blob: 43cc49b710209b05dc7dc67f6f489329becf2b4f (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
//Fluid System By Shiv Kumar
//Chapter 6 - Kaplan and Propeller Turbines
//Example 6.8
//To Find Inlet and outlet Angles of the Runner blades
clc
clear
//Given:
H=25; //Head, m
P=23000; //Shaft Power, KW
D=5; //External Diameter of Runner, m
d=3; //Diameter of Hub, m
N=60; //Rotational Speed, rpm
eta_H=95/100; //Hydraulic Efficiency
eta_0=88/100; //Overall Efficiency
Vw=0; //As there is no exit whirl
//Data Required:
rho=1000; //Density of Water, Kg/m^3
g=9.81; //Acceleration due to gravity, m/s^2
//Computations
Dm=(D+d)/2; //Mean Diameter of Runner, m
ui=%pi*Dm*N/60 //m/s
Q=P*10^3/(rho*g*H*eta_0); //Discharge, m^3/s
Vfi=Q/((%pi/4)*(D^2-d^2)) // m/s
Vwi=eta_H*g*H/ui; //m/s
uo=ui;
Vfo=Vfi;
Beta_i=atand(Vfi/(Vwi-ui)); //Degrees
Beta_o=atand(Vfo/uo); //Degrees
//Results
printf("At the Mean Radius\n\t")
printf("Runner Blade Angle at Inlet, Beta_i=%.2f Degrees\n\t",Beta_i) //The answer vary due to round off error
printf("Runner Blade Angle at Outlet, Beta_o=%.2f Degrees\n",Beta_o) //The answer vary due to round off error
|