1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
//Example_a_9_12 page no:411
clc;
//star delta conversion method
Zrmag=5;
Zrang=0;
Zymag=2;
Zyang=90;
Zbmag=4;
Zbang=-90;
Vrymag=100;
Vryang=0;
Vybmag=100;
Vybang=-120;
Vbrmag=100;
Vbrang=-240;
Zrymag=Zrmag*Zymag;
Zryang=Zrang+Zyang;
Zybmag=Zymag*Zbmag;
Zybang=Zyang+Zbang;
Zbrmag=Zbmag*Zrmag;
Zbrang=Zbang+Zrang;
Zryreal=Zrymag*cosd(Zryang);
Zryimag=Zrymag*sind(Zryang);
Zry=Zryreal+(%i*Zryimag);
Zybreal=Zybmag*cosd(Zybang);
Zybimag=Zybmag*sind(Zybang);
Zyb=Zybreal+(%i*Zybimag);
Zbrreal=Zbrmag*cosd(Zbrang);
Zbrimag=Zbrmag*sind(Zbrang);
Zbr=Zbrreal+(%i*Zbrimag);
Z=Zry+Zyb+Zbr;
Zmag=sqrt(real(Z)^2+imag(Z)^2);
Zang=atand(imag(Z)/real(Z));
Zr_ymag=Zmag/Zbmag;
Zr_yang=Zang-Zbang;
Zy_bmag=Zmag/Zrmag;
Zy_bang=Zang-Zrang;
Zb_rmag=Zmag/Zymag;
Zb_rang=Zang-Zyang;
Irmag=Vrymag/Zr_ymag;
Irang=Vryang-Zr_yang;
Iymag=Vybmag/Zy_bmag;
Iyang=Vybang-Zy_bang;
Ibmag=Vbrmag/Zb_rmag;
Ibang=Vbrang-Zb_rang;
Irreal=Irmag*cosd(Irang);
Irimag=Irmag*sind(Irang);
Ir=Irreal+(%i*Irimag);
Iyreal=Iymag*cosd(Iyang);
Iyimag=Iymag*sind(Iyang);
Iy=Iyreal+(%i*Iyimag);
Ibreal=Ibmag*cosd(Ibang);
Ibimag=Ibmag*sind(Ibang);
Ib=Ibreal+(%i*Ibimag);
I1=Ir-Ib;
I2=Iy-Ir;
I3=Ib-Iy;
I1mag=sqrt(real(I1)^2+imag(I1)^2);
I1ang=atand(imag(I1)/real(I1));
I2mag=sqrt(real(I2)^2+imag(I2)^2);
I2ang=atand(imag(I2)/real(I2));
I2ang=I2ang+180;//converting the angle to positive
I3mag=sqrt(real(I3)^2+imag(I3)^2);
I3ang=atand(imag(I3)/real(I3));
I3ang=I3ang+180;
disp("the line currents are");
disp(I1mag,"the magnitude of current I1 is (in A)");
disp(I1ang,"the angle of current I1 is (in A)");
disp(I2mag,"the magnitude of current I2 is (in A)");
disp(I2ang,"the angle of current I2 is (in A)");
disp(I3mag,"the magnitude of current I3 is (in A)");
disp(I3ang,"the angle of current I3 is (in A)");
Vzrmag=I1mag*Zrmag;
Vzrang=I1ang+Zrang;
Vzymag=I2mag*Zymag;
Vzyang=I2ang+Zyang;
Vzbmag=I3mag*Zbmag;
Vzbang=I3ang+Zbang;
disp("the voltage drop across each star connected load is");//the voltage value varies slightly with text book hence results are rounded off in text book
disp(Vzrmag,"the magnitude of voltage drop across Zr resistor is (in V)");
disp(Vzrang,"the angle of voltage drop across Zr resistor is (in degree)");
disp(Vzymag,"the magnitude of voltage drop across Zy resistor is (in V)");
disp(Vzyang,"the angle of voltage drop across Zy resistor is (in degree)");
disp(Vzbmag,"the magnitude of voltage drop across Zb resistor is (in V)");
disp(Vzbang,"the angle of voltage drop across Zb resistor is (in degree)");
Vromag=100/sqrt(3);
Vroang=-30;
Vyomag=100/sqrt(3);
Vyoang=-150;
Vbomag=100/sqrt(3);
Vboang=-270;
Yrmag=1/Zrmag;
Yrang=0-Zrang;
Yymag=1/Zymag;
Yyang=0-Zyang;
Ybmag=1/Zbmag;
Ybang=0-Zbang;
Yrormag=Vromag*Yrmag;
Yrorang=Vroang+Yrang;
Yyoymag=Vyomag*Yymag;
Yyoyang=Vyoang+Yyang;
Ybobmag=Vbomag*Ybmag;
Ybobang=Vboang+Ybang;
Yrorreal=Yrormag*cosd(Yrorang);
Yrorimag=Yrormag*sind(Yrorang);
Yror=Yrorreal+(%i*Yrorimag);
Yyoyreal=Yyoymag*cosd(Yyoyang);
Yyoyimag=Yyoymag*sind(Yyoyang);
Yyoy=Yyoyreal+(%i*Yyoyimag);
Ybobreal=Ybobmag*cosd(Ybobang);
Ybobimag=Ybobmag*sind(Ybobang);
Ybob=Ybobreal+(%i*Ybobimag);
Y=Yror+Yyoy+Ybob;
Ymag=sqrt(real(Y)^2+imag(Y)^2);
Yang=atand(imag(Y)/real(Y));
Yang=Yang+180;//converting the angle to positive
Yrreal=Yrmag*cosd(Yrang);
Yrimag=Yrmag*sind(Yrang);
Yr=Yrreal+(%i*Yrimag);
Yyreal=Yymag*cosd(Yyang);
Yyimag=Yymag*sind(Yyang);
Yy=Yyreal+(%i*Yyimag);
Ybreal=Ybmag*cosd(Ybang);
Ybimag=Ybmag*sind(Ybang);
Yb=Ybreal+(%i*Ybimag);
Yryb=Yr+Yy+Yb;
Yrybmag=sqrt(real(Yryb)^2+imag(Yryb)^2);
Yrybang=atand(imag(Yryb)/real(Yryb));
Vo_omag=Ymag/Yrybmag;
Vo_oang=Yang-Yrybang;
Vo_oreal=Vo_omag*cosd(Vo_oang);
Vo_oimag=Vo_omag*sind(Vo_oang);
Vo_o=Vo_oreal+(%i*Vo_oimag);
Vroreal=Vromag*cosd(Vroang);
Vroimag=Vromag*sind(Vroang);
Vro=Vroreal+(%i*Vroimag);
Vyoreal=Vyomag*cosd(Vyoang);
Vyoimag=Vyomag*sind(Vyoang);
Vyo=Vyoreal+(%i*Vyoimag);
Vboreal=Vbomag*cosd(Vboang);
Vboimag=Vbomag*sind(Vboang);
Vbo=Vboreal+(%i*Vboimag);
Vro_=Vro-Vo_o;
Vyo_=Vyo-Vo_o;
Vbo_=Vbo-Vo_o;
Vro_mag=sqrt(real(Vro_)^2+imag(Vro_)^2);
Vro_ang=atand(imag(Vro_)/real(Vro_));
Vyo_mag=sqrt(real(Vyo_)^2+imag(Vyo_)^2);
Vyo_ang=atand(imag(Vyo_)/real(Vyo_));
Vbo_mag=sqrt(real(Vbo_)^2+imag(Vbo_)^2);
Vbo_ang=atand(imag(Vbo_)/real(Vbo_));
disp("the displacement neutral voltages are");
disp(Vro_mag,"the magnitude of voltage across Vro is (in V)");
disp(Vro_ang,"the angle of voltage across Vro is (in degree)");
disp(Vyo_mag,"the magnitude of voltage across Vyo is (in V)");
disp(Vyo_ang,"the angle of voltage across Vyo is (in degree)");
disp(Vbo_mag,"the magnitude of voltage across Vbo is (in V)");
disp(Vbo_ang,"the angle of voltage across Vbo is (in degree)");
Ir_mag=Vro_mag/Zrmag;//value of Ir is wrong in text book calculation
Ir_ang=Vro_ang-Zrang;
Iy_mag=Vyo_mag/Zymag;
Iy_ang=Vyo_ang-Zyang;
Iy_ang=Iy_ang+360;//converting to positive angle
Ib_mag=Vbo_mag/Zbmag;
Ib_ang=Vbo_ang-Zbang;
disp("the current in the phases are");
disp(Ir_mag,"the magnitude of current in the R phase is (in A)");
disp(Ir_ang,"the angle of current in the R phase is (in degree)");
disp(Iy_mag,"the magnitude of current in the Y phase is (in A)");
disp(Iy_ang,"the angle of current in the Y phase is (in degree)");
disp(Ib_mag,"the magnitude of current in the B phase is (in A)");
disp(Ib_ang,"the angle of current in the B phase is (in degree)");
//value of Ir is wrong in text book calculation
//the voltages value varies slightly with text book hence results are rounded off in text book
|