diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3751/CH6 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3751/CH6')
-rw-r--r-- | 3751/CH6/EX6.1/Ex6_1.sce | 36 | ||||
-rw-r--r-- | 3751/CH6/EX6.10/Ex6_10.sce | 44 | ||||
-rw-r--r-- | 3751/CH6/EX6.2/Ex6_2.sce | 32 | ||||
-rw-r--r-- | 3751/CH6/EX6.3/Ex6_3.sce | 52 | ||||
-rw-r--r-- | 3751/CH6/EX6.4/Ex6_4.sce | 48 | ||||
-rw-r--r-- | 3751/CH6/EX6.5/Ex6_5.sce | 45 | ||||
-rw-r--r-- | 3751/CH6/EX6.6/Ex6_6.sce | 40 | ||||
-rw-r--r-- | 3751/CH6/EX6.7/Ex6_7.sce | 43 | ||||
-rw-r--r-- | 3751/CH6/EX6.8/Ex6_8.sce | 37 | ||||
-rw-r--r-- | 3751/CH6/EX6.9/Ex6_9.sce | 50 |
10 files changed, 427 insertions, 0 deletions
diff --git a/3751/CH6/EX6.1/Ex6_1.sce b/3751/CH6/EX6.1/Ex6_1.sce new file mode 100644 index 000000000..d43fbab83 --- /dev/null +++ b/3751/CH6/EX6.1/Ex6_1.sce @@ -0,0 +1,36 @@ +//Fluid System By Shiv Kumar
+//Chapter 6 - Kaplan and Propeller Turbines
+//Example 6.1
+//To Find (a)Discharge (b)Diameter of Hub And Diameter of Runner (c)Speed
+
+ clc
+ clear
+
+//Given:
+ P=37; //Shaft Power, MW
+ H=22; //Head, m
+ eta_0=92/100; //Overall Efficiency
+ dbyD=1/3; //Ratio of Diameters of Hub and Runner
+ Kf=0.6; //Flow Ratio
+ Ku=2; //Speed Ratio
+//Data Required:
+ rho=1000; //Density of Water, Kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations
+
+ //(a)Discharge, Q
+ Q=P*10^6/(rho*g*H*eta_0); //m^3/s
+
+ //(b)Diameter of Hub(d) And Diameter of Runner(D)
+ d=sqrt(Q/((%pi/4)*Kf*sqrt(2*g*H)*(dbyD^-2-1))); //m
+ D=d/dbyD; //m
+
+ //(c) Speed,N
+ N=Ku*60*sqrt(2*g*H)/(%pi*D); // rpm
+
+//Results
+ printf("(a)Discharge, Q=%.2f m^3/s \n",Q) //The answer vary due to round off error
+ printf(" (b)Diameter of Hub, d=%.2f m \n",d)
+ printf(" Diameter of Runner, D=%.2f m \n",D) //The answer vary due to round off error
+ printf(" (c)Speed, N=%.2f rpm \n",N) //The answer vary due to round off error
diff --git a/3751/CH6/EX6.10/Ex6_10.sce b/3751/CH6/EX6.10/Ex6_10.sce new file mode 100644 index 000000000..958dbe84a --- /dev/null +++ b/3751/CH6/EX6.10/Ex6_10.sce @@ -0,0 +1,44 @@ +//Fluid System By Shiv Kumar
+//Chapter 6 - Kaplan and Propeller Turbines
+//Example 6.10
+//To Determine (i)Hydraulic Efficiency of turbine (ii)Discharge through the turbine (iii)Power Developed by the Runner
+
+clc
+clear
+
+//Given:
+ D=4.5; // Runner Diameter, m
+ N=48; // Speed, rpm
+ Alpha_i=145; //Guide Vane Angle at Inlet, Degrees
+ Beta_o=25; //Runner blade Angle at Outlet
+ A=30; //Flow Area, m^2
+ //As runner blade angle at inlet is radial
+ Beta_i=90 //Degrees
+
+//Data Required:
+ rho=1000; //Density of Water, Kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Calculations
+ u=%pi*D*N/60; //Velocity of Runner,m/s
+ ui=u;
+ uo=u;
+ Vwi=ui;
+ Vfi=ui*tand(180-Alpha_i); //m/s
+ Vfo=Vfi;
+ Vrwo=Vfo/tand(Beta_o); //m/s
+ Vwo=Vrwo-uo; //The answer vary because wrong Value of uo is used to calculate Vwo in the textbook
+ Vo=sqrt(Vfo^2+Vwo^2); //m/s //The answer vary because wrong Value of Vwo is used to calculate Vo in the textbook
+
+//(i)Hydraulic Efficiency, eta_H
+ H= (Vwi-Vwo)*u/g+Vo^2/(2*g); // Head, m //The answer vary because wrong Value of Vo and Vwo is used to calculate H in the textbook
+ eta_H=(Vwi*ui-Vwo*uo)*100/(g*H); //Percent(%)
+
+//(ii) Discharge through the turbine, Q
+ Q=A*Vfi; //m^3/s
+//(iii)Power Developed by the Runner, P
+ P=rho*Q*(Vwi-Vwo)*u/10^6; //MW
+//Results
+ printf("(i)Hydraulic Efficiency, eta_H=%.2f Percent\n",eta_H) //The answer given in the textbook is wrong
+ printf("(ii) Discharge through the turbine, Q =%.1fm^3/s\n",Q) //The answer vary due to round off error
+ printf("(iii)Power Developed by the Runner, P =%.3fMW\n",P) //The answer given in the textbook is wrong
diff --git a/3751/CH6/EX6.2/Ex6_2.sce b/3751/CH6/EX6.2/Ex6_2.sce new file mode 100644 index 000000000..42e18e65f --- /dev/null +++ b/3751/CH6/EX6.2/Ex6_2.sce @@ -0,0 +1,32 @@ +//Fluid System By Shiv Kumar
+//Chapter 6 - Kaplan and Propeller Turbines
+//Example 6.2
+//To Find Diameter of Runner, Speed of Runner and Specific Speed of Turbine
+
+ clc
+ clear
+
+//Given:
+ P=8; //Shaft Power, MW
+ H=6; //Head, m
+ Ku=2.09; //Speed Ratio
+ Kf=0.68; //Flow Ratio
+ eta_0=90/100; //Overall Efficiency
+ dbyD=1/3; //Ratio of Diameters of Hub and Runner
+
+//Data Required:
+ rho=1000; //Density of Water, Kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations
+
+ Q=P*10^6/(rho*g*H*eta_0); //Discharge, m^3/s
+ d=sqrt(Q/((%pi/4)*Kf*sqrt(2*g*H)*(dbyD^-2-1))); //Diameter of hub, m
+ D=d/dbyD; //Diameter of runner, m
+ N=Ku*60*sqrt(2*g*H)/(%pi*D); //Speed of Runner, rpm
+ Ns=N*(P*10^3)^(1/2)/(H^(5/4)); //Specific Speed of Turbine, SI Units
+
+//Results
+ printf("Diameter of Runner, D =%.1f m \n",D)
+ printf("Speed of Runner, N = %.2f rpm \n",N) //The answer provided in the textbook is wrong
+ printf("Specific Speed of Turbine, Ns = %.2f (SI Units)",Ns) //The answer provided in the textbook is wrong(Due to error in N)
diff --git a/3751/CH6/EX6.3/Ex6_3.sce b/3751/CH6/EX6.3/Ex6_3.sce new file mode 100644 index 000000000..1efab0a00 --- /dev/null +++ b/3751/CH6/EX6.3/Ex6_3.sce @@ -0,0 +1,52 @@ +//Fluid System By Shiv Kumar
+//Chapter 6 - Kaplan and Propeller Turbines
+//Example 6.3
+//To Find (a)Inlet and Outlet blade Angles (b)Mechanical Efficiency (c)Volumetric Efficiency
+
+ clc
+ clear
+
+//Given:
+ D=6; //Outer Diameter of Runner, m
+ d=2; //Inner Diameter of Runner, m
+ P=30; //Shaft Power, MW
+ N=75; //Speed, rpm
+ H=12; //Head, m
+ Q=310 //Discharge through the Runner, m^3/s
+ eta_H=96/100; //Hydraulic Efficiency
+
+//Data Required:
+ rho=1000; //Density of Water, Kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations
+
+ u=%pi*D*N/60; //Velocity of runner, m/s
+ ui=u;
+ uo=u;
+ Vf=Q/((%pi/4)*(D^2-d^2)) // m/s
+ Vfi=Vf;
+ Vfo=Vf;
+ Vwi=eta_H*g*H/ui; // m/s //The Answer Vary Because Value of ui used in book is Wrong
+
+//(a)Inlet and Outlet blade Angles, Beta_i and Beta_o
+
+ Beta_i=180-atand(Vfi/(ui-Vwi)); //Degrees
+ Beta_o=atand(Vfo/uo); //Degrees
+
+//(b)Mechanical Efficiency,eta_m
+
+ eta_M=P*10^6/(rho*Q*Vwi*ui)*100; //percentage(%) //The Answer Vary Because Value of Vwi used in book is Wrong
+
+//(c)Volumetric Efficiency, eta_v
+
+ eta_o=P*10^6/(rho*Q*g*H)*100; //Overall Efficiency, percentage(%)
+ eta_v=eta_o/(eta_M*eta_H); //percentage(%) //The Answer Vary Because Value of eta_m used in book is Wrong
+
+//Results
+
+ printf("(a)Inlet Blade Angle, Beta_i=%.2f degrees and \n",Beta_i) //The answer vary due to round off error
+ printf(" Outlet Blade Angle, Beta_o=%.2f degrees \n",Beta_o) //The answer vary due to round off error
+ printf("(b)Mechanical Efficiency, eta_m=%.2f percent\n",eta_M) //The answer provided in the textbook is wrong
+ printf("(c)Volumetric Efficiency, eta_v=%.2f percent\n ",eta_o) //The answer provided in the textbook is wrong
+
diff --git a/3751/CH6/EX6.4/Ex6_4.sce b/3751/CH6/EX6.4/Ex6_4.sce new file mode 100644 index 000000000..ffbb756b6 --- /dev/null +++ b/3751/CH6/EX6.4/Ex6_4.sce @@ -0,0 +1,48 @@ +//Fluid System By Shiv Kumar
+//Chapter 6 - Kaplan and Propeller Turbines
+//Example 6.4
+//To Find (a)Discharge (b)Hydraulic Efficiency (c)Overall Efficiency (d)Specific Speed
+
+ clc
+ clear
+
+//Given:
+ N=30 //Speed, rpm
+ Alpha_i=31; //Inlet Guide Vane Angle, Degrees
+ Beta_i=90; //Inlet Runner Vane Angle, Degrees
+ Beta_o=24; //Outlet Runner Vane Angle, Degrees
+ Dm=4; //Mean Diameter of Runner, m
+ A=31; //Area of Flow, m^2
+ ML=5; //Percent of Mechanical Loss
+//Data Required:
+ rho=1000; //Density of Water, Kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations
+
+ u=%pi*Dm*N/60; //Velocity of runner, m/s
+ ui=u;
+ uo=u;
+ Vwi=ui;
+ Vfi=ui*tand(Alpha_i); //m/s
+ Vf=Vfi;
+ Vfo=Vfi;
+ Vrwo=Vfo/tand(Beta_o); //m/s
+ Vwo=Vrwo-uo;
+ Vo=sqrt(Vfo^2+Vwo^2); //m/s
+//(a)Discharge, Q
+ Q=A*Vfi; //m^3/s
+//(b) Hydraulic Efficiency, eta_H
+ H= (Vwi+Vwo) *u/g+Vo^2/(2*g); // Head, m
+ eta_H=(Vwi*ui+Vwo*uo)*100/(g*H); //Percent(%)
+//(c)Overall Efficiency, eta_o
+ P=rho*Q*(Vwi+Vwo)*u*(1-ML/100); //Shaft Power, Watt(w)
+ eta_o=P/(rho*Q*g*H)*100; //Percent(%)
+//(d)Specific Speed,Ns
+ Ns=N*sqrt(P/1000)/(H^(5/4)); //SI Units
+
+//Results
+ printf("(a)Discharge, Q=%.2f m^3/s\n",Q) //The answer vary due to round off error
+ printf("(b) Hydraulic Efficiency, eta_H =%.2f Percent\n", eta_H) //The answer vary due to round off error
+ printf("(c) Overall Efficiency, eta_o =%.2f Percent\n", eta_o) //The answer vary due to round off error
+ printf("(d)Specific Speed, Ns =%.2f (SI Units)\n", Ns) //The answer vary due to round off error
diff --git a/3751/CH6/EX6.5/Ex6_5.sce b/3751/CH6/EX6.5/Ex6_5.sce new file mode 100644 index 000000000..1d2d317e7 --- /dev/null +++ b/3751/CH6/EX6.5/Ex6_5.sce @@ -0,0 +1,45 @@ +//Fluid System By Shiv Kumar
+//Chapter 6 - Kaplan and Propeller Turbines
+//Example 6.5
+//To Find (a)Guide Vane Angle at Inlet (b)Runner Vane Angle at Inlet
+
+clc
+clear
+
+//Given:
+ P=22500 //Shaft Power, KW
+ H=20; //Head, m
+ N=148; //Speed, rpm
+ eta_H=95/100; //Hydraulic Efficiency
+ eta_o=89/100; //Overall Efficiency
+ D=4.5; //Diameter of Runner, m
+ d=2; //Diameter of Hub, m
+ Beta_o=34 //Runner Vane Angle at Outlet, Degrees
+
+//Data Required:
+ rho=1000; //Density of Water, Kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations
+
+ u=%pi*D*N/60; //Velocity of runner, m/s
+ Q=P*10^3/(rho*g*H*eta_o); //Discharge, m^3/s
+ Vfi=Q/((%pi/4)*(D^2-d^2)); // m/s
+ //As Velocity of Flow is Constant
+ ui=u;
+ uo=u;
+ Vfo=Vfi;
+ Vf=Vfo;
+ Vrwo=Vfo/tand(Beta_o); //m/s
+ Vwo=uo-Vrwo;
+ Vo=sqrt(Vfo^2+Vwo^2); //m/s
+ Vwi=(g*H-Vo^2/2)/u+Vwo ; //m/s
+//(a)Guide Vane Angle at Inlet,Alpha_i
+ Alpha_i=atand(Vfi/Vwi); //Degrees
+//(b)Runner Vane Angle at Inlet,Beta_i
+ Beta_i=180-atand(Vfi/(ui-Vwi)); //Degrees
+
+//Results
+ printf("(a)Guide Vane Angle at Inlet, Alpha_i=%.2f Degrees\n",Alpha_i) //The answer vary due to round off error
+ printf("(b)Runner Vane Angle at Inlet, Beta_i =%.f Degrees\n",Beta_i) //The answer provided in the textbook is wrong
+
diff --git a/3751/CH6/EX6.6/Ex6_6.sce b/3751/CH6/EX6.6/Ex6_6.sce new file mode 100644 index 000000000..b89471bc5 --- /dev/null +++ b/3751/CH6/EX6.6/Ex6_6.sce @@ -0,0 +1,40 @@ +//Fluid System By Shiv Kumar
+//Chapter 6 - Kaplan and Propeller Turbines
+//Example 6.6
+//To Find (a)Diameter of Runner (b)Speed of Turbine (c)Specific Speed of the turbine
+
+ clc
+ clear
+
+//Given:
+ P=9100; //Shaft Power, KW
+ H=5.6; //Net Available Head, m
+ Ku=2.09; //Speed Ratio
+ Kf=0.68; //Flow Ratio
+ eta_0=86/100; //Overall Efficiency
+ dbyD=1/3; //Ratio of Diameters of Hub and Runner
+
+//Data Required:
+ rho=1000; //Density of Water, Kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations
+
+ Q=P*10^3/(rho*g*H*eta_0); //Discharge, m^3/s
+
+
+ d=sqrt(Q/((%pi/4)*Kf*sqrt(2*g*H)*(dbyD^-2-1))); // Diameter of Hub ,m
+ //(i) Diameter of Runner ,D
+ D=d/dbyD; //m
+
+ //(ii) Speed of Turbine,N
+ N=Ku*60*sqrt(2*g*H)/(%pi*D); // rpm
+//(iii) Specific Speed of Turbine, Ns
+ Ns=N*(P)^(1/2)/(H^(5/4)); // SI Units
+
+
+//Results
+ printf("(i)Diameter of Runner , D=%.2f m\n",D)
+ printf("(ii)Speed of Turbine, N =%.2f rpm\n",N) //The answer vary due to round off error
+ printf("(iii) Specific Speed of Turbine, Ns =%.2f (SI Units)\n",Ns) //The answer provided in the textbook is wrong(Due to error in N)
+
diff --git a/3751/CH6/EX6.7/Ex6_7.sce b/3751/CH6/EX6.7/Ex6_7.sce new file mode 100644 index 000000000..8baafe52a --- /dev/null +++ b/3751/CH6/EX6.7/Ex6_7.sce @@ -0,0 +1,43 @@ +//Fluid System By Shiv Kumar
+//Chapter 6 - Kaplan and Propeller Turbines
+//Example 6.7
+//To Find (a)Diameter of Runner (b)Speed (c)Specific Speed
+
+clc
+clear
+
+//Given:
+ H=32; //Head, m
+ P=16000; //Shaft Power, KW
+ D_per=190; //Percentage by which Diameter of Runner(D)is Larger than diameter of Boss(d)
+ eta_0=91/100; //Overall Efficiency
+ Ku=2; //Speed Ratio
+ Kf=0.64; //Flow Ratio
+
+//Data Required:
+ rho=1000; //Density of Water, Kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations
+
+ Vfi=Kf*sqrt(2*g*H); //Velocity of Flow at Inlet, m/s
+ ui= Ku*sqrt(2*g*H); //Velocity of Runner at Inlet, m/s
+
+ Q=P*10^3/(rho*g*H*eta_0); //Discharge, m^3/s
+
+
+ d=sqrt(Q/((%pi/4)*Kf*sqrt(2*g*H)*((D_per/100+1)^2-1))); // Diameter of Hub ,m
+ //(a) Diameter of Runner ,D
+ D=d+(D_per/100)*d; //m
+
+ //(b) Speed,N
+ N=ui*60/(%pi*D); // rpm
+//(iii) Specific Speed of Turbine, Ns
+ Ns=N*P^(1/2)/(H^(5/4)); // SI Units
+
+
+//Results
+ printf("(a)Diameter of Runner , D=%.3f m\n",D)
+ printf(" (b)Speed, N =%.2f rpm\n",N) //The answer vary due to round off error
+ printf(" (c)Specific Speed, Ns =%.2f (SI Units)\n",Ns) //The answer provided in the textbook is wrong.
+
diff --git a/3751/CH6/EX6.8/Ex6_8.sce b/3751/CH6/EX6.8/Ex6_8.sce new file mode 100644 index 000000000..43cc49b71 --- /dev/null +++ b/3751/CH6/EX6.8/Ex6_8.sce @@ -0,0 +1,37 @@ +//Fluid System By Shiv Kumar
+//Chapter 6 - Kaplan and Propeller Turbines
+//Example 6.8
+//To Find Inlet and outlet Angles of the Runner blades
+
+clc
+clear
+
+//Given:
+ H=25; //Head, m
+ P=23000; //Shaft Power, KW
+ D=5; //External Diameter of Runner, m
+ d=3; //Diameter of Hub, m
+ N=60; //Rotational Speed, rpm
+ eta_H=95/100; //Hydraulic Efficiency
+ eta_0=88/100; //Overall Efficiency
+ Vw=0; //As there is no exit whirl
+
+//Data Required:
+ rho=1000; //Density of Water, Kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations
+ Dm=(D+d)/2; //Mean Diameter of Runner, m
+ ui=%pi*Dm*N/60 //m/s
+ Q=P*10^3/(rho*g*H*eta_0); //Discharge, m^3/s
+ Vfi=Q/((%pi/4)*(D^2-d^2)) // m/s
+ Vwi=eta_H*g*H/ui; //m/s
+ uo=ui;
+ Vfo=Vfi;
+ Beta_i=atand(Vfi/(Vwi-ui)); //Degrees
+ Beta_o=atand(Vfo/uo); //Degrees
+
+//Results
+ printf("At the Mean Radius\n\t")
+ printf("Runner Blade Angle at Inlet, Beta_i=%.2f Degrees\n\t",Beta_i) //The answer vary due to round off error
+ printf("Runner Blade Angle at Outlet, Beta_o=%.2f Degrees\n",Beta_o) //The answer vary due to round off error
diff --git a/3751/CH6/EX6.9/Ex6_9.sce b/3751/CH6/EX6.9/Ex6_9.sce new file mode 100644 index 000000000..874c56af3 --- /dev/null +++ b/3751/CH6/EX6.9/Ex6_9.sce @@ -0,0 +1,50 @@ +//Fluid System By Shiv Kumar
+//Chapter 6 - Kaplan and Propeller Turbines
+//Example 6.9
+//To Determine Runner Vane Angles at the hub and at the Outer Periphery
+
+clc
+clear
+
+//Given:
+ P=22500; //Power Available at Shaft, KW
+ H=20; //Head, m
+ N=150; //Rotational Speed, rpm
+ eta_H=95/100; //Hydraulic Efficiency
+ eta_0=88/100; //Overall Efficiency
+ D=4.5; //Outer Diameter of Runner, m
+ d=2; //Diameter of Hub, m
+ Vw=0; //As there is no exit whirl
+
+//Data Required:
+ rho=1000; //Density of Water, Kg/m^3
+ g=9.81; //Acceleration due to gravity, m/s^2
+
+//Computations
+ //Runner Vane Angles at Hub
+ uo=%pi*d*N/60; //m/s
+ ui=uo;
+ Q=P*10^3/(rho*g*H*eta_0); //Discharge, m^3/s
+ Vwi=eta_H*g*H/ui; //m/s
+ Vfi=Q/((%pi/4)*(D^2-d^2)) // m/s
+ Vfo=Vfi;
+ Beta_i=180-atand(Vfi/(ui-Vwi)); //Degrees
+ Beta_o=atand(Vfo/uo); //Degrees
+
+//Result1
+ printf("Runner Vane Angles at the Hub \n\t")
+ printf("Beta_i=%.2f Degrees\n\t",Beta_i) //The answer vary due to round off error
+ printf("Beta_o=%.2f Degrees\n\n",Beta_o) //The answer vary due to round off error
+
+ // Runner Vane Angles at outer periphery
+ uo=%pi*D*N/60; //m/s
+ ui=uo;
+ Vwi=eta_H*g*H/ui; //m/s
+ Beta_i=180-atand(Vfi/(ui-Vwi)); //Degrees
+ Beta_o=atand(Vfo/uo); //Degrees
+
+//Result2
+ printf("Runner Vane Angles at the Outer periphery \n\t")
+ printf("Beta_i=%.2f Degrees\n\t",Beta_i) //The answer vary due to round off error
+ printf("Beta_o=%.2f Degrees\n\n",Beta_o) //The answer vary due to round off error
+
|