diff options
Diffstat (limited to '3673/CH9/EX9.a.12/Example_a_9_12.sce')
-rw-r--r-- | 3673/CH9/EX9.a.12/Example_a_9_12.sce | 174 |
1 files changed, 174 insertions, 0 deletions
diff --git a/3673/CH9/EX9.a.12/Example_a_9_12.sce b/3673/CH9/EX9.a.12/Example_a_9_12.sce new file mode 100644 index 000000000..24a22735d --- /dev/null +++ b/3673/CH9/EX9.a.12/Example_a_9_12.sce @@ -0,0 +1,174 @@ +//Example_a_9_12 page no:411
+clc;
+//star delta conversion method
+Zrmag=5;
+Zrang=0;
+Zymag=2;
+Zyang=90;
+Zbmag=4;
+Zbang=-90;
+Vrymag=100;
+Vryang=0;
+Vybmag=100;
+Vybang=-120;
+Vbrmag=100;
+Vbrang=-240;
+Zrymag=Zrmag*Zymag;
+Zryang=Zrang+Zyang;
+Zybmag=Zymag*Zbmag;
+Zybang=Zyang+Zbang;
+Zbrmag=Zbmag*Zrmag;
+Zbrang=Zbang+Zrang;
+Zryreal=Zrymag*cosd(Zryang);
+Zryimag=Zrymag*sind(Zryang);
+Zry=Zryreal+(%i*Zryimag);
+Zybreal=Zybmag*cosd(Zybang);
+Zybimag=Zybmag*sind(Zybang);
+Zyb=Zybreal+(%i*Zybimag);
+Zbrreal=Zbrmag*cosd(Zbrang);
+Zbrimag=Zbrmag*sind(Zbrang);
+Zbr=Zbrreal+(%i*Zbrimag);
+Z=Zry+Zyb+Zbr;
+Zmag=sqrt(real(Z)^2+imag(Z)^2);
+Zang=atand(imag(Z)/real(Z));
+Zr_ymag=Zmag/Zbmag;
+Zr_yang=Zang-Zbang;
+Zy_bmag=Zmag/Zrmag;
+Zy_bang=Zang-Zrang;
+Zb_rmag=Zmag/Zymag;
+Zb_rang=Zang-Zyang;
+Irmag=Vrymag/Zr_ymag;
+Irang=Vryang-Zr_yang;
+Iymag=Vybmag/Zy_bmag;
+Iyang=Vybang-Zy_bang;
+Ibmag=Vbrmag/Zb_rmag;
+Ibang=Vbrang-Zb_rang;
+Irreal=Irmag*cosd(Irang);
+Irimag=Irmag*sind(Irang);
+Ir=Irreal+(%i*Irimag);
+Iyreal=Iymag*cosd(Iyang);
+Iyimag=Iymag*sind(Iyang);
+Iy=Iyreal+(%i*Iyimag);
+Ibreal=Ibmag*cosd(Ibang);
+Ibimag=Ibmag*sind(Ibang);
+Ib=Ibreal+(%i*Ibimag);
+I1=Ir-Ib;
+I2=Iy-Ir;
+I3=Ib-Iy;
+I1mag=sqrt(real(I1)^2+imag(I1)^2);
+I1ang=atand(imag(I1)/real(I1));
+I2mag=sqrt(real(I2)^2+imag(I2)^2);
+I2ang=atand(imag(I2)/real(I2));
+I2ang=I2ang+180;//converting the angle to positive
+I3mag=sqrt(real(I3)^2+imag(I3)^2);
+I3ang=atand(imag(I3)/real(I3));
+I3ang=I3ang+180;
+disp("the line currents are");
+disp(I1mag,"the magnitude of current I1 is (in A)");
+disp(I1ang,"the angle of current I1 is (in A)");
+disp(I2mag,"the magnitude of current I2 is (in A)");
+disp(I2ang,"the angle of current I2 is (in A)");
+disp(I3mag,"the magnitude of current I3 is (in A)");
+disp(I3ang,"the angle of current I3 is (in A)");
+Vzrmag=I1mag*Zrmag;
+Vzrang=I1ang+Zrang;
+Vzymag=I2mag*Zymag;
+Vzyang=I2ang+Zyang;
+Vzbmag=I3mag*Zbmag;
+Vzbang=I3ang+Zbang;
+disp("the voltage drop across each star connected load is");//the voltage value varies slightly with text book hence results are rounded off in text book
+disp(Vzrmag,"the magnitude of voltage drop across Zr resistor is (in V)");
+disp(Vzrang,"the angle of voltage drop across Zr resistor is (in degree)");
+disp(Vzymag,"the magnitude of voltage drop across Zy resistor is (in V)");
+disp(Vzyang,"the angle of voltage drop across Zy resistor is (in degree)");
+disp(Vzbmag,"the magnitude of voltage drop across Zb resistor is (in V)");
+disp(Vzbang,"the angle of voltage drop across Zb resistor is (in degree)");
+Vromag=100/sqrt(3);
+Vroang=-30;
+Vyomag=100/sqrt(3);
+Vyoang=-150;
+Vbomag=100/sqrt(3);
+Vboang=-270;
+Yrmag=1/Zrmag;
+Yrang=0-Zrang;
+Yymag=1/Zymag;
+Yyang=0-Zyang;
+Ybmag=1/Zbmag;
+Ybang=0-Zbang;
+Yrormag=Vromag*Yrmag;
+Yrorang=Vroang+Yrang;
+Yyoymag=Vyomag*Yymag;
+Yyoyang=Vyoang+Yyang;
+Ybobmag=Vbomag*Ybmag;
+Ybobang=Vboang+Ybang;
+Yrorreal=Yrormag*cosd(Yrorang);
+Yrorimag=Yrormag*sind(Yrorang);
+Yror=Yrorreal+(%i*Yrorimag);
+Yyoyreal=Yyoymag*cosd(Yyoyang);
+Yyoyimag=Yyoymag*sind(Yyoyang);
+Yyoy=Yyoyreal+(%i*Yyoyimag);
+Ybobreal=Ybobmag*cosd(Ybobang);
+Ybobimag=Ybobmag*sind(Ybobang);
+Ybob=Ybobreal+(%i*Ybobimag);
+Y=Yror+Yyoy+Ybob;
+Ymag=sqrt(real(Y)^2+imag(Y)^2);
+Yang=atand(imag(Y)/real(Y));
+Yang=Yang+180;//converting the angle to positive
+Yrreal=Yrmag*cosd(Yrang);
+Yrimag=Yrmag*sind(Yrang);
+Yr=Yrreal+(%i*Yrimag);
+Yyreal=Yymag*cosd(Yyang);
+Yyimag=Yymag*sind(Yyang);
+Yy=Yyreal+(%i*Yyimag);
+Ybreal=Ybmag*cosd(Ybang);
+Ybimag=Ybmag*sind(Ybang);
+Yb=Ybreal+(%i*Ybimag);
+Yryb=Yr+Yy+Yb;
+Yrybmag=sqrt(real(Yryb)^2+imag(Yryb)^2);
+Yrybang=atand(imag(Yryb)/real(Yryb));
+Vo_omag=Ymag/Yrybmag;
+Vo_oang=Yang-Yrybang;
+Vo_oreal=Vo_omag*cosd(Vo_oang);
+Vo_oimag=Vo_omag*sind(Vo_oang);
+Vo_o=Vo_oreal+(%i*Vo_oimag);
+Vroreal=Vromag*cosd(Vroang);
+Vroimag=Vromag*sind(Vroang);
+Vro=Vroreal+(%i*Vroimag);
+Vyoreal=Vyomag*cosd(Vyoang);
+Vyoimag=Vyomag*sind(Vyoang);
+Vyo=Vyoreal+(%i*Vyoimag);
+Vboreal=Vbomag*cosd(Vboang);
+Vboimag=Vbomag*sind(Vboang);
+Vbo=Vboreal+(%i*Vboimag);
+Vro_=Vro-Vo_o;
+Vyo_=Vyo-Vo_o;
+Vbo_=Vbo-Vo_o;
+Vro_mag=sqrt(real(Vro_)^2+imag(Vro_)^2);
+Vro_ang=atand(imag(Vro_)/real(Vro_));
+Vyo_mag=sqrt(real(Vyo_)^2+imag(Vyo_)^2);
+Vyo_ang=atand(imag(Vyo_)/real(Vyo_));
+Vbo_mag=sqrt(real(Vbo_)^2+imag(Vbo_)^2);
+Vbo_ang=atand(imag(Vbo_)/real(Vbo_));
+disp("the displacement neutral voltages are");
+disp(Vro_mag,"the magnitude of voltage across Vro is (in V)");
+disp(Vro_ang,"the angle of voltage across Vro is (in degree)");
+disp(Vyo_mag,"the magnitude of voltage across Vyo is (in V)");
+disp(Vyo_ang,"the angle of voltage across Vyo is (in degree)");
+disp(Vbo_mag,"the magnitude of voltage across Vbo is (in V)");
+disp(Vbo_ang,"the angle of voltage across Vbo is (in degree)");
+Ir_mag=Vro_mag/Zrmag;//value of Ir is wrong in text book calculation
+Ir_ang=Vro_ang-Zrang;
+Iy_mag=Vyo_mag/Zymag;
+Iy_ang=Vyo_ang-Zyang;
+Iy_ang=Iy_ang+360;//converting to positive angle
+Ib_mag=Vbo_mag/Zbmag;
+Ib_ang=Vbo_ang-Zbang;
+disp("the current in the phases are");
+disp(Ir_mag,"the magnitude of current in the R phase is (in A)");
+disp(Ir_ang,"the angle of current in the R phase is (in degree)");
+disp(Iy_mag,"the magnitude of current in the Y phase is (in A)");
+disp(Iy_ang,"the angle of current in the Y phase is (in degree)");
+disp(Ib_mag,"the magnitude of current in the B phase is (in A)");
+disp(Ib_ang,"the angle of current in the B phase is (in degree)");
+//value of Ir is wrong in text book calculation
+//the voltages value varies slightly with text book hence results are rounded off in text book
|