From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3751/CH6/EX6.1/Ex6_1.sce | 36 ++++++++++++++++++++++++++++++++ 3751/CH6/EX6.10/Ex6_10.sce | 44 +++++++++++++++++++++++++++++++++++++++ 3751/CH6/EX6.2/Ex6_2.sce | 32 ++++++++++++++++++++++++++++ 3751/CH6/EX6.3/Ex6_3.sce | 52 ++++++++++++++++++++++++++++++++++++++++++++++ 3751/CH6/EX6.4/Ex6_4.sce | 48 ++++++++++++++++++++++++++++++++++++++++++ 3751/CH6/EX6.5/Ex6_5.sce | 45 +++++++++++++++++++++++++++++++++++++++ 3751/CH6/EX6.6/Ex6_6.sce | 40 +++++++++++++++++++++++++++++++++++ 3751/CH6/EX6.7/Ex6_7.sce | 43 ++++++++++++++++++++++++++++++++++++++ 3751/CH6/EX6.8/Ex6_8.sce | 37 +++++++++++++++++++++++++++++++++ 3751/CH6/EX6.9/Ex6_9.sce | 50 ++++++++++++++++++++++++++++++++++++++++++++ 10 files changed, 427 insertions(+) create mode 100644 3751/CH6/EX6.1/Ex6_1.sce create mode 100644 3751/CH6/EX6.10/Ex6_10.sce create mode 100644 3751/CH6/EX6.2/Ex6_2.sce create mode 100644 3751/CH6/EX6.3/Ex6_3.sce create mode 100644 3751/CH6/EX6.4/Ex6_4.sce create mode 100644 3751/CH6/EX6.5/Ex6_5.sce create mode 100644 3751/CH6/EX6.6/Ex6_6.sce create mode 100644 3751/CH6/EX6.7/Ex6_7.sce create mode 100644 3751/CH6/EX6.8/Ex6_8.sce create mode 100644 3751/CH6/EX6.9/Ex6_9.sce (limited to '3751/CH6') diff --git a/3751/CH6/EX6.1/Ex6_1.sce b/3751/CH6/EX6.1/Ex6_1.sce new file mode 100644 index 000000000..d43fbab83 --- /dev/null +++ b/3751/CH6/EX6.1/Ex6_1.sce @@ -0,0 +1,36 @@ +//Fluid System By Shiv Kumar +//Chapter 6 - Kaplan and Propeller Turbines +//Example 6.1 +//To Find (a)Discharge (b)Diameter of Hub And Diameter of Runner (c)Speed + + clc + clear + +//Given: + P=37; //Shaft Power, MW + H=22; //Head, m + eta_0=92/100; //Overall Efficiency + dbyD=1/3; //Ratio of Diameters of Hub and Runner + Kf=0.6; //Flow Ratio + Ku=2; //Speed Ratio +//Data Required: + rho=1000; //Density of Water, Kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations + + //(a)Discharge, Q + Q=P*10^6/(rho*g*H*eta_0); //m^3/s + + //(b)Diameter of Hub(d) And Diameter of Runner(D) + d=sqrt(Q/((%pi/4)*Kf*sqrt(2*g*H)*(dbyD^-2-1))); //m + D=d/dbyD; //m + + //(c) Speed,N + N=Ku*60*sqrt(2*g*H)/(%pi*D); // rpm + +//Results + printf("(a)Discharge, Q=%.2f m^3/s \n",Q) //The answer vary due to round off error + printf(" (b)Diameter of Hub, d=%.2f m \n",d) + printf(" Diameter of Runner, D=%.2f m \n",D) //The answer vary due to round off error + printf(" (c)Speed, N=%.2f rpm \n",N) //The answer vary due to round off error diff --git a/3751/CH6/EX6.10/Ex6_10.sce b/3751/CH6/EX6.10/Ex6_10.sce new file mode 100644 index 000000000..958dbe84a --- /dev/null +++ b/3751/CH6/EX6.10/Ex6_10.sce @@ -0,0 +1,44 @@ +//Fluid System By Shiv Kumar +//Chapter 6 - Kaplan and Propeller Turbines +//Example 6.10 +//To Determine (i)Hydraulic Efficiency of turbine (ii)Discharge through the turbine (iii)Power Developed by the Runner + +clc +clear + +//Given: + D=4.5; // Runner Diameter, m + N=48; // Speed, rpm + Alpha_i=145; //Guide Vane Angle at Inlet, Degrees + Beta_o=25; //Runner blade Angle at Outlet + A=30; //Flow Area, m^2 + //As runner blade angle at inlet is radial + Beta_i=90 //Degrees + +//Data Required: + rho=1000; //Density of Water, Kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Calculations + u=%pi*D*N/60; //Velocity of Runner,m/s + ui=u; + uo=u; + Vwi=ui; + Vfi=ui*tand(180-Alpha_i); //m/s + Vfo=Vfi; + Vrwo=Vfo/tand(Beta_o); //m/s + Vwo=Vrwo-uo; //The answer vary because wrong Value of uo is used to calculate Vwo in the textbook + Vo=sqrt(Vfo^2+Vwo^2); //m/s //The answer vary because wrong Value of Vwo is used to calculate Vo in the textbook + +//(i)Hydraulic Efficiency, eta_H + H= (Vwi-Vwo)*u/g+Vo^2/(2*g); // Head, m //The answer vary because wrong Value of Vo and Vwo is used to calculate H in the textbook + eta_H=(Vwi*ui-Vwo*uo)*100/(g*H); //Percent(%) + +//(ii) Discharge through the turbine, Q + Q=A*Vfi; //m^3/s +//(iii)Power Developed by the Runner, P + P=rho*Q*(Vwi-Vwo)*u/10^6; //MW +//Results + printf("(i)Hydraulic Efficiency, eta_H=%.2f Percent\n",eta_H) //The answer given in the textbook is wrong + printf("(ii) Discharge through the turbine, Q =%.1fm^3/s\n",Q) //The answer vary due to round off error + printf("(iii)Power Developed by the Runner, P =%.3fMW\n",P) //The answer given in the textbook is wrong diff --git a/3751/CH6/EX6.2/Ex6_2.sce b/3751/CH6/EX6.2/Ex6_2.sce new file mode 100644 index 000000000..42e18e65f --- /dev/null +++ b/3751/CH6/EX6.2/Ex6_2.sce @@ -0,0 +1,32 @@ +//Fluid System By Shiv Kumar +//Chapter 6 - Kaplan and Propeller Turbines +//Example 6.2 +//To Find Diameter of Runner, Speed of Runner and Specific Speed of Turbine + + clc + clear + +//Given: + P=8; //Shaft Power, MW + H=6; //Head, m + Ku=2.09; //Speed Ratio + Kf=0.68; //Flow Ratio + eta_0=90/100; //Overall Efficiency + dbyD=1/3; //Ratio of Diameters of Hub and Runner + +//Data Required: + rho=1000; //Density of Water, Kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations + + Q=P*10^6/(rho*g*H*eta_0); //Discharge, m^3/s + d=sqrt(Q/((%pi/4)*Kf*sqrt(2*g*H)*(dbyD^-2-1))); //Diameter of hub, m + D=d/dbyD; //Diameter of runner, m + N=Ku*60*sqrt(2*g*H)/(%pi*D); //Speed of Runner, rpm + Ns=N*(P*10^3)^(1/2)/(H^(5/4)); //Specific Speed of Turbine, SI Units + +//Results + printf("Diameter of Runner, D =%.1f m \n",D) + printf("Speed of Runner, N = %.2f rpm \n",N) //The answer provided in the textbook is wrong + printf("Specific Speed of Turbine, Ns = %.2f (SI Units)",Ns) //The answer provided in the textbook is wrong(Due to error in N) diff --git a/3751/CH6/EX6.3/Ex6_3.sce b/3751/CH6/EX6.3/Ex6_3.sce new file mode 100644 index 000000000..1efab0a00 --- /dev/null +++ b/3751/CH6/EX6.3/Ex6_3.sce @@ -0,0 +1,52 @@ +//Fluid System By Shiv Kumar +//Chapter 6 - Kaplan and Propeller Turbines +//Example 6.3 +//To Find (a)Inlet and Outlet blade Angles (b)Mechanical Efficiency (c)Volumetric Efficiency + + clc + clear + +//Given: + D=6; //Outer Diameter of Runner, m + d=2; //Inner Diameter of Runner, m + P=30; //Shaft Power, MW + N=75; //Speed, rpm + H=12; //Head, m + Q=310 //Discharge through the Runner, m^3/s + eta_H=96/100; //Hydraulic Efficiency + +//Data Required: + rho=1000; //Density of Water, Kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations + + u=%pi*D*N/60; //Velocity of runner, m/s + ui=u; + uo=u; + Vf=Q/((%pi/4)*(D^2-d^2)) // m/s + Vfi=Vf; + Vfo=Vf; + Vwi=eta_H*g*H/ui; // m/s //The Answer Vary Because Value of ui used in book is Wrong + +//(a)Inlet and Outlet blade Angles, Beta_i and Beta_o + + Beta_i=180-atand(Vfi/(ui-Vwi)); //Degrees + Beta_o=atand(Vfo/uo); //Degrees + +//(b)Mechanical Efficiency,eta_m + + eta_M=P*10^6/(rho*Q*Vwi*ui)*100; //percentage(%) //The Answer Vary Because Value of Vwi used in book is Wrong + +//(c)Volumetric Efficiency, eta_v + + eta_o=P*10^6/(rho*Q*g*H)*100; //Overall Efficiency, percentage(%) + eta_v=eta_o/(eta_M*eta_H); //percentage(%) //The Answer Vary Because Value of eta_m used in book is Wrong + +//Results + + printf("(a)Inlet Blade Angle, Beta_i=%.2f degrees and \n",Beta_i) //The answer vary due to round off error + printf(" Outlet Blade Angle, Beta_o=%.2f degrees \n",Beta_o) //The answer vary due to round off error + printf("(b)Mechanical Efficiency, eta_m=%.2f percent\n",eta_M) //The answer provided in the textbook is wrong + printf("(c)Volumetric Efficiency, eta_v=%.2f percent\n ",eta_o) //The answer provided in the textbook is wrong + diff --git a/3751/CH6/EX6.4/Ex6_4.sce b/3751/CH6/EX6.4/Ex6_4.sce new file mode 100644 index 000000000..ffbb756b6 --- /dev/null +++ b/3751/CH6/EX6.4/Ex6_4.sce @@ -0,0 +1,48 @@ +//Fluid System By Shiv Kumar +//Chapter 6 - Kaplan and Propeller Turbines +//Example 6.4 +//To Find (a)Discharge (b)Hydraulic Efficiency (c)Overall Efficiency (d)Specific Speed + + clc + clear + +//Given: + N=30 //Speed, rpm + Alpha_i=31; //Inlet Guide Vane Angle, Degrees + Beta_i=90; //Inlet Runner Vane Angle, Degrees + Beta_o=24; //Outlet Runner Vane Angle, Degrees + Dm=4; //Mean Diameter of Runner, m + A=31; //Area of Flow, m^2 + ML=5; //Percent of Mechanical Loss +//Data Required: + rho=1000; //Density of Water, Kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations + + u=%pi*Dm*N/60; //Velocity of runner, m/s + ui=u; + uo=u; + Vwi=ui; + Vfi=ui*tand(Alpha_i); //m/s + Vf=Vfi; + Vfo=Vfi; + Vrwo=Vfo/tand(Beta_o); //m/s + Vwo=Vrwo-uo; + Vo=sqrt(Vfo^2+Vwo^2); //m/s +//(a)Discharge, Q + Q=A*Vfi; //m^3/s +//(b) Hydraulic Efficiency, eta_H + H= (Vwi+Vwo) *u/g+Vo^2/(2*g); // Head, m + eta_H=(Vwi*ui+Vwo*uo)*100/(g*H); //Percent(%) +//(c)Overall Efficiency, eta_o + P=rho*Q*(Vwi+Vwo)*u*(1-ML/100); //Shaft Power, Watt(w) + eta_o=P/(rho*Q*g*H)*100; //Percent(%) +//(d)Specific Speed,Ns + Ns=N*sqrt(P/1000)/(H^(5/4)); //SI Units + +//Results + printf("(a)Discharge, Q=%.2f m^3/s\n",Q) //The answer vary due to round off error + printf("(b) Hydraulic Efficiency, eta_H =%.2f Percent\n", eta_H) //The answer vary due to round off error + printf("(c) Overall Efficiency, eta_o =%.2f Percent\n", eta_o) //The answer vary due to round off error + printf("(d)Specific Speed, Ns =%.2f (SI Units)\n", Ns) //The answer vary due to round off error diff --git a/3751/CH6/EX6.5/Ex6_5.sce b/3751/CH6/EX6.5/Ex6_5.sce new file mode 100644 index 000000000..1d2d317e7 --- /dev/null +++ b/3751/CH6/EX6.5/Ex6_5.sce @@ -0,0 +1,45 @@ +//Fluid System By Shiv Kumar +//Chapter 6 - Kaplan and Propeller Turbines +//Example 6.5 +//To Find (a)Guide Vane Angle at Inlet (b)Runner Vane Angle at Inlet + +clc +clear + +//Given: + P=22500 //Shaft Power, KW + H=20; //Head, m + N=148; //Speed, rpm + eta_H=95/100; //Hydraulic Efficiency + eta_o=89/100; //Overall Efficiency + D=4.5; //Diameter of Runner, m + d=2; //Diameter of Hub, m + Beta_o=34 //Runner Vane Angle at Outlet, Degrees + +//Data Required: + rho=1000; //Density of Water, Kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations + + u=%pi*D*N/60; //Velocity of runner, m/s + Q=P*10^3/(rho*g*H*eta_o); //Discharge, m^3/s + Vfi=Q/((%pi/4)*(D^2-d^2)); // m/s + //As Velocity of Flow is Constant + ui=u; + uo=u; + Vfo=Vfi; + Vf=Vfo; + Vrwo=Vfo/tand(Beta_o); //m/s + Vwo=uo-Vrwo; + Vo=sqrt(Vfo^2+Vwo^2); //m/s + Vwi=(g*H-Vo^2/2)/u+Vwo ; //m/s +//(a)Guide Vane Angle at Inlet,Alpha_i + Alpha_i=atand(Vfi/Vwi); //Degrees +//(b)Runner Vane Angle at Inlet,Beta_i + Beta_i=180-atand(Vfi/(ui-Vwi)); //Degrees + +//Results + printf("(a)Guide Vane Angle at Inlet, Alpha_i=%.2f Degrees\n",Alpha_i) //The answer vary due to round off error + printf("(b)Runner Vane Angle at Inlet, Beta_i =%.f Degrees\n",Beta_i) //The answer provided in the textbook is wrong + diff --git a/3751/CH6/EX6.6/Ex6_6.sce b/3751/CH6/EX6.6/Ex6_6.sce new file mode 100644 index 000000000..b89471bc5 --- /dev/null +++ b/3751/CH6/EX6.6/Ex6_6.sce @@ -0,0 +1,40 @@ +//Fluid System By Shiv Kumar +//Chapter 6 - Kaplan and Propeller Turbines +//Example 6.6 +//To Find (a)Diameter of Runner (b)Speed of Turbine (c)Specific Speed of the turbine + + clc + clear + +//Given: + P=9100; //Shaft Power, KW + H=5.6; //Net Available Head, m + Ku=2.09; //Speed Ratio + Kf=0.68; //Flow Ratio + eta_0=86/100; //Overall Efficiency + dbyD=1/3; //Ratio of Diameters of Hub and Runner + +//Data Required: + rho=1000; //Density of Water, Kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations + + Q=P*10^3/(rho*g*H*eta_0); //Discharge, m^3/s + + + d=sqrt(Q/((%pi/4)*Kf*sqrt(2*g*H)*(dbyD^-2-1))); // Diameter of Hub ,m + //(i) Diameter of Runner ,D + D=d/dbyD; //m + + //(ii) Speed of Turbine,N + N=Ku*60*sqrt(2*g*H)/(%pi*D); // rpm +//(iii) Specific Speed of Turbine, Ns + Ns=N*(P)^(1/2)/(H^(5/4)); // SI Units + + +//Results + printf("(i)Diameter of Runner , D=%.2f m\n",D) + printf("(ii)Speed of Turbine, N =%.2f rpm\n",N) //The answer vary due to round off error + printf("(iii) Specific Speed of Turbine, Ns =%.2f (SI Units)\n",Ns) //The answer provided in the textbook is wrong(Due to error in N) + diff --git a/3751/CH6/EX6.7/Ex6_7.sce b/3751/CH6/EX6.7/Ex6_7.sce new file mode 100644 index 000000000..8baafe52a --- /dev/null +++ b/3751/CH6/EX6.7/Ex6_7.sce @@ -0,0 +1,43 @@ +//Fluid System By Shiv Kumar +//Chapter 6 - Kaplan and Propeller Turbines +//Example 6.7 +//To Find (a)Diameter of Runner (b)Speed (c)Specific Speed + +clc +clear + +//Given: + H=32; //Head, m + P=16000; //Shaft Power, KW + D_per=190; //Percentage by which Diameter of Runner(D)is Larger than diameter of Boss(d) + eta_0=91/100; //Overall Efficiency + Ku=2; //Speed Ratio + Kf=0.64; //Flow Ratio + +//Data Required: + rho=1000; //Density of Water, Kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations + + Vfi=Kf*sqrt(2*g*H); //Velocity of Flow at Inlet, m/s + ui= Ku*sqrt(2*g*H); //Velocity of Runner at Inlet, m/s + + Q=P*10^3/(rho*g*H*eta_0); //Discharge, m^3/s + + + d=sqrt(Q/((%pi/4)*Kf*sqrt(2*g*H)*((D_per/100+1)^2-1))); // Diameter of Hub ,m + //(a) Diameter of Runner ,D + D=d+(D_per/100)*d; //m + + //(b) Speed,N + N=ui*60/(%pi*D); // rpm +//(iii) Specific Speed of Turbine, Ns + Ns=N*P^(1/2)/(H^(5/4)); // SI Units + + +//Results + printf("(a)Diameter of Runner , D=%.3f m\n",D) + printf(" (b)Speed, N =%.2f rpm\n",N) //The answer vary due to round off error + printf(" (c)Specific Speed, Ns =%.2f (SI Units)\n",Ns) //The answer provided in the textbook is wrong. + diff --git a/3751/CH6/EX6.8/Ex6_8.sce b/3751/CH6/EX6.8/Ex6_8.sce new file mode 100644 index 000000000..43cc49b71 --- /dev/null +++ b/3751/CH6/EX6.8/Ex6_8.sce @@ -0,0 +1,37 @@ +//Fluid System By Shiv Kumar +//Chapter 6 - Kaplan and Propeller Turbines +//Example 6.8 +//To Find Inlet and outlet Angles of the Runner blades + +clc +clear + +//Given: + H=25; //Head, m + P=23000; //Shaft Power, KW + D=5; //External Diameter of Runner, m + d=3; //Diameter of Hub, m + N=60; //Rotational Speed, rpm + eta_H=95/100; //Hydraulic Efficiency + eta_0=88/100; //Overall Efficiency + Vw=0; //As there is no exit whirl + +//Data Required: + rho=1000; //Density of Water, Kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations + Dm=(D+d)/2; //Mean Diameter of Runner, m + ui=%pi*Dm*N/60 //m/s + Q=P*10^3/(rho*g*H*eta_0); //Discharge, m^3/s + Vfi=Q/((%pi/4)*(D^2-d^2)) // m/s + Vwi=eta_H*g*H/ui; //m/s + uo=ui; + Vfo=Vfi; + Beta_i=atand(Vfi/(Vwi-ui)); //Degrees + Beta_o=atand(Vfo/uo); //Degrees + +//Results + printf("At the Mean Radius\n\t") + printf("Runner Blade Angle at Inlet, Beta_i=%.2f Degrees\n\t",Beta_i) //The answer vary due to round off error + printf("Runner Blade Angle at Outlet, Beta_o=%.2f Degrees\n",Beta_o) //The answer vary due to round off error diff --git a/3751/CH6/EX6.9/Ex6_9.sce b/3751/CH6/EX6.9/Ex6_9.sce new file mode 100644 index 000000000..874c56af3 --- /dev/null +++ b/3751/CH6/EX6.9/Ex6_9.sce @@ -0,0 +1,50 @@ +//Fluid System By Shiv Kumar +//Chapter 6 - Kaplan and Propeller Turbines +//Example 6.9 +//To Determine Runner Vane Angles at the hub and at the Outer Periphery + +clc +clear + +//Given: + P=22500; //Power Available at Shaft, KW + H=20; //Head, m + N=150; //Rotational Speed, rpm + eta_H=95/100; //Hydraulic Efficiency + eta_0=88/100; //Overall Efficiency + D=4.5; //Outer Diameter of Runner, m + d=2; //Diameter of Hub, m + Vw=0; //As there is no exit whirl + +//Data Required: + rho=1000; //Density of Water, Kg/m^3 + g=9.81; //Acceleration due to gravity, m/s^2 + +//Computations + //Runner Vane Angles at Hub + uo=%pi*d*N/60; //m/s + ui=uo; + Q=P*10^3/(rho*g*H*eta_0); //Discharge, m^3/s + Vwi=eta_H*g*H/ui; //m/s + Vfi=Q/((%pi/4)*(D^2-d^2)) // m/s + Vfo=Vfi; + Beta_i=180-atand(Vfi/(ui-Vwi)); //Degrees + Beta_o=atand(Vfo/uo); //Degrees + +//Result1 + printf("Runner Vane Angles at the Hub \n\t") + printf("Beta_i=%.2f Degrees\n\t",Beta_i) //The answer vary due to round off error + printf("Beta_o=%.2f Degrees\n\n",Beta_o) //The answer vary due to round off error + + // Runner Vane Angles at outer periphery + uo=%pi*D*N/60; //m/s + ui=uo; + Vwi=eta_H*g*H/ui; //m/s + Beta_i=180-atand(Vfi/(ui-Vwi)); //Degrees + Beta_o=atand(Vfo/uo); //Degrees + +//Result2 + printf("Runner Vane Angles at the Outer periphery \n\t") + printf("Beta_i=%.2f Degrees\n\t",Beta_i) //The answer vary due to round off error + printf("Beta_o=%.2f Degrees\n\n",Beta_o) //The answer vary due to round off error + -- cgit