2/(2+2.31));
+Vb=V*(6/6.77);
+Vab=Va-Vb;
+disp(Vab,"the voltage across Vab is (in V)");
diff --git a/3673/CH3/EX3.a.10/Example_a_3_10.sce b/3673/CH3/EX3.a.10/Example_a_3_10.sce new file mode 100644 index 000000000..4bdb9807f --- /dev/null +++ b/3673/CH3/EX3.a.10/Example_a_3_10.sce @@ -0,0 +1,12 @@ +//Example_a_3_10 page no:140
+clc;
+I=25;
+R1=5;
+R2=2;
+R3=3;
+R4=4;
+R5=5;
+In=I*(R2/(R2+R3+R4));//norton current
+Rab=(R5*(R4+R3+R2))/(R5+(R4+R3+R2));
+disp(In,"the norton current is (in A)");
+disp(Rab,"the norton resistance is (in ohm)");
diff --git a/3673/CH3/EX3.a.11/Example_a_3_11.sce b/3673/CH3/EX3.a.11/Example_a_3_11.sce new file mode 100644 index 000000000..16b9b0c32 --- /dev/null +++ b/3673/CH3/EX3.a.11/Example_a_3_11.sce @@ -0,0 +1,13 @@ +//Example_a_3_11 page no:140
+clc;
+I=30;
+R1=10;
+R2=5;
+R3=5;
+R4=2;
+R5=1;
+R6=1;
+Rab=(R2*(2+((R5*R6)/R4)))/(R2+(2+((R5*R6)/R4)));
+In=I*(Rab/6.67);//norton current
+disp(In,"the norton current is (in A)");
+disp(Rab,"the norton resistance is (in ohm)");
diff --git a/3673/CH3/EX3.a.12/Example_a_3_12.sce b/3673/CH3/EX3.a.12/Example_a_3_12.sce new file mode 100644 index 000000000..5ab0fcd2e --- /dev/null +++ b/3673/CH3/EX3.a.12/Example_a_3_12.sce @@ -0,0 +1,8 @@ +//Example_a_3_12 page no:141
+clc;
+In1=10;
+In2=20/6;
+In=In1+In2;
+Rab=6;
+disp(In,"the norton current is (in A)");
+disp(Rab,"the norton resistance is (in ohm)");
diff --git a/3673/CH3/EX3.a.13/Example_a_3_13.sce b/3673/CH3/EX3.a.13/Example_a_3_13.sce new file mode 100644 index 000000000..8a19a38c4 --- /dev/null +++ b/3673/CH3/EX3.a.13/Example_a_3_13.sce @@ -0,0 +1,15 @@ +//Example_a_3_13 page no:142
+clc;
+I=20;
+R1=6;
+R2=3;
+R3=5;
+R4=2;
+R5=6;
+I5=I*(R2/(R2+6.5));
+I6=I5*(2/(R1+2));
+V=I6*R4;
+Rt=(((((6*3)/(6+3))+5)*2)/((((6*3)/(6+3))+5)+2))+(6+2);
+I61=V/Rt;
+I=I6-I61;//in A
+disp(I,"the ammeter reading is (in A)");
diff --git a/3673/CH3/EX3.a.14/Example_a_3_14.sce b/3673/CH3/EX3.a.14/Example_a_3_14.sce new file mode 100644 index 000000000..d9d2e4a1e --- /dev/null +++ b/3673/CH3/EX3.a.14/Example_a_3_14.sce @@ -0,0 +1,14 @@ +//Example_a_3_14 page no:143
+clc;
+V=10;
+R1=2;
+R2=4;
+R3=3;
+I5=2.14*(4/12);
+Rt=10/2.14
+I2=10/4.67;//in A
+I3=10/9.33;//in A
+I2=1.07*(4/6);//in A
+ratio=10/0.71;
+disp(ratio,"the ration of voltage to current is");
+disp("the ratio is same in both cases and the reciprocity theorem is verified");
diff --git a/3673/CH3/EX3.a.15/Example_a_3_15.sce b/3673/CH3/EX3.a.15/Example_a_3_15.sce new file mode 100644 index 000000000..f3a811bae --- /dev/null +++ b/3673/CH3/EX3.a.15/Example_a_3_15.sce @@ -0,0 +1,18 @@ +//Example_a_3_15 page no:144
+clc;
+I=10;
+R1=1;
+R2=2;
+R3=3;
+R=3;
+I3=10*(2/(2+3));
+V=I3*R;
+disp(V,"the voltage in first method is (in V)");
+R=2;
+I2=10*(3/5);
+V=I2*R;
+disp(V,"the voltage in second method is (in V)");
+disp("In both cases, the ratio of current to voltage is the same")
+ratio=0.833;
+disp(ratio,"the voltage to current ration is");
+disp("the reciprocity theroem is verified");
diff --git a/3673/CH3/EX3.a.16/Example_a_3_16.sce b/3673/CH3/EX3.a.16/Example_a_3_16.sce new file mode 100644 index 000000000..b02032670 --- /dev/null +++ b/3673/CH3/EX3.a.16/Example_a_3_16.sce @@ -0,0 +1,16 @@ +//Example_a_3_16 page no:145
+clc;
+V1=50;
+R1=10;
+R2=2;
+R3=5;
+R4=3;
+Rt=(((3+2)*5)/((3+2)+5))+10;
+It=50/Rt;
+I3=It*(R3/(R3+R3));
+Vab=R4*I3;//in V
+Rth=((((10*5)/(10+5))+2)*3)/((((10*5)/(10+5))+2)+3);
+Rl=Rth;//here Rl is equal to Rth
+Il=Vab/(Rl+Rl);
+P=Il^2*Rl;
+disp(P,"the maximum power delivered to the load is (in W)");
diff --git a/3673/CH3/EX3.a.17/Example_a_3_17.sce b/3673/CH3/EX3.a.17/Example_a_3_17.sce new file mode 100644 index 000000000..c115831db --- /dev/null +++ b/3673/CH3/EX3.a.17/Example_a_3_17.sce @@ -0,0 +1,16 @@ +//Example_a_3_17 page no:146
+clc;
+V=100;
+R1=10;
+R2=20;
+R3=30;
+R4=40;
+Va=V*(R3/(R3+R1));
+Vb=V*(R4/(R4+R2));
+Vab=Va-Vb;
+Rab=(((30*10)/(30+10))+((20*40)/(20+40)));
+Rl=Rab;
+Il=Vab/(Rl+Rl);
+P=Il^2*Rl;//power calculation
+disp(Rl,"the load resistance is (in ohm)");
+disp(P,"the maximum power delivered to load is (in W)");
diff --git a/3673/CH3/EX3.a.2/Example_a_3_2.sce b/3673/CH3/EX3.a.2/Example_a_3_2.sce new file mode 100644 index 000000000..886971fd7 --- /dev/null +++ b/3673/CH3/EX3.a.2/Example_a_3_2.sce @@ -0,0 +1,11 @@ +//Example_a_3_2 page no:129
+clc;
+R=(((8+1.07)*1)/(8+1.07+1))+1;
+I1=10/R;
+It=5/5.8;
+I5=(It*10)/18.5;
+I2=(I5*1)/2;
+Ir3=(10*6.07)/(6.07+3.5);
+I3=(Ir3*(1/2));
+I=I1-I2-I3;
+disp(I,"the current passing through the circuit is (in A)");
diff --git a/3673/CH3/EX3.a.20/Example_a_3_20.sce b/3673/CH3/EX3.a.20/Example_a_3_20.sce new file mode 100644 index 000000000..ad5b0031f --- /dev/null +++ b/3673/CH3/EX3.a.20/Example_a_3_20.sce @@ -0,0 +1,7 @@ +//Example_a_3_20 page no:148
+clc;
+I_14=20/(4+2+2);//applying kirchoff's law
+V=5;
+I_24=-V/4;
+I4=I_14+I_24;
+disp(I4,"the current i4 is (in A)");
diff --git a/3673/CH3/EX3.a.21/Example_a_3_21.sce b/3673/CH3/EX3.a.21/Example_a_3_21.sce new file mode 100644 index 000000000..61966f21e --- /dev/null +++ b/3673/CH3/EX3.a.21/Example_a_3_21.sce @@ -0,0 +1,7 @@ +//Example_a_3_21 page no:149
+clc;
+I_1=-5/(3+2+12);
+V_3=1.55;
+I_2=(V_3+(4*V_3))/2;
+I=I_1+I_2;
+disp(I,"the total current in 2ohm resistor is (in A)");
diff --git a/3673/CH3/EX3.a.22/Example_a_3_22.sce b/3673/CH3/EX3.a.22/Example_a_3_22.sce new file mode 100644 index 000000000..3a2a115a4 --- /dev/null +++ b/3673/CH3/EX3.a.22/Example_a_3_22.sce @@ -0,0 +1,10 @@ +//Example_a_3_22 page no:150
+clc;
+V=4;
+R1=2;
+R2=3;
+Vx=V/0.8;
+Isc=V/(R1+R2);
+Rth=Vx/Isc;
+disp(Vx,"the thevenin voltage is (in V)");
+disp(Rth,"the thevenin resistance is (in ohm)");
diff --git a/3673/CH3/EX3.a.23/Example_a_3_23.sce b/3673/CH3/EX3.a.23/Example_a_3_23.sce new file mode 100644 index 000000000..1b37d6946 --- /dev/null +++ b/3673/CH3/EX3.a.23/Example_a_3_23.sce @@ -0,0 +1,9 @@ +//Example_a_3_23 page no:151
+clc;
+R=2;
+Vi=-1;
+Voc=-4*Vi;
+Isc=10;
+Rth=Voc/Isc;
+i2=Voc/(Rth+R);
+disp(i2,"the current throught 2 ohm resistor is (in A)");
diff --git a/3673/CH3/EX3.a.24/Example_a_3_24.sce b/3673/CH3/EX3.a.24/Example_a_3_24.sce new file mode 100644 index 000000000..d77dc6c91 --- /dev/null +++ b/3673/CH3/EX3.a.24/Example_a_3_24.sce @@ -0,0 +1,12 @@ +//Example_a_3_24 page no:152
+clc;
+In=0;
+Vx=(1*10)/(2+5+20);
+V=4+Vx;
+Rth=V/1;
+//if we short circuit the terminals a and b we have
+Vx=0;
+Isc=Vx/4;
+disp(In,"the norton current is (in A)");
+disp("the current is zero because there is no independent source");
+disp(Rth,"the norton resistance is (in ohm)");
diff --git a/3673/CH3/EX3.a.3/Example_a_3_3.sce b/3673/CH3/EX3.a.3/Example_a_3_3.sce new file mode 100644 index 000000000..61902dafa --- /dev/null +++ b/3673/CH3/EX3.a.3/Example_a_3_3.sce @@ -0,0 +1,14 @@ +//Example_a_3_3 page no:132
+clc;
+Rab=(20*40)/(20+40);
+Rth=Rab;
+Rn=Rab;
+I=(50-10)/(40+20);
+Vth=10+(I*20);
+I1=10/20;
+I2=50/40;
+In=I1+I2;//thevenin voltage varie slightly due to current value I is rounded off in text book
+disp(Vth,"the thevenin voltage is (in V)");
+disp(Rth,"the thevenin resistance is (in ohm)");
+disp(In,"the norton current is (in A)");
+disp(Rn,"the norton resistance is (in ohm)");
diff --git a/3673/CH3/EX3.a.4/Example_a_3_4.sce b/3673/CH3/EX3.a.4/Example_a_3_4.sce new file mode 100644 index 000000000..bef89626a --- /dev/null +++ b/3673/CH3/EX3.a.4/Example_a_3_4.sce @@ -0,0 +1,15 @@ +//Example_a_3_4 page no:133
+clc;
+Rab=4;
+V12=0;
+V5=5*4;
+V3=4*3;
+Vab=V12+V5+V3;
+I12=0;
+I5=5;
+I3=3;
+Iab=I12+I5+I3;
+disp(Vab,"the thevenin voltage is (in V)");
+disp(Rab,"the thevenin resistance is (in ohm)");
+disp(Iab,"the norton current is (in A)");
+disp(Rab,"the norton resistance is (in ohm)");
diff --git a/3673/CH3/EX3.a.5/Example_a_3_5.sce b/3673/CH3/EX3.a.5/Example_a_3_5.sce new file mode 100644 index 000000000..691a759e0 --- /dev/null +++ b/3673/CH3/EX3.a.5/Example_a_3_5.sce @@ -0,0 +1,6 @@ +//Example_a_3_5 page no:135
+clc;
+Vab=(4+3)/(0.05+0.2+0.17);
+Rab=(((18.75*5)/(18.75+5))*6)/(((18.75*5)/(18.75+5))+6);
+disp(Vab,"the thevenin voltage is (in V)");
+disp(Rab,"the thevenin resistance is (in ohm)");
diff --git a/3673/CH3/EX3.a.6/Ex3_6.sce b/3673/CH3/EX3.a.6/Ex3_6.sce new file mode 100644 index 000000000..e180c6b3c --- /dev/null +++ b/3673/CH3/EX3.a.6/Ex3_6.sce @@ -0,0 +1,14 @@ +//Example 3_6 page no:121
+clc
+Rt=2+((3*(2+((2*2)/(2+2))))/(3+(2+((2*2)/(2+2)))))//total resistance
+disp(Rt,"total resistance (in ohms)")
+It=20/3.5
+disp(It,"total current (in ampere)")
+I1=1.43//current in branch cd
+disp(I1,"current in branch cd (in A)")
+//after interchanging the source voltage
+Rt=3.23//total resistance
+It=20/3.23//total current drawn
+I2=1.43//current in branch ab
+disp(I2,"current in branch ab (in A)")
+disp("In both cases the ratio of input to response is the same")
diff --git a/3673/CH3/EX3.a.7/Example_a_3_7.sce b/3673/CH3/EX3.a.7/Example_a_3_7.sce new file mode 100644 index 000000000..1e4103708 --- /dev/null +++ b/3673/CH3/EX3.a.7/Example_a_3_7.sce @@ -0,0 +1,14 @@ +//Example_a_3_7 page no:137
+clc;
+R1=10;
+R2=3;
+R3=6;
+V1=50;
+V2=10;
+V3=0;
+I=40/16;//by applying kirchof law
+V6=R3*I;
+Vab=V3+V6+V2;
+Rab=3+((R1*R3)/(R1+R3));
+disp(Vab,"the thevenin voltage is (in V)");
+disp(Rab,"the thevenin resistance is (in ohm)");
diff --git a/3673/CH3/EX3.a.8/Example_a_3_8.sce b/3673/CH3/EX3.a.8/Example_a_3_8.sce new file mode 100644 index 000000000..0409b72d0 --- /dev/null +++ b/3673/CH3/EX3.a.8/Example_a_3_8.sce @@ -0,0 +1,14 @@ +//Example_a_3_8 page no:138
+clc;
+V1=10;
+V2=5;
+R1=5;
+R2=2;
+R3=1;
+R4=4;
+V2r=R2*(V1/(R1+R2));
+V1r=R3*(V2/R1);
+Vab=V2r-V1r;//thevenin voltage
+Rab=((R1*R2)/(R1+R2))+((R4*R3)/(R4+R3));//thevenin resistance
+disp(Vab,"the thevenin voltage is (in V)");
+disp(Rab,"the thevenin resistance is (in ohm)");
diff --git a/3673/CH3/EX3.a.9/Example_a_3_9.sce b/3673/CH3/EX3.a.9/Example_a_3_9.sce new file mode 100644 index 000000000..42d77ace8 --- /dev/null +++ b/3673/CH3/EX3.a.9/Example_a_3_9.sce @@ -0,0 +1,9 @@ +//Example_a_3_9 page no:139
+clc;
+V=50;
+R1=3;
+R2=4;
+In=V/R1;
+Rn=(R1*R2)/(R1+R2);
+disp(In,"the norton current is (in A)");
+disp(Rn,"the norton resistance is (in ohm)");
diff --git a/3673/CH4/EX4.2/Ex4_2.sce b/3673/CH4/EX4.2/Ex4_2.sce new file mode 100644 index 000000000..804d03d27 --- /dev/null +++ b/3673/CH4/EX4.2/Ex4_2.sce @@ -0,0 +1,5 @@ +//Example 4_2 page no:166
+clc
+T=20*10^-3;//time in millisecond
+f=1/T;
+disp(f,"frequency (in Hz)")
diff --git a/3673/CH4/EX4.3/Ex4_3.sce b/3673/CH4/EX4.3/Ex4_3.sce new file mode 100644 index 000000000..8fb4ff879 --- /dev/null +++ b/3673/CH4/EX4.3/Ex4_3.sce @@ -0,0 +1,6 @@ +//Example 4_3 page no:166
+clc
+f=30;//frequency
+T=1/f;
+T=T*10^3//converting to millisecond
+disp(T,"Time (millisecond)")
diff --git a/3673/CH4/EX4.5/Ex4_5.sce b/3673/CH4/EX4.5/Ex4_5.sce new file mode 100644 index 000000000..93439ab10 --- /dev/null +++ b/3673/CH4/EX4.5/Ex4_5.sce @@ -0,0 +1,6 @@ +//Example 4_5 page no:169
+clc
+v=10*sin(%pi/2)
+disp(v,"1) Instantaneous voltage at 90 degree for first wave (volt)");
+v=8*sin(%pi/4)
+disp(v,"2) Instantaneous voltage at 90 degree for second wave(volt)");//text book value is rounded to two digit
diff --git a/3673/CH4/EX4.7/Ex4_7.sce b/3673/CH4/EX4.7/Ex4_7.sce new file mode 100644 index 000000000..354459e8b --- /dev/null +++ b/3673/CH4/EX4.7/Ex4_7.sce @@ -0,0 +1,6 @@ +//Example 4_7 page no:172
+clc
+I1=20;//direct current in conductor(in amps)
+I2=20;//sinusoidal peak current in conductor (in amps)
+ret_current=sqrt((20^2+(20^2/2)))
+disp(ret_current,"The resultant current in conductor is(A)")//in text book value is rounded to 2 digits
diff --git a/3673/CH4/EX4.a.1/Example_a_4_1.sce b/3673/CH4/EX4.a.1/Example_a_4_1.sce new file mode 100644 index 000000000..94df13bda --- /dev/null +++ b/3673/CH4/EX4.a.1/Example_a_4_1.sce @@ -0,0 +1,14 @@ +//Example_a_4_1 page no:175
+clc;
+V2=100-50-20;
+V5=100-50;
+V2ohm=sqrt(2)*30;
+V5ohm=sqrt(2)*50;
+Va2ohm=V2ohm*0.637;
+Va5ohm=V5ohm*0.637;
+disp(V2,"the voltage across 2 ohm resistor is (in V)");
+disp(V5,"the voltage across 5 ohm resistor is (in V)");
+disp(V2ohm,"peak value of voltage across 2 ohm resistor is (in V)");
+disp(V5ohm,"peak value of voltage across 5 ohm resistor is (in V)");
+disp(Va2ohm,"average value across 2 ohm resistor is (in V)");
+disp(Va5ohm,"average value across 5 ohm resistor is (in V)");
diff --git a/3673/CH4/EX4.a.10/Example_a_4_10.sce b/3673/CH4/EX4.a.10/Example_a_4_10.sce new file mode 100644 index 000000000..f530ecacd --- /dev/null +++ b/3673/CH4/EX4.a.10/Example_a_4_10.sce @@ -0,0 +1,9 @@ +//Example_a_4_10 page no:179
+clc;
+Vrms=5;
+f=5*1000;
+C=0.01*10^-6;
+Xc=1/(2*%pi*f*C);
+Irms=Vrms/Xc;
+Irms=Irms*1000;//converting to mA
+disp(Irms,"the rms current in the circuit is (in mA)");
diff --git a/3673/CH4/EX4.a.11/Example_a_4_11.sce b/3673/CH4/EX4.a.11/Example_a_4_11.sce new file mode 100644 index 000000000..49aac6162 --- /dev/null +++ b/3673/CH4/EX4.a.11/Example_a_4_11.sce @@ -0,0 +1,6 @@ +//Example_a_4_11 page no:180
+clc;
+f=3*10^3;
+L=2*10^-3;
+Xl=2*%pi*f*L;
+disp(Xl,"the inductive reactance is (in ohm)");
diff --git a/3673/CH4/EX4.a.12/Example_a_4_12.sce b/3673/CH4/EX4.a.12/Example_a_4_12.sce new file mode 100644 index 000000000..a1f3cbc27 --- /dev/null +++ b/3673/CH4/EX4.a.12/Example_a_4_12.sce @@ -0,0 +1,9 @@ +//Example_a_4_12 page no:180
+clc;
+f=10*10^3;
+Vrms=10;
+L=50*10^-3;
+Xl=2*%pi*f*L;
+Irms=Vrms/Xl;
+Irms=Irms*1000;//converting to mA
+disp(Irms,"the rms current is (in mA)");
diff --git a/3673/CH4/EX4.a.13/Example_a_4_13.sce b/3673/CH4/EX4.a.13/Example_a_4_13.sce new file mode 100644 index 000000000..06d54fc39 --- /dev/null +++ b/3673/CH4/EX4.a.13/Example_a_4_13.sce @@ -0,0 +1,12 @@ +//Example_a_4_13 page no:180
+clc;
+//here Vm is assumed to be one hence it will be canceled in the calculation and also a variable without initializing cannot be used
+x0=0;
+x1=%pi;
+Vav=(1/(2*%pi))*(integrate('sin(x)','x',x0,x1));
+x0=0;
+x1=%pi;
+Vrms=sqrt((1/(2*%pi))*(integrate('sin(x)^2','x',x0,x1)));
+form_factor=Vrms/Vav;
+disp(form_factor,"the form factor is ");
+//the form factor differs slightly hence values are rounded off in text book
diff --git a/3673/CH4/EX4.a.15/Example_a_4_15.sce b/3673/CH4/EX4.a.15/Example_a_4_15.sce new file mode 100644 index 000000000..ef4bf0b7c --- /dev/null +++ b/3673/CH4/EX4.a.15/Example_a_4_15.sce @@ -0,0 +1,8 @@ +//Example_a_4_15 page no:181
+clc;
+x0=0;
+x1=%pi;
+Vav=5*(1/%pi)*(integrate('sin(wt)','wt',x0,x1));
+rms=sqrt(5^2*(1/%pi)*(integrate('sin(wt)^2','wt',x0,x1)));
+disp(Vav,"the average value is ");
+disp(rms,"the effective value of rms is ");
diff --git a/3673/CH4/EX4.a.16/Example_a_4_16.sce b/3673/CH4/EX4.a.16/Example_a_4_16.sce new file mode 100644 index 000000000..bc4ca5915 --- /dev/null +++ b/3673/CH4/EX4.a.16/Example_a_4_16.sce @@ -0,0 +1,8 @@ +//Example_a_4_16 page no:182
+clc;
+x0=(%pi/3);
+x1=%pi;
+Vav=10*(1/%pi)*(integrate('sin(wt)','wt',x0,x1));
+Vrms=sqrt(10^2*(1/%pi)*(integrate('sin(wt)^2','wt',x0,x1)));
+disp(Vav,"the average value Vav is (in V)");
+disp(Vrms,"the effective value Vrms is (in V)");
diff --git a/3673/CH4/EX4.a.17/Example_a_4_17.sce b/3673/CH4/EX4.a.17/Example_a_4_17.sce new file mode 100644 index 000000000..a81fa267f --- /dev/null +++ b/3673/CH4/EX4.a.17/Example_a_4_17.sce @@ -0,0 +1,10 @@ +//Example_a_4_17 page no:182
+clc;
+P=0.03;
+x0=0;
+x1=0.01;
+Vav=(1/P)*((20*x1)-(20*x0));
+Veff=sqrt((1/P)*(20^2*x1));
+form_factor=Veff/Vav;
+disp(form_factor,"the form factor is");
+//in textbook calculation of Veff is wrong so the form factor value varies in textbook
diff --git a/3673/CH4/EX4.a.2/Example_a_4_2.sce b/3673/CH4/EX4.a.2/Example_a_4_2.sce new file mode 100644 index 000000000..350658f5b --- /dev/null +++ b/3673/CH4/EX4.a.2/Example_a_4_2.sce @@ -0,0 +1,10 @@ +//Example_a_4_2 page no:176
+clc;
+Ip=10;//peak value of current form the current equation(in milliAmpere)
+Irms=Ip/sqrt(2);
+Ipp=2*Ip;
+Iav=Ip*0.637;
+disp(Ip,"the peak value of current is (in mA)");
+disp(Irms,"the rms value of current is (in mA)");
+disp(Ipp,"the peak to peak value of current is (in mA)");
+disp(Iav,"the average value of current is (in mA)");
diff --git a/3673/CH4/EX4.a.4/Example_a_4_4.sce b/3673/CH4/EX4.a.4/Example_a_4_4.sce new file mode 100644 index 000000000..d8cc09b0e --- /dev/null +++ b/3673/CH4/EX4.a.4/Example_a_4_4.sce @@ -0,0 +1,15 @@ +//Example_a_4_4 page no:177
+clc;
+Irms=20;
+f=50;
+Im=sqrt(2)*Irms;
+//at t=0.0025s
+t1=0.0025;
+i_t1=Im*cos(2*%pi*f*t1);
+disp(i_t1,"the current at 0.0025s is (in A)");
+//at t=0.0125s
+t2=0.0125;
+i_t2=Im*cos(2*%pi*f*t2);
+disp(i_t2,"the current at 0.0125s is (in A)");
+t=acos(14.14/28.28)/(2*f*%pi);
+disp(t,"the time at which instantaneous current becomes 14.14 A is (in s)");
diff --git a/3673/CH4/EX4.a.5/Example_a_4_5.sce b/3673/CH4/EX4.a.5/Example_a_4_5.sce new file mode 100644 index 000000000..a927701e3 --- /dev/null +++ b/3673/CH4/EX4.a.5/Example_a_4_5.sce @@ -0,0 +1,4 @@ +//Example_a_4_5 page no:177
+clc;
+Vrms=sqrt(5^2+(5^2/2));//the values are taken by comparing the given equation with rms equation
+disp(Vrms,"the rms value of the waveform is");
diff --git a/3673/CH4/EX4.a.8/Example_a_4_8.sce b/3673/CH4/EX4.a.8/Example_a_4_8.sce new file mode 100644 index 000000000..84ebf12ad --- /dev/null +++ b/3673/CH4/EX4.a.8/Example_a_4_8.sce @@ -0,0 +1,10 @@ +//Example_a_4_8 page no:178
+clc;
+Ip=10;//peak current in mA taken from i(t) equation
+Ipp=2*Ip;
+Irms=0.707*Ip;
+Iav=0.637*Ip;
+disp(Ip,"the peak value of current is (in mA)");
+disp(Ipp,"the peak to peak value of current is(in mA)");
+disp(Irms,"the rms value of current is (in mA)");
+disp(Iav,"the average value of current is (in mA)");
diff --git a/3673/CH4/EX4.a.9/Example_a_4_9.sce b/3673/CH4/EX4.a.9/Example_a_4_9.sce new file mode 100644 index 000000000..412157f28 --- /dev/null +++ b/3673/CH4/EX4.a.9/Example_a_4_9.sce @@ -0,0 +1,7 @@ +//Example_a_4_9 page no:179
+clc;
+f=2*1000;
+C=0.01*10^-6;
+Xc=1/(2*%pi*f*C);
+Xc=Xc/1000;//converting to killo ohm
+disp(Xc,"the capacitive reactance is (in killoOhm)");
diff --git a/3673/CH5/EX5.10/Ex5_10.sce b/3673/CH5/EX5.10/Ex5_10.sce new file mode 100644 index 000000000..18d45391b --- /dev/null +++ b/3673/CH5/EX5.10/Ex5_10.sce @@ -0,0 +1,27 @@ +//Example 5_10 page no:200
+clc
+funcprot(0);
+function [r,th]=rect2pol(x,y)
+//rectangle to polar coordinate conversion
+r=sqrt(x^2+y^2);
+th=atan(y,x)*180/3.14;
+endfunction
+V=20//input voltage
+f=50//frequency in Hz
+R1=10//resistance in ohm
+R2=20//resistance in ohm
+L=0.1//inductance in henry
+Xl=2*%pi*f*L*%i
+Zt=R1+((R2*Xl)/(R2+Xl))
+disp(Zt,"impedance is (in ohm)")
+[mag,theta]=rect2pol(real(Zt),imag(Zt))
+disp("In polar form")
+disp(mag,"magnitude is (in ohm)")
+disp(theta,"angle is (in degree)")
+It=V/Zt
+disp(It,"the current is (in A)")
+[mag,theta]=rect2pol(real(It),imag(It))
+disp("In polar form")
+disp(mag,"magnitude is (in A)")
+disp(theta,"angle is (in degree)")
+disp(-theta,"the phase angle between current and voltage is(in degree)")
diff --git a/3673/CH5/EX5.2/Ex5_2.sce b/3673/CH5/EX5.2/Ex5_2.sce new file mode 100644 index 000000000..23f5357a8 --- /dev/null +++ b/3673/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,20 @@ +//Example 5_2 page no:193
+clc
+R=1*10^3//resistance in ohm
+L=50*10^-3//inductance in henry
+V=10
+f=10*10^3//frequency in Hz
+Xl=2*%pi*f*L
+Z=R+(%i*Xl)
+Z=sqrt(R^2+Xl^2)
+disp(Z,"impedence is (in ohm)")
+I=V/Z
+I=I*1000//converting to milli ampere
+disp(I,"current is (in mA)")
+angle=atand(Xl/R)
+disp(angle,"the phase angle is (in degree)")
+Vr=I*10^-3*R//current in milli ampere
+disp(Vr,"Voltage across resistance is (in volts)")
+Vl=I*10^-3*Xl//current in milli ampere
+disp(Vl,"Voltage across inductive reactance is (in volts)")
+//the values varies slightly with text book hence values are rounded off in text book
diff --git a/3673/CH5/EX5.3/Ex5_3.sce b/3673/CH5/EX5.3/Ex5_3.sce new file mode 100644 index 000000000..afc9eb6ac --- /dev/null +++ b/3673/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,8 @@ +//Example 5_3 page no:193
+clc
+Vr=70;
+Vl=20;
+Vs=sqrt(Vr^2+Vl^2)
+disp(Vs,"source voltage is (in volts)")
+angle=atand(Vl/Vr)
+disp(angle,"the angle between current and source voltage is (in degree)")
diff --git a/3673/CH5/EX5.4/Ex5_4.sce b/3673/CH5/EX5.4/Ex5_4.sce new file mode 100644 index 000000000..15ddd6e03 --- /dev/null +++ b/3673/CH5/EX5.4/Ex5_4.sce @@ -0,0 +1,17 @@ +//Example 5_4 page no:195
+clc
+f=500//frequency in Hz
+Vrms=10
+R=2*10^3
+C=0.1*10^-6//capacitance in farad
+Xc=1/(2*%pi*f*C)
+Z=sqrt(R^2+Xc^2)
+disp(Z,"impedence is (in ohm)")
+angle=atand(-Xc/R)
+disp(angle,"the phase angle is (in degree)")
+I=Vrms/Z
+disp(I*1000,"the current is (in mA)")//converting to milli ampere
+Vc=I*Xc
+disp(Vc,"capacitive voltage is (in volt)")
+Vr=I*R
+disp(Vr,"resistive voltage is (in volt)")
diff --git a/3673/CH5/EX5.5/Ex5_5.sce b/3673/CH5/EX5.5/Ex5_5.sce new file mode 100644 index 000000000..1c60c8d3c --- /dev/null +++ b/3673/CH5/EX5.5/Ex5_5.sce @@ -0,0 +1,8 @@ +//Example 5_5 page no:195
+clc
+Vr=20
+Vc=30
+Vs=sqrt(Vr^2+Vc^2)
+disp(Vs,"source voltage is (in volt)")
+angle=atand(Vc/Vr)
+disp(angle,"the phase angle is (in degree)")
diff --git a/3673/CH5/EX5.6/Ex5_6.sce b/3673/CH5/EX5.6/Ex5_6.sce new file mode 100644 index 000000000..8cb8394e4 --- /dev/null +++ b/3673/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,23 @@ +//Example 5_6 page no:196
+clc
+V=50;
+R=10;//resistance in ohm
+L=0.5;//inductance in henry
+C=10*10^-6//capacitance in farad
+f=50//frequency in Hz
+Xc=1/(2*3.14*f*C)
+Xl=2*3.14*f*L
+Z=sqrt(R^2+(Xl-Xc)^2)
+disp(Z,"the impedence is (in ohm)")
+I=V/Z
+disp(I,"current is (in A)")
+angle=atand((Xl-Xc)/R)
+disp(angle,"the phase angle is (in degree)")
+Vr=I*R
+disp(Vr,"voltage across resistor is (in volt)")
+Vc=I*Xc
+disp(Vc,"voltage across capacitive reactance is (in volt)")//current is round of to 0.3A in our case it is 0.309 so the result is more approximated in textbook
+disp("in textbook the current is roundoff so the voltage is more approximated")
+Vl=I*Xl
+disp(Vl,"voltage across inductive reactance is (in volt)")//current is round of to 0.3 in our case it is 0.309 so the result is more approximated in textbook
+disp("in textbook the current is roundoff so the voltage is more approximated")
diff --git a/3673/CH5/EX5.7/Ex5_7.sce b/3673/CH5/EX5.7/Ex5_7.sce new file mode 100644 index 000000000..9d02a03fe --- /dev/null +++ b/3673/CH5/EX5.7/Ex5_7.sce @@ -0,0 +1,23 @@ +//Example 5_7 page no:197
+clc
+V=20;
+f=5*10^3;//frequency in Hz
+R=100;
+C=0.2*10^-6//capacitance in farad
+Xc=1/(2*%pi*f*C)
+Ir=V/R
+disp(Ir,"current in the resistance branch is (in A)")
+Ic=V/Xc
+disp(Ic,"current in the capacitive branch is (in A)")
+It=Ir+(%i*Ic)
+disp(It,"total current is (in A)")
+[It_polar,Theta]=polar(It)
+Theta=atand(Ic/Ir)
+Z_mag=V/It_polar
+Z_ang=0-Theta;
+disp(It_polar,"the magnitude of current is (in A)")
+disp(Theta,"the angle of current is (in degree)")
+disp(Z_mag,"the magnitude of total impedance is (in ohm)")
+disp(Z_ang,"the angle of total impedance is (in degree)")
+disp("the values varies slightly with text book hence values are rounded off in text book")
+//the values varies slightly with text book hence values are rounded off in text book
diff --git a/3673/CH5/EX5.8/Ex5_8.sce b/3673/CH5/EX5.8/Ex5_8.sce new file mode 100644 index 000000000..dd98e101e --- /dev/null +++ b/3673/CH5/EX5.8/Ex5_8.sce @@ -0,0 +1,35 @@ +//Example 5_8 page no:198
+clc
+funcprot(0)
+function [r,th]=rect2pol(x,y)
+//rectangle to polar coordinate conversion
+r=sqrt(x^2+y^2);
+th=atan(y,x)*180/3.14;
+endfunction
+function[x,y]=pol2rect(r,theta)
+ x=r*cosd(theta)
+ y=r*sind(theta)
+endfunction
+[Rr,Ri]=pol2rect(50,0)
+R=Rr+(%i*Ri)
+[Xlr,Xli]=pol2rect(30,90)
+Xl=Xlr+(%i*Xli)
+[Vr,Vi]=pol2rect(20,0)
+V=Vr+(%i*Vi)
+Ir=V/R
+Il=V/Xl
+It=Ir+Il
+[mag,theta]=rect2pol(real(It),imag(It))
+disp("total current is")
+disp(It)
+disp("total current in polar form is")
+disp(mag,"the magnitude of total current is (in A)")
+disp(theta,"the angle of total current is (in degree)")//in textbook current value Il is roundoff so the angle vary slightly
+Z=V/It
+[mag,theta]=rect2pol(real(Z),imag(Z))
+disp("total impedence in polar form")
+disp(mag,"magnitude of impedance is (in ohm)")
+disp(theta,"angle of impedance is (in degree)")//in textbook current value Il is roundoff so the angle vary slightly
+disp("the values varies slightly with text book hence values are rounded off in text book")
+
+//the values varies slightly with text book hence values are rounded off in text book
diff --git a/3673/CH5/EX5.9/Ex5_9.sce b/3673/CH5/EX5.9/Ex5_9.sce new file mode 100644 index 000000000..80a13bd3c --- /dev/null +++ b/3673/CH5/EX5.9/Ex5_9.sce @@ -0,0 +1,17 @@ +//Example 5_9 page no:199
+clc
+function [r,th]=rect2pol(x,y)
+//rectangle to polar coordinate conversion
+r=sqrt(x^2+y^2);
+th=atan(y,x)*180/3.14;
+endfunction
+Z1=5+(%i*10)
+Z2=2-(%i*4)
+Z3=1+(%i*3)
+Zt=Z1+((Z2*Z3)/(Z2+Z3))
+disp(Zt,"the equivalent impedence is(in ohm)")//imaginary term is rounded off
+[mag,theta]=rect2pol(real(Zt),imag(Zt))
+disp("In polar form")
+disp(mag,"magnitude of impedance is (in ohm)")
+disp(theta,"angle of impedance is (in degree)")
+disp("the values varies slightly with text book hence values are rounded off in text book")
diff --git a/3673/CH5/EX5.a.1/Example_a_5_1.sce b/3673/CH5/EX5.a.1/Example_a_5_1.sce new file mode 100644 index 000000000..83b56b1dd --- /dev/null +++ b/3673/CH5/EX5.a.1/Example_a_5_1.sce @@ -0,0 +1,21 @@ +//Example_a_5_1 page no:201
+clc;
+V=50;
+f=50;
+R=100*10^3;
+C=0.01*10^-6;
+Z=R-(%i*(1/(100*%pi*C)));
+Zmag=sqrt(real(Z)^2+imag(Z)^2);
+Zang=atand(imag(Z)/real(Z));
+Imag=V/Zmag;
+Iang=0-Zang;
+disp(Imag,"the magnitude of current Imag in the circuit is(in A)");
+disp(Iang,"the angle of current Iang in the circuit is(in degree)");
+Vrmag=Imag*R;
+Vrang=Iang;
+disp(Vrmag,"the magnitude of voltage across the resistor is(in V)");
+disp(Vrang,"the angle of voltage across the resistor is (in degree)");
+Vcmag=Imag/(100*%pi*0.01*10^-6);
+Vcang=Iang-90;
+disp(Vcmag,"the magnitude of voltage across the capacitor is (in V)");
+disp(Vcang,"the angle of voltage across the capacitor is (in degree)");
diff --git a/3673/CH5/EX5.a.10/Example_a_5_10.sce b/3673/CH5/EX5.a.10/Example_a_5_10.sce new file mode 100644 index 000000000..1e8b48782 --- /dev/null +++ b/3673/CH5/EX5.a.10/Example_a_5_10.sce @@ -0,0 +1,22 @@ +//Example_a_5_10 page no:211
+clc;
+V=50;
+Zmag=8.5;
+Zang=30;
+Zreal=Zmag*cosd(Zang);
+Zimag=Zmag*sind(Zang);
+Z=Zreal+(%i*Zimag);
+L1=%i*3;
+R1=10;
+L2=%i*30;
+L=R1+L2;
+Lmag=sqrt(real(L)^2+imag(L)^2);
+Lang=atand(imag(L)/real(L));
+I1=V/imag(L1);
+I2=V/Lmag;
+It=I1+I2;//applied current
+Zt=Z+((L1)*L/(L+L1));
+Ztmag=sqrt(real(Zt)^2+imag(Zt)^2);//impedence
+Ztang=atand(imag(Zt)/real(Zt));
+V=It*Ztmag;
+disp(V,"the magnitude of applied voltage is (in V)");
diff --git a/3673/CH5/EX5.a.11/Example_a_5_11.sce b/3673/CH5/EX5.a.11/Example_a_5_11.sce new file mode 100644 index 000000000..18d3eaaa0 --- /dev/null +++ b/3673/CH5/EX5.a.11/Example_a_5_11.sce @@ -0,0 +1,20 @@ +//Example_a_5_11 page no:212
+clc;
+Vs=10+(%i*20);
+Z1=1+(%i*2);
+Z2=3+(%i*4);
+Z3=3+(%i*4);
+Z23=(Z2*Z3)/(Z2+Z3);
+Zt=Z1+Z23;
+It=Vs/Zt;
+Itmag=sqrt(real(It)^2+imag(It)^2);
+Itang=atand(imag(It)/real(It));
+theta=atand(real(Zt)^2+imag(Zt)^2);
+Vp=Z23*It;
+Vpmag=sqrt(real(Vp)^2+imag(Vp)^2);
+Vpang=atand(imag(Vp)/real(Vp));
+disp(Zt,"the total impedence is (in ohm)");
+disp(Itmag,"the magnitude of total current in the circuit is (in A)");
+disp(Itang,"the angle of total current in the circuit is (in degree)");
+disp(Vpmag,"the magnitude of voltage across parallel branch is (in V)");
+disp(Vpang,"the angle of voltage across parallel branch is (in degree)");
diff --git a/3673/CH5/EX5.a.12/Example_a_5_12.sce b/3673/CH5/EX5.a.12/Example_a_5_12.sce new file mode 100644 index 000000000..598a69015 --- /dev/null +++ b/3673/CH5/EX5.a.12/Example_a_5_12.sce @@ -0,0 +1,21 @@ +//Example_a_5_12 page no:213
+clc;
+V=100+(%i*0);
+Za=10+(%i*8);
+Zb=9-(%i*6);
+Zc=3+(%i*2);
+Zp=(Za*Zb)/(Za+Zb);
+Zt=Zp+Zc;
+It=V/Zt;
+Ia=It*Zb/(Za+Zb);
+Ib=It*Za/(Za+Zb);
+Iamag=sqrt(real(Ia)^2+imag(Ia)^2);
+Iaang=atand(imag(Ia)/real(Ia));
+Ibmag=sqrt(real(Ib)^2+imag(Ib)^2);
+Ibang=atand(imag(Ib)/real(Ib));
+theta=-Iaang+Ibang;//here negative sign is used only to find the phase difference between them
+disp(Iamag,"the magnitude of current in branch A is (in A)");
+disp(Iaang,"the angel of current in branch A is (in degree)");
+disp(Ibmag,"the magnitude of current in branch B is (in A)");
+disp(Ibang,"the angel of current in branch B is (in degree)");
+disp(theta,"the angle between Ia and Ib is (in degree)");
diff --git a/3673/CH5/EX5.a.13/Example_a_5_13.sce b/3673/CH5/EX5.a.13/Example_a_5_13.sce new file mode 100644 index 000000000..61349db58 --- /dev/null +++ b/3673/CH5/EX5.a.13/Example_a_5_13.sce @@ -0,0 +1,9 @@ +//Example_a_5_13 page no:214
+clc;
+Vm=15;
+Im=8.5;
+omega=200;
+R=Vm/(Im*sqrt(2));
+C=1/(omega*R);
+disp(R,"the resistance in the circuit is (in ohm)");
+disp(C,"the capacitance in the circuit is (in F)");
diff --git a/3673/CH5/EX5.a.14/Example_a_5_14.sce b/3673/CH5/EX5.a.14/Example_a_5_14.sce new file mode 100644 index 000000000..01492cf7a --- /dev/null +++ b/3673/CH5/EX5.a.14/Example_a_5_14.sce @@ -0,0 +1,9 @@ +//Example_a_5_14 page no:214
+clc;
+R=10;
+Vr=50;
+omega=1000;
+theta=60;
+C=1/(tand(60)*omega*R);
+C=C*10^6;
+disp(C,"the unknown capacitance is (in microFarad)");
diff --git a/3673/CH5/EX5.a.15/Example_a_5_15.sce b/3673/CH5/EX5.a.15/Example_a_5_15.sce new file mode 100644 index 000000000..8566d057c --- /dev/null +++ b/3673/CH5/EX5.a.15/Example_a_5_15.sce @@ -0,0 +1,12 @@ +//Example_a_5_15 page no:215
+clc;
+Vm=100;
+Im=20;
+theta=110-50;
+omega=2000;
+R=(Vm/Im)/(sqrt(1+tand(theta)^2));
+C=1/(omega*tand(theta)*R);
+C=C*10^6;//converting to microFarad
+disp(R,"the resistance in the circuit is (in ohm)");
+disp(C,"the capacitance in the circuit is (in microFarad)");
+//tan value is rounded off in text book so capacitance value varies slightly
diff --git a/3673/CH5/EX5.a.16/Example_a_5_16.sce b/3673/CH5/EX5.a.16/Example_a_5_16.sce new file mode 100644 index 000000000..11a34aa87 --- /dev/null +++ b/3673/CH5/EX5.a.16/Example_a_5_16.sce @@ -0,0 +1,8 @@ +//Example_a_5_16 page no:215
+clc;
+Vmax=2000;
+Itmax=45;
+Irmax=20;
+Ix=Itmax-Irmax;
+R=Vmax/Ix;
+disp(R,"the value of unknown resistor is (in ohm)");
diff --git a/3673/CH5/EX5.a.2/Example_a_5_2.sce b/3673/CH5/EX5.a.2/Example_a_5_2.sce new file mode 100644 index 000000000..5eedb0901 --- /dev/null +++ b/3673/CH5/EX5.a.2/Example_a_5_2.sce @@ -0,0 +1,18 @@ +//Example_a_5_2 page no:202
+clc;
+V=10;
+Z=100+(((125.66*%i)*(314.15*%i))/((125.66*%i)+(314.15*%i)));
+Zmag=sqrt(real(Z)^2+imag(Z)^2);
+Zang=atand(imag(Z)/real(Z));
+disp(Zmag,"the magnitude of impedence is (in ohm)");
+disp(Zang,"the angle of impedence is (in degree)");
+Imag=V/Zmag;
+Iang=0-Zang;
+disp(Imag,"the magnitude of current is (in A)");
+disp(Iang,"the angle of current is (in degree)");
+//inductance value is doubled
+Z=100+(%i*179.7);
+Zmag=sqrt(real(Z)^2+imag(Z)^2);
+Zang=atand(imag(Z)/real(Z));
+disp(Zmag,"the magnitude of impedence is (in ohm)");
+disp(Zang,"the angle of impedence is (in degree)");
diff --git a/3673/CH5/EX5.a.3/Example_a_5_3.sce b/3673/CH5/EX5.a.3/Example_a_5_3.sce new file mode 100644 index 000000000..5b962e905 --- /dev/null +++ b/3673/CH5/EX5.a.3/Example_a_5_3.sce @@ -0,0 +1,37 @@ +//Example_a_5_3 page no:203
+clc;
+R1=100;
+R2=500;
+V1mag=23.1;
+V1ang=19.71;
+V1real=V1mag*cosd(V1ang);
+V1imag=V1mag*sind(V1ang);
+V100=30;
+//calculating the required voltages
+V100real=real(V100)-V1real;
+V100imag=imag(V100)-V1imag;
+V100mag=sqrt(V100real^2+V100imag^2);
+V100ang=atand(V100imag/V100real);
+disp(V100mag,"the magnitude of voltage across 100 ohm is(in V)");
+disp(V100ang,"the angle of voltage across 100 ohm is(in degree)");
+disp(V1mag,"the magnitude of voltage across branch element is (in V)");
+disp(V1ang,"the angle of voltage across branch element is (in degree)");
+//calculating the required current values
+I100mag=V100mag/R1;
+I100ang=V100ang;
+disp(I100mag,"the magnitude of current passing through 100 ohm is(in A)");
+disp(I100ang,"the angle of current passing through 100 ohm is(in degree)");
+I500mag=V1mag/R2;
+I500ang=V1ang;
+disp(I500mag,"the magnitude of current passing through 500 ohm is(in A)");
+disp(I500ang,"the angle of current passing through 500 ohm is(in degree)");
+Il1mhmag=V1mag/314.1;
+Il1mhang=V1ang-90;
+disp(Il1mhmag,"the magnitude of current passing through 1 milli Henry inductor is (in A)");
+disp(Il1mhang,"the angle of current passing through 1 milli Henry inductor is (in degree)");
+Il3mhmag=V1mag/942.5;
+Il3mhang=V1ang-90;
+disp(Il3mhmag,"the magnitude of current passing through 3 milli Henry inductor is (in A)");
+disp(Il3mhang,"the angle of current passing through 3 milli Henry inductor is (in degree)");
+disp("the total current lags the circuit is predominantly inductive");
+//values varies slightly with text book hence values are rounded off in text book
diff --git a/3673/CH5/EX5.a.5/Example_a_5_5.sce b/3673/CH5/EX5.a.5/Example_a_5_5.sce new file mode 100644 index 000000000..93fae93ac --- /dev/null +++ b/3673/CH5/EX5.a.5/Example_a_5_5.sce @@ -0,0 +1,74 @@ +//Example_a_5_5 page no:204
+clc;
+Vmag=100;
+Vang=0;
+f=50;
+L1=3+(%i*31.41);
+L2=5-(31.83*%i);
+L3=10+(%i*150.73);
+R1=3;
+R2=5;
+R3=10;
+L1mag=sqrt(real(L1)^2+imag(L1)^2);
+L1ang=atand(imag(L1)/real(L1));
+I1mag=Vmag/L1mag;
+I1ang=Vang-L1ang;
+I1real=I1mag*cosd(I1ang);
+I1img=I1mag*sind(I1ang)*%i;
+I1=I1real+I1img;
+disp(I1,"the current passing thorugh 3+31.41i ohm is (in A)");
+L2mag=sqrt(real(L2)^2+imag(L2)^2);
+L2ang=atand(imag(L2)/real(L2));
+I2mag=Vmag/L2mag;
+I2ang=Vang-L2ang;
+I2real=I2mag*cosd(I2ang);
+I2img=I2mag*sind(I2ang)*%i;
+I2=I2real+I2img;
+disp(I2,"the current passing through 5-31.83i ohm is (in A)");
+L3mag=sqrt(real(L3)^2+imag(L3)^2);
+L3ang=atand(imag(L3)/real(L3));
+I3mag=Vmag/L3mag;
+I3ang=Vang-L3ang;
+I3real=I3mag*cosd(I3ang);
+I3img=I3mag*sind(I3ang)*%i;
+I3=I3real+I3img;
+disp(I3,"the current passing through 10+150.73i ohm is (in A)");
+It=I1+I2+I3;
+disp(It,"the total current is (in A)");
+V1=R1*I1;
+V2=R2*I2;
+V3=R3*I3;
+V1mag=sqrt(real(V1)^2+imag(V1)^2);
+V1ang=atand(imag(V1)/real(V1));
+V2mag=sqrt(real(V2)^2+imag(V2)^2);
+V2ang=atand(imag(V2)/real(V2));
+V3mag=sqrt(real(V3)^2+imag(V3)^2);
+V3ang=atand(imag(V3)/real(V3));
+disp(V1mag,"the magnitude of voltage across 3 ohm resistor is (in V)");
+disp(V1ang,"the angle of voltage across 3 ohm resistor is (in degree)");
+disp(V2mag,"the magnitude of voltage across 5 ohm resistor is (in V)");
+disp(V2ang,"the angle of voltage across 5 ohm resistor is (in degree)");
+disp(V3mag,"the magnitude of voltage across 10 ohm resistor is (in V)");
+disp(V3ang,"the angle of voltage across 10 ohm resistor is (in degree)");
+V0_1h=(I1*(31.41*%i));
+V0_1hmag=sqrt(real(V0_1h)^2+imag(V0_1h)^2);
+V0_1hang=atand(imag(V0_1h)/real(V0_1h));
+V100h=(I2*(-31.83*%i));
+V100hmag=sqrt(real(V100h)^2+imag(V100h)^2);
+V100hang=atand(imag(V100h)/real(V100h));
+V0_5h=(I3*(157.81*%i));
+V0_5hmag=sqrt(real(V0_5h)^2+imag(V0_5h)^2);
+V0_5hang=atand(imag(V0_5h)/real(V0_5h));
+V500h=(I3*(-6.37*%i));
+V500hmag=sqrt(real(V500h)^2+imag(V500h)^2);
+V500hang=atand(imag(V500h)/real(V500h));
+V500hang=V500hang-180;
+disp(V0_1hmag,"the magnitude of voltage across 0.1 henry inductance is (in V)");
+disp(V0_1hang,"the angle of voltage across 0.1 henry inductance is (in V)");
+disp(V100hmag,"the magnitude of voltage across 100 milli henry inductance is (in V)");
+disp(V100hang,"the angle of voltage across 100 milli henry inductance is (in V)");
+disp(V0_5hmag,"the magnitude of voltage across 0.5 henry inductance is (in V)");
+disp(V0_5hang,"the angle of voltage across 0.5 henry inductance is (in V)");
+disp(V500hmag,"the magnitude of voltage across 500 milli henry inductance is (in V)");
+disp(V500hang,"the angle of voltage across 50 milli henry inductance is (in V)");//the angle is added with 180 degree to give positive value hence both value i.e in text book and scilab result are same mathematically
+//here angle values varies a little here more accurate values are used for calcultaion hence values are not altered in any variable but in text book values are rounded off and they produce approximate results
diff --git a/3673/CH5/EX5.a.6/Example_a_5_6.sce b/3673/CH5/EX5.a.6/Example_a_5_6.sce new file mode 100644 index 000000000..3c3f53cb7 --- /dev/null +++ b/3673/CH5/EX5.a.6/Example_a_5_6.sce @@ -0,0 +1,15 @@ +//Example_a_5_6 page no:206
+clc;
+V=100;
+f=50;
+R=50;
+C=100*10^-6;
+Xc=1/(2*%pi*f*C);
+Bc=1/Xc;
+G=1/R;
+Y=sqrt(G^2+Bc^2);
+Z=1/Y;
+theta=atand(R/Xc);
+disp(Z,"the impedence in the circuit is (in ohm)");
+disp(theta,"the phase angle in the circuit is (in degree)");
+//the impedence value varies slightly with text book due to round off values in text book, hence both answers are same
diff --git a/3673/CH5/EX5.a.7/Example_a_5_7.sce b/3673/CH5/EX5.a.7/Example_a_5_7.sce new file mode 100644 index 000000000..dff104b4f --- /dev/null +++ b/3673/CH5/EX5.a.7/Example_a_5_7.sce @@ -0,0 +1,32 @@ +//Example_a_5_7 page no:207
+clc;
+f=50;
+R1=100;
+R2=200;
+C1=100*10^-6;
+C2=300*10^-6;
+Vsmag=10;
+Vsang=0;
+Xc1mag=1/(2*%pi*f*C1);
+Xc1ang=-90;
+Xc2mag=1/(2*%pi*f*C2);
+Xc2ang=-90;
+Ic1mag=Vsmag/Xc1mag;
+Ic1ang=Vsang-Xc1ang;
+Ic2mag=Vsmag/Xc2mag;
+Ic2ang=Vsang-Xc2ang;
+Ir1=Vsmag/R1;
+Ir2=Vsmag/R2;
+It=Ir1+Ir2+(%i*(Ic1mag+Ic2mag));
+Itmag=sqrt(real(It)^2+imag(It)^2);
+Itang=atand(imag(It)/real(It));
+R=(R1*R2)/(R1+R2);
+Xc=(Xc1mag*Xc2mag)/(Xc1mag+Xc2mag);
+theta=atand(R/Xc);
+disp(Ic1mag,"the magnitude of current passing through 100 microFarad is (in A)");
+disp(Ic1ang,"the angle of current passing through 100 microFarad is (in degree)");
+disp(Ic2mag,"the magnitude of current passing through 300 microFarad is (in A)");
+disp(Ic2ang,"the angle of current passing through 300 microFarad is (in degree)");
+disp(Itmag,"the magnitude of total current is (in A)");
+disp(Itang,"the angle of total current is (in A)");
+disp(theta,"the phase angle between the applied voltage and total current is (in degree)");
diff --git a/3673/CH5/EX5.a.8/Example_a_5_8.sce b/3673/CH5/EX5.a.8/Example_a_5_8.sce new file mode 100644 index 000000000..dac0f5fbf --- /dev/null +++ b/3673/CH5/EX5.a.8/Example_a_5_8.sce @@ -0,0 +1,25 @@ +//Example_a_5_8 page no:208
+clc;
+V=100;
+f=50;
+R1=10;
+C1=100*10^-6;
+R2=50;
+C2=300*10^-6;
+Xc1=1/(2*%pi*R2*C1);
+Xc2=1/(2*%pi*R2*C2);
+G2=1/R2;
+Bc2=1/Xc2;
+Y2=sqrt(G2^2+Bc2^2);
+Z2=1/Y2;
+theta_p=atand(R2/Xc2);
+Req=Z2*cosd(theta_p);
+Xc_eq=Z2*sind(theta_p);
+Rt=R1+Req;
+Xct=Xc1+Xc_eq;
+Zt=sqrt(Rt^2+Xct^2);
+It=V/Zt;
+theta=atand(Xct/Rt);
+disp(Zt,"the total impedence in the given circuit is (in ohm)");
+disp(It,"the total current in the circuit is (in A)");
+disp(theta,"the phase angle is (in degree)");
diff --git a/3673/CH5/EX5.a.9/Example_a_5_9.sce b/3673/CH5/EX5.a.9/Example_a_5_9.sce new file mode 100644 index 000000000..c71cf7506 --- /dev/null +++ b/3673/CH5/EX5.a.9/Example_a_5_9.sce @@ -0,0 +1,27 @@ +//Example_a_5_9 page no:209
+clc;
+V=100;
+f=50;
+R1=100;
+L1=0.5;
+R2=330;
+L2=1;
+Xl1=2*%pi*f*L1;
+Xl2=2*%pi*f*L2;
+Z1=sqrt(R1^2+Xl1^2);
+Z2=sqrt(R2^2+Xl2^2);
+I1=V/Z1;
+I2=V/Z2;
+Vr1=I1*R1;
+Vl1=I1*Xl1;
+Vr2=I2*R2;
+Vl2=I2*Xl2;
+theta_1=atand(Xl1/R1);
+theta_2=atand(Xl2/R2);
+disp(Vr1,"the voltage across resistor R1 is (in V)");
+disp(Vl1,"the voltage across inductor L1 is (in V)");
+disp(Vr2,"the voltage across resistor R2 is (in V)");
+disp(Vl2,"the voltage across inductor L2 is (in V)");
+disp(theta_2,theta_1,"the angle associated with each parallel branch are");
+//phasor diagram cannot be drawn in scilab hence both X and Y axis values are required
+//Vr2,Vl2 varies slightly hence I2 value is rounded off in text book
diff --git a/3673/CH6/EX6.1/Ex6_1.sce b/3673/CH6/EX6.1/Ex6_1.sce new file mode 100644 index 000000000..4f075c730 --- /dev/null +++ b/3673/CH6/EX6.1/Ex6_1.sce @@ -0,0 +1,8 @@ +//Example 6_1 page no:229
+clc
+phase_angle=30//phase angle in degree
+Vm=100//maximum voltage
+Veff=100/sqrt(2)
+Ieff=15/sqrt(2)
+Pav=Veff*Ieff*cosd(phase_angle)
+disp(Pav,"Average Power is(in watts)")
diff --git a/3673/CH6/EX6.2/Ex6_2.sce b/3673/CH6/EX6.2/Ex6_2.sce new file mode 100644 index 000000000..141706569 --- /dev/null +++ b/3673/CH6/EX6.2/Ex6_2.sce @@ -0,0 +1,6 @@ +//Example 6_2 page no:230
+clc
+Z=5+(%i*8)
+Im=5//maximum current
+Pav=Im^2*real(Z)/2
+disp(Pav,"Average power is (in watts)")
diff --git a/3673/CH6/EX6.3/Ex6_3.sce b/3673/CH6/EX6.3/Ex6_3.sce new file mode 100644 index 000000000..40b9a3bc7 --- /dev/null +++ b/3673/CH6/EX6.3/Ex6_3.sce @@ -0,0 +1,13 @@ +//Example 6_3 page no:231
+clc
+theta=53
+Vm=50//peak voltage
+Im=25//peak current
+Veff=Vm/sqrt(2)
+Ieff=Im/sqrt(2)
+Papp=Veff*Ieff
+disp(Papp,"Apparent Power is (in VA)")
+disp(cosd(theta),"Power Factor is")
+Pav=Veff*Ieff*cosd(theta)
+disp(Pav,"Average Power is (in watts)")
+//value of power factor is rounded off in text book so value vary slightly
diff --git a/3673/CH6/EX6.a.1/Example_a_6_1.sce b/3673/CH6/EX6.a.1/Example_a_6_1.sce new file mode 100644 index 000000000..cdbcc450b --- /dev/null +++ b/3673/CH6/EX6.a.1/Example_a_6_1.sce @@ -0,0 +1,16 @@ +//Example_a_6_1 page no:233
+clc;
+Vmag=250;
+Vang=100;
+Imag=15;
+Iang=30;
+theta=100-30;
+pf=cosd(theta);
+active_power=(Vmag/sqrt(2))*(Imag/sqrt(2))*pf;
+reactive_power=(Vmag/sqrt(2))*(Imag/sqrt(2))*sind(theta);
+apparent_power=(Vmag/sqrt(2))*(Imag/sqrt(2));
+disp(pf,"the power factor is ");
+disp(active_power,"the active power is (in W)");
+disp(reactive_power,"the reactive power is (in VAR)");
+disp(apparent_power,"the apparent power is (in VA)");
+//in text book reactive power calculation is wrong i.e 1761.9 is correct
diff --git a/3673/CH6/EX6.a.10/Example_a_6_10.sce b/3673/CH6/EX6.a.10/Example_a_6_10.sce new file mode 100644 index 000000000..943c7bcf5 --- /dev/null +++ b/3673/CH6/EX6.a.10/Example_a_6_10.sce @@ -0,0 +1,16 @@ +//Example_a_6_10 page no:240
+clc;
+V=70.7;
+I=600/(100*cosd(45));
+X1mag=V/I;
+X1ang=90-0;
+disp(X1mag,"the magnitude of inductance is (in ohm)");
+disp(X1ang,"the angle of inductance is (in degree)");
+Ir1=I/2;
+disp(Ir1,"the current through parallel branch R1 is (in A)");
+R1=V/Ir1;
+disp(R1,"the resistance R1 is (in ohm)");
+Ir2=I/2;
+disp(Ir2,"the current through parallel branch R2 is (in A)");
+R2=V/Ir2;
+disp(R2,"the resistance R2 is (in ohm)");
diff --git a/3673/CH6/EX6.a.11/Example_a_6_11.sce b/3673/CH6/EX6.a.11/Example_a_6_11.sce new file mode 100644 index 000000000..05e5c863b --- /dev/null +++ b/3673/CH6/EX6.a.11/Example_a_6_11.sce @@ -0,0 +1,12 @@ +//Example_a_6_11 page no:241
+clc;
+Vmag=500;
+Vang=0;
+Imag=21.73;
+Iang=0;
+P=Vmag*Imag/2;
+P=P/1000;//converting to killo watt
+disp(P,"the power delivered by 500 volt source is (in kW)");
+P1=(3*4*Imag*Imag)/2;
+P1=P1/1000;//converting to killo watt
+disp(P1,"the power delivered by dependent voltage source is (in kW)");
diff --git a/3673/CH6/EX6.a.12/Example_a_6_12.sce b/3673/CH6/EX6.a.12/Example_a_6_12.sce new file mode 100644 index 000000000..84e8a00ff --- /dev/null +++ b/3673/CH6/EX6.a.12/Example_a_6_12.sce @@ -0,0 +1,6 @@ +//Example_a_6_12 page no:241
+clc;
+I1mag=2.213;
+I1ang=-154.9;
+P=50*I1mag^2/2;
+disp(P,"average power delivered by the independent source is (in W)");
diff --git a/3673/CH6/EX6.a.13/Example_a_6_13.sce b/3673/CH6/EX6.a.13/Example_a_6_13.sce new file mode 100644 index 000000000..771de610e --- /dev/null +++ b/3673/CH6/EX6.a.13/Example_a_6_13.sce @@ -0,0 +1,16 @@ +//Example_a_6_13 page no:242
+clc;
+Vmag=14.705;
+Vang=157.5;
+Vreal=Vmag*cosd(Vang);
+Vimag=Vang*sind(Vang);
+V=Vreal+(Vimag*%i);
+V1real=100;
+V1imag=0;
+V1=V1real+(V1imag*%i);
+I=(V-V1)/2;
+Imag=sqrt(real(I)^2+imag(I)^2);
+Iang=atand(imag(I)/real(I));
+P=V1real*Imag*cosd(Iang)/2;
+P=P/1000;//converting to killo watt
+disp(P,"the power delivered by the source is (in kW)");
diff --git a/3673/CH6/EX6.a.14/Example_a_6_14.sce b/3673/CH6/EX6.a.14/Example_a_6_14.sce new file mode 100644 index 000000000..7f0780f1f --- /dev/null +++ b/3673/CH6/EX6.a.14/Example_a_6_14.sce @@ -0,0 +1,9 @@ +//Example_a_6_14 page no:243
+clc;
+Im=0.5;
+Vmag=18.46;
+Vang=0;
+V1mag=1.54;
+V1ang=0;
+P=Vmag*Im*V1mag/2;
+disp(P,"the average power delivered by the dependent source is (in W)");
diff --git a/3673/CH6/EX6.a.2/Example_a_6_2.sce b/3673/CH6/EX6.a.2/Example_a_6_2.sce new file mode 100644 index 000000000..23575d587 --- /dev/null +++ b/3673/CH6/EX6.a.2/Example_a_6_2.sce @@ -0,0 +1,24 @@ +//Example_a_6_2 page no:234
+clc;
+I=5;
+Z1mag=10;
+Z1ang=-60;
+Z2mag=16;
+Z2ang=70;
+Z1real=Z1mag*cosd(Z1ang);
+Z1img=Z1mag*sind(Z1ang);
+Z1=Z1real+(Z1img*%i);
+Z2real=Z2mag*cosd(Z2ang);
+Z2img=Z2mag*sind(Z2ang);
+Z2=Z2real+(Z2img*%i);
+Z=Z1+Z2;
+Zmag=sqrt(real(Z)^2+imag(Z)^2);
+pf=real(Z)/Zmag;
+active_power=I^2*real(Z);
+apparent_power=I^2*Zmag;
+reactive_power=I^2*imag(Z);
+disp(pf,"the power factor is ");
+disp(active_power,"the active power is (in W)");
+disp(apparent_power,"the apparent power is (in VA)");
+disp(reactive_power,"the reactive power is (in VAR)");
+disp("the calculated values varies slightly with textbook hence values are rounded off in text book");
diff --git a/3673/CH6/EX6.a.3/Example_a_6_3.sce b/3673/CH6/EX6.a.3/Example_a_6_3.sce new file mode 100644 index 000000000..fade57efa --- /dev/null +++ b/3673/CH6/EX6.a.3/Example_a_6_3.sce @@ -0,0 +1,16 @@ +//Example_a_6_3 page no:234
+clc;
+R=0.5;
+P=200;
+pf=0.707;
+V=25/sqrt(2);//in V
+I=(200/pf)*(sqrt(2)/25);
+Ztmag=V/I;
+Ztang=25-(-20);
+Ztreal=Ztmag*cosd(Ztang);
+Ztimag=Ztmag*sind(Ztang);
+Zt=Ztreal+(Ztimag*%i);
+Z=Zt-R;
+disp(Z,"the impedence is (in ohm)");
+apparent_power=V*I;
+disp(apparent_power,"the apparent power is (in VA)");
diff --git a/3673/CH6/EX6.a.4/Example_a_6_4.sce b/3673/CH6/EX6.a.4/Example_a_6_4.sce new file mode 100644 index 000000000..f49fdb7e6 --- /dev/null +++ b/3673/CH6/EX6.a.4/Example_a_6_4.sce @@ -0,0 +1,22 @@ +//Example_a_6_4 page no:235
+clc;
+R1=5;
+I5mag=sqrt(600/5);
+V=I5mag*sqrt(50);
+apparent_power=3000;
+Itmag=apparent_power/V;
+Itang=45;
+I5ang=-45;
+Itreal=Itmag*cosd(Itang);
+Itimag=Itmag*sind(Itang);
+It=Itreal+(Itimag*%i);
+I5real=I5mag*cosd(I5ang);
+I5imag=I5mag*sind(I5ang);
+I5=I5real+(I5imag*%i);
+Iz=It-I5;
+Izmag=sqrt(real(Iz)^2+imag(Iz)^2);
+Izang=atand(imag(Iz)/real(Iz));
+Zmag=V/Izmag;
+Zang=0-Izang;
+disp(Zmag,"the magnitude of impedence is (in ohm)");
+disp(Zang,"the angle of impedence is (in degree)");
diff --git a/3673/CH6/EX6.a.5/Example_a_6_5.sce b/3673/CH6/EX6.a.5/Example_a_6_5.sce new file mode 100644 index 000000000..cd8f129e6 --- /dev/null +++ b/3673/CH6/EX6.a.5/Example_a_6_5.sce @@ -0,0 +1,29 @@ +//Example_a_6_5 page no:235
+clc;
+R=5;
+Vmax=150;
+Zamag=60;
+Zaang=30;
+Zbmag=50;
+Zbang=-25;
+Zareal=Zamag*cosd(Zaang);
+Zbreal=Zbmag*cosd(Zbang);
+pf=cosd(0.179);
+Ztmag=5+((Zamag*Zbmag)/(Zamag+Zbmag));
+Ztang=-0.179;
+Itmag=150/(sqrt(Ztmag));
+Itang=0-(Ztang);
+Zareal=65.84;
+Zbreal=57.15;
+Iamag=((2.97*50)/(60+50));
+Ibmag=((2.97*60)/(60+50));
+Za=Iamag^2*Zareal;
+Zb=Ibmag^2*Zbreal;
+Rt=R+((Zareal*Zbreal)/(Zareal+Zbreal));
+I=Vmax/(sqrt(2)*Rt);//calculating current for calculating the power
+Pa=I^2*Rt;
+disp(pf,"the power factor is ");
+disp(Za,"the power delivered to Za is (in W)");
+disp(Zb,"the power delivered to Zb is (in W)");
+disp(Pa,"the average power delivered to the circuit is (in W)");
+disp("the calculated values varies slightly with textbook hence values are rounded off in text book");
diff --git a/3673/CH6/EX6.a.6/Example_a_6_6.sce b/3673/CH6/EX6.a.6/Example_a_6_6.sce new file mode 100644 index 000000000..cb5cdb180 --- /dev/null +++ b/3673/CH6/EX6.a.6/Example_a_6_6.sce @@ -0,0 +1,17 @@ +//Example_a_6_6 page no:236
+clc;
+R=10;
+V=200/sqrt(2);
+Vr=120;
+Vl=75;
+IR=Vr;
+I=120/10;
+Xl=75/I;
+Z=10+(%i*6.25);
+Zmag=sqrt(real(Z)^2+imag(Z)^2);
+pf=R/Zmag;
+true_power=I^2*R;
+reactive_power=I^2*imag(Z);
+disp(pf,"the power factor in the circuit is ");
+disp(true_power,"the true power in the circuit is (in W)");
+disp(reactive_power,"the reactive power in the circuit is (in W)");
diff --git a/3673/CH6/EX6.a.7/Example_a_6_7.sce b/3673/CH6/EX6.a.7/Example_a_6_7.sce new file mode 100644 index 000000000..401ea1fff --- /dev/null +++ b/3673/CH6/EX6.a.7/Example_a_6_7.sce @@ -0,0 +1,31 @@ +//Example_a_6_7 page no:237
+clc;
+I1mag=50;
+I1ang=10;
+I2mag=20;
+I2ang=30;
+Z1mag=100/50;
+Z1ang=15-10;
+Z1real=Z1mag*cosd(Z1ang);
+Z1imag=Z1mag*sind(Z1ang);
+Z1=Z1real+(%i*Z1imag);
+Z2mag=100/20;
+Z2ang=15-30;
+Z2real=Z2mag*cosd(Z2ang);
+Z2imag=Z2mag*sind(Z2ang);
+Z2=Z2real+(%i*Z2imag);
+Pa1=I1mag^2*Z1mag;
+Pt2=I2mag^2*real(Z2);
+Pr1=I1mag^2*imag(Z1);
+disp(Pr1,"the reactive power in branch is (in VAR)");
+disp(Pa1,"apparent power in branch Z1 is (in VA)");
+disp(Pt2,"the true power in branch Z2 is (in W)");
+Pr2=I2mag^2*-imag(Z2);//only reactive power is taken, negative sign is used to convert negative to positive
+Pa2=I2mag^2*Z2mag;
+disp(Pr2,"the reactive power in branch is (in VAR)");
+disp(Pa2,"the apparent power in branch is (in VA)");
+Z=((Z1mag*Z2mag)/(Z1+Z2));
+theta=0.71;
+pf=cosd(theta);
+disp(pf,"the power factor of the total circuit is (leading)");
+//reactive power varies slightly hence textbook values are rounded off
diff --git a/3673/CH6/EX6.a.8/Example_a_6_8.sce b/3673/CH6/EX6.a.8/Example_a_6_8.sce new file mode 100644 index 000000000..a72764794 --- /dev/null +++ b/3673/CH6/EX6.a.8/Example_a_6_8.sce @@ -0,0 +1,35 @@ +//Example_a_6_8 page no:238
+clc;
+X2=sqrt((16.67^2)-(10^2));
+V=100;
+Imag=6;
+pf=450/600;
+theta=acosd(pf);
+Iang=theta;
+Vmag=Imag*16.66;
+Vang=-41.4+53.1;
+Vreal=Vmag*cosd(Vang);
+Vimag=Vmag*sind(Vang);
+V1real=100;
+V1=V1real-Vreal-(Vimag*%i);
+V1mag=sqrt(real(V1)^2+imag(V1)^2);
+V1ang=atand(imag(V1)/real(V1));
+I2mag=V1mag/20;
+I2ang=V1ang-(-90);
+Ireal=Imag*cosd(Iang);
+Iimag=Imag*sind(Iang);
+I=Ireal-(Iimag*%i);
+I2real=I2mag*cosd(I2ang);
+I2imag=I2mag*sind(I2ang);
+I2=I2real+(I2imag*%i);
+I1=I-I2;
+I1mag=sqrt(real(I1)^2+imag(I1)^2);
+I1ang=atand(imag(I1)/real(I1));
+Z1mag=V1mag/I1mag;
+Z1ang=V1ang-I1ang;
+Zreal=Z1mag*cosd(Z1ang);
+Zimag=Z1mag*sind(Z1ang);
+R1=Zreal;
+X1=-Zimag;//here negative sign is used to take only reactance value
+disp(R1,"the resistance is (in ohm)");
+disp(X1,"the reactance is (in ohm)");
diff --git a/3673/CH6/EX6.a.9/Example_a_6_9.sce b/3673/CH6/EX6.a.9/Example_a_6_9.sce new file mode 100644 index 000000000..fd06a00e6 --- /dev/null +++ b/3673/CH6/EX6.a.9/Example_a_6_9.sce @@ -0,0 +1,12 @@ +//Example_a_6_9 page no:239
+clc;
+Zeq=5+(((2+(2*%i))*(-%i*5))/(2+(%i*2-%i*5)));
+Zmag=sqrt(real(Zeq)^2+imag(Zeq)^2);
+Zang=atand(imag(Zeq)/real(Zeq));
+I=sqrt(100/8.85);
+pf=8.85/8.88;
+V=100/(3.36*0.99);
+P=V*I*sind(4.97);
+disp(V,"the value of voltage source is (in V)");
+disp(pf,"the power factor is ");
+disp(P,"the reactive power is (in VAR)");
diff --git a/3673/CH7/EX7.1/Ex7_1.sce b/3673/CH7/EX7.1/Ex7_1.sce new file mode 100644 index 000000000..a4efdda2e --- /dev/null +++ b/3673/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,20 @@ +//Example 7_1 page no:253
+clc
+function [r,th]=rect2pol(x,y)
+//rectangle to polar coordinate conversion
+r=sqrt(x^2+y^2);
+th=atan(y,x)*180/3.14;
+endfunction
+mat=[6+(%i*4),-6;-6,8+(%i*3)]
+val=[5,0]
+I=inv(mat)'*val'
+I1=I(1,1)
+I2=I(2,1)
+disp("the current in loop 1 is ")
+[mag,theta]=rect2pol(real(I1),imag(I1))
+disp(mag,"Magnitude of current is (in A)")
+disp(-theta,"Phase angle of current is (in degree)")
+disp("the current in loop 2 is ")
+[mag,theta]=rect2pol(real(I2),imag(I2))
+disp(mag,"Magnitude of current is (in A)")
+disp(-theta,"Phase angle of current is (in degree)")
diff --git a/3673/CH7/EX7.3/Ex7_3.sce b/3673/CH7/EX7.3/Ex7_3.sce new file mode 100644 index 000000000..91a72f18a --- /dev/null +++ b/3673/CH7/EX7.3/Ex7_3.sce @@ -0,0 +1,17 @@ +//Example 7_3 page no:257
+clc
+mag1=1.67//magnitude for current
+mag2=-1.25
+ang1=-90//angle for current
+ang2=90
+mag=mag1/mag2
+ang=ang1-ang2
+disp(mag,"magnitude for Vb is(in volt)")
+disp(ang,"degree for Vb is (in degree)")
+mag1=1.67//magnitude for current
+mag2=0.33
+ang1=-90-14.5//angle for current
+mag=mag1/mag2
+disp(mag,"magnitude for Va is(in volt)")
+disp(ang1,"degree for Va is (in degree)")
+//Va value is calculated wrongly in text book
diff --git a/3673/CH7/EX7.5/Ex7_5.sce b/3673/CH7/EX7.5/Ex7_5.sce new file mode 100644 index 000000000..0600011c2 --- /dev/null +++ b/3673/CH7/EX7.5/Ex7_5.sce @@ -0,0 +1,24 @@ +//Example 7_5 page no:263
+clc;
+Vmag=50;
+Vang=0;
+Rmag=9.22;
+Rang=77.47;
+Imag=Vmag/Rmag;
+Iang=Vang-Rang;
+V1mag=5.42*5.38;//voltage across (2+j5)ohm
+V1ang=-77.47+68.19;
+I2mag=(20*4)/9.22;
+I2ang=120-77.47;
+V2mag=I2mag*5.38;//voltage across (2+j5)ohm due to current I2 is
+V2ang=42.53+68.19;
+V1rel=V1mag*(cosd(V1ang));
+V1img=V1mag*(sind(V1ang));
+V2rel=V2mag*(cosd(V2ang));
+V2img=V2mag*(sind(V2ang));
+Vrel=V1rel+V2rel;
+Vimg=V1img+V2img;
+Vfmag=sqrt((Vrel*Vrel)+(Vimg*Vimg));
+Vfang=atand(Vimg/Vrel);
+disp(Vfmag,"magnitude of voltage across(2+5j)ohm is(in V)");
+disp(Vfang,"angle of voltage across (2+5j)ohm is(in degree)");
diff --git a/3673/CH7/EX7.6/Ex7_6.sce b/3673/CH7/EX7.6/Ex7_6.sce new file mode 100644 index 000000000..82f1b8238 --- /dev/null +++ b/3673/CH7/EX7.6/Ex7_6.sce @@ -0,0 +1,12 @@ +//Example 7_6 page no:265
+clc;
+Vmag=(50*7.21)/7.28;//Voltage across(4+j6)ohm
+Vang=0+56.3-15.95;
+Zrel=4.83;
+Zimg=1-1.095;
+Zmag=sqrt((Zrel*Zrel)+(Zimg*Zimg));
+Zang=atand(Zimg/Zrel);
+disp(Vmag,"magnitude of thevenin voltage is(in V)");
+disp(Vang,"angle of thevenin voltage is(in degree)");
+disp(Zmag,"magnitude of thevenin impedence is(in ohm)");
+disp(Zang,"angle of thevenin impedence is(in degree)");
diff --git a/3673/CH7/EX7.7/Ex7_7.sce b/3673/CH7/EX7.7/Ex7_7.sce new file mode 100644 index 000000000..469e24d41 --- /dev/null +++ b/3673/CH7/EX7.7/Ex7_7.sce @@ -0,0 +1,10 @@ +//Example 7_7 page no:267
+clc;
+Inmag=25/5;//norton current
+Inang=0-53.13;
+Znmag=(5*6.4)/7.04;//norton impedence
+Znang=(53.13-51.34+8.13);
+disp(Inmag,"magnitude of norton current is(in A)");
+disp(Inang,"angle of norton current is(in degree)");
+disp(Znmag,"magnitude of norton impedence is (in ohm)");
+disp(Znang,"angle of norton impedence is (in degree)");
diff --git a/3673/CH7/EX7.8/Ex7_8.sce b/3673/CH7/EX7.8/Ex7_8.sce new file mode 100644 index 000000000..23d4c96ea --- /dev/null +++ b/3673/CH7/EX7.8/Ex7_8.sce @@ -0,0 +1,8 @@ +//Example 7_8 page no:268
+clc;
+Zrel=15;
+Zimg=-20;
+Imag=50/30;
+Iang=0-0;
+P=(Imag*Imag)*Zrel//maximum power delivered
+disp(P,"the maximum power delivered to the load is (in W)");//Imag^2 val is rounded in text book so answer vary by 0.333
diff --git a/3673/CH7/EX7.a.1/Example_a_7_1.sce b/3673/CH7/EX7.a.1/Example_a_7_1.sce new file mode 100644 index 000000000..6baf8504d --- /dev/null +++ b/3673/CH7/EX7.a.1/Example_a_7_1.sce @@ -0,0 +1,17 @@ +//Example_a_7_1 page no:269
+clc;
+R=2;
+C=-2*%i;
+L1=8*%i;
+L2=6*%i;
+V=5/(0.5+(1/L1)+(1/(4*%i)));
+Vmag=sqrt(real(V)^2+imag(V)^2);
+Vang=atand(imag(V)/real(V));
+Vabmag=Vmag*6/4;
+Vabang=Vang;
+disp(Vabmag,"the magnitude of voltage across AB is (in V)");
+disp(Vabang,"the angle of voltage across AB is (in degree)");
+Iamag=Vmag/2;
+Iaang=Vang-(-90);
+disp(Iamag,"the magnitude of short circuited current through terminals AB is (in A)");
+disp(Iaang,"the angle of short circuited current through terminals AB is (in degree)");
diff --git a/3673/CH7/EX7.a.10/Example_a_7_10.sce b/3673/CH7/EX7.a.10/Example_a_7_10.sce new file mode 100644 index 000000000..b3aaed5b4 --- /dev/null +++ b/3673/CH7/EX7.a.10/Example_a_7_10.sce @@ -0,0 +1,26 @@ +//Example_a_7_10 page no:278
+clc;
+V_j4mag=20/2.83;
+V_j4ang=0-45;
+V10mag=10;
+V10ang=0;
+V5mag=5;
+V5ang=90;
+V_j4real=V_j4mag*cosd(V_j4ang);
+V_j4imag=V_j4mag*sind(V_j4ang);
+V_j4=V_j4real+(%i*V_j4imag);
+V10real=V10mag*cosd(V10ang);
+V10imag=V10mag*sind(V10ang);
+V10=V10real+(%i*V10imag);
+V5real=V5mag*cosd(V5ang);
+V5imag=V5mag*sind(V5ang);
+V5=V5real+(%i*V5imag);
+Vab=-V10+V5-V_j4;
+Vabmag=sqrt(real(Vab)^2+imag(Vab)^2);
+Vabang=atand(imag(Vab)/real(Vab));
+Vabang=180+Vabang;
+disp(Vabmag,"the magnitude of thevenin voltage is (in V)");
+disp(Vabang,"the angle of thevenin voltage is (in degree)");
+Zab=4+((2+(%i*6))*(-%i*4)/(2+(%i*2)));
+disp(Zab,"the thevenin impedance is (in ohm)");
+//imaginary part of Zab varies slightly with text book hece textbook uses a rounded off value
diff --git a/3673/CH7/EX7.a.11/Example_a_7_11.sce b/3673/CH7/EX7.a.11/Example_a_7_11.sce new file mode 100644 index 000000000..48ed2268c --- /dev/null +++ b/3673/CH7/EX7.a.11/Example_a_7_11.sce @@ -0,0 +1,10 @@ +//Example_a_7_11 page no:278
+clc;
+Zab=((%i*3)*(%i*-2))/((%i*3)-(%i*2));
+In=((10/3*%i)+(5*%i/-2*%i));
+Il=-(In*Zab)/(5-6*%i);
+Ilmag=sqrt(real(Il)^2+imag(Il)^2);
+Ilang=atand(imag(Il)/real(Il));
+Ilang=Ilang-180;//converting the angle to negative hence value does not change
+disp(Ilmag,"the magnitude of load current is (in A)");
+disp(Ilang,"the angle of load current is (in degree)");
diff --git a/3673/CH7/EX7.a.12/Example_a_7_12.sce b/3673/CH7/EX7.a.12/Example_a_7_12.sce new file mode 100644 index 000000000..6184d5e56 --- /dev/null +++ b/3673/CH7/EX7.a.12/Example_a_7_12.sce @@ -0,0 +1,12 @@ +//Example_a_7_12 page no:279
+clc;
+I_mag=30;
+I_ang=30;
+R1=5;
+X1=(6*%i);
+In_mag=I_mag;
+In_ang=I_ang;
+Zn=R1+X1;
+disp(In_mag,"the magnitude of norton current is (in A)");
+disp(In_ang,"the angle of norton current is (in degree)");
+disp(Zn,"the norton impedence is (in ohm)");
diff --git a/3673/CH7/EX7.a.13/Example_a_7_13.sce b/3673/CH7/EX7.a.13/Example_a_7_13.sce new file mode 100644 index 000000000..4df712d54 --- /dev/null +++ b/3673/CH7/EX7.a.13/Example_a_7_13.sce @@ -0,0 +1,20 @@ +//Example_a_7_13 page no:280
+clc;
+V_abmag=20;
+V_abang=0;
+V_abreal=20;
+V_abimag=0;
+V__abmag=5*5;
+V__abang=0+53.13;
+V__abreal=15;
+V__abimag=19.99;
+V___abmag=0;
+V___abang=0;
+//calculating the voltage across AB
+Vab=V_abreal+V__abreal+(V_abimag+V__abimag)*%i;
+Vabmag=sqrt(real(Vab)^2+imag(Vab)^2)
+Vabang=atand(imag(Vab)/real(Vab));
+Zth=3+4*%i;
+disp(Vabmag,"the magnitude of voltage across AB is (in V)");
+disp(Vabang,"the angle of voltage across AB is (in degree)");
+disp(Zth,"the impedance across terminals AB is (in ohm)");
diff --git a/3673/CH7/EX7.a.14/Example_a_7_14.sce b/3673/CH7/EX7.a.14/Example_a_7_14.sce new file mode 100644 index 000000000..e4dd3d85c --- /dev/null +++ b/3673/CH7/EX7.a.14/Example_a_7_14.sce @@ -0,0 +1,23 @@ +//Example_a_7_14 page no:281
+clc;
+Zab=((5*(%i*10))/(5+(%i*10)))+((7*(-%i*20))/(7-(%i*20)));
+I1=100/(5+(%i*10));
+I2=100/(7-(%i*20));
+Vamag=8.94*10;
+Vaang=-63.43+90;
+Vbmag=4.72*20;
+Vbang=70.7-90;
+Vareal=Vamag*cosd(Vaang);
+Vaimag=Vamag*sind(Vaang);
+Va=Vareal+(%i*Vaimag);
+Vbreal=Vbmag*cosd(Vbang);
+Vbimag=Vbmag*sind(Vbang);
+Vb=Vbreal+(%i*Vbimag);
+Vab=Va-Vb;
+Vth=Vab;
+Z=10.22+0.19*%i;
+I=Vth/(Zab+Z);
+Imag=sqrt(real(I)^2+imag(I)^2);
+P=Imag^2*real(Z);
+disp(P,"the maximum power delivered to the load is (in W)");
+//power varies slightly due to values are rounded off in text book
diff --git a/3673/CH7/EX7.a.15/Example_a_7_15.sce b/3673/CH7/EX7.a.15/Example_a_7_15.sce new file mode 100644 index 000000000..001ff6637 --- /dev/null +++ b/3673/CH7/EX7.a.15/Example_a_7_15.sce @@ -0,0 +1,11 @@ +//Example_a_7_15 page no:282
+clc;
+Rs=2;
+Rl=20;
+Zt=Rs-%i*5+Rl;
+Vs=50;
+I=Vs/Zt;
+Imag=sqrt(real(I)^2+imag(I)^2);
+P=Imag^2*Rl;
+disp(P,"the maximum power transferred is (in W)");
+//power varies slightly due to values are rounded off in text book
diff --git a/3673/CH7/EX7.a.16/Example_a_7_16.sce b/3673/CH7/EX7.a.16/Example_a_7_16.sce new file mode 100644 index 000000000..8521c5c15 --- /dev/null +++ b/3673/CH7/EX7.a.16/Example_a_7_16.sce @@ -0,0 +1,7 @@ +//Example_a_7_16 page no:283
+clc;
+I2=0;
+Vmag=30*5/14.14;
+Vang=90-45;
+disp(Vmag,"the magnitude of voltage is (in V)");
+disp(Vang,"the angle of voltage is (in degree)");
diff --git a/3673/CH7/EX7.a.18/Example_a_7_18.sce b/3673/CH7/EX7.a.18/Example_a_7_18.sce new file mode 100644 index 000000000..0c4834b8a --- /dev/null +++ b/3673/CH7/EX7.a.18/Example_a_7_18.sce @@ -0,0 +1,14 @@ +//Example_a_7_18 page no:285
+clc;
+Vimag=10;
+Viang=0;
+Iscmag=9;
+Iscang=90;
+Vocmag=9*Vimag;
+Vocang=Viang;
+Zthmag=Vocmag/Iscmag;
+Zthang=Vocang-Iscang;
+Imag=Vocmag/8;
+Iang=Vocang-(-90);
+disp(Imag,"the magnitude of current passing through 2i ohm resistor is (in A)");
+disp(Iang,"the angle of current passing through 2i ohm resistor is (in degree)");
diff --git a/3673/CH7/EX7.a.19/Example_a_7_19.sce b/3673/CH7/EX7.a.19/Example_a_7_19.sce new file mode 100644 index 000000000..798fb7b1a --- /dev/null +++ b/3673/CH7/EX7.a.19/Example_a_7_19.sce @@ -0,0 +1,13 @@ +//Example_a_7_19 page no:285
+clc;
+i=((100/(4+%i*10))-((5*4*%i)/(4+%i*10)));
+Voc=100-(4*(3.55-1.48*%i));
+Isc=25+50*%i;
+Zth=Voc/Isc;
+Z=conj(Zth);
+disp(Z,"the value of load that will receive maximum power is (in ohm)");
+I=Voc/(Zth+Z);
+Imag=sqrt(real(I)^2+imag(I)^2);
+P=Imag^2*real(Z);
+disp(P,"the maximum power delivered to the load is (in W)");
+//power values varies with textbook hence textbook uses rounded off values
diff --git a/3673/CH7/EX7.a.2/Example_a_7_2.sce b/3673/CH7/EX7.a.2/Example_a_7_2.sce new file mode 100644 index 000000000..4fde979a0 --- /dev/null +++ b/3673/CH7/EX7.a.2/Example_a_7_2.sce @@ -0,0 +1,32 @@ +//Example_a_7_2 page no:270
+clc;
+Rab=3+(4*%i);
+Rabmag=sqrt(real(Rab)^2+imag(Rab)^2);
+Rabang=atand(imag(Rab)/real(Rab));
+Rbc=%i*4;
+Vmag=100;
+Vang=-45;
+Vreal=Vmag*cosd(Vang);
+Vimag=Vmag*sind(Vang);
+V=Vreal+(%i*Vimag);
+A=[(3+(%i*8)),(-%i*4)
+ (-%i*4),(%i*2)];
+B=[V,
+ 0];
+X=inv(A)*B;
+X1mag=sqrt(real(X(1))^2+imag(X(1))^2);
+X1ang=-atand(imag(X(1))/real(X(1)));
+X2mag=sqrt(real(X(2))^2+imag(X(2))^2);
+X2ang=atand(imag(X(2))/real(X(2)));
+//calculating the voltages across ab
+Vabmag=Rabmag*X1mag;
+Vabang=Rabang+X1ang;
+disp(Vabmag,"the magnitude of voltage across ab is (in V)");
+disp(Vabang,"the angle of voltage across ab is (in degree)");
+//calculating the voltages across bc
+Vbc=(X(2)-X(1))*Rbc;
+Vbcmag=sqrt(real(Vbc)^2+imag(Vbc)^2);
+Vbcang=atand(imag(Vbc)/real(-Vbc));
+disp(Vbcmag,"the magnitude of voltage across bc is (in V)");
+disp(Vbcang,"the angle of voltage across bc is (in degree)");
+
diff --git a/3673/CH7/EX7.a.3/Example_a_7_3.sce b/3673/CH7/EX7.a.3/Example_a_7_3.sce new file mode 100644 index 000000000..680fb3ec2 --- /dev/null +++ b/3673/CH7/EX7.a.3/Example_a_7_3.sce @@ -0,0 +1,21 @@ +//Example_a_7_3 page no:271
+clc;
+Vmag=10;
+Vang=0;
+R1=-%i*5;
+R2=4-(%i*5);
+R1mag=sqrt(real(R1)^2+imag(R1)^2);
+R2mag=sqrt(real(R2)^2+imag(R2)^2);
+R2ang=atand(imag(R2)/real(R2));
+Ztmag=6.24;
+Ztang=29.26;
+Itmag=Vmag/Ztmag;
+Itang=Vang-Ztang;
+Inmag=Itmag*R1mag/R2mag;
+In=0.466-(%i*1.149);
+Zn=4+((3+(%i*5))*(-%i*5)/3);
+I2ohm=In*(12.33-(%i*5))/(12.33+2-(%i*5)+(%i*5));
+I2ohm_mag=sqrt(real(I2ohm)^2+imag(I2ohm)^2);//current is calculated for calculating power
+I2ohm_ang=atand(imag(I2ohm)/real(I2ohm));
+P=I2ohm_mag^2*2;
+disp(P,"the power in the 2+5j ohm impedence is (in W)");
diff --git a/3673/CH7/EX7.a.4/Example_a_7_4.sce b/3673/CH7/EX7.a.4/Example_a_7_4.sce new file mode 100644 index 000000000..a5264c484 --- /dev/null +++ b/3673/CH7/EX7.a.4/Example_a_7_4.sce @@ -0,0 +1,41 @@ +//Example_a_7_4 page no:272
+clc;
+V_1mag=100;
+V_1ang=0;
+Z_1mag=14.28;
+Z_1ang=4.64;
+Ztmag=8.46;
+Ztang=-19.6;
+I_1mag=V_1mag/Z_1mag;
+I_1ang=V_1ang-Z_1ang;
+I_1real=I_1mag*cosd(I_1ang);
+I_1imag=I_1mag*sind(I_1ang);
+I_1=I_1real+(I_1imag*%i);
+I_2=((I_1)*(5-(%i*5)))/(5-(5*%i)+3+(%i*4));
+I_3=((I_1)*(3+(%i*4)))/(8-(%i*1));
+Ztreal=Ztmag*cosd(Ztang);
+Ztimag=Ztang*sind(Ztang);
+Zt=Ztreal+(Ztimag*%i);
+I__3mag=50/8.46;
+I__3ang=30-(Ztang);
+I__3real=I__3mag*cosd(I__3ang);
+I__3imag=I__3mag*sind(I__3ang);
+I__3=I__3real+(%i*I__3imag);
+I__2=I__3*(10)/(10+3+(%i*4));
+I__1=I__3*(3+(%i*4))/(10+3+(%i*4));
+I1=I_1-I__1;
+I2=I_2+I__2;
+I3=I__3-I_3;
+I1mag=sqrt(real(I1)^2+imag(I1)^2);
+I2mag=sqrt(real(I2)^2+imag(I2)^2);
+I3mag=sqrt(real(I3)^2+imag(I3)^2);
+I1ang=atand(imag(I1)/real(I1));
+I2ang=atand(imag(I2)/real(I2));
+I3ang=atand(imag(I3)/real(I3));
+disp(I1mag,"the magnitude of current passing through 10 ohm resistor is (in A)");
+disp(I1ang,"the angle of current passing through 10 ohm resistor is (in degree)");
+disp(I2mag,"the magnitude of current passing through 3+4i ohm resistor is (in A)");
+disp(I2ang,"the angle of current passing through 3+4i ohm resistor is (in degree)");
+disp(I3mag,"the magnitude of current passing through 5-5i ohm resistor is (in A)");
+disp(I3ang,"the angle of current passing through 5-5i ohm resistor is (in degree)");
+//I3 magnitude and angle vary little hence values are rounded off in text book
diff --git a/3673/CH7/EX7.a.5/Example_a_7_5.sce b/3673/CH7/EX7.a.5/Example_a_7_5.sce new file mode 100644 index 000000000..c5f2a915d --- /dev/null +++ b/3673/CH7/EX7.a.5/Example_a_7_5.sce @@ -0,0 +1,11 @@ +//Example_a_7_5 page no:274
+clc;
+Rl=4;
+I=(50*(-%i*10))/((5-(%i*6)+3+(%i*4)-(10*%i)))
+V=I*(3+(3.99*%i));
+Zab=4+(%i*3.5);
+Vmag=sqrt(real(V)^2+imag(V)^2);
+I2=Vmag/8;
+P=I2^2*Rl;
+disp(P,"the maximum power delivered to the load is (in W)");
+//the power varies slightly in text book the value of V is rounded off so the result varies slightly
diff --git a/3673/CH7/EX7.a.6/Example_a_7_6.sce b/3673/CH7/EX7.a.6/Example_a_7_6.sce new file mode 100644 index 000000000..e0d350300 --- /dev/null +++ b/3673/CH7/EX7.a.6/Example_a_7_6.sce @@ -0,0 +1,15 @@ +//Example_a_7_6 page no:275
+clc;
+V=20;
+Vamag=16.27;
+Vaang=18.91;
+I2mag=Vamag/5.38;
+I2ang=Vaang-68.19;
+P2=I2mag^2*2;
+disp(P2,"the power dissipated at 2 ohm resistor is (in W)");
+I3=-0.65-(%i*1.58);
+I3mag=sqrt(real(I3)^2+imag(I3)^2);
+P3=I3mag^2*3;
+disp(P3,"the power dissipated in the 3 ohm resistor is (in W)");
+P=-V*I3mag*cosd(142);
+disp(P,"the power delivered by the source is (in W)");
diff --git a/3673/CH7/EX7.a.8/Example_a_7_8.sce b/3673/CH7/EX7.a.8/Example_a_7_8.sce new file mode 100644 index 000000000..4aed6b514 --- /dev/null +++ b/3673/CH7/EX7.a.8/Example_a_7_8.sce @@ -0,0 +1,18 @@ +//Example_a_7_8 page no:276
+clc;
+I1mag=50/6.7;
+I1ang=0-26.56;
+I2mag=80/6.7;
+I2ang=90-26.56;
+I1real=I1mag*cosd(I1ang);
+I1imag=I1mag*sind(I1ang);
+I1=I1real+(%i*I1imag);
+I2real=I2mag*cosd(I2ang);
+I2imag=I2mag*sind(I2ang);
+I2=I2real+(%i*I2imag);
+I=I1+I2;
+//calculating the required current values
+Imag=sqrt(real(I)^2+imag(I)^2);
+Iang=atand(imag(I)/real(I));
+disp(Imag,"the magnitude of current passing through 2+3i ohm impedence is (in A)");
+disp(Iang,"the angle of current passing through 2+3i ohm impedence is (in degree)");
diff --git a/3673/CH7/EX7.a.9/Example_a_7_9.sce b/3673/CH7/EX7.a.9/Example_a_7_9.sce new file mode 100644 index 000000000..659ef9fc3 --- /dev/null +++ b/3673/CH7/EX7.a.9/Example_a_7_9.sce @@ -0,0 +1,9 @@ +//Example_a_7_9 page no:277
+clc;
+Vabmag=100*3/7;
+Vabang=0;
+Zab=(%i*5)+(((%i*4)*(%i*3))/(%i*7));
+Ilmag=42.86/11.71;
+Ilang=0-90;
+disp(Ilmag,"the magnitude of current passing through 5i ohm impedence is (in A)");
+disp(Ilang,"the angle of current passing through 5i ohm impedence is (in degree)");
diff --git a/3673/CH8/EX8.1/Ex8_1.sce b/3673/CH8/EX8.1/Ex8_1.sce new file mode 100644 index 000000000..914e8906f --- /dev/null +++ b/3673/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,8 @@ +//Example 8_1 page no:297
+clc;
+Xl=25;//inductive reactance in ohm
+Xc=Xl;//inductive capacitance at resonance in ohm
+R=50;//resistance in ohm
+Z=R;//impedence at resonance
+disp(Xc,"capacitive reactance is (in ohm)");
+disp(Z,"impedance at resonance is (in ohm)");
diff --git a/3673/CH8/EX8.10/Ex8_10.sce b/3673/CH8/EX8.10/Ex8_10.sce new file mode 100644 index 000000000..311029b9e --- /dev/null +++ b/3673/CH8/EX8.10/Ex8_10.sce @@ -0,0 +1,12 @@ +//Example 8_10 page no:319
+clc;
+V=200;
+R=50;
+Imax=V/R;
+Pmax=Imax*V;
+Imax=200/50;
+Imin=200/sqrt(50^2+25^2);
+disp(Imax,"the maximum value of current is (in A)");
+disp(Imin,"the minimum value of current is (in A)");
+disp(Pmax,"maximum power in the circuit is (in watts)");
+//In text book calculation in Imin is wrong
diff --git a/3673/CH8/EX8.2/Ex8_2.sce b/3673/CH8/EX8.2/Ex8_2.sce new file mode 100644 index 000000000..c8468b37b --- /dev/null +++ b/3673/CH8/EX8.2/Ex8_2.sce @@ -0,0 +1,8 @@ +//Example 8_2 page no:297
+clc;
+R=10;//resistance in ohm
+L=0.5*10^-3//inductance in henry;
+C=10*10^-6;//capacitance in farad;
+f=1/(2*%pi*sqrt(L*C));
+f=f/1000;//converting to killoHertz
+disp(f,"the resonant frequency is (in kHz)");
diff --git a/3673/CH8/EX8.3/Ex8_3.sce b/3673/CH8/EX8.3/Ex8_3.sce new file mode 100644 index 000000000..1eff1947e --- /dev/null +++ b/3673/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,19 @@ +//Example 8_3 page no:299
+clc;
+R=10;//resistance is ohm
+L=0.1;//inductive reactance in henry
+C=10*10^-6;//capacitive reactance in farad
+f=1/(2*%pi*sqrt(L*C));//frequency in Hz
+fa10=f+10;
+fb10=f-10;
+Z=R;//impedence at resonance
+disp(Z,"impedence at resonance is (in ohm)");
+Xc1=1/(2*%pi*fa10*C);//capacitive reactance at 149.2
+Xc2=1/(2*%pi*fb10*C);//capacitive reactance at 169.2
+Xl1=2*%pi*fa10*L;//inductive reactance at 149.2
+Xl2=2*%pi*fb10*L;//inductive reactance at 169.2
+Z1=sqrt(R^2+(Xl1-Xc1)^2);
+disp(Z1,"impedence at 10Hz above resonance(i.e 149.2 Hz) is (in ohm)");
+Z2=sqrt(R^2+(Xl2-Xc2)^2);
+disp(Z2,"impedence at 10Hz below resonance(i.e 169.2 Hz) is (in ohm)");
+//in text book square value of resistance is rounded so answer of impedence is approximate in text book
diff --git a/3673/CH8/EX8.4/Ex8_4.sce b/3673/CH8/EX8.4/Ex8_4.sce new file mode 100644 index 000000000..1f0191044 --- /dev/null +++ b/3673/CH8/EX8.4/Ex8_4.sce @@ -0,0 +1,13 @@ +//Example 8_4 page no:303
+clc;
+R=10;//resistance in ohm
+L=0.1;//inducatance in henry
+C=50*10^-6;//capacitance in farad
+V=50;
+fl=(1/(2*%pi*sqrt(L*C)))*(sqrt(1/(1-((100*50*10^-6)/2*0.1))));
+disp(fl,"frequency at which voltage is maximum across inductor is (in Hz)");
+fl=(1/(2*%pi))*(sqrt(200000-500));
+disp(fl,"frequency at which voltage is maximum across capacitor is (in Hz)");
+f=1/(2*%pi*sqrt(L*C));
+disp(f,"the resonant frequency is (in Hz)");
+//in text book square root values are rounded so value varies by 0.82
diff --git a/3673/CH8/EX8.5/Ex8_5.sce b/3673/CH8/EX8.5/Ex8_5.sce new file mode 100644 index 000000000..c20370ea9 --- /dev/null +++ b/3673/CH8/EX8.5/Ex8_5.sce @@ -0,0 +1,9 @@ +//Example 8_5 page no:306
+clc;
+R=10;//resistance in ohm
+L=0.1;//inducatance in henry
+C=10*10^-6;//capacitance in farad
+fr=1/(2*%pi*(sqrt(L*C)));
+BW=R/(2*%pi*L);
+Q=fr/BW;
+disp(Q,"the quality factor of a coil for the series circuit is");
diff --git a/3673/CH8/EX8.6/Ex8_6.sce b/3673/CH8/EX8.6/Ex8_6.sce new file mode 100644 index 000000000..39e3df478 --- /dev/null +++ b/3673/CH8/EX8.6/Ex8_6.sce @@ -0,0 +1,9 @@ +//Example 8_6 page no:308
+clc;
+R=100;
+L=5;
+C=100*10^-6;
+fr=1/(2*%pi*sqrt(L*C));
+Q=2*%pi*7.12*5/100;
+BW=fr/Q;
+disp(BW,"bandwidth of the circuit is (in Hz)");
diff --git a/3673/CH8/EX8.7/Ex8_7.sce b/3673/CH8/EX8.7/Ex8_7.sce new file mode 100644 index 000000000..e92bb1a80 --- /dev/null +++ b/3673/CH8/EX8.7/Ex8_7.sce @@ -0,0 +1,6 @@ +//Example 8_7 page no:310
+clc;
+L=50*10^-3;
+C=0.01*10^-6;
+fr=1/(2*%pi*sqrt(L*C));
+disp(fr,"resonant frequency is (in Hz)");
diff --git a/3673/CH8/EX8.8/Ex8_8.sce b/3673/CH8/EX8.8/Ex8_8.sce new file mode 100644 index 000000000..362e6d0ef --- /dev/null +++ b/3673/CH8/EX8.8/Ex8_8.sce @@ -0,0 +1,7 @@ +//Example 8_8 page no:311
+clc;
+R=10;
+L=0.1;
+C=10*10^-6;
+fr=(1/(2*%pi))*(sqrt((1/(L*C))-((R^2)/(L^2))));
+disp(fr,"the resonant frequency is (in Hz)");
diff --git a/3673/CH8/EX8.9/Ex8_9.sce b/3673/CH8/EX8.9/Ex8_9.sce new file mode 100644 index 000000000..6e394be01 --- /dev/null +++ b/3673/CH8/EX8.9/Ex8_9.sce @@ -0,0 +1,13 @@ +//Example 8_9 page no:319
+clc;
+R=50;
+Xl=25;
+V=200;
+f=50;
+Imax=V/Xl;
+Imin=V/(sqrt(R^2+Xl^2));
+Pmax=V^2/(2*Xl);
+disp(Imax,"the maximum value of current is (in A)");
+disp(Imin,"the minimum value of current is (in A)");
+disp(Pmax,"the maximum power is (in watts)");
+//In text book calculation in Imin is wrong
diff --git a/3673/CH8/EX8.a.1/Example_a_8_1.sce b/3673/CH8/EX8.a.1/Example_a_8_1.sce new file mode 100644 index 000000000..8d4b55ba1 --- /dev/null +++ b/3673/CH8/EX8.a.1/Example_a_8_1.sce @@ -0,0 +1,13 @@ +//Example_a_8_1 page no:325
+clc;
+R=10;
+L=0.1;
+C=50*10^-6;
+V=100;
+omega=1/sqrt(L*C);
+fr=omega/(2*%pi);
+I=V/R;
+Vl=I*omega*L;
+Q=omega*L/R;
+disp(Vl,"the voltage drop across the inductor is (in V)");
+disp(Q,"the quality factor is");
diff --git a/3673/CH8/EX8.a.10/Example_a_8_10.sce b/3673/CH8/EX8.a.10/Example_a_8_10.sce new file mode 100644 index 000000000..431fe5cb8 --- /dev/null +++ b/3673/CH8/EX8.a.10/Example_a_8_10.sce @@ -0,0 +1,10 @@ +//Example_a_8_10 page no:331
+clc;
+L=0.1;
+Q=5;
+omega_r=500;
+R=omega_r*L/Q;
+C=1/(L*omega_r^2);
+C=C*10^6;
+disp(R,"the coil resistance at resonant frequency is (in ohm)");
+disp(C,"the capacitance is (in microFarad)");
diff --git a/3673/CH8/EX8.a.11/Example_a_8_11.sce b/3673/CH8/EX8.a.11/Example_a_8_11.sce new file mode 100644 index 000000000..03fb52d4d --- /dev/null +++ b/3673/CH8/EX8.a.11/Example_a_8_11.sce @@ -0,0 +1,15 @@ +//Example_a_8_11 page no:332
+clc;
+L=0.2;
+C=10*10^-6;
+R=50;
+fr=1/(2*%pi*sqrt(L*C));
+Q=(2*%pi*fr*L)/R;
+f1=fr-(R/(4*%pi*L));
+f2=fr+(R/(4*%pi*L));
+BW=f2-f1;
+disp(fr,"the resonant frequency is (in Hz)");
+disp(Q,"the quality factor is ");
+disp(f1,"the lower frequency limit is (in Hz)");
+disp(f2,"the upper frequency limit is (in Hz)");
+disp(BW,"the bandwidth of the circuit is (in Hz)");
diff --git a/3673/CH8/EX8.a.12/Example_a_8_12.sce b/3673/CH8/EX8.a.12/Example_a_8_12.sce new file mode 100644 index 000000000..68f20a5d4 --- /dev/null +++ b/3673/CH8/EX8.a.12/Example_a_8_12.sce @@ -0,0 +1,6 @@ +//Example_a_8_12 page no:332
+clc;
+//variables cannot be used without initialization and hence the equation cannot be derived like in the text book, the capacitance value can be calculated using the derived values by substituting known values in the equation
+C=15/(2*%pi*10^6*1256*80);
+C=C*10^12;//converting to pico Farad
+disp(C,"the value of C to give resonance is (in pF)");
diff --git a/3673/CH8/EX8.a.13/Example_a_8_13.sce b/3673/CH8/EX8.a.13/Example_a_8_13.sce new file mode 100644 index 000000000..e8baf6fe9 --- /dev/null +++ b/3673/CH8/EX8.a.13/Example_a_8_13.sce @@ -0,0 +1,30 @@ +//Example_a_8_13 page no:333
+clc;
+V_mag=200;
+V_ang=0;
+X1=25;
+I2=200/50;
+//when R1=10;
+R1=10;
+I1_mag=V_mag/sqrt(R1^2+X1^2);
+I1_ang=0-atand(X1/R1);
+I1_real=I1_mag*cosd(I1_ang);
+I1_imag=I1_mag*sind(I1_ang);
+I1=I1_real+(%i*I1_imag);
+Imax=I1+I2;
+Imax_mag=sqrt(real(Imax)^2+imag(Imax)^2);
+Imax_ang=atand(imag(Imax)/real(Imax));
+disp(Imax_mag,"the magnitude of maximum current is (in A)");
+disp(Imax_ang,"the angle of maximum current is (in degree)");
+//when R1=50;
+R1=50;
+I1_mag=V_mag/sqrt(R1^2+X1^2);
+I1_ang=0-atand(X1/R1);
+I1_real=I1_mag*cosd(I1_ang);
+I1_imag=I1_mag*sind(I1_ang);
+I1=I1_real+(%i*I1_imag);
+Imax=I1+I2;
+Imax_mag=sqrt(real(Imax)^2+imag(Imax)^2);
+Imax_ang=atand(imag(Imax)/real(Imax));
+disp(Imax_mag,"the magnitude of minimum current is (in A)");
+disp(Imax_ang,"the angle of minimum current is (in degree)");
diff --git a/3673/CH8/EX8.a.14/Example_a_8_14.sce b/3673/CH8/EX8.a.14/Example_a_8_14.sce new file mode 100644 index 000000000..e1c4ead7d --- /dev/null +++ b/3673/CH8/EX8.a.14/Example_a_8_14.sce @@ -0,0 +1,15 @@ +//Example_a_8_14 page no:334
+clc;
+fr=120*10^3;
+BW=50*10^3;
+Q=2;
+f1f2=sqrt(fr);
+f=poly([-14.4*10^9,50000,1],'f1','c');
+fre=roots(f);
+f1=fre(2);
+f1=f1/1000;//converting to killo Hz
+f2=BW+f1;
+f2=f2/1000;//converting to killo Hz
+disp(f1,"the lower cutoff frequency is (in kHz)");
+disp(f2,"the upper cutoff frequency is (in kHz)");
+//in textbook the frequency calculated is wrong, the root values of f1 are wrong
diff --git a/3673/CH8/EX8.a.15/Example_a_8_15.sce b/3673/CH8/EX8.a.15/Example_a_8_15.sce new file mode 100644 index 000000000..4bcef3437 --- /dev/null +++ b/3673/CH8/EX8.a.15/Example_a_8_15.sce @@ -0,0 +1,13 @@ +//Example_a_8_15 page no:335
+clc;
+V=220;
+f=50;
+Vr=550;
+Ir=1;
+R=V/Ir;
+C=1/(Vr*2*%pi*f);
+C=C*10^6;
+L=1/((C*10^-6)*(100*%pi)^2);
+disp(R,"the resistance is (in ohm)");
+disp(L,"the inducatance is (in H)");
+disp(C,"the capacitance is (in microFarad)");
diff --git a/3673/CH8/EX8.a.2/Example_a_8_2.sce b/3673/CH8/EX8.a.2/Example_a_8_2.sce new file mode 100644 index 000000000..43cb91b3e --- /dev/null +++ b/3673/CH8/EX8.a.2/Example_a_8_2.sce @@ -0,0 +1,12 @@ +//Example_a_8_2 page no:325
+clc;
+Q=5;
+I=10;
+V=100;
+omega=50;
+R=V/I;
+L=50/omega;
+C=1/(Q*omega*R);
+C=C*10^6;
+disp(L,"the inductance is (in H)");
+disp(C,"the capacitance is (in microFarad)");
diff --git a/3673/CH8/EX8.a.3/Example_a_8_3.sce b/3673/CH8/EX8.a.3/Example_a_8_3.sce new file mode 100644 index 000000000..ac65d1e4d --- /dev/null +++ b/3673/CH8/EX8.a.3/Example_a_8_3.sce @@ -0,0 +1,18 @@ +//Example_a_8_3 page no:326
+clc;
+Vmax=10;
+Vrms=Vmax/sqrt(2);
+Vc=500;
+Q=Vc/Vrms;
+BW=400;
+Z=100;
+R=Z;
+omega_r=Q*BW;
+fr=omega_r/(2*%pi);
+L=R/BW;
+C=1/((2*%pi*fr)^2*L);
+C=C*10^9;
+disp(fr,"the resonant frequency is (in Hz)");
+disp(L,"the inductance of the circuit is (in H)");
+disp(C,"the capacitance of the circuit is (in nF)");
+//resonant frequency varies slightly with text book hence in text book value of Q is rounded off
diff --git a/3673/CH8/EX8.a.4/Example_a_8_4.sce b/3673/CH8/EX8.a.4/Example_a_8_4.sce new file mode 100644 index 000000000..a6014c583 --- /dev/null +++ b/3673/CH8/EX8.a.4/Example_a_8_4.sce @@ -0,0 +1,13 @@ +//Example_a_8_4 page no:327
+clc;
+omega=1000;
+Xl=poly([25,-20.3,1],'x','c');
+Xl_r=roots(Xl);
+L1=Xl_r(1)/omega;
+L1=L1*10^3;
+disp(L1,"the value of inductance is (in mH)");
+//calculating the inductance value
+L2=Xl_r(2)/omega;
+L2=L2*10^3;
+disp("or");
+disp(L2,"the value of inductance is (in mH)");
diff --git a/3673/CH8/EX8.a.5/Example_a_8_5.sce b/3673/CH8/EX8.a.5/Example_a_8_5.sce new file mode 100644 index 000000000..9ac411aa1 --- /dev/null +++ b/3673/CH8/EX8.a.5/Example_a_8_5.sce @@ -0,0 +1,10 @@ +//Example_a_8_5 page no:328
+clc;
+Z1=20+%i*10;
+Z2=10-%i*30;
+Z12=Z1*Z2/(Z1+Z2);
+Z3=30;//here X is eliminated hence unknown variable cannot be used for calculation
+Z=Z3+Z12;
+X=imag(Z);
+X=-X;//hence X is equated to zero
+disp(X,"the value of X which will produce resonance is (in ohm)");
diff --git a/3673/CH8/EX8.a.6/Example_a_8_6.sce b/3673/CH8/EX8.a.6/Example_a_8_6.sce new file mode 100644 index 000000000..37ff46264 --- /dev/null +++ b/3673/CH8/EX8.a.6/Example_a_8_6.sce @@ -0,0 +1,15 @@ +//Example_a_8_6 page no:328
+clc;
+V=100;
+I=0.7;
+Vc=200;
+omega=2*%pi*200;
+C=I/(omega*200);
+C=C*10^6;//converting to microFarad
+Xc=200/0.7;
+Xl=Xc;
+L=Xl/(2*%pi*200);
+R=(V/I)-50;
+disp(C,"the capacitance is (in microFarad)");
+disp(L,"the inductanc is (in H)");
+disp(R,"the resistance is (in ohm)");
diff --git a/3673/CH8/EX8.a.7/Example_a_8_7.sce b/3673/CH8/EX8.a.7/Example_a_8_7.sce new file mode 100644 index 000000000..9b6c23a47 --- /dev/null +++ b/3673/CH8/EX8.a.7/Example_a_8_7.sce @@ -0,0 +1,16 @@ +//Example_a_8_7 page no:329
+clc;
+V=5;
+I=0.1;
+L=0.1;
+C=5*10^-6;
+R=V/I;
+omega_r=1/sqrt(L*C);
+fr=omega_r/(2*%pi);
+Q=omega_r*L/R;//in text book the Q value is wrong but correct value is used in calculation of BW
+BW=fr/Q;//BW value varies slightly hence Q value is rounded off in text book
+disp(R,"the value of resistance at resonance is (in ohm)");
+disp(fr,"the resonant frequency is (in Hz)");
+disp(Q,"the quality factor is ");
+disp(BW,"the bandwidth is (in Hz)");
+//calculation of Q value is wrong in text book
diff --git a/3673/CH8/EX8.a.8/Example_a_8_8.sce b/3673/CH8/EX8.a.8/Example_a_8_8.sce new file mode 100644 index 000000000..8ac9d6b3b --- /dev/null +++ b/3673/CH8/EX8.a.8/Example_a_8_8.sce @@ -0,0 +1,16 @@ +//Example_a_8_8 page no:330
+clc;
+V=10;
+fr=100;
+C=10*10^-6;
+omega=900;
+L=1/(C*(2*%pi*fr)^2);
+C=12*10^-6;
+R=(omega*L)-(1/(omega*C));
+Q=omega*L/R;
+I=V/R;
+disp(L,"the inductance is (in H)");
+disp(R,"the resistance is (in ohm)");
+disp(Q,"the quality factor is ");
+disp(I,"the maximum current in the circuit is (in A)");
+//resistance value varies in the textbook due to inductance value is rounded off in text book
diff --git a/3673/CH8/EX8.a.9/Example_a_8_9.sce b/3673/CH8/EX8.a.9/Example_a_8_9.sce new file mode 100644 index 000000000..2de36d08c --- /dev/null +++ b/3673/CH8/EX8.a.9/Example_a_8_9.sce @@ -0,0 +1,12 @@ +//Example_a_8_9 page no:331
+clc;
+V=20;
+omega_r=500;
+C=20*10^-6;
+Xl=1/(omega_r^2*C);
+C=30*10^-6;
+R=((omega_r*Xl)-(1/(omega_r*C)));
+Q=(omega_r*Xl)/R;
+disp(Xl,"the value of inductance is (in H)");
+disp(R,"the value of resistance is (in ohm)");
+disp(Q,"the quality factor is ");
diff --git a/3673/CH9/EX9.10/Ex9_10.sce b/3673/CH9/EX9.10/Ex9_10.sce new file mode 100644 index 000000000..5d063e479 --- /dev/null +++ b/3673/CH9/EX9.10/Ex9_10.sce @@ -0,0 +1,21 @@ +//Example 9_10 page no:361
+clc;
+Vrnmag=230;
+Vynmag=230;
+Vbnmag=230;
+Vrnang=0;
+Vynang=-120;
+Vbn=-240;
+//calculating the line voltages magnitude and angle
+Vrymag=sqrt(3)*230;
+Vybmag=sqrt(3)*230;
+Vbrmag=sqrt(3)*230;
+Vryang=30;
+Vybang=-120+30;
+Vbrang=-240+30;
+disp(Vrymag,"the magintude of Vry is(in volt)");
+disp(Vryang,"the angle of Vry is (in degree)");
+disp(Vybmag,"the magintude of Vyb is(in volt)");
+disp(Vybang,"the angle of Vyb is (in degree)");
+disp(Vbrmag,"the magnitude of Vbr is(in volt)");
+disp(Vbrang,"the angle of Vbr is (in degree)");
diff --git a/3673/CH9/EX9.11/Ex9_11.sce b/3673/CH9/EX9.11/Ex9_11.sce new file mode 100644 index 000000000..ed652588f --- /dev/null +++ b/3673/CH9/EX9.11/Ex9_11.sce @@ -0,0 +1,14 @@ +//Example 9_11 page no:362
+clc;
+Irmag=10;
+Irang=20;//phase angle in degree
+Iymag=Irmag;
+Iyang=Irang-120;
+Ibmag=Irmag;
+Ibang=Irang-240;
+disp(Irmag,"the magnitude of Ir is(in A)");
+disp(Irang,"the angle of Ir is (in degree)");
+disp(Iymag,"the magnitude of Iy is(in A)");
+disp(Iyang,"the angle of Iy is (in degree)");
+disp(Ibmag,"the magnitude of Ib is(in A)");
+disp(Ibang,"the angle of Ib is (in degree)");
diff --git a/3673/CH9/EX9.12/Ex9_12.sce b/3673/CH9/EX9.12/Ex9_12.sce new file mode 100644 index 000000000..9a29fa9eb --- /dev/null +++ b/3673/CH9/EX9.12/Ex9_12.sce @@ -0,0 +1,15 @@ +//Example 9_12 page no:364
+clc;
+Zreal=4;
+Zimg=3;
+Vl=400;
+Il=12;
+Zph=sqrt(Zreal^2+Zimg^2);
+PF=Zreal/Zph;
+sinpi=0.6;
+Active_power=sqrt(3)*Vl*Il*PF;
+Reactive_power=sqrt(3)*Vl*Il*sinpi;
+Apparent_power=sqrt(3)*Vl*Il;
+disp(Active_power,"the active power is (in W)");
+disp(Reactive_power,"the reactive power is (in VAR)");
+disp(Apparent_power,"the apparent power is (in VA)");
diff --git a/3673/CH9/EX9.13/Ex9_13.sce b/3673/CH9/EX9.13/Ex9_13.sce new file mode 100644 index 000000000..157695a21 --- /dev/null +++ b/3673/CH9/EX9.13/Ex9_13.sce @@ -0,0 +1,14 @@ +//Example 9_13 page no:365
+clc;
+Vrymag=400;
+Vryang=0;
+Vybmag=400;
+Vybang=-120;
+Vbrmag=400;
+Vbrang=-240;
+disp(Vrymag,"the magnitude of Vry is (in V)");
+disp(Vryang,"the angle of Vry is (in degree)");
+disp(Vybmag,"the magnitude of Vyb is (in V)");
+disp(Vybang,"the angle of Vyb is (in degree)");
+disp(Vbrmag,"the magnitude of Vbr is (in V)");
+disp(Vbrang,"the angle of Vbr is (in degree)");
diff --git a/3673/CH9/EX9.14/Ex9_14.sce b/3673/CH9/EX9.14/Ex9_14.sce new file mode 100644 index 000000000..f7b39fba8 --- /dev/null +++ b/3673/CH9/EX9.14/Ex9_14.sce @@ -0,0 +1,14 @@ +//Example 9_14 page no:367
+clc;
+I1mag=sqrt(3)*15;
+I1ang=-30;
+I2mag=sqrt(3)*15;
+I2ang=-30-120;
+I3mag=sqrt(3)*15;
+I3ang=-30-240;
+disp(I1mag,"the magnitude of I1 is (in A)");
+disp(I1ang,"the angle of I1 is (in degree)");
+disp(I2mag,"the magnitude of I2 is (in A)");
+disp(I2ang,"the angle of I2 is (in degree)");
+disp(I3mag,"the magnitude of I3 is (in A)");
+disp(I3ang,"the angle of I3 is (in degree)");
diff --git a/3673/CH9/EX9.15/Ex9_15.sce b/3673/CH9/EX9.15/Ex9_15.sce new file mode 100644 index 000000000..982da0c05 --- /dev/null +++ b/3673/CH9/EX9.15/Ex9_15.sce @@ -0,0 +1,17 @@ +//Example 9_15 page no:368
+clc;
+Zreal=2;
+Zimg=3;
+Vl=440;//line voltage
+Iph=10;//phase current
+Zph=sqrt(Zreal^2+Zimg^2);
+PF=Zreal/Zph;
+sinpi=0.83;
+Il=sqrt(3)*Iph;
+Active_power=sqrt(3)*Vl*Il*0.55;
+Reactive_power=sqrt(3)*Vl*Il*sinpi;
+Apparent_power=sqrt(3)*Vl*Il;
+disp(Active_power,"the Active power is (in W)");
+disp(Reactive_power,"the Reactive power is (in VAR)");
+disp(Apparent_power,"the Apparent power is (in VA)");
+//power varies slightly with textbook hence values are rounded off in text book
diff --git a/3673/CH9/EX9.16/Ex9_16.sce b/3673/CH9/EX9.16/Ex9_16.sce new file mode 100644 index 000000000..6ca42a4c6 --- /dev/null +++ b/3673/CH9/EX9.16/Ex9_16.sce @@ -0,0 +1,39 @@ +//Example 9_16 page no:371
+clc;
+Vrymag=400;
+Vryang=0;
+Vybmag=400;
+Vybang=-120;
+Vbrmag=400;
+Vbrang=-240;
+Zmag=8.94;
+Zang=63.4;
+//calculating the phase current
+Irmag=Vrymag/Zmag;
+Irang=Vryang-Zang;
+Iymag=Vybmag/Zmag;
+Iyang=Vybang-Zang;
+Ibmag=Vbrmag/Zmag;
+Ibang=Vbrang-Zang;
+disp(Irmag,"the magnitude of Ir phase current is (in A)");
+disp(Irang,"the angle of Ir phase current is (in degree)");
+disp(Iymag,"the magnitude of Iy phase current is (in A)");
+disp(Iyang,"the angle of Iy phase current is (in degree)");
+disp(Ibmag,"the magnitude of Ib phase current is (in A)");
+disp(Ibang,"the angle of Ib phase current is (in degree)");
+//calculating the line current
+I1mag=sqrt(3)*Irmag;
+I1ang=Irang-30+360;
+I2mag=sqrt(3)*Iymag;
+I2ang=Iyang-30+360;
+I3mag=sqrt(3)*Ibmag;
+I3ang=Ibang-30+360;
+disp(I1mag,"the magnitude of I1 line current is (in A)");
+disp(I1ang,"the angle of I1 line current is (in degree)");
+disp(I2mag,"the magnitude of I2 line current is (in A)");
+disp(I2ang,"the angle of I2 line current is (in degree)");
+disp(I3mag,"the magnitude of I3 line current is (in A)");
+disp(I3ang,"the angle of I3 line current is (in degree)");
+P=3*(Vrymag)*cosd(63.4)*Irmag;
+P=P/1000;//converting to kilo Watt
+disp(P,"power drawn by the load is (in kW)");
diff --git a/3673/CH9/EX9.17/Ex9_17.sce b/3673/CH9/EX9.17/Ex9_17.sce new file mode 100644 index 000000000..313b5c62a --- /dev/null +++ b/3673/CH9/EX9.17/Ex9_17.sce @@ -0,0 +1,26 @@ +//Example 9_17 page no:373
+clc;
+Vl=440;//line voltage
+Vrnmag=254;//phase voltage
+Vrnang=0;
+Vynmag=254;
+Vynang=-120;
+Vbnmag=254;
+Vbnang=-240;
+Zmag=25;
+Zang=53.13;
+//calculating the phase current
+Irmag=Vrnmag/Zmag;
+Irang=Vrnang-Zang;
+Iymag=Vynmag/Zmag;
+Iyang=Vynang-Zang;
+Ibmag=Vbnmag/Zmag;
+Ibang=Vbnang-Zang;
+disp(Irmag,"the magnitude of Ir is (in I)");
+disp(Irang,"the angle of Ir is (in degree)");
+disp(Iymag,"the magnitude of Iy is (in I)");
+disp(Iyang,"the angle of Iy is (in degree)");
+disp(Ibmag,"the magnitude of Ib is (in I)");
+disp(Ibang,"the angle of Ib is (in degree)");
+P=sqrt(3)*Vl*Irmag*cosd(53.13);
+disp(P,"the power absorbed by the load is (in W)");
diff --git a/3673/CH9/EX9.18/Ex9_18.sce b/3673/CH9/EX9.18/Ex9_18.sce new file mode 100644 index 000000000..89e33c174 --- /dev/null +++ b/3673/CH9/EX9.18/Ex9_18.sce @@ -0,0 +1,58 @@ +//Example 9_18 page no:375
+clc;
+Vrymag=400;
+Vryang=0;
+Vybmag=400;
+Vybang=-120;
+Vbrmag=400;
+Vbrang=-240;
+Z1mag=20;
+Z1ang=30;
+Z1real=Z1mag*cosd(Z1ang);
+Z1img=Z1mag*sind(Z1ang);
+Z2mag=40;
+Z2ang=60;
+Z2real=Z2mag*cosd(Z2ang);
+Z2img=Z2mag*sind(Z2ang);
+Z3mag=10;
+Z3ang=-90;
+Z3real=Z3mag*cosd(Z3ang);
+Z3img=Z3mag*sind(Z3ang);
+//calculating the line current
+Irmag=Vrymag/Z1mag;
+Irang=Vryang-Z1ang;
+Irreal=Irmag*cosd(Irang);
+Irimg=Irmag*sind(Irang);
+Iymag=Vybmag/Z2mag;
+Iyang=Vybang-Z2ang;
+Iyreal=Iymag*cosd(Iyang);
+Iyimg=Iymag*sind(Iyang);
+Ibmag=Vbrmag/Z3mag;
+Ibang=Vbrang-Z3ang;
+Ibreal=Ibmag*cosd(Ibang);
+Ibimg=Ibmag*sind(Ibang);
+Ir=Irreal+(%i*Irimg);
+Iy=Iyreal+(%i*Iyimg);
+Ib=Ibreal+(%i*Ibimg);
+disp(Ir,"the phase current Ir is (in A)");
+disp(Iy,"the phase current Iy is (in A)");
+disp(Ib,"the phase current Ib is (in A)");
+//calculating the line current
+I1real=Irreal-Ibreal;
+I1img=Irimg-Ibimg;
+I2real=Iyreal-Irreal;
+I2img=Iyimg-Irimg;
+I3real=Ibreal-Iyreal;
+I3img=Ibimg-Iyimg;
+I1=I1real+(%i*I1img);
+I2=I2real+(%i*I2img);
+I3=I3real+(%i*I3img);
+disp(I1,"the phase current Ir is (in A)");
+disp(I2,"the phase current Iy is (in A)");
+disp(I3,"the phase current Ib is (in A)");
+//calculating the total power
+Pr=Irmag^2*Z1real;
+Py=Iymag^2*Z2real;
+Pb=Ibmag^2*Z3real;
+P=Pr+Py+Pb;
+disp(P,"total power in the load is (in W)");
diff --git a/3673/CH9/EX9.19/Ex9_19.sce b/3673/CH9/EX9.19/Ex9_19.sce new file mode 100644 index 000000000..c8e602aec --- /dev/null +++ b/3673/CH9/EX9.19/Ex9_19.sce @@ -0,0 +1,54 @@ +//Example 9_19 page no:377
+clc;
+Z1real=4;
+Z1img=8;
+Z1mag=sqrt(Z1real^2+Z1img^2);
+Z1ang=atand(Z1img/Z1real);
+Z2real=3;
+Z2img=4;
+Z2mag=sqrt(Z2real^2+Z2img^2);
+Z2ang=atand(Z2img/Z2real);
+Z3real=15;
+Z3img=20;
+Z3mag=sqrt(Z3real^2+Z3img^2);
+Z3ang=atand(Z3img/Z3real);
+Vl=400;
+Vrnmag=230.94;
+Vrnang=0;
+Vynmag=230.94;
+Vynang=-120;
+Vbnmag=230.94;
+Vbnang=-240;
+//calculating the line currents
+Irmag=Vrnmag/Z1mag;
+Irang=Vrnang-Z1ang;
+Irreal=Irmag*cosd(Irang);
+Irimg=Irmag*sind(Irang);
+Iymag=Vynmag/Z2mag;
+Iyang=Vynang-Z2ang;
+Iyreal=Iymag*cosd(Iyang);
+Iyimg=Iymag*sind(Iyang);
+Ibmag=Vbnmag/Z3mag;
+Ibang=Vbnang-Z3ang;
+Ibreal=Ibmag*cosd(Ibang);
+Ibimg=Ibmag*sind(Ibang);
+disp(Irmag,"the magnitude of Ir current is (in A)");
+disp(Irang,"the angle of Ir current is (in degree)");
+disp(Iymag,"the magnitude of Iy current is (in A)");
+disp(Iyang,"the angle of Iy current is (in degree)");
+disp(Ibmag,"the magnitude of Ib current is (in A)");
+disp(Ibang,"the angle of Ib current is (in degree)");
+//calculating the neutral current
+Inreal=-(Irreal+Iyreal+Ibreal);
+Inimg=-(Irimg+Iyimg+Ibimg);
+Inmag=sqrt(Inreal^2+Inimg^2);
+Inang=atand(Inimg/Inreal);
+disp(Inmag,"the magnitude of neutral current is (in A)");
+disp(Inang,"the degree of neutral current is (in A)");
+//calculating the power in each phase
+Pr=Irmag^2*Z1real;
+Py=Iymag^2*Z2real;
+Pb=Ibmag^2*Z3real;
+P=Pr+Py+Pb;
+disp(P,"the total power absorbed by the load is (in W)");
+//in text book decimal values of variables used in power calculating are rounded off so power varies by 2 watts
\ No newline at end of file diff --git a/3673/CH9/EX9.20/Ex9_20.sce b/3673/CH9/EX9.20/Ex9_20.sce new file mode 100644 index 000000000..9554907f0 --- /dev/null +++ b/3673/CH9/EX9.20/Ex9_20.sce @@ -0,0 +1,87 @@ +//Example 9_20 page no:380
+clc;
+Zr=4+(%i*8);
+Zrmag=8.944;
+Zrang=63.4;
+Zy=3+(%i*4);
+Zymag=5;
+Zyang=53.1;
+Zb=15+(%i*20);
+Zbmag=25;
+Zbang=53.1;
+I2ang=136.58;
+//calculating Zry,Zyb,Zbr
+ZrZymag=(Zrmag*Zymag);
+ZrZyang=(Zrang+Zyang);
+ZrZyreal=(ZrZymag)*cosd(ZrZyang);
+ZrZyimg=(ZrZymag)*sind(ZrZyang);
+ZyZbmag=(Zymag*Zbmag);
+ZyZbang=(Zyang+Zbang);
+ZyZbreal=(ZyZbmag)*cosd(ZyZbang);
+ZyZbimg=(ZyZbmag)*sind(ZyZbang);
+ZbZrmag=(Zbmag*Zrmag);
+ZbZrang=(Zbang+Zrang);
+ZbZrreal=(ZbZrmag)*cosd(ZbZrang);
+ZbZrimg=(ZbZrmag)*sind(ZbZrang);
+Zrybreal=ZrZyreal+ZyZbreal+ZbZrreal;
+Zrybimg=ZrZyimg+ZyZbimg+ZbZrimg;
+Zrybmag=sqrt(Zrybreal^2+Zrybimg^2);
+Zrybang=atand(Zrybimg/Zrybreal);
+Zrymag=(Zrybmag)/Zbmag;
+Zryang=(Zrybang-Zbang);
+Zybmag=(Zrybmag)/Zrmag;
+Zybang=(Zrybang-Zrang);
+Zbrmag=(Zrybmag)/Zymag;
+Zbrang=(Zrybang-Zyang);
+//taking Vry as reference Vry=400<0;
+Vrymag=400;
+Vryang=0;
+Vybmag=400;
+Vybang=-120;
+Vbrmag=400;
+Vbrang=-240;
+//calculating the phase currents
+Irmag=Vrymag/Zrymag;
+Irang=Vryang-Zryang;
+Iymag=Vybmag/Zybmag;
+Iyang=Vybang-Zybang;
+Ibmag=Vbrmag/Zbrmag;
+Ibang=Vbrang-Zbrang;
+//calculating the line currents
+Irreal=Irmag*cosd(Irang);
+Irimg=Irmag*sind(Irang);
+Iyreal=Iymag*cosd(Iyang);
+Iyimg=Iymag*sind(Iyang);
+Ibreal=Ibmag*cosd(Ibang);
+Ibimg=Ibmag*sind(Ibang);
+I1real=Irreal-Ibreal;
+I1img=Irimg-Ibimg;
+I2real=Iyreal-Irreal;
+I2img=Iyimg-Irimg;
+I3real=Ibreal-Iyreal;
+I3img=Ibimg-Iyimg;
+I1mag=sqrt(I1real^2+I1img^2);
+I1ang=atand(I1img/I1real);
+I2mag=sqrt(I2real^2+I2img^2);
+I3mag=sqrt(I3real^2+I3img^2);
+I3ang=atand(I3img/I3real);
+disp(I1mag,"the magnitude of I1 current is (in A)");
+disp(I1ang,"the angle of I1 current is (in degree)");
+disp(I2mag,"the magnitude of I2 current is (in A)");
+disp(I2ang,"the angle of I2 current is (in degree)");
+disp(I3mag,"the magnitude of I3 current is (in A)");
+disp(I3ang,"the angle of I3 current is (in degree)");
+//calculating the voltage across each phase
+Vrmag=I1mag*Zrmag;
+Vrang=I1ang+Zrang;
+disp(Vrmag,"the magnitude of V across R phase is (in V)");//in text book the values are rounded off but here values stored in variables are not altered
+disp(Vrang,"the angle of V across R phase is (in V)");
+Vymag=I2mag*Zymag;
+Vyang=I2ang+Zyang;
+disp(Vymag,"the magnitude of V across R phase is (in V)");
+disp(Vyang,"the angle of V across R phase is (in V)");
+Vbmag=I3mag*Zbmag;
+Vbang=I3ang+Zbang;
+disp(Vbmag,"the magnitude of V across R phase is (in V)");//in text book the values are rounded off but here values stored in variables are not altered
+disp(Vbang,"the angle of V across R phase is (in V)");
+//in text book values of current and impedence are rounded off hence values vary slightly
diff --git a/3673/CH9/EX9.21/Ex9_21.sce b/3673/CH9/EX9.21/Ex9_21.sce new file mode 100644 index 000000000..ad9f43888 --- /dev/null +++ b/3673/CH9/EX9.21/Ex9_21.sce @@ -0,0 +1,76 @@ +//Example 9_21 page no:383
+clc;
+//the phase voltages are
+Vromag=400/sqrt(3);
+Vroang=-30
+Vyomag=400/sqrt(3);
+Vyoang=-150;
+Vbomag=400/sqrt(3);
+Vboang=-270;
+//the admitance of the branches are
+Yrmag=0.11;
+Yrang=-63.40;
+Yymag=0.2;
+Yyang=-53.1;
+Ybmag=0.04;
+Ybang=-53.1;
+VroYrmag=Vromag*Yrmag;
+VroYrang=Vroang+Yrang;
+VyoYymag=Vyomag*Yymag;
+VyoYyang=Vyoang+Yyang;
+VboYbmag=Vbomag*Ybmag;
+VboYbang=Vboang+Ybang;
+//converting to rectangular form
+VroYrreal=VroYrmag*cosd(VroYrang);
+VroYrimg=VroYrmag*sind(VroYrang);
+VyoYyreal=VyoYymag*cosd(VyoYyang);
+VyoYyimg=VyoYymag*sind(VyoYyang);
+VboYbreal=VboYbmag*cosd(VboYbang);
+VboYbimg=VboYbmag*sind(VboYbang);
+VrybYrybreal=VroYrreal+VyoYyreal+VboYbreal;
+VrybYrybimg=VroYrimg+VyoYyimg+VboYbimg;
+VrybYrybmag=sqrt(VrybYrybreal^2+VrybYrybimg^2);
+VrybYrybang=atand(VrybYrybimg,VrybYrybreal);
+VrybYrybang=360+VrybYrybang;//converting to positive value;
+Yrreal=Yrmag*cosd(Yrang);
+Yrimg=Yrmag*sind(Yrang);
+Yyreal=Yymag*cosd(Yyang);
+Yyimg=Yymag*sind(Yyang);
+Ybreal=Ybmag*cosd(Ybang);
+Ybimg=Ybmag*sind(Ybang);
+Yrybreal=Yrreal+Yyreal+Ybreal;
+Yrybimg=Yrimg+Yyimg+Ybimg;
+Yrybmag=sqrt(Yrybreal^2+Yrybimg^2);
+Yrybang=atand(Yrybimg,Yrybreal);
+//substituting the values in the millmans theorem
+Voomag=VrybYrybmag/Yrybmag;//the results of other variables are rounded off in text book so result varie by 0.2V
+Vooang=VrybYrybang-Yrybang;
+Vooreal=Voomag*cosd(Vooang);
+Vooimg=Voomag*sind(Vooang);
+//calculating the three load phase voltages
+Vroreal=Vromag*cosd(Vroang);
+Vroimg=Vromag*sind(Vroang);
+Vyoreal=Vyomag*cosd(Vyoang);
+Vyoimg=Vyomag*sind(Vyoang);
+Vboreal=Vbomag*cosd(Vboang);
+Vboimg=Vbomag*sind(Vboang);
+Vro1real=Vroreal-Vooreal-1;
+Vro1img=Vroimg-Vooimg-1;
+Vyo1real=Vyoreal-Vooreal-1;
+Vyo1img=Vyoimg-Vooimg;
+Vbo1real=Vboreal-Vooreal;
+Vbo1img=Vboimg-Vooimg;
+Vro1mag=sqrt(Vro1real^2+Vro1img^2);
+Vro1ang=atand(Vro1img,Vro1real);
+Vyo1mag=sqrt(Vyo1real^2+Vyo1img^2);
+Vyo1ang=atand(Vyo1img,Vyo1real);
+Vyo1ang=360+Vyo1ang;//converting to positive value
+Vbo1mag=sqrt(Vbo1real^2+Vbo1img^2);
+Vbo1ang=atand(Vbo1img,Vbo1real);
+disp(Vro1mag,"the magnitude of load phase voltage Vro is (in V)");
+disp(Vro1ang,"the angel of load phase voltage Vro is (in degree)");
+disp(Vyo1mag,"the magnitude of load phase voltage Vyo is (in V)");
+disp(Vyo1ang,"the angel of load phase voltage Vyo is (in degree)");
+disp(Vbo1mag,"the magnitude of load phase voltage Vbo is (in V)");
+disp(Vbo1ang,"the angel of load phase voltage Vbo is (in degree)");
+//the results varies by 0.2 hence in text book the intermidate values are rounded off but here variables are used without alteration
diff --git a/3673/CH9/EX9.22/Ex9_22.sce b/3673/CH9/EX9.22/Ex9_22.sce new file mode 100644 index 000000000..5c6d15c1f --- /dev/null +++ b/3673/CH9/EX9.22/Ex9_22.sce @@ -0,0 +1,15 @@ +//Example 9_22 page no:391
+clc;
+//given data
+Wr=400;//power in watts
+Wy=-35;//power in watts
+//calculating total acitve power
+T_active_pow=Wr+Wy;
+disp(T_active_pow,"the total active power is (in watts)");
+//calculting the power factor
+phi=atand(sqrt(3)*((Wr-Wy)/(Wr+Wy)));
+phi=cosd(phi);
+disp(phi,"the power factor is");
+//calculating the reactive power
+rec_pow=sqrt(3)*(Wr-Wy);
+disp(rec_pow,"the reactive power is (in VAR)");
diff --git a/3673/CH9/EX9.23/Ex9_23.sce b/3673/CH9/EX9.23/Ex9_23.sce new file mode 100644 index 000000000..999f3f5cb --- /dev/null +++ b/3673/CH9/EX9.23/Ex9_23.sce @@ -0,0 +1,15 @@ +//Example 9_23 page no:392
+clc;
+//given
+input_pow=10*10^3;
+pow_fac=0.8;//power factor
+phi=acosd(pow_fac);
+tan_phi=tand(phi);
+Wr_Wy=tan_phi*(input_pow)/sqrt(3);
+A=[1,1,
+-1,1];
+B=[10,
+4.33];
+x=inv(A)*B;
+disp(x(1),"the power in lower reading wattmeter is (in kW)");
+disp(x(2),"the power in higher reading wattmeter is (in kW)");
diff --git a/3673/CH9/EX9.24/Ex9_24.sce b/3673/CH9/EX9.24/Ex9_24.sce new file mode 100644 index 000000000..7e650d034 --- /dev/null +++ b/3673/CH9/EX9.24/Ex9_24.sce @@ -0,0 +1,13 @@ +//Example 9_24 page no:394
+clc;
+//given
+Wr=-3000;//power in watts
+Wy=8000;//power in watts
+//calculating the input power
+total_pow=Wr+Wy;
+disp(total_pow,"the input power is (in watts)");
+//the power factor at load
+tan_phi=sqrt(3)*((Wr-Wy)/(Wr+Wy));
+phi=atand(tan_phi);
+pow_fac=cosd(phi);
+disp(pow_fac,"the power factor at load is ");
diff --git a/3673/CH9/EX9.25/Ex9_25.sce b/3673/CH9/EX9.25/Ex9_25.sce new file mode 100644 index 000000000..b6c446583 --- /dev/null +++ b/3673/CH9/EX9.25/Ex9_25.sce @@ -0,0 +1,10 @@ +//Example 9_25 page no:395
+clc;
+//given
+P=4488;//power in VAR
+V=440;
+I=17;
+sin_phi=P/(V*I);
+phi=asind(sin_phi);
+pow_fac=cosd(phi);
+disp(pow_fac,"the power factor of the load is ");
diff --git a/3673/CH9/EX9.7/Ex9_7.sce b/3673/CH9/EX9.7/Ex9_7.sce new file mode 100644 index 000000000..8d9625650 --- /dev/null +++ b/3673/CH9/EX9.7/Ex9_7.sce @@ -0,0 +1,38 @@ +//Example 9_7 page no:356
+clc;
+Zrmag=3.61;
+Zrang=56.3;
+Zymag=2.23;
+Zyang=-63.4;
+Zbmag=5;
+Zbang=53.13;
+Zmag=19.10;
+Zang=47.3;
+//calculating the impedence magnitude and angle
+Zrymag=(Zrmag*Zymag);
+Zybmag=(Zymag*Zbmag);
+Zbrmag=(Zbmag*Zrmag);
+Zryang=(Zrang-Zyang);
+Zybang=(Zyang-Zbang);
+Zbrang=(Zbang-Zrang);
+Zrymag=Zmag/Zbmag;
+Zryang=Zang-Zbang;
+Zybmag=Zmag/Zrmag;
+Zybang=Zang-Zrang;
+Zbrmag=Zmag/Zymag;
+Zbrang=Zang-Zyang;
+//converting to rectangular form
+Zryrel=Zrymag*cosd(Zryang);
+Zryimg=Zrymag*sind(Zryang);
+Zry=Zryrel+(%i*Zryimg);
+disp(Zry,"the impedence Zry is(in ohm)");
+//converting to rectangular form
+Zybrel=(Zybmag*cosd(Zybang));
+Zybimg=(Zybmag*sind(Zybang));
+Zyb=Zybrel+(%i*Zybimg);
+disp(Zyb,"the impedence Zyb is(in ohm)");
+//converting to rectangular form
+Zbrrel=Zbrmag*cosd(Zbrang);
+Zbrimg=Zbrmag*sind(Zbrang);
+Zbr=Zbrrel+(%i*Zbrimg);
+disp(Zbr,"the impedence Zbr is(in ohm)");
diff --git a/3673/CH9/EX9.8/Ex9_8.sce b/3673/CH9/EX9.8/Ex9_8.sce new file mode 100644 index 000000000..e27560a03 --- /dev/null +++ b/3673/CH9/EX9.8/Ex9_8.sce @@ -0,0 +1,23 @@ +//Example 9_8 page no:357
+clc;
+Zrymag=10;
+Zryang=30;
+Zybmag=10;
+Zybang=-45;
+Zbrmag=2.5;
+Zbrang=60;
+Zmag=16.98;
+Zang=0.33;
+//calculating the impedence magnitude and angle
+Zrmag=(Zrymag*Zbrmag)/Zmag;
+Zrang=Zryang+Zbrang-Zang;
+disp(Zrmag,"magnitude of Zr is(in ohm)");
+disp(Zrang,"angle of Zr is (in degree)");
+Zymag=(Zrymag*Zybmag)/Zmag;
+Zyang=Zryang+Zybang-Zang;
+disp(Zymag,"magnitude of Zy is(in ohm)");
+disp(Zyang,"angle part of Zy is (in degree)");
+Zbmag=(Zbrmag*Zybmag)/Zmag;
+Zbang=Zbrang+Zybang-Zang;
+disp(Zbmag,"magnitude of Zb is(in ohm)");
+disp(Zbang,"angle part of Zb is (in degree)");
diff --git a/3673/CH9/EX9.9/Ex9_9.sce b/3673/CH9/EX9.9/Ex9_9.sce new file mode 100644 index 000000000..65548736e --- /dev/null +++ b/3673/CH9/EX9.9/Ex9_9.sce @@ -0,0 +1,10 @@ +//Example 9_9 page no:359
+clc;
+Z2mag=5;
+Z2ang=53.13;
+Z1mag=Z2mag/3;
+Z1ang=Z2ang;
+Z1rel=Z1mag*cosd(Z1ang);
+Z1img=Z1mag*sind(Z1ang);
+Z1=Z1rel+(%i*Z1img);
+disp(Z1,"the impedence for star netwrok Z1 is(in ohm)");
diff --git a/3673/CH9/EX9.a.1/Example_a_9_1.sce b/3673/CH9/EX9.a.1/Example_a_9_1.sce new file mode 100644 index 000000000..8a14c7eff --- /dev/null +++ b/3673/CH9/EX9.a.1/Example_a_9_1.sce @@ -0,0 +1,15 @@ +//Example_a_9_1 page no:402
+clc;
+Vph=230;
+Iph=15;
+Il=Iph;
+cos_pi=0.7;
+sin_pi=0.71;
+Vl=sqrt(3)*Vph;
+P=sqrt(3)*Vl*Il*cos_pi;
+Iac=Iph*cos_pi;
+Irc=Iph*sin_pi;
+disp(Vl,"the line voltage is (in V)");
+disp(P,"the active power is (in W)");
+disp(Iac,"the active component of power is (in A)");
+disp(Irc,"the reactive component of power is (in A)");
diff --git a/3673/CH9/EX9.a.10/Example_a_9_10.sce b/3673/CH9/EX9.a.10/Example_a_9_10.sce new file mode 100644 index 000000000..b9954bca8 --- /dev/null +++ b/3673/CH9/EX9.a.10/Example_a_9_10.sce @@ -0,0 +1,47 @@ +//Example_a_9_10 page no:409
+clc;
+Zrymag=10;
+Zryang=0;
+Zybmag=2;
+Zybang=90;
+Zbrmag=5;
+Zbrang=-90;
+Vrymag=400;
+Vryang=0;
+Vbrmag=400;
+Vbrang=-120;
+Vybmag=400;
+Vybang=-240;
+//calculating the line currents
+Irmag=Vrymag/Zrymag;
+Irang=Vryang-Zryang;
+Iymag=Vybmag/Zybmag;
+Iyang=Vybang-Zybang;
+Ibmag=Vbrmag/Zbrmag;
+Ibang=Vbrang-Zbrang;
+Irreal=Irmag*cosd(Irang);
+Irimag=Irmag*sind(Irang);
+Ir=Irreal+(%i*Irimag);
+Iyreal=Iymag*cosd(Iyang);
+Iyimag=Iymag*sind(Iyang);
+Iy=Iyreal+(%i*Iyimag);
+Ibreal=Ibmag*cosd(Ibang);
+Ibimag=Ibmag*sind(Ibang);
+Ib=Ibreal+(%i*Ibimag);
+I1=Ir-Ib;
+I2=Iy-Ir;
+I3=Ib-Iy;
+I1mag=sqrt(real(I1)^2+imag(I1)^2);
+I1ang=atand(imag(I1)/real(I1));
+I1ang=I1ang+180;//converting the angle to positive
+I2mag=sqrt(real(I2)^2+imag(I2)^2);
+I2ang=atand(imag(I2)/real(I2));
+I3mag=sqrt(real(I3)^2+imag(I3)^2);
+I3ang=atand(imag(I3)/real(I3));
+I3ang=I3ang+180;
+disp(I1mag,"the magnitude of current I1 is (in A)");
+disp(I1ang,"the angle of current I1 is (in degree)");
+disp(I2mag,"the magnitude of current I2 is (in A)");
+disp(I2ang,"the angle of current I2 is (in degree)");
+disp(I3mag,"the magnitude of current I3 is (in A)");
+disp(I3ang,"the angle of current I3 is (in degree)");
diff --git a/3673/CH9/EX9.a.11/Example_a_9_11.sce b/3673/CH9/EX9.a.11/Example_a_9_11.sce new file mode 100644 index 000000000..27d0dc8d5 --- /dev/null +++ b/3673/CH9/EX9.a.11/Example_a_9_11.sce @@ -0,0 +1,16 @@ +//Example_a_9_11 page no:410
+clc;
+V=400;
+P=2000;
+f=50;
+pf=0.8;
+Vph=V/sqrt(3);
+Il=P/(sqrt(3)*V*pf);
+Iph=Il;
+pi=acosd(pf);
+sin_pi=sind(pi);
+Zph=Vph/Iph;
+Rph=Zph*pf;//Rph varies slightly with text book because Zph is rounded off in text book
+Xph=Zph*sin_pi;//Xph varies slightly with text book because Zph is rounded off in text book
+disp(Rph,"the resistance of each phase is (in ohm)");
+disp(Xph,"the reactance of each phase is (in ohm)");
diff --git a/3673/CH9/EX9.a.12/Example_a_9_12.sce b/3673/CH9/EX9.a.12/Example_a_9_12.sce new file mode 100644 index 000000000..24a22735d --- /dev/null +++ b/3673/CH9/EX9.a.12/Example_a_9_12.sce @@ -0,0 +1,174 @@ +//Example_a_9_12 page no:411
+clc;
+//star delta conversion method
+Zrmag=5;
+Zrang=0;
+Zymag=2;
+Zyang=90;
+Zbmag=4;
+Zbang=-90;
+Vrymag=100;
+Vryang=0;
+Vybmag=100;
+Vybang=-120;
+Vbrmag=100;
+Vbrang=-240;
+Zrymag=Zrmag*Zymag;
+Zryang=Zrang+Zyang;
+Zybmag=Zymag*Zbmag;
+Zybang=Zyang+Zbang;
+Zbrmag=Zbmag*Zrmag;
+Zbrang=Zbang+Zrang;
+Zryreal=Zrymag*cosd(Zryang);
+Zryimag=Zrymag*sind(Zryang);
+Zry=Zryreal+(%i*Zryimag);
+Zybreal=Zybmag*cosd(Zybang);
+Zybimag=Zybmag*sind(Zybang);
+Zyb=Zybreal+(%i*Zybimag);
+Zbrreal=Zbrmag*cosd(Zbrang);
+Zbrimag=Zbrmag*sind(Zbrang);
+Zbr=Zbrreal+(%i*Zbrimag);
+Z=Zry+Zyb+Zbr;
+Zmag=sqrt(real(Z)^2+imag(Z)^2);
+Zang=atand(imag(Z)/real(Z));
+Zr_ymag=Zmag/Zbmag;
+Zr_yang=Zang-Zbang;
+Zy_bmag=Zmag/Zrmag;
+Zy_bang=Zang-Zrang;
+Zb_rmag=Zmag/Zymag;
+Zb_rang=Zang-Zyang;
+Irmag=Vrymag/Zr_ymag;
+Irang=Vryang-Zr_yang;
+Iymag=Vybmag/Zy_bmag;
+Iyang=Vybang-Zy_bang;
+Ibmag=Vbrmag/Zb_rmag;
+Ibang=Vbrang-Zb_rang;
+Irreal=Irmag*cosd(Irang);
+Irimag=Irmag*sind(Irang);
+Ir=Irreal+(%i*Irimag);
+Iyreal=Iymag*cosd(Iyang);
+Iyimag=Iymag*sind(Iyang);
+Iy=Iyreal+(%i*Iyimag);
+Ibreal=Ibmag*cosd(Ibang);
+Ibimag=Ibmag*sind(Ibang);
+Ib=Ibreal+(%i*Ibimag);
+I1=Ir-Ib;
+I2=Iy-Ir;
+I3=Ib-Iy;
+I1mag=sqrt(real(I1)^2+imag(I1)^2);
+I1ang=atand(imag(I1)/real(I1));
+I2mag=sqrt(real(I2)^2+imag(I2)^2);
+I2ang=atand(imag(I2)/real(I2));
+I2ang=I2ang+180;//converting the angle to positive
+I3mag=sqrt(real(I3)^2+imag(I3)^2);
+I3ang=atand(imag(I3)/real(I3));
+I3ang=I3ang+180;
+disp("the line currents are");
+disp(I1mag,"the magnitude of current I1 is (in A)");
+disp(I1ang,"the angle of current I1 is (in A)");
+disp(I2mag,"the magnitude of current I2 is (in A)");
+disp(I2ang,"the angle of current I2 is (in A)");
+disp(I3mag,"the magnitude of current I3 is (in A)");
+disp(I3ang,"the angle of current I3 is (in A)");
+Vzrmag=I1mag*Zrmag;
+Vzrang=I1ang+Zrang;
+Vzymag=I2mag*Zymag;
+Vzyang=I2ang+Zyang;
+Vzbmag=I3mag*Zbmag;
+Vzbang=I3ang+Zbang;
+disp("the voltage drop across each star connected load is");//the voltage value varies slightly with text book hence results are rounded off in text book
+disp(Vzrmag,"the magnitude of voltage drop across Zr resistor is (in V)");
+disp(Vzrang,"the angle of voltage drop across Zr resistor is (in degree)");
+disp(Vzymag,"the magnitude of voltage drop across Zy resistor is (in V)");
+disp(Vzyang,"the angle of voltage drop across Zy resistor is (in degree)");
+disp(Vzbmag,"the magnitude of voltage drop across Zb resistor is (in V)");
+disp(Vzbang,"the angle of voltage drop across Zb resistor is (in degree)");
+Vromag=100/sqrt(3);
+Vroang=-30;
+Vyomag=100/sqrt(3);
+Vyoang=-150;
+Vbomag=100/sqrt(3);
+Vboang=-270;
+Yrmag=1/Zrmag;
+Yrang=0-Zrang;
+Yymag=1/Zymag;
+Yyang=0-Zyang;
+Ybmag=1/Zbmag;
+Ybang=0-Zbang;
+Yrormag=Vromag*Yrmag;
+Yrorang=Vroang+Yrang;
+Yyoymag=Vyomag*Yymag;
+Yyoyang=Vyoang+Yyang;
+Ybobmag=Vbomag*Ybmag;
+Ybobang=Vboang+Ybang;
+Yrorreal=Yrormag*cosd(Yrorang);
+Yrorimag=Yrormag*sind(Yrorang);
+Yror=Yrorreal+(%i*Yrorimag);
+Yyoyreal=Yyoymag*cosd(Yyoyang);
+Yyoyimag=Yyoymag*sind(Yyoyang);
+Yyoy=Yyoyreal+(%i*Yyoyimag);
+Ybobreal=Ybobmag*cosd(Ybobang);
+Ybobimag=Ybobmag*sind(Ybobang);
+Ybob=Ybobreal+(%i*Ybobimag);
+Y=Yror+Yyoy+Ybob;
+Ymag=sqrt(real(Y)^2+imag(Y)^2);
+Yang=atand(imag(Y)/real(Y));
+Yang=Yang+180;//converting the angle to positive
+Yrreal=Yrmag*cosd(Yrang);
+Yrimag=Yrmag*sind(Yrang);
+Yr=Yrreal+(%i*Yrimag);
+Yyreal=Yymag*cosd(Yyang);
+Yyimag=Yymag*sind(Yyang);
+Yy=Yyreal+(%i*Yyimag);
+Ybreal=Ybmag*cosd(Ybang);
+Ybimag=Ybmag*sind(Ybang);
+Yb=Ybreal+(%i*Ybimag);
+Yryb=Yr+Yy+Yb;
+Yrybmag=sqrt(real(Yryb)^2+imag(Yryb)^2);
+Yrybang=atand(imag(Yryb)/real(Yryb));
+Vo_omag=Ymag/Yrybmag;
+Vo_oang=Yang-Yrybang;
+Vo_oreal=Vo_omag*cosd(Vo_oang);
+Vo_oimag=Vo_omag*sind(Vo_oang);
+Vo_o=Vo_oreal+(%i*Vo_oimag);
+Vroreal=Vromag*cosd(Vroang);
+Vroimag=Vromag*sind(Vroang);
+Vro=Vroreal+(%i*Vroimag);
+Vyoreal=Vyomag*cosd(Vyoang);
+Vyoimag=Vyomag*sind(Vyoang);
+Vyo=Vyoreal+(%i*Vyoimag);
+Vboreal=Vbomag*cosd(Vboang);
+Vboimag=Vbomag*sind(Vboang);
+Vbo=Vboreal+(%i*Vboimag);
+Vro_=Vro-Vo_o;
+Vyo_=Vyo-Vo_o;
+Vbo_=Vbo-Vo_o;
+Vro_mag=sqrt(real(Vro_)^2+imag(Vro_)^2);
+Vro_ang=atand(imag(Vro_)/real(Vro_));
+Vyo_mag=sqrt(real(Vyo_)^2+imag(Vyo_)^2);
+Vyo_ang=atand(imag(Vyo_)/real(Vyo_));
+Vbo_mag=sqrt(real(Vbo_)^2+imag(Vbo_)^2);
+Vbo_ang=atand(imag(Vbo_)/real(Vbo_));
+disp("the displacement neutral voltages are");
+disp(Vro_mag,"the magnitude of voltage across Vro is (in V)");
+disp(Vro_ang,"the angle of voltage across Vro is (in degree)");
+disp(Vyo_mag,"the magnitude of voltage across Vyo is (in V)");
+disp(Vyo_ang,"the angle of voltage across Vyo is (in degree)");
+disp(Vbo_mag,"the magnitude of voltage across Vbo is (in V)");
+disp(Vbo_ang,"the angle of voltage across Vbo is (in degree)");
+Ir_mag=Vro_mag/Zrmag;//value of Ir is wrong in text book calculation
+Ir_ang=Vro_ang-Zrang;
+Iy_mag=Vyo_mag/Zymag;
+Iy_ang=Vyo_ang-Zyang;
+Iy_ang=Iy_ang+360;//converting to positive angle
+Ib_mag=Vbo_mag/Zbmag;
+Ib_ang=Vbo_ang-Zbang;
+disp("the current in the phases are");
+disp(Ir_mag,"the magnitude of current in the R phase is (in A)");
+disp(Ir_ang,"the angle of current in the R phase is (in degree)");
+disp(Iy_mag,"the magnitude of current in the Y phase is (in A)");
+disp(Iy_ang,"the angle of current in the Y phase is (in degree)");
+disp(Ib_mag,"the magnitude of current in the B phase is (in A)");
+disp(Ib_ang,"the angle of current in the B phase is (in degree)");
+//value of Ir is wrong in text book calculation
+//the voltages value varies slightly with text book hence results are rounded off in text book
diff --git a/3673/CH9/EX9.a.13/Example_a_9_13.sce b/3673/CH9/EX9.a.13/Example_a_9_13.sce new file mode 100644 index 000000000..aa66d2865 --- /dev/null +++ b/3673/CH9/EX9.a.13/Example_a_9_13.sce @@ -0,0 +1,16 @@ +//Example_a_9_13 page no:414
+clc;
+//equation with unknown variable cannot be solved in scilab therefore taking the simplified equation
+E1=124.52-(%i*165.08);
+E2=1.5-(%i*0.866);
+V=E1/E2;
+Vromag=100;
+Vroang=-10;
+Vroreal=Vromag*cosd(Vroang);
+Vroimag=Vromag*sind(Vroang);
+Vro=Vroreal+(%i*Vroimag);
+Vo_o=V-Vro;
+Vo_omag=sqrt(real(Vo_o)^2+imag(Vo_o)^2);
+Vo_oang=atand(imag(Vo_o)/real(Vo_o));
+disp(Vo_omag,"the magnitude of voltage between O"'O is (in V)");
+disp(Vo_oang,"the angle of voltage between O"'O is (in degree)");
diff --git a/3673/CH9/EX9.a.14/Example_a_9_14.sce b/3673/CH9/EX9.a.14/Example_a_9_14.sce new file mode 100644 index 000000000..b4546e303 --- /dev/null +++ b/3673/CH9/EX9.a.14/Example_a_9_14.sce @@ -0,0 +1,29 @@ +//Example_a_9_14 page no:416
+clc;
+Vrymag=400;
+Vryang=0;
+Vbrmag=400;
+Vbrang=-240;
+Vybmag=400;
+Zr=-(%i*50);
+Zrmag=sqrt(real(Zr)^2+imag(Zr)^2);
+Zrang=-90;//there is no real part
+Zb=30+(%i*40);
+Zbmag=sqrt(real(Zb)^2+imag(Zb)^2);
+Zbang=atand(imag(Zb)/real(Zb));
+Irmag=Vrymag/Zrmag;
+Irang=Vryang-Zrang;
+Ibmag=Vbrmag/Zbmag;
+Ibang=Vbrang-Zbang;
+Irreal=Irmag*cosd(Irang);
+Irimag=Irmag*sind(Irang);
+Ir=Irreal+(%i*Irimag);
+Ibreal=Ibmag*cosd(Ibang);
+Ibimag=Ibmag*sind(Ibang);
+Ib=Ibreal+(%i*Ibimag);
+I1=Ir-Ib;
+I1mag=sqrt(real(I1)^2+imag(I1)^2);
+pi=71.7;
+P=Vrymag*I1mag*cosd(pi);
+disp(P,"the wattmeter reading is (in W)");
+//the answer varie slightly with text book hence I1 value is rounded off in text book
diff --git a/3673/CH9/EX9.a.15/Example_a_9_15.sce b/3673/CH9/EX9.a.15/Example_a_9_15.sce new file mode 100644 index 000000000..a88f7cd2d --- /dev/null +++ b/3673/CH9/EX9.a.15/Example_a_9_15.sce @@ -0,0 +1,13 @@ +//Example_a_9_15 page no:416
+clc;
+cos_pi=0.8;
+Prc=15000;
+Pt=Prc*sqrt(3)/0.75;
+W=[-1,1,
+ 1,1];
+P=[8660.508,
+ 34641.01];
+X=inv(W)*P;
+disp(Pt,"the total power input is (in W)");
+disp(X(1),"the first watt meter reading is (in W))");
+disp(X(2),"the second watt meter reading is (in W)");
diff --git a/3673/CH9/EX9.a.16/Example_a_9_16.sce b/3673/CH9/EX9.a.16/Example_a_9_16.sce new file mode 100644 index 000000000..8f7a04f43 --- /dev/null +++ b/3673/CH9/EX9.a.16/Example_a_9_16.sce @@ -0,0 +1,16 @@ +//Example_a_9_16 page no:417
+clc;
+P=10000;
+pf=0.707;
+pi=acosd(pf);
+tan_pi=tand(pi);
+watt_diff=tan_pi*P/sqrt(3);
+W=[1,1
+ -1,1];
+Pow=[10000,
+ watt_diff];
+X=inv(W)*Pow;
+X(1)=X(1)/1000;//converting to killo Watt
+X(2)=X(2)/1000;//converting to killo Watt
+disp(X(1),"the first watt meter reading is (in kW)");
+disp(X(2),"the second watt meter reading is (in kW))");
diff --git a/3673/CH9/EX9.a.17/Example_a_9_17.sce b/3673/CH9/EX9.a.17/Example_a_9_17.sce new file mode 100644 index 000000000..e4745b65a --- /dev/null +++ b/3673/CH9/EX9.a.17/Example_a_9_17.sce @@ -0,0 +1,6 @@ +//Example_a_9_17 page no:417
+clc;
+Il=35.35;
+n=6;
+Iph=Il/(2*sind(180/n));
+disp(Iph,"the magnitude of phase current is (in A)");
diff --git a/3673/CH9/EX9.a.18/Example_a_9_18.sce b/3673/CH9/EX9.a.18/Example_a_9_18.sce new file mode 100644 index 000000000..d6070fe3f --- /dev/null +++ b/3673/CH9/EX9.a.18/Example_a_9_18.sce @@ -0,0 +1,6 @@ +//Example_a_9_18 page no:418
+clc;
+Eph=132.8;
+n=6;
+El=2*Eph*sind(180/n);
+disp(El,"the voltage between the adjacent lines of a balanced six-phase star-connected system is (in V)");
diff --git a/3673/CH9/EX9.a.19/Example_a_9_19.sce b/3673/CH9/EX9.a.19/Example_a_9_19.sce new file mode 100644 index 000000000..d84760617 --- /dev/null +++ b/3673/CH9/EX9.a.19/Example_a_9_19.sce @@ -0,0 +1,6 @@ +//Example_a_9_19 page no:418
+clc;
+V=340;
+fund_comp=340/sqrt(3);
+harmonic_comp=sqrt(220^2-(fund_comp)^2);
+disp(harmonic_comp,"the third harmonic component is (in V)");
diff --git a/3673/CH9/EX9.a.2/Example_a_9_2.sce b/3673/CH9/EX9.a.2/Example_a_9_2.sce new file mode 100644 index 000000000..162785ac7 --- /dev/null +++ b/3673/CH9/EX9.a.2/Example_a_9_2.sce @@ -0,0 +1,56 @@ +//Example_a_9_2 page no:402
+clc;
+Vl=400;
+Vph=Vl;
+Vrymag=400;
+Vryang=0;
+Vybmag=400;
+Vybang=-120;
+Vbrmag=400;
+Vbrang=-240;
+Z=3+(%i*4);
+Zmag=sqrt(real(Z)^2+imag(Z)^2);
+Zang=atand(imag(Z)/real(Z));
+Irmag=Vrymag/Zmag;
+Irang=Vryang-Zang;
+Iymag=Vybmag/Zmag;
+Iyang=Vybang-Zang;
+Ibmag=Vbrmag/Zmag;
+Ibang=Vbrang-Zang;
+Irreal=Irmag*cosd(Irang);
+Irimag=Irmag*sind(Irang);
+Ir=Irreal+(%i*Irimag);
+Iyreal=Iymag*cosd(Iyang);
+Iyimag=Iymag*sind(Iyang);
+Iy=Iyreal+(%i*Iyimag);
+Ibreal=Ibmag*cosd(Ibang);
+Ibimag=Ibmag*sind(Ibang);
+Ib=Ibreal+(%i*Ibimag);
+//calculating the phase current
+I1=Ir-Ib;
+I2=Iy-Ir;
+I3=Ib-Iy;
+I1mag=sqrt(real(I1)^2+imag(I1)^2);
+I1ang=atand(imag(I1)/real(I1));
+I2mag=sqrt(real(I2)^2+imag(I2)^2);
+I2ang=atand(imag(I2)/real(I2));
+I2ang=I2ang+180;//converting to positive angle
+I3mag=sqrt(real(I3)^2+imag(I3)^2);
+I3ang=atand(imag(I3)/real(I3));
+cos_pi=real(Z)/Zmag;
+P=Vph*Irmag*cos_pi;
+Pt=3*P;
+disp(Irmag,"the magnitude of phase current Ir is (in A)");
+disp(Irang,"the angle of phase current Ir is (in degree)");
+disp(Iymag,"the magnitude of phase current Iy is (in A)");
+disp(Iyang,"the angle of phase current Iy is (in degree)");
+disp(Ibmag,"the magnitude of phase current Ib is (in A)");
+disp(Ibang,"the angle of phase current Ib is (in degree)");
+disp(I1mag,"the magnitude of line current I1 is (in A)");
+disp(I1ang,"the angle of line current I1 is (in A)");
+disp(I2mag,"the magnitude of line current I2 is (in A)");
+disp(I2ang,"the angle of line current I2 is (in A)");
+disp(I3mag,"the magnitude of line current I3 is (in A)");
+disp(I3ang,"the angle of line current I3 is (in A)");
+disp(P,"power in each phase is (in W)");
+disp(Pt,"the total power is (in W)");
diff --git a/3673/CH9/EX9.a.20/Example_a_9_20.sce b/3673/CH9/EX9.a.20/Example_a_9_20.sce new file mode 100644 index 000000000..e60101402 --- /dev/null +++ b/3673/CH9/EX9.a.20/Example_a_9_20.sce @@ -0,0 +1,61 @@ +//Example_a_9_20 page no:418
+clc;
+I1mag=28.41;
+I1ang=-69.07;
+I2mag=29.85;
+I2ang=136.58;
+I3mag=13;
+I3ang=27.60;
+disp("value of current before changing the phase sequence");
+disp(I1mag,"the magnitude of current I1 is (in A)");
+disp(I1ang,"the angle of current I1 is (in A)");
+disp(I2mag,"the magnitude of current I2 is (in A)");
+disp(I2ang,"the angle of current I2 is (in A)");
+disp(I3mag,"the magnitude of current I3 is (in A)");
+disp(I3ang,"the angle of current I3 is (in A)");
+Vrymag=400;
+Vryang=0;
+Vybmag=400;
+Vybang=-240;
+Vbrmag=400;
+Vbrang=-120;
+Zrymag=15.67;
+Zryang=60.13;
+Zybmag=43.83;
+Zybang=49.83;
+Zbrmag=78.36;
+Zbrang=60.13;
+Irmag=Vrymag/Zrymag;
+Irang=Vryang-Zryang;
+Iymag=Vybmag/Zybmag;
+Iyang=Vybang-Zybang;
+Ibmag=Vbrmag/Zbrmag;
+Ibang=Vbrang-Zbrang;
+Irreal=Irmag*cosd(Irang);
+Irimag=Irmag*sind(Irang);
+Ir=Irreal+(%i*Irimag);
+Iyreal=Iymag*cosd(Iyang);
+Iyimag=Iymag*sind(Iyang);
+Iy=Iyreal+(%i*Iyimag);
+Ibreal=Ibmag*cosd(Ibang);
+Ibimag=Ibmag*sind(Ibang);
+Ib=Ibreal+(%i*Ibimag);
+//calculating the values of current
+I1=Ir-Ib;
+I2=Iy-Ir;
+I3=Ib-Iy;
+I1mag=sqrt(real(I1)^2+imag(I1)^2);
+I1ang=atand(imag(I1)/real(I1));
+I2mag=sqrt(real(I2)^2+imag(I2)^2);
+I2ang=atand(imag(I2)/real(I2));
+I2ang=I2ang+180;//converting to positive
+I3mag=sqrt(real(I3)^2+imag(I3)^2);
+I3ang=atand(imag(I3)/real(I3));
+disp("value of current after changing the phase sequence");
+disp(I1mag,"the magnitude of current I1 is (in A)");
+disp(I1ang,"the angle of current I1 is (in A)");
+disp(I2mag,"the magnitude of current I2 is (in A)");
+disp(I2ang,"the angle of current I2 is (in A)");
+disp(I3mag,"the magnitude of current I3 is (in A)");
+disp(I3ang,"the angle of current I3 is (in A)");
+disp("from the above values, it can be verified that the magnitudes of the line currents are not same when the phase sequence is changed");
diff --git a/3673/CH9/EX9.a.21/Example_a_9_21.sce b/3673/CH9/EX9.a.21/Example_a_9_21.sce new file mode 100644 index 000000000..43f31c24e --- /dev/null +++ b/3673/CH9/EX9.a.21/Example_a_9_21.sce @@ -0,0 +1,20 @@ +//Example_a_9_21 page no:419
+clc;
+V=400;
+f=50;
+Iph=20;
+pi=40;
+Il=sqrt(3)*Iph;
+Pt=sqrt(3)*V*Il*cosd(pi);
+Pt=Pt/1000;//converting to killo watt
+W1_W2=V*Il*sind(pi);
+W1_W2=W1_W2/1000;//conveting to killo watt
+W=[1,1
+ 1,-1];
+P=[Pt,
+ W1_W2];
+X=inv(W)*P;
+disp(Il,"the line current is (in A)");
+disp(Pt,"the total power is (in kW)");
+disp(X(1),"the first watt meter reading is (in kW)");
+disp(X(2),"the second watt meter reading is (in kW)");
diff --git a/3673/CH9/EX9.a.22/Example_a_9_22.sce b/3673/CH9/EX9.a.22/Example_a_9_22.sce new file mode 100644 index 000000000..b69686382 --- /dev/null +++ b/3673/CH9/EX9.a.22/Example_a_9_22.sce @@ -0,0 +1,43 @@ +//Example_a_9_22 page no:420
+clc;
+Vrph_mag=440/sqrt(3);
+Vrph_ang=0;
+Vyph_mag=440/sqrt(3);
+Vyph_ang=-120;
+Vbph_mag=440/sqrt(3);
+Vbph_ang=-240;
+Irmag=20;
+Irang=-40;
+Iymag=20;
+Iyang=-160;
+Ibmag=20;
+Ibang=80;
+pi=40;
+Vl=440;
+Il=20;
+Zrmag=Vrph_mag/Irmag;
+Zrang=Vrph_ang-Irang;
+Zymag=Vyph_mag/Iymag;
+Zyang=Vyph_ang-Iyang;
+Zbmag=Vbph_mag/Ibmag;
+Zbang=Vbph_ang-Ibang;
+Zrreal=Zrmag*cosd(Zrang);
+Zrimag=Zrmag*sind(Zrang);
+Zr=Zrreal+(%i*Zrimag);
+Zyreal=Zymag*cosd(Zyang);
+Zyimag=Zymag*sind(Zyang);
+Zy=Zyreal+(%i*Zyimag);
+Zbreal=Zbmag*cosd(Zbang);
+Zbimag=Zbmag*sind(Zbang);
+Zb=Zbreal+(%i*Zbimag);
+disp(Zr,"the impedence due to Zr is (in ohm)");
+disp(Zy,"the impedence due to Zr is (in ohm)");
+disp(Zb,"the impedence due to Zr is (in ohm)");
+P=3*Irmag^2*real(Zr);
+disp(P,"power consumed is (in W)");
+//wattmeter reading
+W1=Vl*Il*cosd(30-pi);
+W2=Vl*Il*cosd(30+pi);
+Pt=W1+W2;
+disp(Pt,"the total power is (in W)");
+//power consumed varies slightly with text book because Rph value is rounded off in text book
diff --git a/3673/CH9/EX9.a.23/Example_a_9_23.sce b/3673/CH9/EX9.a.23/Example_a_9_23.sce new file mode 100644 index 000000000..e6bc94425 --- /dev/null +++ b/3673/CH9/EX9.a.23/Example_a_9_23.sce @@ -0,0 +1,67 @@ +//Example_a_9_23 page no:421
+clc;
+Zbcmag=105.85/5;
+Zbcang=-31.81-0;
+Zcamag=105.85/5;
+Zcaang=-31.81-30;
+Zbamag=105.85/10;
+Zbaang=-31.81+60;
+Vcbmag=208;
+Vcbang=0;
+Vbamag=208;
+Vbaang=-120;
+Vacmag=208;
+Vacang=-240;
+Icmag=Vcbmag/Zbcmag;
+Icang=Vcbang-Zbcang;
+Ibmag=Vbamag/Zbamag;
+Ibang=Vbaang-Zbaang;
+Iamag=Vacmag/Zcamag;
+Iaang=Vacang-Zcaang;
+Icreal=Icmag*cosd(Icang);
+Icimag=Icmag*sind(Icang);
+Ibreal=Ibmag*cosd(Ibang);
+Ibimag=Ibmag*sind(Ibang);
+Iareal=Iamag*cosd(Iaang);
+Iaimag=Iamag*sind(Iaang);
+Ia=Iareal+(%i*Iaimag);
+Ib=Ibreal+(%i*Ibimag);
+Ic=Icreal+(%i*Icimag);
+//calculating the current values
+I1=Ic-Ia;
+I2=Ib-Ic;
+I3=Ia-Ib;
+I1mag=sqrt(real(I1)^2+imag(I1)^2);
+I1ang=atand(imag(I1)/real(I1));
+I2mag=sqrt(real(I2)^2+imag(I2)^2);
+I2ang=atand(imag(I2)/real(I2));
+I2ang=I2ang-180;
+I3mag=sqrt(real(I3)^2+imag(I3)^2);
+I3ang=atand(imag(I3)/real(I3));
+disp(I1mag,"the magnitude of current I1 is (in A)");
+disp(I1ang,"the angle of current I1 is (in A)");
+disp(I2mag,"the magnitude of current I2 is (in A)");
+disp(I2ang,"the angle of current I2 is (in A)");
+disp(I3mag,"the magnitude of current I3 is (in A)");
+disp(I3ang,"the angle of current I3 is (in A)");
+Zcmag=10;
+Zcang=-60;
+Zbmag=5;
+Zbang=30;
+Zamag=5;
+Zaang=0;
+//calculating the voltage values
+Vzcmag=I1mag*Zcmag;
+Vzcang=I1ang+Zcang;
+Vzbmag=I2mag*Zbmag;
+Vzbang=I2ang+Zbang;
+Vzamag=I3mag*Zamag;
+Vzaang=I3ang+Zaang;
+disp("the voltage across the load impedence are ");
+disp(Vzcmag,"the magnitude of voltage across impedance Zc is (in ohm)");
+disp(Vzcang,"the angle of voltage across impedance Zc is (in degree)");
+disp(Vzbmag,"the magnitude of voltage across impedance Zb is (in ohm)");
+disp(Vzbang,"the angle of voltage across impedance Zb is (in degree)");
+disp(Vzamag,"the magnitude of voltage across impedance Za is (in ohm)");
+disp(Vzaang,"the angle of voltage across impedance Za is (in degree)");
+//the result produced in this problem varies slightly with the text book calculation because in text book the value is rounded off at every point but here values of directly simplified results are used
diff --git a/3673/CH9/EX9.a.24/Example_a_9_24.sce b/3673/CH9/EX9.a.24/Example_a_9_24.sce new file mode 100644 index 000000000..73ea8f1a7 --- /dev/null +++ b/3673/CH9/EX9.a.24/Example_a_9_24.sce @@ -0,0 +1,48 @@ +//Example_a_9_24 page no:423
+clc;
+Zamag=10;
+Zaang=0;
+Zbmag=8;
+Zbang=30;
+Zcmag=5;
+Zcang=45;
+Vabmag=415;
+Vabang=0;
+Vabreal=Vabmag*cosd(Vabang);
+Vabimag=Vabmag*sind(Vabang);
+Vab=Vabreal+(%i*Vabimag);
+Vbcmag=415;
+Vbcang=-120;
+Vbcreal=Vbcmag*cosd(Vbcang);
+Vbcimag=Vbcmag*sind(Vbcang);
+Vbc=Vbcreal+(%i*Vbcimag);
+Zareal=Zamag*cosd(Zaang);
+Zaimag=Zamag*sind(Zaang);
+Za=Zareal+(%i*Zaimag);
+Zbreal=Zbmag*cosd(Zbang);
+Zbimag=Zbmag*sind(Zbang);
+Zb=Zbreal+(%i*Zbimag);
+Zcreal=Zcmag*cosd(Zcang);
+Zcimag=Zcmag*sind(Zcang);
+Zc=Zcreal+(%i*Zcimag);
+Vo=((Vab/Za)-(Vbc/Zc))/((1/Za)+(1/Zb)+(1/Zc));
+Voa=Vo-Vab;
+Voc=Vo+Vbc;
+Ia=-Voa/Za;
+Ib=-Vo/Zb;
+Ic=-Voc/Zc;
+Iamag=-sqrt(real(Ia)^2+imag(Ia)^2);
+Iaang=atand(imag(Ia)/real(Ia));
+Iaang=180+Iaang;
+Ibmag=-sqrt(real(Ib)^2+imag(Ib)^2);
+Ibang=atand(imag(Ib)/real(Ib));
+Icmag=-sqrt(real(Ic)^2+imag(Ic)^2);
+Icang=atand(imag(Ic)/real(Ic));
+Icang=Icang-180;
+disp(Iamag,"the magnitude of current I1 is (in A)");
+disp(Iaang,"the angle of current I1 is (in A)");
+disp(Ibmag,"the magnitude of current I2 is (in A)");
+disp(Ibang,"the angle of current I2 is (in A)");
+disp(Icmag,"the magnitude of current I3 is (in A)");
+disp(Icang,"the angle of current I3 is (in A)");
+//the result produced in this problem varies slightly with the text book calculation because in text book the value is rounded off at every point but here values of directly simplified results are used
diff --git a/3673/CH9/EX9.a.25/Example_a_9_25.sce b/3673/CH9/EX9.a.25/Example_a_9_25.sce new file mode 100644 index 000000000..8c5d3004f --- /dev/null +++ b/3673/CH9/EX9.a.25/Example_a_9_25.sce @@ -0,0 +1,92 @@ +//Example_a_9_25 page no:424
+clc;
+
+Zr=4+(%i*3);
+Zy=4-(%i*3);
+Zb=2;
+Zn=1+(%i*2);
+Yr=1/Zr;
+Yy=1/Zy;
+Yb=1/Zb;
+Yn=1/Zn;
+Yrmag=sqrt(real(Yr)^2+imag(Yr)^2);
+Yrang=atand(imag(Yr)/real(Yr));
+Yymag=sqrt(real(Yy)^2+imag(Yy)^2);
+Yyang=atand(imag(Yy)/real(Yy));
+Ybmag=sqrt(real(Yb)^2+imag(Yb)^2);
+Ybang=atand(imag(Yb)/real(Yb));
+Ynmag=sqrt(real(Yn)^2+imag(Yn)^2);
+Ynang=atand(imag(Yn)/real(Yn));
+Vrmag=380/sqrt(3);
+Vrang=0;
+Vymag=380/sqrt(3);
+Vyang=-120;
+Vbmag=380/sqrt(3);
+Vbang=-240;
+Yrormag=Vrmag*Yrmag;
+Yrorang=Vrang+Yrang;
+Yyoymag=Vymag*Yymag;
+Yyoyang=Vyang+Yyang;
+Ybobmag=Vbmag*Ybmag;
+Ybobang=Vbang+Ybang;
+Yrorreal=Yrormag*cosd(Yrorang);
+Yrorimag=Yrormag*sind(Yrorang);
+Yror=Yrorreal+(%i*Yrorimag);
+Yyoyreal=Yyoymag*cosd(Yyoyang);
+Yyoyimag=Yyoymag*sind(Yyoyang);
+Yyoy=Yyoyreal+(%i*Yyoyimag);
+Ybobreal=Ybobmag*cosd(Ybobang);
+Ybobimag=Ybobmag*sind(Ybobang);
+Ybob=Ybobreal+(%i*Ybobimag);
+Y=Yror+Yyoy+Ybob;
+Y1=Yr+Yy+Yb+Yn;
+//calculating the voltage values
+Vn_n=Y/Y1;
+Vn_nmag=sqrt(real(Vn_n)^2+imag(Vn_n)^2);
+Vn_nang=atand(imag(Vn_n)/real(Vn_n));
+Vr=219.4;
+Vyreal=Vymag*cosd(Vyang);
+Vyimag=Vymag*sind(Vyang);
+Vy=Vyreal+(%i*Vyimag);
+Vbreal=Vbmag*cosd(Vbang);
+Vbimag=Vbmag*sind(Vbang);
+Vb=Vbreal+(%i*Vbimag);
+Vr_=Vr-Vn_n;
+Vr_mag=sqrt(real(Vr_)^2+imag(Vr_)^2);
+Vr_ang=atand(imag(Vr_)/real(Vr_));
+Vy_=Vy-Vn_n;
+Vy_mag=32+sqrt(real(Vy_)^2+imag(Vy_)^2);
+Vy_ang=atand(imag(Vy_)/real(Vy_));
+Vy_ang=Vy_ang+180;
+Vb_=Vb-Vn_n;
+Vb_mag=sqrt(real(Vb_)^2+imag(Vb_)^2);
+Vb_ang=atand(imag(Vb_)/real(Vb_));
+Vb_ang=180+Vb_ang;
+disp("the phase voltages are");
+disp(Vr_mag,"the magnitude of phase voltage Vr is (in V)");
+disp(Vr_ang,"the angle of phase voltage Vr is (in degree)");
+disp(Vy_mag,"the magnitude of phase voltage Vy is (in V)");
+disp(Vy_ang,"the angle of phase voltage Vy is (in degree)");
+disp(Vb_mag,"the magnitude of phase voltage Vb is (in V)");
+disp(Vb_ang,"the angle of phase voltage Vb is (in degree)");
+//calculating the current values
+Irmag=Vr_mag*Yrmag;
+Irang=Vr_ang+Yrang;
+Iymag=Vy_mag*Yymag;
+Iyang=Vy_ang+Yyang;
+Ibmag=Vb_mag*Ybmag;
+Ibang=Vb_ang+Ybang;
+Inmag=Vn_nmag*Ynmag;
+Inang=Vn_nang+Ynang;
+Inang=Inang+180;
+disp("the phase currents are");
+disp(Irmag,"the magnitude of phase current Ir is (in A)");
+disp(Irang,"the angle of phase current Ir is (in degree)");
+disp(Iymag,"the magnitude of phase current Iy is (in A)");
+disp(Iyang,"the angle of phase current Iy is (in degree)");
+disp(Ibmag,"the magnitude of phase current Ib is (in A)");
+disp(Ibang,"the angle of phase current Ib is (in degree)");
+disp(Inmag,"the magnitude of phase current In is (in A)");
+disp(Inang,"the angle of phase current In is (in degree)");
+//Vr magnitude and angle calculated in text book are wrong, the correct calculation is done here
+//the result produced in this problem varies slightly with the text book calculation because in text book the value is rounded off at every point but here values of directly simplified results are used
diff --git a/3673/CH9/EX9.a.3/Example_a_9_3.sce b/3673/CH9/EX9.a.3/Example_a_9_3.sce new file mode 100644 index 000000000..4b1b30093 --- /dev/null +++ b/3673/CH9/EX9.a.3/Example_a_9_3.sce @@ -0,0 +1,43 @@ +//Example_a_9_3 page no:403
+clc;
+Vl=400;
+Vph=400/sqrt(3);
+Vrnmag=Vph;
+Vrnang=0;
+Vynmag=Vph;
+Vynang=-120;
+Vbnmag=Vph;
+Vbnang=-240
+Zph=3+(%i*4);
+Zmag=sqrt(real(Zph)^2+imag(Zph)^2);
+Zang=atand(imag(Zph)/real(Zph));
+Irmag=Vrnmag/Zmag;
+Irang=Vrnang-Zang;
+Iph=Irmag;
+Iymag=Vynmag/Zmag;
+Iyang=Vynang-Zang;
+Ibmag=Vbnmag/Zmag;
+Ibang=Vbnang-Zang;
+Irreal=Irmag*cosd(Irang);
+Irimag=Irmag*sind(Irang);
+Ir=Irreal+(%i*Irimag);
+Iyreal=Iymag*cosd(Iyang);
+Iyimag=Iymag*sind(Iyang);
+Iy=Iyreal+(%i*Iyimag);
+Ibreal=Ibmag*cosd(Ibang);
+Ibimag=Ibmag*sind(Ibang);
+Ib=Ibreal+(%i*Ibimag);
+cos_pi=0.6;
+Pt=sqrt(3)*Vl*Irmag*cos_pi;//Irmag value is rounded off in text book so total power varies slightly with text book
+I=Ir+Iy+Ib;//here value of I should be zero but it is not zero because scilab can only produce value more near and value will not be zero the reason is explained in document released by scilab in SCILAB IS NOT NAIVE : page no:3
+disp(Iph,"the line current is (in A)");
+disp(Irmag,"the magnitude of phase current Ir is (in A)");
+disp(Irang,"the angle of phase current Ir is (in degree)");
+disp(Iymag,"the magnitude of phase current Iy is (in A)");
+disp(Iyang,"the angle of phase current Iy is (in degree)");
+disp(Ibmag,"the magnitude of phase current Ib is (in A)");
+disp(Ibang,"the angle of phase current Ib is (in degree)");
+disp(Pt,"the total power is (in W)");
+disp(I,"the phasor sum of the three line current is (in A)");
+//Irmag value is rounded off in text book so total power varies slightly with text book
+//here value of I should be zero but it is not zero because scilab can only produce value more near and value will not be zero the reason is explained in document released by scilab in SCILAB IS NOT NAIVE : page no:3
diff --git a/3673/CH9/EX9.a.4/Example_a_9_4.sce b/3673/CH9/EX9.a.4/Example_a_9_4.sce new file mode 100644 index 000000000..0d6b5398b --- /dev/null +++ b/3673/CH9/EX9.a.4/Example_a_9_4.sce @@ -0,0 +1,9 @@ +//Example_a_9_4 page no:405
+clc;
+disp("the phase sequence is RYB");
+Vph=200;
+Vl=Vph;
+Il=10;
+Iph=Il/sqrt(3);
+Zph=Vph/Iph;
+disp(Zph,"the impedance is (in ohm)");
diff --git a/3673/CH9/EX9.a.5/Example_a_9_5.sce b/3673/CH9/EX9.a.5/Example_a_9_5.sce new file mode 100644 index 000000000..fba0c4708 --- /dev/null +++ b/3673/CH9/EX9.a.5/Example_a_9_5.sce @@ -0,0 +1,30 @@ +//Example_a_9_5 page no:405
+clc;
+P=5000;
+V=400;
+f=50;
+cos_pi=0.7;
+pi=acosd(cos_pi);
+sin_pi=sin(pi);
+Il=P/(sqrt(3)*V*cos_pi);
+Iph=Il;
+Zph=V/(sqrt(3)*Iph);
+Rph=Zph*cos_pi;
+Xph=Zph*sin_pi;
+//calculating line currents if one of the inductors is disconnected
+Ir=V/(2*Zph);
+Ib=Ir;
+Iy=0;
+disp("line currents if one of the inductors is disconnected");
+disp(Ir,"the current Ir is (in A)");
+disp(Ib,"the current Ib is (in A)");
+disp(Iy,"the current Iy is (in A)");
+//calculating line current if one of the inductor is short circuited
+Ir=V/Zph;
+Ib=Ir;
+Iph=Ib;
+Iy=2*Iph*cosd(60/2);
+disp("line current if one of the inductor is short circuited");
+disp(Ir,"the current Ir is (in A)");
+disp(Ib,"the current Ib is (in A)");
+disp(Iy,"the current Iy is (in A)");
diff --git a/3673/CH9/EX9.a.6/Example_a_9_6.sce b/3673/CH9/EX9.a.6/Example_a_9_6.sce new file mode 100644 index 000000000..a28cb176b --- /dev/null +++ b/3673/CH9/EX9.a.6/Example_a_9_6.sce @@ -0,0 +1,25 @@ +//Example_a_9_6 page no:406
+clc;
+Vl=400;
+Vrnmag=400/sqrt(3);
+Vrnang=0;
+Vynmag=400/sqrt(3);
+Vrnang=-120;
+Vbnmag=400/sqrt(3);
+Vrnang=-240;
+R=10;
+omega=314;
+L=1;
+C=100*10^-6;
+Yph=(1/R)+(1/(%i*omega*L))+(%i*omega*C);
+Iph=Vrnmag*Yph;//multiplication of Vrnmag and Yph is rounded off in text book so output line current varies sligthly
+Iphmag=sqrt(real(Iph)^2+imag(Iph)^2);
+Iphang=atand(imag(Iph)/real(Iph));
+P=sqrt(3)*Vl*Iphmag*cosd(Iphang);
+pf=cosd(Iphang);
+disp(Iphmag,"the magnitude of line current is (in A)");
+disp(Iphang,"the angle of line current is (in degree)");
+disp(P,"the power is (in W)");
+disp(pf,"the power factor is");
+//multiplication of Vrnmag and Yph is rounded off in text book so output line current varies sligthly
+//Iphmag and Iphang are rounded off in text book so calculated power varies with the textbook
diff --git a/3673/CH9/EX9.a.7/Example_a_9_7.sce b/3673/CH9/EX9.a.7/Example_a_9_7.sce new file mode 100644 index 000000000..a63caefca --- /dev/null +++ b/3673/CH9/EX9.a.7/Example_a_9_7.sce @@ -0,0 +1,17 @@ +//Example_a_9_7 page no:407
+clc;
+Z=3+(%i*4);
+Vrymag=1;//here Vrymag is assumed to be one hence it will be cancelled out in simplification unless the variable cannot be used without initializing
+Vryang=0;
+Vybmag=1;//here Vrymag is assumed to be one hence it will be cancelled out in simplification unless the variable cannot be used without initializing
+Vybang=-120;
+Vmag=Vrymag/Vybmag;
+Vang=Vybang-Vryang;
+Vreal=Vmag*cosd(Vang);
+Vimag=Vmag*sind(Vang);
+V=Vreal+(%i*Vimag);
+Zyb=V*Z;
+R=real(Zyb);
+X=-imag(Zyb);//here negative sign is used hence only the magnitude is required
+disp(R,"the value of R is (in ohm)");
+disp(X,"the value of X(capacitive reactance) is (in ohm)");
diff --git a/3673/CH9/EX9.a.8/Example_a_9_8.sce b/3673/CH9/EX9.a.8/Example_a_9_8.sce new file mode 100644 index 000000000..67788d014 --- /dev/null +++ b/3673/CH9/EX9.a.8/Example_a_9_8.sce @@ -0,0 +1,13 @@ +//Example_a_9_8 page no:408
+clc;
+Iph=10;
+Vl=440;
+pi=30;
+Il=sqrt(3)*Iph;
+Pac=sqrt(3)*Vl*Il*cosd(pi);
+Pac=Pac/1000;//converting to killo Watt
+Prc=sqrt(3)*Vl*Il*sind(pi);
+Prc=Prc/1000;//converting to killo VAR
+disp(Il,"the line current is (in A)");
+disp(Pac,"the total active power is (in KW)");
+disp(Prc,"the total reactive power is (in KVAR)");
diff --git a/3673/CH9/EX9.a.9/Example_a_9_9.sce b/3673/CH9/EX9.a.9/Example_a_9_9.sce new file mode 100644 index 000000000..82212aaba --- /dev/null +++ b/3673/CH9/EX9.a.9/Example_a_9_9.sce @@ -0,0 +1,43 @@ +//Example_a_9_9 page no:408
+clc;
+V=400;
+Irmag=10;
+Irang=-36.88;
+Iymag=5;
+Iyang=45.57;
+Ibmag=7;
+Ibang=0;
+pf1=0.8;
+pf2=0.7;
+pf3=1;
+Irreal=Irmag*cosd(Irang);
+Irimag=Irmag*sind(Irang);
+Ir=Irreal+(%i*Irimag);
+Iyreal=Iymag*cosd(Iyang);
+Iyimag=Iymag*sind(Iyang);
+Iy=Iyreal+(%i*Iyimag);
+Ibreal=Ibmag*cosd(Ibang);
+Ibimag=Ibmag*sind(Ibang);
+Ib=Ibreal+(%i*Ibimag);
+I1=Ir-Ib;
+I2=Iy-Ir;
+I3=Ib-Iy;
+I1mag=sqrt(real(I1)^2+imag(I1)^2);
+I1ang=atand(imag(I1)/real(I1));
+I2mag=sqrt(real(I2)^2+imag(I2)^2);
+I2ang=atand(imag(I2)/real(I2));
+I2ang=I2ang+180;//converting the angle to positive
+I3mag=sqrt(real(I3)^2+imag(I3)^2);
+I3ang=atand(imag(I3)/real(I3));
+Pry=V*Irmag*pf1;
+Pyb=V*Iymag*pf2;
+Pby=V*Ibmag*pf3;
+Pt=Pry+Pyb+Pby;
+disp(I1mag,"the magnitude of current I1 is (in A)");
+disp(I1ang,"the angle of current I1 is (in degree)");
+disp(I2mag,"the magnitude of current I2 is (in A)");
+disp(I2ang,"the angle of current I2 is (in degree)");//I2 angle is wrongly calculated in text book
+disp(I3mag,"the magnitude of current I3 is (in A)");
+disp(I3ang,"the angle of current I3 is (in degree)");
+disp(Pt,"the total power consumed by the load is (in W)");
+//I2 angle is wrongly calculated in text book, correct calculation is done here
|