diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1628 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1628')
190 files changed, 4562 insertions, 0 deletions
diff --git a/1628/CH10/EX10.1/Ex10_1.sce b/1628/CH10/EX10.1/Ex10_1.sce new file mode 100755 index 000000000..f4672ff71 --- /dev/null +++ b/1628/CH10/EX10.1/Ex10_1.sce @@ -0,0 +1,27 @@ +
+ // Example 10.1
+
+ // From Diagram 10.2a
+
+Vm=141+%i*0; // Peak value of Voltage
+V=Vm/1.414; // Rms value of Voltage
+v=100+%i*0; // Here will have V=99.70, but we took v=100
+R=3; // Resistance
+wL=0.0127*100*%pi; // Reactance
+Z=R+%i*wL; // Impedence
+I=v/Z; // Current
+disp(' The value of current = '+string(I)+' Amp OR '+string(abs(I))+'<'+string(atand(imag(I),real(I)))+' Amp');
+
+ // Study state current is I=20A & Q=53.1 Lagging.
+disp(' Expression for instantaneous current ==> [ 28.28sin(100%pi*t-53.1)A ] ');
+
+P=abs(v)*abs(20)*cosd(53.1); // Average power ==> (I=20.032 ,so take I=20 )
+disp(' Average power is = '+string(P)+' Watt');
+
+pf=cosd(53.1); // Power factor
+disp(' Power factor is = '+string(pf)+' Lagging');
+
+
+
+
+ // p 342 10.1
\ No newline at end of file diff --git a/1628/CH10/EX10.2/Ex10_2.sce b/1628/CH10/EX10.2/Ex10_2.sce new file mode 100755 index 000000000..95cde24a8 --- /dev/null +++ b/1628/CH10/EX10.2/Ex10_2.sce @@ -0,0 +1,33 @@ + + + // Example 10.2 + +P=750; // Rated Power +V=230; // Supply Voltage +f=50; // Frequency +Vr=100 // Rated Voltage +I=P/Vr; // Rated Current +Vc=sqrt(V^2-Vr^2); // Voltage across Capacitor +Xc=Vc/I; // Capacitve Reactance +C=1/(2*%pi*f*Xc); // Capacitance +disp(' Required Capacitance = '+string(C)+' F'); + +Q=acosd(Vr/V); // Phase Angle +disp(' Phase Angle = '+string(Q)+' Didree'); + +pf=cosd(Q); // Power Fector +disp(' Power Factor = '+string(pf)+' Leading'); + +Pa=V*I; // Apparent power +disp(' Apparent value of Power = '+string(Pa)+' VA'); + +Pr=V*I*sind(Q); // Reactive Power +disp(' Reactive Power = '+string(round(Pr))+' VAR'); + + + + // p 344 10.2 + + + + diff --git a/1628/CH10/EX10.3/Ex10_3.sce b/1628/CH10/EX10.3/Ex10_3.sce new file mode 100755 index 000000000..5cc83f601 --- /dev/null +++ b/1628/CH10/EX10.3/Ex10_3.sce @@ -0,0 +1,35 @@ + + + // Example 10.3 + +R=120; // Resistance +Xc=250; // Capacitve Reactance +Q=-64.4; // Phase Angle +I=0.9+%i*0; // Current +Z=R-%i*Xc; // Impedance +disp(' The Impedance is = '+string(Z)+' or ('+string(abs(Z))+' <'+string(atand(imag(Z),real(Z)))+' Amp )'); + +pf=cosd(Q); // Power Fector +disp(' Power Factor = '+string(pf)+' Leading'); + +V=I*Z; // Supply Voltage +disp(' Supply Voltage = '+string(V)+' or ('+string(abs(V))+' <'+string(atand(imag(V),real(V)))+' Amp )'); +v=249.6; // Peak value of Voltage + +Vr=I*R; // Voltage at Resistor +disp(' Voltage across Resistor = '+string(Vr)+' Volt'); + +Vc=I*Xc; // Voltage across Capacitor +disp(' Voltage across Capacitor = '+string(Vc)+' or ('+string(abs(Vc))+' < -90 Amp )'); +Pa=v*I; // Apparent power +disp(' Apparent value of Power = '+string(Pa)+' VA'); + +Pac=v*I*cosd(Q); // Active Power +disp(' Active Power = '+string(Pac)+' Watt'); + +Pr=v*I*sind(Q); // Reactive Power +disp(' Reactive Power = '+string(-Pr)+' VAR'); + + + + // p 345 10.3
\ No newline at end of file diff --git a/1628/CH10/EX10.4/Ex10_4.sce b/1628/CH10/EX10.4/Ex10_4.sce new file mode 100755 index 000000000..6bae0e6da --- /dev/null +++ b/1628/CH10/EX10.4/Ex10_4.sce @@ -0,0 +1,29 @@ + + + // Example 10.4 + + // Given V= 160+i120 & I= -4+i10 +Vi= 160+%i*120; // Sinusoidal Voltage i.e 200<36.87 +Ii= -4+%i*10; // Sinusoidal Current i.e 10.77<111.8 +Z=Vi/Ii; // Impedance +Q=-74.93; // Phase Angle +V=200; // peak Value of Voltage +I=10.77; // peak Value of Current +disp(' Impedance = '+string(Z)+' Ohms'); + +pf=cosd(Q); // Power Fector +disp(' Power Factor = '+string(pf)+' Leading'); +disp(' the Circuit is Capacitive , Becuase Imaginary part of impedance is negative .'); + +Pa=V*I*cosd(Q); // Active Power +disp(' Active Power = '+string(Pa)+' Watt'); + +Pr=V*I*sind(Q); // Reactive Power +disp(' Reactive Power = '+string(-Pr)+' VAR'); + + + + + + // p 348 10.4 + diff --git a/1628/CH10/EX10.5/Ex10_5.sce b/1628/CH10/EX10.5/Ex10_5.sce new file mode 100755 index 000000000..4b761cb5a --- /dev/null +++ b/1628/CH10/EX10.5/Ex10_5.sce @@ -0,0 +1,19 @@ + + // Example 10.5 + + + /// Given Z=R+iXl; i.e Z= 10+i10 +R=10; // Resistance +Xl=10; // Inductance +f=50; // Frequency +L=Xl/(2*%pi*f); // Value of Inductor +disp(' The Value of Resistor is = '+string(R)+' Ohm'); +disp(' The Value of Inductor is = '+string(L)+' H'); + + + + // p 348 10.5 + + + + diff --git a/1628/CH10/EX10.6/Ex10_6.sce b/1628/CH10/EX10.6/Ex10_6.sce new file mode 100755 index 000000000..49c7488e3 --- /dev/null +++ b/1628/CH10/EX10.6/Ex10_6.sce @@ -0,0 +1,25 @@ + + // Example 10.6 + + // Given Z=R+iX; i.e Z= 10-i10 + +R1=10; // Resistance +Xl=10; // Inductance +f=50; // Frequency +Z= 10-%i*10; // Impedance +Y=1/Z; // Admitance +disp(' The Admitance of Circuit is = '+string(Y)+' S'); +G=0.05; // here G=1/R +B=0.05; // here B= 1/C +R=1/G; // Resistance +disp(' The Resistance of Circuit is = '+string(R)+' Ohm'); + +C=B/(2*%pi*f); // Capacitance +disp(' The Capacitance of Circuit is = '+string(C)+' F'); + + + + // p 348 10.6 + + + diff --git a/1628/CH10/EX10.7/Ex10_7.sce b/1628/CH10/EX10.7/Ex10_7.sce new file mode 100755 index 000000000..8aaa4b2dd --- /dev/null +++ b/1628/CH10/EX10.7/Ex10_7.sce @@ -0,0 +1,45 @@ + + + // Example 10.7 + +L=0.15; // Inductance +w=100*%pi; // Angular Frequancy +C=100*10^-6; // Capacitance +R=12; // Resistance +V=100; // Voltage +Xl=w*L; // Indctive reactance +Xc=1/(w*C); // capacitive reactance +Z=R+%i*(Xl-Xc); // Impedance +disp(' The Value of Impedance is = '+string(Z)+' or ('+string(abs(Z))+' <'+string(atand(imag(Z),real(Z)))+' Amp )'); +r=12; // peak Value of impedance + +I=V/Z; // Current +disp(' The Value of Current is = '+string(I)+' or ('+string(abs(I))+' <'+string(atand(imag(I),real(I)))+' Amp )'); +i=5.15; // peak Value of Current + +Q=atand(15.3/12); // Phase Angle +disp(' Phase Angle = '+string(-Q)+' Didree'); + +Vr=i*r; // Voltage at Vr +disp(' Voltage at Vr = '+string(Vr)+' Volt'); + +Vc=i*Xc; // Voltage at Vc +disp(' Voltage at Vc = '+string(Vc)+' Volt'); + +Vl=i*Xl; //Voltage at Vl +disp(' Voltage at Vl = '+string(Vl)+' Volt'); + +pf=cosd(Q); // Power Fector +disp(' Power Factor = '+string(pf)+' Lagging'); + +Pa=V*i; // Apparent power +disp(' Apparent value of Power = '+string(Pa)+' VA'); + +Pav=V*i*pf; // Average Value of power +disp(' Average value of Power = '+string(Pav)+' Watt'); + + + + + // p 349 10.7 + diff --git a/1628/CH11/EX11.1/Ex11_1.sce b/1628/CH11/EX11.1/Ex11_1.sce new file mode 100755 index 000000000..5b1bd26e2 --- /dev/null +++ b/1628/CH11/EX11.1/Ex11_1.sce @@ -0,0 +1,46 @@ +
+ // Example 11.1
+
+L=0.15; // Inductor
+C=100*10^-6; // Capacitor
+fo=1/{2*%pi*sqrt(L*C)}; // Resonance frequency
+disp(' Resonance frequency (fo) = '+string(fo)+' Hz');
+
+R=12; // Circuit resistance
+V=100; // Source voltage
+Io=V/R; // Maximum current by source
+disp(' Maximum current by source = '+string(Io)+' Amp');
+
+r1=R^2/(2*L^2); // for easy calculation
+r2=(1/(L*C)); // for easy calculation
+fc=(1/6.28)*sqrt(r2-r1); // Frequency for maximum capacitor voltage
+disp(' Frequency for maximum capacitor voltage = '+string(fc)+' Hz');
+
+
+r3=(R^2*C^2)/2; // for easy calculation
+fl=1/{2*%pi*sqrt((L*C)-r3)}; // Frequency for maximum capacitor voltage
+disp(' Frequency for maximum capacitor voltage = '+string(fo)+' Hz');
+
+Xl=2*%pi*fo*L; // Inductive reactance
+disp(' Inductive reactance = '+string(Xl)+' Ohms');
+
+Xc=1/(2*%pi*fo*C); // Inductive reactance
+disp(' Capacitive reactance = '+string(Xc)+' Ohms');
+
+Q=Xl/R; // Quality factor
+disp(' Quality factor = '+string(Q));
+
+VLC=Q*V; // Voltage drop across the elements
+disp(' Voltage drop across the elements = '+string(VLC)+' Volt');
+
+
+
+ // p 378 11.1
+
+
+
+
+
+
+
+
diff --git a/1628/CH11/EX11.2/Ex11_2.sce b/1628/CH11/EX11.2/Ex11_2.sce new file mode 100755 index 000000000..c3d2636c1 --- /dev/null +++ b/1628/CH11/EX11.2/Ex11_2.sce @@ -0,0 +1,35 @@ + + // Example 11.2 + +L=0.5; // Inductance +V=100; // Supply Voltage +R=4; // Resistance +f=50; // Frequency +C=1/(4*%pi^2*f^2*L); // Capacitance +disp('Capacitance is = '+string(C*10^6)+' uF'); + +I=V/R; // Current at Resonance Frequency +disp(' Current at Resonance Frequency = '+string(I)+' Amp'); + +wo=2*%pi*f; // Angular Frequency +Xl=157; // Indctive Reactance +Vc=I*Xl; // Voltage across Capacitor +disp(' Voltage across Capacitor = '+string(Vc)+' Volt'); + +Vl=Vc; // Voltage across Inductance +disp(' Voltage across Inductance = '+string(Vl)+' Volt'); + + +Q=(wo*L)/R; // Q-Factor +disp(' Q-Factor is = '+string(Q)); + + + + + + // p 378 11.2 + + + + + diff --git a/1628/CH11/EX11.3/Ex11_3.sce b/1628/CH11/EX11.3/Ex11_3.sce new file mode 100755 index 000000000..e4aa47dac --- /dev/null +++ b/1628/CH11/EX11.3/Ex11_3.sce @@ -0,0 +1,26 @@ + + // Example 11.3 + + +V=0.85; // Supply Voltage +f=175*10^3; // Frequency +C=320*10^-12; // Capacitance + +L=1/(4*3.14^2*f^2*C); // Inductance +disp('Inductance is = '+string(L*10^3)+' mH'); + +Xl=2*3.14*f*L; // Indctive reactance +Q=50; // Q-Factor +R=Xl/Q; // Resistance + +I=V/R; // circuit current +disp(' Circuit current is = '+string(I*1000)+' mA'); + +Vc=Q*V; // Voltage across Capacitor +disp(' Voltage across Capacitor = '+string(Vc)+' Volt'); + + + + + // p379 11.3 + diff --git a/1628/CH11/EX11.4/Ex11_4.sce b/1628/CH11/EX11.4/Ex11_4.sce new file mode 100755 index 000000000..7dccdc6d7 --- /dev/null +++ b/1628/CH11/EX11.4/Ex11_4.sce @@ -0,0 +1,25 @@ + + // Example 11.4 + +L=1*10^-3; // Inductance +V=120; // Supply Voltage +R=2; // Resistance +f=5*10^3; // Frequency +C=1/(4*%pi^2*f^2*L); // Capacitance +disp('Capacitance is = '+string(C*10^9)+' nF'); + +I=V/R; // Current at Resonance Frequency +disp(' Current at Resonance Frequency = '+string(I)+' Amp'); + +Emax=L*I^2; // Maximum Instantaneous Energy +disp(' The Maximum Instantaneous Energy = '+string(Emax)+' J'); + + + + + + // p 379 11.4 + + + + diff --git a/1628/CH11/EX11.5/Ex11_5.sce b/1628/CH11/EX11.5/Ex11_5.sce new file mode 100755 index 000000000..82ab64af9 --- /dev/null +++ b/1628/CH11/EX11.5/Ex11_5.sce @@ -0,0 +1,34 @@ + + + // Example 11.5 + +R1=0.51; // Resistance-1 +R2=1.3; // Resistance-2 +R3=0.24; // Resistance-3 +Req=R1+R2+R3; // Eqviualent Resistance +L1=32*10^-3; // Inductance-1 +L2=15*10^-3; // Inductance-2 +Leq=L1+L2; // Eqviualent Inductance +C1=62*10^-6; // Capacitance-1 +C2=25*10^-6; // Capacitance-2 +Ceq=(C1*C2)/(C1+C2); // Eqviualent Capacitance + +fo=1/(2*%pi*sqrt(Leq*Ceq)); // Resonance Frequency +disp(' Resonance Frequency is = '+string(round(fo))+' Hz'); + +Q=(1/Req)*sqrt(Leq/Ceq); // Over all Q-Factor +disp(' Over all Q-Factor is = '+string(round(Q))); + +wo=2*%pi*fo; +Q1=(wo*L1)/R1; // Q-Factor of Coil-1 +disp(' Q-Factor of Coil-1 is = '+string(Q1)); + +Q2=(wo*L2)/R2; // Q-Factor of Coil-2 +disp(' Q-Factor of Coil-2 is = '+string(Q2)); + + + + + // p 380 11.5 + + diff --git a/1628/CH11/EX11.6/Ex11_6.sce b/1628/CH11/EX11.6/Ex11_6.sce new file mode 100755 index 000000000..44caf4e3b --- /dev/null +++ b/1628/CH11/EX11.6/Ex11_6.sce @@ -0,0 +1,21 @@ + + // Example 11.6 + +f=150*10^3; // Frequency +Bw=75*10^3; // Band width +Q=f/Bw; // Q-Factor +disp(' Q-Factor is = '+string(Q)); + // since Q < 10 there for we need to solve by Equation + // 75= f2-f1 & 150= root(f1*f2) + // will get Eq ( f1^2+ 75f1- 22500= 0 ) by Eliminating f2 + // by factorization we have f1=( 117.1kHz or -192.1kHz ) +f1=117.1; +f2=75+f1; +disp(' The half Power Frequencies are f1= '+string(f1)+' kHz & f2= '+string(f2)+' kHz'); + + + + // p 382 11.6 + + + diff --git a/1628/CH11/EX11.7/Ex11_7.sce b/1628/CH11/EX11.7/Ex11_7.sce new file mode 100755 index 000000000..82be971cc --- /dev/null +++ b/1628/CH11/EX11.7/Ex11_7.sce @@ -0,0 +1,25 @@ + + // Example 11.7 + +V=230; // Supply Voltage +L=200*10^-6; // Inductance +R=20; // Resistance +f=1*10^6; // Frequency +Xl=2*%pi*f*L; // Indctive reactance +C=1/(4*%pi^2*f^2*L); // Capacitance +disp(' Required Capacitance = '+string(C*10^12)+' pF'); + +Q=Xl/R; // Q-Factor +disp(' Q-Factor is = '+string(Q)); + +Zo=L/(C*R); // dynamic Impedance +disp(' Dynamic Impedance is = '+string(Zo)+' Ohm'); +Zs=8000; // Soures Resistance +Z=Zo+Zs; // Total Resistance + +I=V/Z; // Total Line Current +disp(' Total Line Current is = '+string(I*1000)+' mA'); + + + + // p 388 11.7 diff --git a/1628/CH11/EX11.8/Ex11_8.sce b/1628/CH11/EX11.8/Ex11_8.sce new file mode 100755 index 000000000..95a9828e1 --- /dev/null +++ b/1628/CH11/EX11.8/Ex11_8.sce @@ -0,0 +1,25 @@ + + + // Example 11.8 + +L=0.24; // Inductance +C=3*10^-6; // Capacitance +R=150; // Resistance +f=1/(2*%pi*sqrt(L*C)); // Frequency +fo=f*sqrt(1-R^2*(C/L)); // Resonance Frequency +disp(' Resonance Frequency = '+string(fo)+' Hz'); + +Xl=2*%pi*fo*L; // Indctive reactance +Q=Xl/R; // Q-Factor +disp(' Q-Factor is = '+string(Q)); + +Bw=fo/Q; // Band width +disp(' Band width is = '+string(Bw)+' Hz'); + + + + + // p 387 11.8 + + + diff --git a/1628/CH12/EX12.1/Ex12_1.sce b/1628/CH12/EX12.1/Ex12_1.sce new file mode 100755 index 000000000..6ded46f64 --- /dev/null +++ b/1628/CH12/EX12.1/Ex12_1.sce @@ -0,0 +1,23 @@ + + // Example 12.1 + + // Given Z= 32+i24 +R=32; // Real Part of Z +X=24; // Imaginary Part of Z +z=R+%i*X; // Impedance +Z=abs(z); // Absolute value of Z +Vl=400; // Supply Voltage +Vph1=Vl/1.732; // Voltage in Y-Connection +Iph1=Vph1/Z; // Current in Y-Connection +Il1=Iph1; // Load Current in Y-Connection +disp(' Current Drawn ( for Y-Connection ) = '+string(Il1)+' Amp'); +Vph2=Vl; // Voltage in Delta-Connection +Iph2=Vph2/Z; // Current in Delta-Connection +Il2=1.732*Iph2; // Load Current in Delta-Connection +disp(' Current Drawn (for Delta-Connection ) = '+string(Il2)+' Amp'); + + + + + // p 409 12.1 + diff --git a/1628/CH12/EX12.2/Ex12_2.sce b/1628/CH12/EX12.2/Ex12_2.sce new file mode 100755 index 000000000..59fc5c465 --- /dev/null +++ b/1628/CH12/EX12.2/Ex12_2.sce @@ -0,0 +1,31 @@ + + + // Example 12.2 + +Vl=415; // Supply Voltage +Vph=Vl/sqrt(3); // Phase Voltage +p1=10000; // Load of 10-kW +p2=8000; // Load of 8-kW +p3=5000; // Load of 5-kW + +IR=p1/Vph; //Current by ( 10-kW Load ) +disp(' Current by ( 10-kW Load ) = '+string(IR)+' Amp'); + +IY=p2/Vph; // Current by ( 8-kW Load ) +disp(' Current by ( 8-kW Load ) = '+string(IY)+' Amp'); + +IB=p3/Vph; // nCurrent by ( 5-kW Load ) +disp(' Current by ( 5-kW Load ) = '+string(IB)+' Amp'); + +IH=IY*cosd(30)-IB*cosd(30); // Horizontal Current +IV=IR-IY*sind(30)-IB*sind(30); // Vertical Current +IN=sqrt(IH^2+IV^2); // Current in Neutral Conductor +disp(' Current in Neutral Conductor = '+string(IN)+' Amp'); + + + + + // p 410 12.2 + + + diff --git a/1628/CH12/EX12.3/Ex12_3.sce b/1628/CH12/EX12.3/Ex12_3.sce new file mode 100755 index 000000000..7bdd169cf --- /dev/null +++ b/1628/CH12/EX12.3/Ex12_3.sce @@ -0,0 +1,44 @@ +
+ // Example 12.3
+
+Z1=100; // Impedence Z1 in Delta-connection load
+R2=20; // Resistance R2 in Delta-connection load
+f=50; // Frequency
+L2=0.191; // Inductance
+X2=2*%pi*f*L2; // Reactance X2 in Delta-connection load
+Z2=sqrt(R2^2+X2^2); // Impedence Z2 in Delta-connection load
+Q2=atand(60/20); // Phase angle
+C3=30*10^-6; // Capacitor
+Z3=1/(2*%pi*f*C3); // Impedence Z3 in Delta-connection load
+Q3=90; // Leading phase angle
+I1=415/Z1; // Phase current I1 in loads RY
+disp(' Phase current I1 in loads RY = '+string(I1)+' Amp');
+
+I2=415/Z2; // Phase current I2 in loads YB
+disp(' Phase current I2 in loads YB = '+string(I2)+' Amp');
+
+I3=415/Z3; // Phase current I3 in loads BR
+disp(' Phase current I3 in loads BR = '+string(I3)+' Amp');
+
+IR=sqrt(I1^2+I3^2+(2*I1*I3*cosd(30))); // Current in the liner conductor R
+disp(' Current in the liner conductor R = '+string(IR)+' Amp');
+
+QY=Q2-60; // Phase diffrence between I2-I1
+IY=sqrt(I1^2+I2^2+(2*I1*I2*cosd(QY))); // Current in the liner conductor Y
+disp(' Current in the liner conductor Y = '+string(IY)+' Amp');
+
+QB=180-QY-30; // Phase diffrence between I2-I3
+IB=sqrt(I2^2+I3^2+(2*I2*I3*cosd(QB))); // Current in the liner conductor B
+disp(' Current in the liner conductor B = '+string(IB)+' Amp');
+
+
+
+
+ // p 411 12.3
+
+
+
+
+
+
+
diff --git a/1628/CH12/EX12.4/Ex12_4.sce b/1628/CH12/EX12.4/Ex12_4.sce new file mode 100755 index 000000000..b283f1b51 --- /dev/null +++ b/1628/CH12/EX12.4/Ex12_4.sce @@ -0,0 +1,32 @@ +
+ // Example 12.4
+
+ // ==> For star-connection
+disp(' ** For star-connection ** ');
+Vl=400; // Voltage at load
+Vph=Vl/1.732; // Phase voltage
+Zph=sqrt(20^2+15^2); // Impedence per phase
+Il=Vph/Zph; // Line current
+disp(' The line current (Il) = '+string(Il)+' Amp');
+
+Rph=20; // Resistance per phase
+CosQ=Rph/Zph; // Power factor
+disp(' Power factor = '+string(CosQ)+' Lagging');
+
+P=1.732*Vl*Il*CosQ; // Total active power
+disp(' Total active power = '+string(P/1000)+' kW');
+
+ // ==> For Delta-connection
+disp(' ** For Delta-connection ** ');
+Vph1=Vl; // Phase voltage
+Iph=Vph1/Zph; // Phase current
+IL=1.732*Iph; // Load current
+disp(' The Load current (IL) = '+string(IL)+' Amp');
+
+disp(' Power factor = '+string(CosQ)+' Lagging');
+
+P1=1.732*Vl*IL*CosQ; // Total active power
+disp(' Total active power = '+string(P1/1000)+' kW');
+
+
+ // p 412 12.4
\ No newline at end of file diff --git a/1628/CH12/EX12.5/Ex12_5.sce b/1628/CH12/EX12.5/Ex12_5.sce new file mode 100755 index 000000000..1bffb26d9 --- /dev/null +++ b/1628/CH12/EX12.5/Ex12_5.sce @@ -0,0 +1,16 @@ + + // Example 12.5 + +p1=3000; // Load of 3-kW +p2=1500; // Load of 1.5-kW +P=p1+p2; // Total Load +disp(' Total Power Consumed = '+string(P)+' Watt'); + +Q=atand(1.732*(p1-p2)/(p1+p2)); // Power Factor Angle +pf=cosd(Q); // Power Factor +disp(' Power Factor is = '+string(pf)); + + + + + // p 417 12.5
\ No newline at end of file diff --git a/1628/CH12/EX12.6/Ex12_6.sce b/1628/CH12/EX12.6/Ex12_6.sce new file mode 100755 index 000000000..983fa0080 --- /dev/null +++ b/1628/CH12/EX12.6/Ex12_6.sce @@ -0,0 +1,23 @@ + + // Example 12.6 + +Vl=415 // Supply Voltage +p1=5200; // Load of 5.2-kW +p2=-1700; // Load of 1.7-kW + +P=p1+p2; // Total Load +disp(' Total Power Consumed = '+string(P)+' Watt'); + +Q=atand(1.732*(p1-p2)/(p1+p2)); // Power Factor Angle + +pf=cosd(Q); // Power Factor +disp(' Power Factor is = '+string(pf)); + + // P= root(3)*Vl*Il*Cos(Q) +Il=P/(1.732*Vl*pf); +disp(' Line Current is = '+string(Il)+' Amp'); + + + + + // p 417 12.6
\ No newline at end of file diff --git a/1628/CH13/EX13.1/Ex13_1.sce b/1628/CH13/EX13.1/Ex13_1.sce new file mode 100755 index 000000000..92491e05d --- /dev/null +++ b/1628/CH13/EX13.1/Ex13_1.sce @@ -0,0 +1,21 @@ + + + // Example 13.1 + +E=6400; // Supply Voltage +f=50; // Frequency +N1=480; // No.Of turns in Primary Coil +N2=20; // No.Of turns in Secondary Coil + +Qm=E/(4.44*f*N1); // The Peak Value of Flux +disp(' The Peak Value of Flux = '+string(Qm)+' Wb'); + +E1=4.44*f*N2*Qm; // Voltage induced in Secondary winding +disp(' Voltage induced in Secondary winding = '+string(E1)+' Volt'); + + + + + + + // p 487 13.1 diff --git a/1628/CH13/EX13.10/Ex13_10.sce b/1628/CH13/EX13.10/Ex13_10.sce new file mode 100755 index 000000000..cfaad5104 --- /dev/null +++ b/1628/CH13/EX13.10/Ex13_10.sce @@ -0,0 +1,53 @@ + + // Example 13.10 + +kVA=50000; // Single Phase supply +V1=4400; // Voltage in primary winding +V2=220; // Voltage in Secondary winding +R1=3.45; // primary Resistance +R2=0.009; // Secondary Resistance +X1=5.2; // primary Reactance +X2=0.015; // Secondary Reactance +I1=kVA/V1; // primary Current +I2=kVA/V2; // Secondary Current +k=V2/V1; // Turns constant + +Re1=R1+(R2/k^2); // Equivalent Resistance referred to Primary +disp(' Equivalent Resistance referred to Primary = '+string(Re1)+' Ohm'); + +Re2=k^2*R1+R2; // Equivalent Resistance referred to Secondary +disp(' Equivalent Resistance referred to Secondary = '+string(Re2)+' Ohm'); + +Xe1=X1+(X2/k^2); // Equivalent Impedance referred to Primary +disp(' Equivalent Impedance referred to Primary = '+string(Xe1)+' Ohm'); + +Xe2=k^2*X1+X2; // Equivalent Reactance referred to Secondary +disp(' Equivalent Reactance referred to Secondary = '+string(Xe2)+' Ohm'); + +Ze1=sqrt(Re1^2+Xe1^2); // Equivalent Impedance referred to Primary +disp(' Equivalent Impedance referred to Primary = '+string(Ze1)+' Ohm'); + +Ze2=sqrt(Re2^2+Xe2^2); // Equivalent Impedance referred to Secondary +disp(' Equivalent Impedance referred to Secondary = '+string(Ze2)+' Ohm'); + +i2=227.27; // Round off value of I2 +i1=11.36; // Round off value of I1 +r1=3.45; // Round off value of R1 +r2=0.009; // Round off value of R2 + +P=i1^2*r1+round(i2)^2*r2; // Total Copper loss +disp(' Total Copper loss = '+string(round(P))+' Watt'); + +re1=7.05; // Round off value of Re1 +P1=i1^2*re1; // Total Copper loss By Equivalent Re1 +disp(' Total Copper loss By Equivalent Re1 = '+string(P1)+' Watt'); + +re2=0.0176; // Round off value of Re2 +P2=i2^2*re2; // Total Copper loss By Equivalent Re2 +disp(' Total Copper loss By Equivalent Re2 = '+string(round(P2))+' Watt'); + + + + // p 503 13.10 + + diff --git a/1628/CH13/EX13.11/Ex13_11.sce b/1628/CH13/EX13.11/Ex13_11.sce new file mode 100755 index 000000000..6d3adcaf0 --- /dev/null +++ b/1628/CH13/EX13.11/Ex13_11.sce @@ -0,0 +1,37 @@ +
+ // Example 13.11
+
+R1=10; // Resistance of 10 Ohms
+R2=0.02; // Resistance of 0.02 Ohms
+Xe=35 // Reactance of primary coil
+n1=250; // No.Of turns in Primary coil
+n2=6600; // No.Of turns in 2ry coil
+k=n1/n2; // Turns ratio
+P=40000; // Single-Phase power
+I2=P/n1; // Full-load current
+Re2=k^2*R1+R2; // Resistance Re2
+Xe2=k^2*Xe; // Reactance Xe2
+SinQ=0; // SinQ=0
+CosQ=1; // Power factor
+Reg={(I2*Re2*CosQ)+(I2*Xe2*SinQ)}/n1; // % Regulation.
+disp(' % Regulation (pf=1) = '+string(Reg*100)+' %');
+
+CosQ1=0.8; // Leading Power factor
+SinQ1=sqrt(1-CosQ1^2); // SinQ=0.6 +ve
+
+Reg1={(I2*Re2*CosQ1)+(I2*Xe2*SinQ1)}/n1; // % Regulation.
+disp(' % Regulation (pf=0.8) = '+string(Reg1*100)+' %');
+
+SinQ2=-sqrt(1-CosQ1^2); // SinQ=0.6 -ve
+
+Reg2={(I2*0.0343*CosQ1)+(I2*Xe2*SinQ2)}/n1; // % Regulation.
+disp(' % Regulation for (pf=0.8) = '+string(Reg2*100)+' %');
+
+
+
+ // p 506 13.11
+
+
+
+
+
diff --git a/1628/CH13/EX13.12/Ex13_12.sce b/1628/CH13/EX13.12/Ex13_12.sce new file mode 100755 index 000000000..af555af4e --- /dev/null +++ b/1628/CH13/EX13.12/Ex13_12.sce @@ -0,0 +1,43 @@ +
+ // Example 13.12
+
+ // We know that E=4.44*f*N*Qm
+
+Qm=0.06; // Megnetic flux
+f=50; // Frequency
+E2=250; // Voltage
+N2=E2/(4.44*f*Qm); // No.Of of turns in 2ry coil
+disp(' No.Of turns (N2) = '+string(round(N2))+' turns');
+
+E1=5000; // Voltage
+N1=(E1/E2)*19; // No.Of turns in 1ry coil
+disp(' No.Of turns (N1) = '+string(N1)+' turns');
+
+kVA=150*10^3; // kVA Rating
+pf=1; // Power factor
+Po=0.5*kVA*pf; // O/p power
+Cfl=1800; // Full-load Copper losses
+Pc=0.5*0.5*Cfl; // Copper losses
+Pi=1500; // Iron losses
+n=Po/(Po+Pc+Pi); // Efficiency
+disp(' Efficiency at half kVA = '+string(n*100)+' %');
+
+pf1=0.8; // Power factor
+Po1=kVA*pf1; // O/p power
+Pc1=1800; // Copper losses
+n1=Po1/(Po1+Pc1+Pi); // Efficiency
+disp(' Efficiency at Full-load & at(pf=0.8) = '+string(n1*100)+' %');
+
+ // We know that x^2 x 1800= 1500
+x=sqrt(1500/1800); // Value of x
+kVA1=kVA*x; // kVA Load for Maximum efficiency
+disp(' kVA Load for Maximum efficiency = '+string(round(kVA1/1000))+' kVA');
+
+
+ // p 509 13.12
+
+
+
+
+
+
diff --git a/1628/CH13/EX13.13/Ex13_13.sce b/1628/CH13/EX13.13/Ex13_13.sce new file mode 100755 index 000000000..df86fca45 --- /dev/null +++ b/1628/CH13/EX13.13/Ex13_13.sce @@ -0,0 +1,41 @@ +
+ // Example 13.13
+
+ // For 80-kW load at pf=1 (for 6 hours)
+t=6; // Time in Hours
+p=80; // Power in kW
+Eo=p*t; // O/p energy
+pf=1; // Power factor
+kVA=p/pf; // kVA rating
+kVAo=200; // kNA at full-load
+Pcl=3.02; // Copper losses at full-load
+Pc=(kVA/kVAo)^2*Pcl; // Copper losses
+Pi=1.6; // Iron losses
+Pl=Pc+Pi; // Total losses
+Tloss=Pl*6; // Total losses in 6 hours
+
+ // For 160-kW load at pf=0.8 (for 8 hours)
+p1=160; // Power in kW
+E1=p1*8; // O/p energy
+pf1=0.8; // Power factor
+kVA1=p/pf; // kVA rating
+Pcl1=3.02; // Copper losses at full-load
+Pc1=Pcl1; // Copper losses
+Pl1=Pc1+Pi; // Total losses
+Tloss1=Pl1*8; // Total losses in 6 hours
+
+ // For No-load (for 10 hours)
+E2=0; // O/p Energy
+Pc2=0; // Copper losses
+Pl2=Pc2+Pi; // Total losses
+Tloss2=Pl2*10; // Total losses in 10 hours
+Wo=Eo+E1+E2; // Total O/P energy
+W1=Tloss+Tloss1+Tloss2; // Total energy losses
+n=Wo/(Wo+W1); // All-Day efficiency
+disp('All-Day efficiency = '+string(n*100)+' %');
+
+
+ // p 510 13.13
+
+ // For 160-kW load at pf=1 (for
+t=6; // Time in Hours
\ No newline at end of file diff --git a/1628/CH13/EX13.14/Ex13_14.sce b/1628/CH13/EX13.14/Ex13_14.sce new file mode 100755 index 000000000..54627bac7 --- /dev/null +++ b/1628/CH13/EX13.14/Ex13_14.sce @@ -0,0 +1,20 @@ + + // Example 13.14 + + +kVA=12000; // Single Phase supply +V1=120; // Voltage in primary winding +I2=kVA/V1; // Currnet in Secondary winding +I1=I2; // Current in primary winding +V2=240; // Voltage in Secondary winding +Pi=V2*I2; // I/p apparent power +disp(' I/p apparent power = '+string(Pi/1000)+' kVA'); + +Po=V1*I1*2; // O/p apparent power +disp(' O/p apparent power = '+string(Po/1000)+' kVA'); + + + + + + // p 511 13.14 diff --git a/1628/CH13/EX13.15/Ex13_15.sce b/1628/CH13/EX13.15/Ex13_15.sce new file mode 100755 index 000000000..d8f26cc13 --- /dev/null +++ b/1628/CH13/EX13.15/Ex13_15.sce @@ -0,0 +1,25 @@ + + + // Example 13.15 + +Vl1=3300; // The supply voltage +Vph1=Vl1/1.732; // Primary phase voltage +N1=840; // No.Of Turns in Primary winding +N2=72; // No.Of Turns in secondary winding +Vph2=Vph1*(N2/N1); // Secondary phase voltage +Vl2=Vph2; // Secondary line voltage +disp(' Secondary line voltage on No load for (star/delta) = '+string(Vl2)+' Volt'); + +vph1=Vl1; // Primary phase voltage +vph2=vph1*(N2/N1); // Secondary phase voltage +vl2=vph2*1.732; // Secondary line voltage +disp(' Secondary line voltage on No load for (delta/star) = '+string(round(vl2))+' Volt'); + + + + + + + + // p 514 13.15 + diff --git a/1628/CH13/EX13.16/Ex13_16.sce b/1628/CH13/EX13.16/Ex13_16.sce new file mode 100755 index 000000000..cdd6b32d1 --- /dev/null +++ b/1628/CH13/EX13.16/Ex13_16.sce @@ -0,0 +1,35 @@ +
+ // Example 13.16
+
+V1=200; // Supply voltage
+Wo=120; // Wattmeter reading
+Iw=Wo/V1; // Core loss current
+disp(' Core-loss current (Iw) = '+string(Iw)+' Amp');
+
+Io=1.3; // Open-ckt current
+Im=sqrt(Io^2-Iw^2); // Megnetising current
+disp(' Megnetising current (Im) = '+string(Im)+' Amp');
+
+Ro=V1/Iw; // Resistance
+Xo=V1/1.15; // Reactance
+disp(' Equivalent resistance of exciting circuit = '+string(round(Ro))+' Ohms');
+disp(' Equivalent reactance of low voltage winding = '+string(round(Xo))+' Ohms');
+
+V2=400; // Supply voltage
+k=V1/V2; // Transformation Ratio
+kVA=12000; // kVA rating
+Ifl=kVA/V2; // Full-load current
+Wsc=200; // Short-ckt power
+Re1=Wsc/Ifl^2; // Equivalent resistance at full-load
+Vsc=22; // Short-ckt voltage
+Ze1=Vsc/Ifl; // Equivalent impedeance at full-load
+Xe1=sqrt(Ze1^2-Re1^2); // Short-ckt reactance
+Re2=k^2*Re1; // Equivalent resistance of low voltage winding
+disp(' Equivalent resistance of low voltage winding = '+string(Re2)+' Ohms');
+
+Xe2=k^2*Xe1; // Equivalent ractance of low voltage winding
+disp(' Equivalent reactance of low voltage winding = '+string(Xe2)+' Ohms');
+
+
+ // p 516 13.16
+
diff --git a/1628/CH13/EX13.2/Ex13_2.sce b/1628/CH13/EX13.2/Ex13_2.sce new file mode 100755 index 000000000..aa1336675 --- /dev/null +++ b/1628/CH13/EX13.2/Ex13_2.sce @@ -0,0 +1,30 @@ + + // Example 13.2 + +E1=230; // Supply Voltage +f=50; // Frequency +N1=30; // No.Of turns in Primary Coil +N2=350; // No.Of turns in Secondary Coil +A=250*10^-4; // Area of the Core + +Qm=E1/(4.44*f*N1); // The Peak Value of Flux +Bm=Qm/A; // The Peak Value of Flux Density +disp(' The Peak Value of Flux Density = '+string(Bm)+' Tesla'); + +E2=E1*(N2/N1); // Voltage induced in Secondary winding +disp(' Voltage induced in Secondary winding = '+string(E2/1000)+' kV'); + +I2=100; // Current in Secondary Coil +I1=I2*(N2/N1); // Primary Current +disp(' Primary Current is = '+string(I1/1000)+' kA'); + + + + + // p 490 13.2 + + + + + + diff --git a/1628/CH13/EX13.3/Ex13_3.sce b/1628/CH13/EX13.3/Ex13_3.sce new file mode 100755 index 000000000..200a5cd6e --- /dev/null +++ b/1628/CH13/EX13.3/Ex13_3.sce @@ -0,0 +1,15 @@ + + + // Example 13.3 + +Rl=800; // Load Resistance +Req=50; // O/P Resistance +K=sqrt(Rl/Req); // Ratio Constant +N21=K; // urns ratio of Transformer +disp(' Turns ratio of Transformer (N2/N1) = '+string(N21)); + + + + + + // p 490 13.3
\ No newline at end of file diff --git a/1628/CH13/EX13.4/Ex13_4.sce b/1628/CH13/EX13.4/Ex13_4.sce new file mode 100755 index 000000000..3d1850849 --- /dev/null +++ b/1628/CH13/EX13.4/Ex13_4.sce @@ -0,0 +1,17 @@ + + // Example 13.4' + + // From the circuit Diagram Ip= 30<0/{20+i20+2^2*(2-i10)} + +Ip= 30/{20+%i*20+2^2*(2-%i*10)}; // Phase Current + +Il=2*Ip; // Load current +disp(' The Load current is Il = '+string(Il)+' Amp or ('+string(abs(Il))+' <'+string(atand(imag(Il),real(Il)))+' Amp )'); + + + + + + + + // p 491 13.4 diff --git a/1628/CH13/EX13.5/Ex13_5.sce b/1628/CH13/EX13.5/Ex13_5.sce new file mode 100755 index 000000000..a237beffd --- /dev/null +++ b/1628/CH13/EX13.5/Ex13_5.sce @@ -0,0 +1,21 @@ + + // Example 13.5 + +f=50; // Frequency +N1=30; // No.Of turns in Primary Coil +N2=66; // No.Of turns in Secondary Coil +A=0.015; // Area of the Core +Zl=4; // Load Impedance +Bm=1.1; // The Peak Value of Flux Density +Qm=Bm*A; // The Peak Value of Flux + +V2=4.44*f*N2*Qm; // O/P Voltage +I2=V2/Zl; // O/P current +Ova=V2*I2; // Output Volt-Amperes +disp(' Output Volt-Amperes is = '+string(Ova/1000)+' kVA'); + + + + + + // p 491 13.5
\ No newline at end of file diff --git a/1628/CH13/EX13.6/Ex13_6.sce b/1628/CH13/EX13.6/Ex13_6.sce new file mode 100755 index 000000000..1353e10a9 --- /dev/null +++ b/1628/CH13/EX13.6/Ex13_6.sce @@ -0,0 +1,30 @@ + + // Example 13.6 + +f=50; // Frequency +A=9*10^-4; // Area of the Core +Bm=1; // The Peak Value of Flux Density +Qm=Bm*A; // The Peak Value of Flux + +E3=6; // Voltage in Tertiary winding +N3=E3/(4.44*f*Qm); // No.Of Turns in Tertiary winding +disp(' No.Of Turns in Tertiary winding = '+string(round(N3*2)) +' turns'); + + +E1=230; // Voltage in Primary winding +N03=round(N3); // Round figure +N1=(N03*E1)/E3; // No.Of Turns in Primary winding +disp(' No.Of Turns in Primary winding = '+string(round(N1)) +' turns'); + + +E1=230; +E2=110; // Voltage in Secondary winding +N2=(N03*E2)/E3; // No.Of Turns in Secondary winding +disp(' No.Of Turns in Secondary winding = '+string(round(N2)) +' turns'); + + + + + + // p 491 13.6 + diff --git a/1628/CH13/EX13.7/Ex13_7.sce b/1628/CH13/EX13.7/Ex13_7.sce new file mode 100755 index 000000000..1580baf71 --- /dev/null +++ b/1628/CH13/EX13.7/Ex13_7.sce @@ -0,0 +1,22 @@ + + + // Example 13.7 + +VA=350; // VA rating +V1=230; // I/p Voltage +Io=VA/V1; // I/p Current +Pi=110; // I/p power + // Core Loss = I/p power at no load + // Pi= V1*Io*CosQ +pf=Pi/VA; // Power factor +disp(' Power factor at no laod = '+string(pf)); + +Iw=Io*pf; // Loss component of no-load Current +disp(' Loss component of no-load Current = '+string(Iw)+' Amp'); + +Im=sqrt(Io^2-Iw^2); // Magnetising component of no-load Current +disp(' Magnetising component of no-load Current = '+string(Im)+' Amp'); + + + + // p 493 13.7 diff --git a/1628/CH13/EX13.8/Ex13_8.sce b/1628/CH13/EX13.8/Ex13_8.sce new file mode 100755 index 000000000..7ddcac1ee --- /dev/null +++ b/1628/CH13/EX13.8/Ex13_8.sce @@ -0,0 +1,23 @@ + + + // Example 13.8 + + // We Know that Pi= Ph+ Pe=( Af+ Bf^2 ) + // there for at 60Hz 100= 60A+ 3600B + // at 40Hz 60 = 40A+ 1600B + // After Solving Equation We have +A=1.167; // Alphabet for Simlicity +B=0.00834; // Alphabet for Simlicity +f=50; // Frequency +Ph=A*f; // Hysteresis Loss +disp('Hysteresis Loss ( at 50 Hz ) = '+string(Ph)+' Watt'); + +Pe=B*f^2; // Eddy-Current Loss +disp('Eddy-Current Loss ( at 50 Hz ) = '+string(Pe)+' Watt'); + + + + + + + // p 495 13.8 diff --git a/1628/CH13/EX13.9/Ex13_9.sce b/1628/CH13/EX13.9/Ex13_9.sce new file mode 100755 index 000000000..ad2fac1b1 --- /dev/null +++ b/1628/CH13/EX13.9/Ex13_9.sce @@ -0,0 +1,26 @@ + + // Example 13.9 + +pf1=0.2; // Power factor at 5 A +pf2=0.8; // Power factor at 120 A +Q1=acosd(pf1); // Angle for 0.2 Power factor +Q2=acosd(pf2); // Angle for 0.8 Power factor +V2=110; // Voltage in Secondary winding +V1=440; // Voltage in Primary winding +k=V2/V1; // Ratio Constant +I2=120; // Current in Secondary winding +i1=k*I2; // Current in primary winding +io=5; // No load Current +I1=23.99-%i*18; // Current in primary winding in complex form +Io=1-%i*4.899; // No load Current in complex form + +I=I1+Io; // Primary Current +disp(' Primary Current = '+string(I)+' Amp or '+string(abs(I))+'<'+string(atand(imag(I),real(I)))+' Amp'); + +pf=cosd(-42.49); // Primary Power factor +disp(' Primary Power factor = '+string(pf)); + + + + + /// p 498 13.9 diff --git a/1628/CH14/EX14.1/Ex14_1.sce b/1628/CH14/EX14.1/Ex14_1.sce new file mode 100755 index 000000000..c7a62295b --- /dev/null +++ b/1628/CH14/EX14.1/Ex14_1.sce @@ -0,0 +1,16 @@ + + // Example 14.1 + +F=60; // Frequency +P=6; // No.Of poles +ns=(120*F)/P; // Speed Of rotation +disp('Speed Of rotation Is = '+string(ns)+' Rpm'); +F1=20; // Decreased frequency +P1=(120*F1)/ns; // Number Of poles +disp('Number Of poles = '+string(P1)); + + + + + + // p 546 Ex14.1 diff --git a/1628/CH14/EX14.2/Ex14_2.sce b/1628/CH14/EX14.2/Ex14_2.sce new file mode 100755 index 000000000..fa7c720b0 --- /dev/null +++ b/1628/CH14/EX14.2/Ex14_2.sce @@ -0,0 +1,18 @@ + + // Example 14.2 + +alfa=20; // Slot angle +q1=120/20; // No.Of slots for group p +sa=sind((q1*alfa)/2); +sb=sind(alfa/2); +kd1=sa/(q1*sb); // Three phase Winding (with 120 phase group) +disp('(a) A Three phase Winding (with 120 phase group) = '+string(kd1)); +q2=60/20; // No.Of slots for group q +sa1=sind((q2*alfa)/2); +kd2=sa1/(q2*sb); // TThree phase Winding (with 60 phase group) +disp('(b) A Three phase Winding (with 60 phase group) = '+string(kd2)); + + + + + // p 554 Ex 14.2 diff --git a/1628/CH14/EX14.3/Ex14_3.sce b/1628/CH14/EX14.3/Ex14_3.sce new file mode 100755 index 000000000..87bb7dcdf --- /dev/null +++ b/1628/CH14/EX14.3/Ex14_3.sce @@ -0,0 +1,25 @@ + + // Example 14.3 + +f=50; // Frequency +p=20; // No.Of poles +Ns=(120*f)/p; // Speed Of rotation +disp('(a) Speed of Rotation is = '+string(Ns)+' rpm'); +p1=180/20; // No.Of slots per pole +Q=180/p1; // Slot angle +q1=p1/3; // No.Of slots per pole for group q +sa=sind((q1*Q)/2); +sb=sind(Q/2); +kd=sa/(q1*sb); // Generated emf per phase +disp('(b) Generated emf per phase = '+string(kd)+' Volt'); + +g=0.025; // Flux per poles +T=240; // No.Of turns per phase +kp=1; +E=(4.44*f*g*kp*T*0.96); // Rms value of emf per phase +El=sqrt(3)*E; // Line emf +disp('(b) Generated emf per phase = '+string(E)+' Volt'); +disp('(c) Line emf = '+string(El)+' Volt'); + + + // p 554 14.3 diff --git a/1628/CH14/EX14.4/Ex14_4.sce b/1628/CH14/EX14.4/Ex14_4.sce new file mode 100755 index 000000000..b17a295f0 --- /dev/null +++ b/1628/CH14/EX14.4/Ex14_4.sce @@ -0,0 +1,35 @@ + + + // Example 14.4` + +I=15.7; // Phase current +Vt=22*10^3/sqrt(3); // Phase voltage +Zs=0.16; // Impedance +V=12.7; // Terminal Voltage per phase on full load +Vz=I*Zs; // Voltage drop per phase on full load +OC=0.014; // Star winding resistence +OG=0.16; // Synchronous impedance +Q=acosd(OC/OG); // Phase angle +pf1=0.8; // Lagging power factor +q1=acosd(pf1); // Lagging angle +alfa1=Q-q1; // Resultant angle +Cos1=cosd(alfa1); // power factor for Resultant +E1=(sqrt(V*V+Vz*Vz+2*V*Vz*Cos1)); +Er1=(E1-V)/V; // the Voltage Regulation (0.8 Lagging) +disp('(a) the Voltage Regulation (0.8 Lagging) is = '+string(Er1*100)+' per Cent'); + +pf2=1; // Leading power factor +q2=acosd(pf2); // Leading angle +alfa2=Q-q2; // Resultant angle +Cos2=cosd(alfa2); // power factor for Resultant +E2=(sqrt(V*V+Vz*Vz+2*V*Vz*Cos2)); +Er2=(E2-V)/V; // the Voltage Regulation (1 Lagging) +disp('(b) the Voltage Regulation (1 Lagging) is = '+string(Er2*100)+' per Cent'); + +alfa3=Q+q1; // Resultant angle +Cos3=cosd(alfa3); // power factor for Resultant +E3=(sqrt(V*V+Vz*Vz+2*V*Vz*Cos3)); +Er3=(E3-V)/V; // the Voltage Regulation (0.8 Leading) +disp('(c) the Voltage Regulation (0.8 Leading) is = '+string(Er3*100)+' per Cent'); + + // p 560 14.4 diff --git a/1628/CH14/EX14.5/Ex14_5.sce b/1628/CH14/EX14.5/Ex14_5.sce new file mode 100755 index 000000000..e0cf736a1 --- /dev/null +++ b/1628/CH14/EX14.5/Ex14_5.sce @@ -0,0 +1,27 @@ + + + // Example 14.5 + +I=100; // Full-rated short-circuit current +V=3.3*10^3/sqrt(3); // Three phase voltage +R=0.9; // Remature resistance +Zs=5.196; // Impedance +Vz=I*Zs; // Voltage drop per phase on full load +Q=acosd(R/Zs); // Phase angle +pf1=0.8; // Lagging power factor +q1=acosd(pf1); // Lagging angle +alfa1=Q-q1; // Resultant angle +Cos1=cosd(alfa1); // power factor for Resultant +E1=(sqrt(V*V+Vz*Vz+2*V*Vz*Cos1)); +Er1=(E1-V)/V; // the Voltage Regulation (0.8 Lagging) +disp('(a) the Voltage Regulation (0.8 Lagging) is = '+string(Er1*100)+' per Cent'); +alfa3=Q+q1; // Resultant angle +Cos3=cosd(alfa3); // power factor for Resultant +E3=(sqrt(V*V+Vz*Vz+2*V*Vz*Cos3)); +Er3=(E3-V)/V; // the Voltage Regulation (0.8 Leading) +disp('(b) the Voltage Regulation (0.8 Leading) is = '+string(Er3*100)+' per Cent'); + + + + + // p 563 14.5 diff --git a/1628/CH14/EX14.6/Ex14_6.sce b/1628/CH14/EX14.6/Ex14_6.sce new file mode 100755 index 000000000..95088a679 --- /dev/null +++ b/1628/CH14/EX14.6/Ex14_6.sce @@ -0,0 +1,28 @@ + + + // Example 14.6 + +po=9000; // O/p power +n=0.9; // Efficiency of motor +pi=po/n; // I/p power +X=3; // Reactance +Vl=400; // Phase voltage +R=0.4; // Resistance +Cos1=0.8; // Leading power factor +I=pi/(sqrt(3)*Vl*Cos1); // I/p current per phase +q1=acosd(0.8); // Leading angle +Zs=sqrt(R*R+X*X); // Impedance +Q=atand(X/R); // Phase angle +V=400/sqrt(3); // Supply voltage per phase +Er=I*Zs; // Voltage drop per phase across the synchronous impedance + +E=(sqrt(V*V+Er*Er+2*V*Er*cosd(180-Q-q1))); +El=sqrt(3)*E; // Exitation emf +disp(' Exitation emf = '+string(El)+' volt'); + +Qr=asind((Er*sind(Q+q1))/E); // Angle of rotor +disp(' Angle of rotor = '+string(Qr)+' Digree'); + + + + // p 568 14.6 diff --git a/1628/CH14/EX14.7/Ex14_7.sce b/1628/CH14/EX14.7/Ex14_7.sce new file mode 100755 index 000000000..d99452723 --- /dev/null +++ b/1628/CH14/EX14.7/Ex14_7.sce @@ -0,0 +1,26 @@ + + + // Example 14.7 + +Zph=24*(12/3); // The No.Of conductors in series +T=Zph/2; // No.Of turns per phase +p1=24/4; // No.Of slots/pole +Q=180/p1; // Slot angle +q1=p1/3; // No.Of slots/pole for group q +sa=sind((q1*Q)/2); // Distribution factor (Numerator part ) +sb=sind(Q/2); // Distribution factor (denominator part ) +kd=sa/(q1*sb); // Distribution factor +p=4; // No.Of poles +Ns=1500; // Speed +g=0.1; // Flux per pole +f=(p*Ns)/120; // Pitch factor +kp=1; // Constant +E=(4.44*f*g*kp*T*kd); // Generated emf per phase +El=sqrt(3)*E; // line emf (at alternator 1500 rpm) +disp(' line emf (at alternator 1500 rpm) = '+string(round(El))+' Volt'); + + + + + + // p 572 14.7 diff --git a/1628/CH14/EX14.8/Ex14_8.sce b/1628/CH14/EX14.8/Ex14_8.sce new file mode 100755 index 000000000..d5039727e --- /dev/null +++ b/1628/CH14/EX14.8/Ex14_8.sce @@ -0,0 +1,17 @@ + + // Example 14.8 + +Q=30; // Angle between 2 slots +q1=6; // No.Of coils +sa=sind((q1*Q)/2); // Distribution factor (Numerator part ) +sb=sind(Q/2); // Distribution factor (denominator part ) +kd=sa/(q1*sb); // Distribution factor +Vc=6*10; // Voltage induced in 6 coils +Er=kd*Vc; // Net emf induced in Six coils +disp(' Net emf induced in Six coils = '+string(Er)+' Volt'); + + + + + + // p 573 14.8 diff --git a/1628/CH14/EX14.9/Ex14_9.sce b/1628/CH14/EX14.9/Ex14_9.sce new file mode 100755 index 000000000..9a02f8d67 --- /dev/null +++ b/1628/CH14/EX14.9/Ex14_9.sce @@ -0,0 +1,29 @@ + + + // Example 11.9 + +f=50; // Frequency +N=120; // Speed +p=(120*f)/N; // Number Of poles +disp('(a) The No.of Poles = '+string(p)); + +Pf=1; // Power fector +Va=100*10^6; // VA-Rating +Rt=Va*Pf; // kW-Rating +disp('(b) The kW rating = '+string(Rt)+' Watt'); + +Vl=11*10^3; // Star-connected voltage +Il=Va/(sqrt(3)*Vl); // Current rating (Il) +disp('(c) The Current rating (Il) = '+string(round(Il))+' Amp'); + +po=100*10^6; // Power +n=0.97; // Efficiency of motor +Pi=po/n; // I/P Power (Pi) +disp('(d) The I/P Power (Pi) = '+string(Pi)+' Watt'); + +t=Pi/(2*3.14*N*0.0166); // Prime Torque +disp('(e) The Prime Torque = '+string(t)+' Nm'); + + + + // p 573 14.9 diff --git a/1628/CH15/EX15.1/Ex15_1.sce b/1628/CH15/EX15.1/Ex15_1.sce new file mode 100755 index 000000000..0bc98a6db --- /dev/null +++ b/1628/CH15/EX15.1/Ex15_1.sce @@ -0,0 +1,28 @@ + + + // Examle 15.1 + +p=6; // No.Of poles +f=50; // Frequency +Ns=(120*f)/p; // Synchronous speed +disp('(a) The Synchronous Speed (Ns) = '+string(Ns)+' rpm'); + +s1=0.01; // Slip (s=1 %) +N1=Ns*(1-s1); // he No Load Speed (N) +disp('(b) The No Load Speed (N) = '+string(N1)+' rpm'); + +s2=0.03; // Slip (s=3 %) +N2=Ns*(1-s2); // The Full Load Speed +disp('(c) The Full Load Speed (N) = '+string(N2)+' rpm'); + +s=1; // Slip (s=100 %) +fr1=s*f; // The Frequence of Rotor (at s=1 ) +disp('(d) The Frequence of Rotor (at s=1 ) = '+string(fr1)+' Hz'); + +fr2=s2*f; // The Frequence of Rotor (at s=0.03 ) +disp('(e) The Frequence of Rotor (at s=0.03 ) = '+string(fr2)+' Hz'); + + + + + // p 593 15.1 diff --git a/1628/CH15/EX15.2/Ex15_2.sce b/1628/CH15/EX15.2/Ex15_2.sce new file mode 100755 index 000000000..43ddc5fdb --- /dev/null +++ b/1628/CH15/EX15.2/Ex15_2.sce @@ -0,0 +1,17 @@ + + // Examle 15.2 + +p=12; // No.Of poles +f=50; // Frequency +Ns=(120*f)/p; // Synchronous speed +disp(' The Synchronous Speed (Ns) = '+string(Ns)+' rpm'); + +N=485; // Speed of Motor +s=(Ns-N)/Ns; // Slip +fr=s*f; // The Frequence of Rotor (fr) +disp(' The Frequence of Rotor (fr) = '+string(fr)+' Hz'); + + + + + // p 593 15.2 diff --git a/1628/CH15/EX15.3/Ex15_3.sce b/1628/CH15/EX15.3/Ex15_3.sce new file mode 100755 index 000000000..6adebc0ef --- /dev/null +++ b/1628/CH15/EX15.3/Ex15_3.sce @@ -0,0 +1,20 @@ + + + // Examle 15.3 + +p=6; // No.Of poles +f=50; // Frequency +Ns=(120*f)/p; // Synchronous speed +disp(' The Synchronous Speed (Ns) = '+string(Ns)+' rpm'); + +fr=2; // Frequency of rotor at full-load +s=fr/f; // Slip at full-load +disp(' the Full Load Slip (s) = '+string(s*100)+' %'); + +N=Ns*(1-s); // The Speed of Rotor (fr) +disp(' The Speed of Rotor (fr) = '+string(N)+' rpm'); + + + + + // p 594 15.3 diff --git a/1628/CH15/EX15.4/Ex15_4.sce b/1628/CH15/EX15.4/Ex15_4.sce new file mode 100755 index 000000000..0a259dbff --- /dev/null +++ b/1628/CH15/EX15.4/Ex15_4.sce @@ -0,0 +1,25 @@ + + + // Examle 15.4 + +p=4; // No.Of poles +f=50; // Frequency +Ns=(120*f)/p; // Synchronous speed +disp(' The Synchronous Speed (Ns) = '+string(Ns)+' rpm'); + +s1=0.04; // Slip +N1=Ns*(1-s1); // The Speed of Rotor +disp('(b) The Speed of Rotor (at s=0.04) = '+string(N1)+' rpm'); + +N=600; // Speed Of rotation +s=(Ns-N)/Ns; // When speed is (600 rmp) Then Slip +fr=s*f; // The Frequence of Rotor (fr) +disp('(d) The Frequence of Rotor (fr) = '+string(fr)+' Hz'); + + + + + // p 594 15.4 + + + diff --git a/1628/CH15/EX15.5/Ex15_5.sce b/1628/CH15/EX15.5/Ex15_5.sce new file mode 100755 index 000000000..6e6eb5885 --- /dev/null +++ b/1628/CH15/EX15.5/Ex15_5.sce @@ -0,0 +1,33 @@ + + // Examle 15.5 + + +R2=0.05; // Resistance +s=0.04; // Slip +X20=0.1; // Standstill reactance +El=100; // Voltage +E20=El/1.732; // Induced emf per phase +Z2=sqrt(R2^2+(s*X20)^2); // Impedance +E2=s*E20; // Emf with (s= 0.04) + +I2=E2/Z2; // Rotor current for (s=0.04) +disp(' Rotor current for (s=0.04) = '+string(round(I2))+' Amp'); + +CosQ2=E2/Z2; // CosQ2=E2/Z2 = 0.998 ==> ,here take ( 0.99 ) +Q2=acosd(0.99); // Phase diffrence for (s= 0.04) +disp(' Phase diffrence between rotor voltage & current for (s=0.04) = '+string(Q2)+' Digree'); + +s1=1; +E21=s1*E20; // Induced emf per phase for s=1 +Z21=sqrt(R2^2+(s1*X20)^2); // Impedance ==> Z21= 57.73 ,but take (57.5) +I21=57.5/Z21; // Rotor current for (s=1) +disp(' Rotor current for (s=1) = '+string(round(I21))+' Amp'); + +Q21=acosd(R2/Z21); // Rotor current for (s=1) +disp(' Phase diffrence between rotor voltage & current for (s=1) = '+string(Q21)+' Digree'); + + + + + // p 597 15.5 + diff --git a/1628/CH15/EX15.6/Ex15_6.sce b/1628/CH15/EX15.6/Ex15_6.sce new file mode 100755 index 000000000..e99e232a3 --- /dev/null +++ b/1628/CH15/EX15.6/Ex15_6.sce @@ -0,0 +1,30 @@ + + // Examle 15.6 + +po=5*746; // O/p power +n=0.875; // Efficiency of motor at no load +pin=round(po/n); // I/p power +p1=pin-po; // Total losses +pm=0.05*p1; // Mechanical losses +pe=p1-pm; // Electrical losses +pd=po+pm; // Devlopment power +disp(' Devlopment power = '+string(pd)+' Watt'); + +f=50; // Frequency +p=4; // No.Of poles +Ns=(120*f)/p; // Synchronous speed +N=1470; // No.Of Revolution in rmp +s=(Ns-N)/Ns; // The Slip + +pg=pd/(1-s); // Air-gap power +disp(' Air-gap power = '+string(pg)+' Watt'); + +pr=s*pg; // Rotor copper loss +disp(' Rotor copper loss = '+string(pr)+' Watt'); + +ps=pin-pg; // Stator loss +disp(' Stator loss = '+string(ps)+' Watt'); + + + + // p 598 15.6 diff --git a/1628/CH15/EX15.7/Ex15_7.sce b/1628/CH15/EX15.7/Ex15_7.sce new file mode 100755 index 000000000..f5d1ff7c2 --- /dev/null +++ b/1628/CH15/EX15.7/Ex15_7.sce @@ -0,0 +1,49 @@ + + + // Examle 15.7 + +v1=400/1.732; // Phase voltage +s=0.02; // Slip +p=4; // No.Of poles +f=50; // Frequency +R2=0.332; // Resistance R2 +X2=0.464; // Reactance X2 +Ns=(120*f)/p; // Synchronous speed +N=Ns*(1-s); // Rotor speed +disp(' The rotor speed is = '+string(N)+' rmp'); + +V1=231+%i*0; // Supply voltage +Xg=26.3; // Reactance Xg +X1=1.106; // Reactance X1 +R1=0.641; // Resistance R1 +Vth={V1*(%i*Xg)}/(R1+%i*(X1+Xg)); // Thevenin's voltage +Zth={%i*Xg*(R1+%i*X1)}/(R1+%i*(X1+Xg)); // Thevenin's impedance +Rl={(1-s)/s}*R2; // Mechanical load + +I1=Vth/(Zth+R2+%i*X2+Rl); // stator current +disp(' Stator current = '+string(I1)+' Amp or ('+string(abs(I1))+' <'+string(atand(imag(I1),real(I1)))+' Amp )'); + + +Q=atand(imag(I1),real(I1)); // Power factor angle +pf=cosd(Q); // Power factor +disp(' Power factor is = '+string(pf)+' Lagging'); + +RL=340; // Rotational losses +po=(3*12.84^2*Rl)-RL; // O/p power ==> ( taken I1=12.84 ) +disp(' O/p power = '+string(abs(po))+' Watt'); + +pin=3*V1*12.82*0.998; // I/p power ==> ( taken I1=12.82 & pf= 0.998) +disp(' I/p power = '+string(abs(pin))+' Watt'); + +n=po/pin; // Efficiency of motor +disp(' Efficiency of motor = '+string(abs(n*100))+' %'); + + + + + + // p 603 15.7 + + + + diff --git a/1628/CH15/EX15.8/Ex15_8.sce b/1628/CH15/EX15.8/Ex15_8.sce new file mode 100755 index 000000000..0cf8b8f11 --- /dev/null +++ b/1628/CH15/EX15.8/Ex15_8.sce @@ -0,0 +1,23 @@ + + + // Examle 15.8 + +f=50; // Frequency +p=6; // No.Of poles +Ns=(120*f)/p; // Synchronous speed +N=940; // No.Of Revolution in rmp + +s=(Ns-N)/Ns; // The Slip +disp(' The Slip is = '+string(s)); + +R2=0.1; // Rotor resistance per phase +X20=R2/s; // Standing rotor reactance +disp(' Standing rotor reactance = '+string(X20)+' Ohm'); + + + + + + // p 608 15.8 + + diff --git a/1628/CH16/EX16.1/Ex16_1.sce b/1628/CH16/EX16.1/Ex16_1.sce new file mode 100755 index 000000000..b9b6570c1 --- /dev/null +++ b/1628/CH16/EX16.1/Ex16_1.sce @@ -0,0 +1,32 @@ + + // Example 16.1 + + // ==> When Lap-wound . + +disp('* With the Armature Lap-wound, & Parallel pahts A=8 '); +Z=480; // No.Of conductor +A=8; // No.Of poles +e=2.1; // Average emf in each conductor +E=e*(Z/A); // Terminal voltage on No load +disp(' Terminal voltage on No load = '+string(E)+' Volt'); +If=200; // Full-load current per conductor +Il=If*A; // O/p current on full-load +disp(' O/p current on full-load = '+string(Il)+' Amp'); +Po=Il*E; // Total power on full-load +disp(' Total power generated on full-load = '+string(Po/1000)+' kW'); + + // ==> When Wave-wound . + +disp('* With the Armature Wave-wound, & Parallel pahts A=2 '); +A1=2; // No.Of poles +E1=e*(Z/A1); // Terminal voltage on No load +disp(' Terminal voltage on No load = '+string(E1)+' Volt'); +Il1=If*A1; // O/p current on full-load +disp(' O/p current on full-load = '+string(Il1)+' Amp'); +Po1=Il1*E1; // Total power on full-load +disp(' Total power generated on full-load = '+string(Po1/1000)+' kW'); + + + + + // p 631 16.1 diff --git a/1628/CH16/EX16.10/Ex16_10.sce b/1628/CH16/EX16.10/Ex16_10.sce new file mode 100755 index 000000000..bc88d71d9 --- /dev/null +++ b/1628/CH16/EX16.10/Ex16_10.sce @@ -0,0 +1,24 @@ + + // Examle 16.10 + +i1=4; // No load current +i2=6; // Full-load current +n=1500; // No.Of turns per poles +At1=i1*n; // Amper Turns per pole on No Load +disp(' Amper Turns per pole on No Load = '+string(At1)+' At'); + +At2=i2*n; // Amper Turns per pole on Full Load +disp(' Amper Turns per pole on Full Load = '+string(At2)+' At'); + +At=At2-At1; // Amper Turns per pole of seires winding +disp(' Amper Turns per pole of seires winding = '+string(At)+' At'); + +Nse=At/100; // Full Load Current +disp(' Full Load Current = '+string(Nse)); + + + + + + // p 647 16.10 + diff --git a/1628/CH16/EX16.11/Ex16_11.sce b/1628/CH16/EX16.11/Ex16_11.sce new file mode 100755 index 000000000..96201aa36 --- /dev/null +++ b/1628/CH16/EX16.11/Ex16_11.sce @@ -0,0 +1,19 @@ + + + // Examle 16.11 + +V=250; // Supply voltage +Rsh=250; // Field winding resistance +Ish=V/Rsh; // The shunt field current (Ish) +disp(' The Shunt field current (Ish) = '+string(Ish)+' Amp'); +Il=41; // Full-load current +Ia=Il-Ish; // Armature current +disp(' The Armature current current (Ia) = '+string(Ia)+' Amp'); +Ra=0.1; // Armature resistance +Eb=V-(Ia*Ra); // back emf +disp(' The back emf (Eb) = '+string(Eb)+' Volt'); + + + + + // p 649 16.11
\ No newline at end of file diff --git a/1628/CH16/EX16.12/Ex16_12.sce b/1628/CH16/EX16.12/Ex16_12.sce new file mode 100755 index 000000000..4313b6222 --- /dev/null +++ b/1628/CH16/EX16.12/Ex16_12.sce @@ -0,0 +1,21 @@ + + + // Examle 16.12 + +V=440; // Supply voltage +Ia=50; // Armature currernt +Ra=0.28; // Armature resistance +a=2; // No.Of paraller path +Q=0.023; // Megnetic flux per pole +z=888; // Impedence +p=4; // No.Of poles +Eb=V-(Ia*Ra); // Back emf (Eb) +disp(' Back emf (Eb) = '+string(Eb)+' Volt'); + +N=(60*a*Eb)/(Q*z*p); // Speed of the moter +disp(' Speed of the moter = '+string(round(N))+' rms'); + + + + + // p 649 16.12
\ No newline at end of file diff --git a/1628/CH16/EX16.13/Ex16_13.sce b/1628/CH16/EX16.13/Ex16_13.sce new file mode 100755 index 000000000..c88550cd3 --- /dev/null +++ b/1628/CH16/EX16.13/Ex16_13.sce @@ -0,0 +1,17 @@ + + // Examle 16.13 + +At=900; // Speed of motor +V=460; // Supply voltage +kQ=V/At; // Orignal Flux +disp(' Orignal Flux = '+string(kQ)); + +V1=200; // Chenged Supply voltage +N=V1/(0.7*kQ); // Speed of Motor When Supply (200 V) +disp(' Speed of Motor When Supply (200 V) = '+string(round(N))+' rpm'); + + + + + + // p 649 16.13
\ No newline at end of file diff --git a/1628/CH16/EX16.14/Ex16_14.sce b/1628/CH16/EX16.14/Ex16_14.sce new file mode 100755 index 000000000..6c68f4908 --- /dev/null +++ b/1628/CH16/EX16.14/Ex16_14.sce @@ -0,0 +1,27 @@ + + // Examle 16.14 + +V=480; +Ia=110; // Armature currernt +Ra=0.2; // Armature resistance +a=6; // No.Of paraller path +p=6; // No.Of poles +Q=0.05; // Megnetic flux per pole +z=864; // Impedence +Eb=V-(Ia*Ra); // Generated emf (Eb) +disp('Generated emf (Eb) = '+string(Eb)+' Volt'); + +N=(60*a*Eb)/(Q*z*p); // Speed of the moter +disp(' Speed of the moter = '+string(round(N))+' rms'); + + // ==> Using Formula { td= Qz/2TT x(p/A) xIa } + +x=(Q*z)/(2*%pi); // for simlicity +td=(p/a)*Ia*(x); // Total Torque (Td) +disp(' Total Torque (Td) = '+string (round(td))+' Nm'); + + + + + + // p 650 16.14
\ No newline at end of file diff --git a/1628/CH16/EX16.15/Ex16_15.sce b/1628/CH16/EX16.15/Ex16_15.sce new file mode 100755 index 000000000..576a54f3c --- /dev/null +++ b/1628/CH16/EX16.15/Ex16_15.sce @@ -0,0 +1,16 @@ + + + // Examle 16.15 + +t=2000; // Torque +N=900; // Speed +Ploss=8000; // Power loss +Pin=(2*%pi*t*N)/60; // Input Power (Pin) +disp(' Input Power (Pin) '+string(Pin/1000)+' kW'); + +Pd=Pin-Ploss; // Power Generated in Armature (Pd) +disp(' Power Generated in Armature (Pd) = '+string(Pd/1000)+' kW'); + + + + // p 651 16.15
\ No newline at end of file diff --git a/1628/CH16/EX16.16/Ex16_16.sce b/1628/CH16/EX16.16/Ex16_16.sce new file mode 100755 index 000000000..18fd9129f --- /dev/null +++ b/1628/CH16/EX16.16/Ex16_16.sce @@ -0,0 +1,28 @@ +
+ // Example 16.16
+
+V=230; // Supply voltage
+Ia=110; // Current
+Ra=0.12; // Resistance
+Rse=0.03; // Series field resistance
+E1=V-Ia*(Ra+Rse); // Emf Generated
+
+ // But for the Given machine ( E1= QZNP/60A= kQ1N1 )
+
+N1=600; // No.Of turns
+Q1=0.024; // Megnetic flux
+k=E1/(Q1*N1); // Constant
+
+Ia1=50; // Current of 50A
+E2=V-[Ia1*(Ra+Rse)]; // Emf Generated
+
+ // We know that E2=k*Q2*N2
+
+Q2=0.016; // Megnetic flux
+N2=E2/(k*Q2); // New speed
+disp(' The new speed is = '+string(round(N2))+' rpm');
+
+
+
+
+ // p 653 16.16
diff --git a/1628/CH16/EX16.17/Ex16_17.sce b/1628/CH16/EX16.17/Ex16_17.sce new file mode 100755 index 000000000..0f964aa8d --- /dev/null +++ b/1628/CH16/EX16.17/Ex16_17.sce @@ -0,0 +1,26 @@ +
+ // Example 16.17
+
+Ra=0.2; // Resistance
+V=250; // Supply voltage
+Eb=0; // Voltage at rest
+Ia=(V-Eb)/Ra; // Current drawn by the machine at Eb=200
+disp(' Current drawn by the machine at (Eb=0) = '+string(Ia)+' Amp');
+
+Eb1=200; // Voltage at Eb=200
+Ia1=(V-Eb1)/Ra; // Current drawn by the machine at Eb=200
+disp(' Current drawn by the machine at (Eb=200) = '+string(Ia1)+' Amp');
+
+Eb2=250; // Voltage at Eb=250
+Ia2=(V-Eb2)/Ra; // Current drawn by the machine at Eb=250
+disp(' Current drawn by the machine at (Eb=250) = '+string(Ia2)+' Amp');
+
+Eb3=-250; // Voltage at Eb=-250
+Ia3=(V-Eb3)/Ra; // Current drawn by the machine at Eb=-250
+disp(' Current drawn by the machine at (Eb=-250) = '+string(Ia3)+' Amp');
+
+
+
+
+
+ // p 653 16.17
\ No newline at end of file diff --git a/1628/CH16/EX16.18/Ex16_18.sce b/1628/CH16/EX16.18/Ex16_18.sce new file mode 100755 index 000000000..626dc6c5b --- /dev/null +++ b/1628/CH16/EX16.18/Ex16_18.sce @@ -0,0 +1,23 @@ + + // Examle 16.18 + +V=480; // Supply voltage +Ia=110; // Armature currernt +Ra=0.18; // Series field resistance R1 +Rse=0.02; // Series field resistance R2 +Eb=V-Ia*(Ra+Rse); // Generated emf +disp(' Generated emf = '+string(Eb)+' Voltage'); + +a=6; // No.Of paraller path +Q=0.05; // Megnetic flux +z=864; // Conductor +p=6; // No.Of poles +N=(60*a*Eb)/(Q*z*p); // Speed of a Motor +disp(' Speed of a Motor = '+string(round(N))+' rpm'); + +Td=(60*Eb*Ia)/(2*%pi*N); // The Torque Develop by Armeture +disp(' The Torque Develop by Armeture = '+string(round(Td))+' Nm'); + + + + // p 654 16.18 diff --git a/1628/CH16/EX16.19/Ex16_19.sce b/1628/CH16/EX16.19/Ex16_19.sce new file mode 100755 index 000000000..a5dc11a74 --- /dev/null +++ b/1628/CH16/EX16.19/Ex16_19.sce @@ -0,0 +1,22 @@ + + + // Examle 16.19 + +V=220; // Supply voltage +Ia=22; // Armature currernt +Ra=0.45; // Armature resistance +E1=V-(Ia*Ra); // Generated emf +disp(' Generated emf = '+string(E1)+' Voltage'); + +N1=700; // Speed of motor in Shunt +N2=450; // Speed of motor in Series +E2=(N2*E1)/N1; // Emf of Shunt motor +disp(' Emf of Shunt motor = '+string(E2)+' voltage'); + +Va=Ia*Ra; // Armature voltage +R=(V-(E2+Va))/Ia; // Resistance with Armature +disp(' Resistance with Armature = '+string(R)+' ohms'); + + + + // p 654 16.19
\ No newline at end of file diff --git a/1628/CH16/EX16.2/Ex16_2.sce b/1628/CH16/EX16.2/Ex16_2.sce new file mode 100755 index 000000000..6d1dfd807 --- /dev/null +++ b/1628/CH16/EX16.2/Ex16_2.sce @@ -0,0 +1,15 @@ + + // Example 16.2 + +s=65; // No.Of slots +nc=12; // Couductor per slot +z=s*nc; // Impedance +p=4; // No.Of poles +Q=0.02; // Megnetic flux +N=1200; // Speed of motor +E=(Q*z*N*p)/(60*p); // Total emf Induced +disp('Total emf Induced = '+string(E)+' Volt'); + + + + // p 633 16.2 diff --git a/1628/CH16/EX16.20/Ex16_20.sce b/1628/CH16/EX16.20/Ex16_20.sce new file mode 100755 index 000000000..7afd81ac5 --- /dev/null +++ b/1628/CH16/EX16.20/Ex16_20.sce @@ -0,0 +1,23 @@ + + + // Examle 16.20 + +V=230; // Supplt voltage +Ia1=40; // Armature currernt Ia1 +Ra=0.2; // Armature resistance +Rse=0.1; // Series field resistance +E1=V-Ia1*(Ra+Rse); // Back emfat (24 A) +disp(' Back emfat (24 A) = '+string(E1)+' Voltage'); + +Ia2=20; // Armature currernt Ia2 +E2=V-Ia2*(Ra+Rse); // Back emfat (20 A) +disp(' Back emfat (20 A) = '+string(E2)+' Voltage'); + +N1=1000; // Speed of a Motor at I= 40A +N2=(E2*N1)/(E1*0.6); // Speed of a Motor +disp(' Speed of a Motor = '+string(round(N2))+' rpm'); + + + + + // p 654 16.20
\ No newline at end of file diff --git a/1628/CH16/EX16.3/Ex16_3.sce b/1628/CH16/EX16.3/Ex16_3.sce new file mode 100755 index 000000000..5105d11a2 --- /dev/null +++ b/1628/CH16/EX16.3/Ex16_3.sce @@ -0,0 +1,13 @@ + + // Examle 16.3 + + +E1=180; // Induced emf +N1=500; // Speed of mechine N1=500 +N2=600; // Speed of mechine N1=600 +E2=(N2/N1)*E1; // Emf When Machine runs at (600 rpm) +disp('Emf When Machine runs at (600 rpm)= '+string(E2)+' Volt'); + + + + // 633 16.3
\ No newline at end of file diff --git a/1628/CH16/EX16.4/Ex16_4.sce b/1628/CH16/EX16.4/Ex16_4.sce new file mode 100755 index 000000000..c85ea92c1 --- /dev/null +++ b/1628/CH16/EX16.4/Ex16_4.sce @@ -0,0 +1,23 @@ + + // Examle 16.4 + +E1=220; // Induced emf at N=750 rpm +E2=250; // Induced emf (i.e E=250) +N1=750; // Speed of mechine at E1=220 +N2=(E2/E1)*N1; // Speed at Constant emf E2=250 +disp('Speed at Constant emf = '+string(round(N2))+' rpm'); + + // Using formula { Q2/Q1= E2/E1 x N1/N2 } + +e=(E2*N1); // Numerator of above formula +n=(E1*600); // Dinominator of above formula { by taking N2= 600 } +E=e/n; // Induced emf +inc=(E-1.00)*100; // % incriment in Flux +disp(' % incriment in Flux = '+string(round(inc))+' %'); + + + + + + // p 633 16.4 + diff --git a/1628/CH16/EX16.5/Ex16_5.sce b/1628/CH16/EX16.5/Ex16_5.sce new file mode 100755 index 000000000..5e7cffbd4 --- /dev/null +++ b/1628/CH16/EX16.5/Ex16_5.sce @@ -0,0 +1,18 @@ + + + // Examle 16.5 + +V=440; // Supply Voltage +Rsh=110; // Resistance of Shunt field +Ish=V/Rsh; // Current through Shunt field +Ra=0.02; // Resistance of Armature winding +Il=496; // Generator current +Ia=Il+Ish; // Armeture Current (Ia) +disp('Armeture Current (Ia) = '+string(Ia)+' Amp'); + +Eg=V+(Ia*Ra); // generated emf (Eg) +disp('Generated emf (Eg) = '+string(Eg)+' Volt'); + + + + // p 638 16.5
\ No newline at end of file diff --git a/1628/CH16/EX16.6/Ex16_6.sce b/1628/CH16/EX16.6/Ex16_6.sce new file mode 100755 index 000000000..eafa0d203 --- /dev/null +++ b/1628/CH16/EX16.6/Ex16_6.sce @@ -0,0 +1,27 @@ + + // Examle 16.6 + +p=60; // Power supply +v=200; // supply voltage +I1=p/v; // current through each lamp +Il=100*I1; // Shunt field Current (Il) +disp('Shunt field Current (Il) = '+string(Il)+' Amp'); + +Rsh=50; // Resistance +Ish=v/Rsh; // Shunt field Current +Ia=Il+Ish; // Armature Current (Ia) +disp('Armature Current (Ia) = '+string(Ia)+' Amp'); + +a=4; // No.Of paraller path +Ic=Ia/a; // Current per path (Ic) +disp(' Current per path (Ic) = '+string(Ic)+' Amp'); + +Ra=0.2; // Armature resistance +dro=2; // Brush-drop +Eg=v+(Ia*Ra)+dro; // Generated emf (Eg) +disp('generated emf (Eg) = '+string(Eg)+' Volt'); + + + + // 638 16.6 + diff --git a/1628/CH16/EX16.7/Ex16_7.sce b/1628/CH16/EX16.7/Ex16_7.sce new file mode 100755 index 000000000..643ffbedd --- /dev/null +++ b/1628/CH16/EX16.7/Ex16_7.sce @@ -0,0 +1,28 @@ + + // Examle 16.7 + +Il=100; // Series field current +Rse=0.1; // Resistance series field +Vse=Rse*Il; // Voltage drop across series field (Vse) +disp('Voltage drop across series field (Vse) = '+string(Vse)+' Volt'); + +V=250; // Supply voltage +Vsh=V+Vse; // Voltage drop across Shunt field (Vsh) +disp('Voltage drop across Shunt field (Vsh) = '+string(Vsh)+' Volt'); + +Rsh=130; // Resistance +Ish=Vsh/Rsh; // Shunt field Current (Ish) +disp(' Shunt field Current (Ish) = '+string(Ish)+' Amp'); + +Ia=Il+Ish; // Armature Current (Ia) +disp('Armature Current (Ia) = '+string(Ia)+' Amp'); + +Ra=0.1; // Armature resistance +dro=2; // Brush-drop +Eg=V+Vse+(Ia*Ra)+dro; // Generated emf (Eg) +disp('Generated emf (Eg) = '+string(Eg)+' Volt'); + + + + // p 638 16.7 + diff --git a/1628/CH16/EX16.8/Ex16_8.sce b/1628/CH16/EX16.8/Ex16_8.sce new file mode 100755 index 000000000..3b6363a25 --- /dev/null +++ b/1628/CH16/EX16.8/Ex16_8.sce @@ -0,0 +1,24 @@ + + // Examle 16.8 + +po=30000; // o/p power +v=200; // Voltage +Il=po/v; // Load Current (Il) +disp(' Load Current (Il) = '+string(Il)+' Amp'); + +Rsh=50; // Shunt field resistance R1 +Ish=v/Rsh; // Shunt field Current +Ia=Il+Ish; // Armature Current (Ia) +Ra=0.05; // Shunt field resistance R2 +Eg=v+(Ia*Ra); // Generated emf (Eg) +disp('Generated emf (Eg) = '+string(Eg)+' Volt'); + +Cu=Ish^2*Rsh+Ia^2*Ra; // The copper Losses (Cu) +disp('The copper Losses (Cu) = '+string(Cu)+' W'); + +e=po*100/(1000+po+Cu); // The Efficiency (e) +disp('The Efficiency (e) = '+string (e)+' %'); + + + + // p 641 16.8 diff --git a/1628/CH16/EX16.9/Ex16_9.sce b/1628/CH16/EX16.9/Ex16_9.sce new file mode 100755 index 000000000..121bc571f --- /dev/null +++ b/1628/CH16/EX16.9/Ex16_9.sce @@ -0,0 +1,31 @@ + + // Examle 16.9 + + +Vo=210; // Supply voltage +Il=195; // Full-load current +Po=Vo*Il; // O/p power +n=0.9; // Efficiency +Pin=Po/n; // I/p power +Tl=Pin-Po; // Total loss +Rsh=52.5; // Shunt field resistance +Ish=Vo/Rsh; // Shunt field current +Ia=Il+Ish; // Armeture Current (Ia) +Cl=Ish^2*Rsh; // Shunt field copper loss +Hl=710; // Stray losses +CL=Cl+Hl // Constant loss +Al=4550-CL; // Armature copper loss +Ra=Al/Ia^2; // Armature resistance +disp('Armature resistance = '+string(Ra)+' Ohms'); + + // ==> for maximum effciency (Ia^2*RA= Pc = 1550 ) + +Ia1=sqrt(CL/0.0757); // Armeture Current for maximum efficiency ==>{Ra=0.0757557 ,but here we have Ra=0.0757} +disp(' Armeture Current = '+string(Ia1)+' Amp'); + +IL=Ia1-Ish; // Load current +disp(' Load current (IL) = '+string(IL)+' Amp'); + + + + // p 642 16.9 diff --git a/1628/CH17/EX17.1/Ex17_1.sce b/1628/CH17/EX17.1/Ex17_1.sce new file mode 100755 index 000000000..e2cb67334 --- /dev/null +++ b/1628/CH17/EX17.1/Ex17_1.sce @@ -0,0 +1,24 @@ + + // Examle 17.1 + +f=50; // Frequency +p=4; // No.Of poles +Ns=(120*f)/p; // Synchronous speed +N=1410; // No.Of Revolution in rmp +I=2.9; // I/p current +V=230; // Supply voltage +CosQ=0.71; // Power factor +s=(Ns-N)/Ns; // The Slip +disp(' The Slip is = '+string(s*100)+' %'); + +po=375; // O/p power +pin=V*I*CosQ; // I/p power +eff=po/pin; // Efficiency +disp(' The efficiency is = '+string(eff*100)+' %'); + + + + + + + // p 683 17.1 diff --git a/1628/CH17/EX17.2/Ex17_2.sce b/1628/CH17/EX17.2/Ex17_2.sce new file mode 100755 index 000000000..e4ebcf7a9 --- /dev/null +++ b/1628/CH17/EX17.2/Ex17_2.sce @@ -0,0 +1,27 @@ + + // Examle 17.2 + + +zm=(5+%i*12); // Impedence of main-Winding +za=(12+%i*5); // Impedence of starting-Winding +V=230+%i*0; // Supply voltage +Im=V/zm; // Current in main-Winding +disp(' The Current in main-Winding = '+string(Im)+' Amp or ('+string(abs(Im))+' <'+string(atand(imag(Im),real(Im)))+' Amp )'); + +Ia=V/za; // Current in starting-Winding +disp(' The Current in starting-Winding = '+string(Ia)+' Amp or ('+string(abs(Ia))+' <'+string(atand(imag(Ia),real(Ia)))+' Amp )'); + +Il=Im+Ia; // The line Current +disp(' The line Current = '+string(Il)+' Amp or ('+string(abs(Il))+' <'+string(atand(imag(Il),real(Il)))+' Amp )'); + +Qa=-22.62; // Phase angle of starting-winding +Qm=-67.38; // Phase angle of main-winding +Q=Qa-Qm; // The phase displacement (Q) +disp(' The phase displacement (Q) = '+string(Q)+' i.e = '+string(round(Q))+' Digree'); + +pf=cosd(round(Q)); // The Power factor +disp(' The Power factor is = '+string(pf)+' lagging'); + + + + // p 683 17.2
\ No newline at end of file diff --git a/1628/CH17/EX17.3/Ex17_3.sce b/1628/CH17/EX17.3/Ex17_3.sce new file mode 100755 index 000000000..15f61b4a8 --- /dev/null +++ b/1628/CH17/EX17.3/Ex17_3.sce @@ -0,0 +1,18 @@ + + // Examle 17.3 + +Xm=20; // Inductive reactance of Main-winding +Rm=2; // Main-winding resistance +Ra=25; // Auxilliary-winding resistance +f=50; // Frequency +Xa=5; // Inductive reactance of Auxilliary-winding +Qm=atand(Xm/Rm); // Angle of Main-winding +Qa=Qm-90; // Angle of Auxilliary-winding +Xc=Xa-(tand(Qa)*Ra); // Capacitive reactance +C=1/(2*%pi*f*7.495); //Capacitor (C) ==> { Xc= 7.5 ,but taking Xc= 7.495 } +disp('The value of Capacitor (C) = '+string(C)+' F'); + + + + + // p 684 17.3
\ No newline at end of file diff --git a/1628/CH17/EX17.4/Ex17_4.sce b/1628/CH17/EX17.4/Ex17_4.sce new file mode 100755 index 000000000..04792c792 --- /dev/null +++ b/1628/CH17/EX17.4/Ex17_4.sce @@ -0,0 +1,17 @@ + + // Examle 17.4 + +b=2.5; // Step Angle +r=360/b; // Resolution (r) +disp('Resolution (r) = '+string(r)+' steps per revolution'); + +n=r*25; // No.Of step Required for (25 Rev) +disp('No.Of step Required for (25 Rev) = '+string(n)); + +s=(b*n)/360; // Shaft Speed (s) +disp('Shaft Speed (s) = '+string(s)+' rps'); + + + + + // p 689 17.4
\ No newline at end of file diff --git a/1628/CH17/EX17.5/Ex17_5.sce b/1628/CH17/EX17.5/Ex17_5.sce new file mode 100755 index 000000000..221e6dd32 --- /dev/null +++ b/1628/CH17/EX17.5/Ex17_5.sce @@ -0,0 +1,17 @@ + + // Examle 17.5 + +b=15; // Step Angle +m=3; // No.Oh phase +Nr=360/(m*b); // Number of rotors +disp('No.Of Rotors = '+string(abs(Nr))); + +Ns1=(Nr*360)/((b*Nr)-360); // No.Of Stator When (Ns > Nr) +disp('No.Of Stator When (Ns > Nr) = '+string(abs(Ns1))); + +Ns2=(Nr*360)/((b*Nr)+360); // No.Of Stator When (Ns < Nr) +disp('No.Of Stator When (Ns < Nr) = '+string(Ns2)); + + + + // p 690 17.5
\ No newline at end of file diff --git a/1628/CH17/EX17.6/Ex17_6.sce b/1628/CH17/EX17.6/Ex17_6.sce new file mode 100755 index 000000000..2e0f3df9e --- /dev/null +++ b/1628/CH17/EX17.6/Ex17_6.sce @@ -0,0 +1,14 @@ + + + // Examle 17.6 + + // ==> Given 4 Stack VR stepper motor + +m=4; // No.Oh phase +b=1.8; // Step Angle +Nr=360/(b*m); // Number of rotors +disp('Number of rotors = '+string(Nr)); + + + + // p 692 17.6
\ No newline at end of file diff --git a/1628/CH18/EX18.1/Ex18_1.sce b/1628/CH18/EX18.1/Ex18_1.sce new file mode 100755 index 000000000..2010cfb80 --- /dev/null +++ b/1628/CH18/EX18.1/Ex18_1.sce @@ -0,0 +1,22 @@ + + // Examle 18.1 + +I=0.015; // Current in a coil +B=0.2; // Megnetic flux density +l=0.02; // Length of megnetic field +n1=42; // No.Of turns N1 +r=0.0125; // radius of coil +n2=43; // No.Of turns N2 +F1=I*B*l*n1; // The force on(42-Conductors) +disp('The force on(42-Conductors) = '+string(F1)+' N'); + +F2=I*B*l*n2; // The force on(43-Conductors) +disp('The force on(43-Conductors) = '+string(F2)+' N'); + +Tr=(F1+F2)*r; // Total Torque (Td) +disp ('Total Torque (Td) = '+string(Tr)+' Nm'); + + + + + // p 756 18.1
\ No newline at end of file diff --git a/1628/CH18/EX18.10/Ex18_10.sce b/1628/CH18/EX18.10/Ex18_10.sce new file mode 100755 index 000000000..752bfc1c2 --- /dev/null +++ b/1628/CH18/EX18.10/Ex18_10.sce @@ -0,0 +1,17 @@ + + + // Examle 18.10 + +w=0.004; // width of the coil +l=0.005; // Length of the coil +A=w*l; // Area of the coil +B=0.1; // Megnetic flux density +n=80; // No.Of turns +tc=0.5*60*10^-6; // Controling torque +td=3*10^-3; // Deflecting torque +I=tc/(B*n*A); // Current +disp('Current (I) = '+string(I)+' Amp'); + + + + // p 777 18.10
\ No newline at end of file diff --git a/1628/CH18/EX18.2/Ex18_2.sce b/1628/CH18/EX18.2/Ex18_2.sce new file mode 100755 index 000000000..3d86a924a --- /dev/null +++ b/1628/CH18/EX18.2/Ex18_2.sce @@ -0,0 +1,15 @@ + + // Examle 18.2 + +Ifs=10*10^-3; // Maximum current +Im=100*10^-6; // Full-scale diflection current +Rm=100; // Internal resistance +Ish=Ifs-Im; // Shunt Current (Ish) +disp('Shunt Current (Ish) = '+ string(Ish)+' Amp'); + +Rsh=(Im*Rm)/Ish; // Shunt Current (Rsh) +disp('Shunt Current (Rsh) = '+ string(Rsh)+' ohms'); + + + + // p 762 18.2
\ No newline at end of file diff --git a/1628/CH18/EX18.4/Ex18_4.sce b/1628/CH18/EX18.4/Ex18_4.sce new file mode 100755 index 000000000..ce1a054d5 --- /dev/null +++ b/1628/CH18/EX18.4/Ex18_4.sce @@ -0,0 +1,13 @@ + + // Examle 18.4 + +Im=50*10^-6; // Current sensitivity +Rm=100; // Internal resistance +Vf=50; // volt-meter range +Rs=(Vf/Im)-Rm; // The Value of Resister (Rs) +disp ('The Value of Resister (Rs) = '+string(Rs/1000)+' kilo-ohms'); + + + + + // p 767 18.4
\ No newline at end of file diff --git a/1628/CH18/EX18.5/Ex18_5.sce b/1628/CH18/EX18.5/Ex18_5.sce new file mode 100755 index 000000000..88eb3ca65 --- /dev/null +++ b/1628/CH18/EX18.5/Ex18_5.sce @@ -0,0 +1,15 @@ + + // Examle 18.5 + +Im=50*10^-6; // Current sensitivity +Rm=1000; // Internal resistance +Vf=50; // volt-meter range +Rs=(Vf/Im)-Rm; // The Value of Resister (Rs) +disp ('The Value of Resister (Rs) = '+string(Rs/1000)+' kilo-ohms'); + +n=Vf/(Im*Rm); // The Voltage Multiplying Factor (N) +disp('The Voltage Multiplying Factor (N) = '+string(n)); + + + + // p 767 18.5
\ No newline at end of file diff --git a/1628/CH18/EX18.6/Ex18_6.sce b/1628/CH18/EX18.6/Ex18_6.sce new file mode 100755 index 000000000..98eb18492 --- /dev/null +++ b/1628/CH18/EX18.6/Ex18_6.sce @@ -0,0 +1,25 @@ + + // Examle 18.6 + +s=1000; // Sensitivity of Volt-meter A +r=50; // Load resistance +Vt=50; // Range of volt-meter +Ri1=s*r; // Internal resistance of Volt-meter A +V1=150*{25000/(100000+25000)}; // Voltage in Ist Meter +disp('Voltage in Ist Meter (V) = '+string(V1)+' Volt'); + +s1=20000; // Sensitivity of Volt-meter B +Ri2=s1*r; // Internal resistance of Volt-meter B +V2=150*{47600/(100000+47600)}; // Voltage in 2nd Meter +disp('Voltage in 2nd Meter (V) = '+string(V2)+' Volt'); + +Er1=(Vt-V1)*100/Vt; // % Error in Ist meter +disp('% Error in Ist meter = '+string(Er1)+' %'); + +Er2=(Vt-48.36)*100/Vt; // % Error in 2nd meter ==> { V2=48.3739, but taking V2= 48.36 } +disp('% Error in 2nd meter = '+string(Er2)+' %'); + + + + + // p 770 18.6
\ No newline at end of file diff --git a/1628/CH18/EX18.7/Ex18_7.sce b/1628/CH18/EX18.7/Ex18_7.sce new file mode 100755 index 000000000..79e2b9424 --- /dev/null +++ b/1628/CH18/EX18.7/Ex18_7.sce @@ -0,0 +1,15 @@ + + // Examle 18.7 + +k=60/20; // Derived from { Q= k x I } +i=12; // Current +Q1=k*i; // Diflection for Spring-Control Current +disp('Diflection for Spring-Control Current = '+string(Q1)+' Digree'); + +k1=sind(60)/20; // Derived from { SinQ= k x I } +Q2=asind(k1*12); // Diflection for Gravity-Control Current +disp('Diflection for Gravity-Control Current = '+string(Q2)+' Digree'); + + + + // 775 18.7
\ No newline at end of file diff --git a/1628/CH18/EX18.8/Ex18_8.sce b/1628/CH18/EX18.8/Ex18_8.sce new file mode 100755 index 000000000..2b601f32e --- /dev/null +++ b/1628/CH18/EX18.8/Ex18_8.sce @@ -0,0 +1,13 @@ + + + // Examle 18.8 + +w=0.005; // Controling weigth +l=0.024; // Distance +td=1.05*10^-4; // Deflecting torque +k=asind(td/(w*l)); // Diflection in Digree (@) +disp('Diflection in Digree (@) = '+string(round(k))+' Digree'); + + + + // p 776 18.8
\ No newline at end of file diff --git a/1628/CH18/EX18.9/Ex18_9.sce b/1628/CH18/EX18.9/Ex18_9.sce new file mode 100755 index 000000000..c6f8f6f19 --- /dev/null +++ b/1628/CH18/EX18.9/Ex18_9.sce @@ -0,0 +1,13 @@ + + // Examle 18.9 + +i1=10; // Current I1 +i2=5; // Current I2 +Q=90; // Deflection due to 10 Amp +Q1=(i2/i1)^2*Q; // Diflection for Spring-Control Current +disp('Diflection for Spring-Control Current = '+string(Q1)+' Digree'); + + // Using formula ==> { Q2= Sin[(i2/i1)^2*sin(Q)] } + +Q2=asind((i2/i1)^2*sind(Q)); // Diflection for Gravity-Control Current +disp('Diflection for Gravity-Control Current = '+string(Q2)+' Digree');
\ No newline at end of file diff --git a/1628/CH2/EX2.1/Ex2_1.sce b/1628/CH2/EX2.1/Ex2_1.sce new file mode 100755 index 000000000..e04c0a8db --- /dev/null +++ b/1628/CH2/EX2.1/Ex2_1.sce @@ -0,0 +1,19 @@ + + + // Example 2.1 + +a1=%pi*2^2/4; // Relative area of wire-A +a2=%pi*1/4; // Relative area of wire-B +l1=1; // Relative lenght of wire-B +l2=4; // Relative lenght of wire-B +R1=5; // Resistance of wire +r=(l2/a2)/(l1/a1); +disp('The ratio of resistances (R2/R1) = '+string(r)+' ohm'); +R2=r*R1; +disp('Resistance(R2) = '+string(R2)+' ohm'); + + + + + + // p 16 2.1 diff --git a/1628/CH2/EX2.10/Ex2_10.sce b/1628/CH2/EX2.10/Ex2_10.sce new file mode 100755 index 000000000..159b5abc4 --- /dev/null +++ b/1628/CH2/EX2.10/Ex2_10.sce @@ -0,0 +1,15 @@ + + // Example 2.10 + + // Rx=R+(R||2Rx) + // i.e 2*Rx^2-3R Rx-R^2 =0 +R=1; +Rx={3*R+sqrt(9*R*R+8*R*R)}/4; // Using Roots of codratic Equation + +disp(' Equivalent R is = '+string(Rx)+' R'); + + + + + + // p 26 2.10 diff --git a/1628/CH2/EX2.11/Ex2_11.sce b/1628/CH2/EX2.11/Ex2_11.sce new file mode 100755 index 000000000..e5ac45790 --- /dev/null +++ b/1628/CH2/EX2.11/Ex2_11.sce @@ -0,0 +1,20 @@ + + + // Example 2.11 + + // To convet Pi- Section in to T- Section. + // We have to Find Ra, Rb & Rc for T-Section +R2=9; // Resistance of 9 Ohms +R3=6; // Resistance of 6 Ohms +R1=3; // Resistance of 3 Ohms + +Ra=(R2*R3)/(R1+R2+R3); +disp(' Value of Ra is = '+string(Ra)+' Ohm'); +Rb=(R1*R3)/(R1+R2+R3); +disp(' Value of Rc is = '+string(Rb)+' Ohm'); +Rc=(R2*R1)/(R1+R2+R3); +disp(' Value of Rc is = '+string(Rc)+' Ohm'); + + + + // p 26 2.11 diff --git a/1628/CH2/EX2.12/Ex2_12.sce b/1628/CH2/EX2.12/Ex2_12.sce new file mode 100755 index 000000000..f6e06f8cd --- /dev/null +++ b/1628/CH2/EX2.12/Ex2_12.sce @@ -0,0 +1,20 @@ + + + // Example 2.12 + +Reff= 100/10; // Effective R + + // P=v^2/R i.e Power of coil +v=100; +R=600; +R1=v^2/R; + // 2 Coil are connected parallel +R2=(R1*10)/(R1-10); // Using parallel R formula + +disp(' Resistance of each coil = '+string(R2)+' Ohm'); + + + + // p 27 2.12 + + diff --git a/1628/CH2/EX2.13/Ex2_13.sce b/1628/CH2/EX2.13/Ex2_13.sce new file mode 100755 index 000000000..f0a3aa83d --- /dev/null +++ b/1628/CH2/EX2.13/Ex2_13.sce @@ -0,0 +1,18 @@ + + + + // Example 2.13 + +v=115; // Voltage +i=12; // current +t=6; // Time Required +w=v*i*t; // Energy +Rate=2.50; +Cost=w*Rate; +disp(' cost of boiler Operation is = '+string(Cost/1000)+' Rs/kwh'); + + + + + + // p 27 2.13 diff --git a/1628/CH2/EX2.14/Ex2_14.sce b/1628/CH2/EX2.14/Ex2_14.sce new file mode 100755 index 000000000..5fb2bc6ad --- /dev/null +++ b/1628/CH2/EX2.14/Ex2_14.sce @@ -0,0 +1,20 @@ + + + + // Example 2.14 + +v=240; +p=1000; //toaster reted at 1000 w +R=v^2/p; // resistanc raring +Imax=p/v; // Current rating +v1=220; +I=v1/R; // Current at 220 v +p1=v1*I; +disp(' Power rating is = '+string(p1)+' Watt'); +disp(' there for the Power rating is less then original power. '); + + + + + + // p 28 2.14 diff --git a/1628/CH2/EX2.15/Ex2_15.sce b/1628/CH2/EX2.15/Ex2_15.sce new file mode 100755 index 000000000..ed73281a0 --- /dev/null +++ b/1628/CH2/EX2.15/Ex2_15.sce @@ -0,0 +1,17 @@ + + // Example 2.15 + + // To find the Value of Resister + // We Sghould know About Colour Code + +Y=4; // Yelow colour +V=7; // Violet colour +O=10^3; // Orenge colour +r=(10*Y+V)*O; +R=r*(5/100); +disp(' The value of Resistance is = '+string(R)+' ohm'); + + + + + // p 30 2.15 diff --git a/1628/CH2/EX2.16/Ex2_16.sce b/1628/CH2/EX2.16/Ex2_16.sce new file mode 100755 index 000000000..49ef43dad --- /dev/null +++ b/1628/CH2/EX2.16/Ex2_16.sce @@ -0,0 +1,17 @@ + + + // Example 2.16 + + // To find the Value of Resister + // We Sghould know About Colour Code +Gr=8; // Gray colour +B=6; // Blue colour +G=10^-1; //Gold colour +r=(10*Gr+B)*G; +R=r*(5/100); +disp(' The value of Resistance is = '+string(R)+' ohm'); + + + + + // p 30 2.16 diff --git a/1628/CH2/EX2.17/Ex2_17.sce b/1628/CH2/EX2.17/Ex2_17.sce new file mode 100755 index 000000000..210d9f469 --- /dev/null +++ b/1628/CH2/EX2.17/Ex2_17.sce @@ -0,0 +1,18 @@ + + + // Example 2.17 + +R1=126; // Resistance of 126 Ohms +T1=20; // temperature at 126 ohms resistor +T2=-35; // Temperature ( -35 Digree) +ao=0.00426; + // By using Temprerature Formula i.e R1/(1+aoT1) =R2/(1+aoT2) +z=(1+ao*T2)/(1+ao*T1); +R2=R1*z; +disp(' Resistance of the line (at T=-35) = '+string(R2)+' Ohm'); + + + + + + // p 31 2.17 diff --git a/1628/CH2/EX2.18/Ex2_18.sce b/1628/CH2/EX2.18/Ex2_18.sce new file mode 100755 index 000000000..8e505058f --- /dev/null +++ b/1628/CH2/EX2.18/Ex2_18.sce @@ -0,0 +1,21 @@ + + + // Example 2.18 + +R1=3.42; // Resistance of 3.42 Ohms +T1=20; // temperature at 3.42 ohms resistor +R2=4.22; // Resistance R2 +ao=0.00426; + + // By using Temprerature Formula ==> i.e R1/(1+aoT1) =R2/(1+aoT2) + +z=(R2/R1)*(1+ao*T1); +T2=(z-1)/ao; +T=T2-T1; // Temperature Rise +disp(' The Temperature Rise is = '+string(T)+' Digree Celsius'); + + + + + + // p 32 2.18 diff --git a/1628/CH2/EX2.2/Ex2_2.sce b/1628/CH2/EX2.2/Ex2_2.sce new file mode 100755 index 000000000..1466a200a --- /dev/null +++ b/1628/CH2/EX2.2/Ex2_2.sce @@ -0,0 +1,21 @@ + + // Example 2.2 + + +a1=%pi*3/4; // Relative area of wire-A +a2=%pi*1/4; // Relative area of wire-B +l1=1; // Relative lenght of wire-A +l2=3; // Relative lenght of wire-B +R1=10; // Resistance of wire +r=(l2/a2)/(l1/a1); +disp('The ratio of resistances (R2/R1) = '+string(r)+' ohm'); +R2=r*R1; +disp('Resistance(R2) = '+string(R2)+' ohm'); + + + + + + + + // p 16 2.2
\ No newline at end of file diff --git a/1628/CH2/EX2.3/Ex2_3.sce b/1628/CH2/EX2.3/Ex2_3.sce new file mode 100755 index 000000000..f7504a05f --- /dev/null +++ b/1628/CH2/EX2.3/Ex2_3.sce @@ -0,0 +1,13 @@ + + // Example 2.3 + + // Rp=(4+4)||(8+4) + +Rp=(8*12)/(8+12); // By Voltage divider rule +disp(' voltage Across Foue resisrance = '+string(Rp)+' Ohm'); + + + + + + // p 20 2.3 diff --git a/1628/CH2/EX2.4/Ex2_4.sce b/1628/CH2/EX2.4/Ex2_4.sce new file mode 100755 index 000000000..c0760bfba --- /dev/null +++ b/1628/CH2/EX2.4/Ex2_4.sce @@ -0,0 +1,19 @@ + + + // Example 2.4 + +v=8.8*{2/(2+2.4)}; // by voltage divider rule +disp(' Anknown Voltage across the R1 = '+string(v)+' volt'); + +v1=8.8*{2.4/(2+2.4)}; // by voltage divider rule +disp(' Anknown Voltage across the R1 = '+string(v1)+' volt'); +i=4.8/4; // I=V/R +disp(' Anknown Current I1 = '+string(i)+' Amp'); +i1=4.8/6; // I=V/R +disp(' Anknown Current I2 = '+string(i1)+' Amp'); + + + + + + // p 20 2.4 diff --git a/1628/CH2/EX2.5/Ex2_5.sce b/1628/CH2/EX2.5/Ex2_5.sce new file mode 100755 index 000000000..91e467bc5 --- /dev/null +++ b/1628/CH2/EX2.5/Ex2_5.sce @@ -0,0 +1,29 @@ +
+ // Example 2.5
+
+ // From the diagram 2.14
+
+rp=(1/20)+(1/10)+(1/20); // Parallel resistance
+Rp=1/rp; // The resistance Rp
+Rs=15; // Series resistance
+Rab=Rs+Rp; // Effective resistance between A & B
+disp('(a) Effective resistance between A & B for diagram (a) = '+string(Rab)+' Ohms');
+
+ // for diagram (b) network above line AB i.e R1=[(R+R)||R]+R
+R1=5/3; // Resistance of network
+R2=R1; // The lower part is also same as R1
+R12=5/6; // Combination of R1 & R2
+Rab1=(R12*1)/(R12+1); // Effective resistance between A & B for diagram (b)
+disp('(b) Effective resistance between A & B for diagram (b) = '+string(Rab1)+' R');
+
+ // for diagram (c)
+r1=(3*6)/(3+6); // Parallel combination of 3 & 6 Ohms Resistance
+Ri=r1+18; // series of r1 & 18 Ohms Resistance
+rab=(20*20)/(20+20); // Parallel combinatuion of Ri & 20 Ohms Resistance
+Rab2=rab+5; // series of rab & 2 Ohms Resistance
+disp('(c) Effective resistance between A & B for diagram (c) = '+string(Rab2)+' Ohms');
+
+
+
+
+ // p 23 2.5
\ No newline at end of file diff --git a/1628/CH2/EX2.6/Ex2_6.sce b/1628/CH2/EX2.6/Ex2_6.sce new file mode 100755 index 000000000..0b9e84e85 --- /dev/null +++ b/1628/CH2/EX2.6/Ex2_6.sce @@ -0,0 +1,22 @@ + + // Example 2.6 + +d=(1/12)+(1/20)+(1/30); +Reff=2+(1/d); // Effective Resisrence +v=100; +I=v/Reff; + // ( but 12 i1= 20i2= 30i3 ) + // i2= 12/20 *i1 & i3= 12/30 *i1 + // but 10=i1+i2+i3 + // 0.6i1+0.4i1+i1=10 i.e i1=5 +i1=5; +disp(' Current of I1 if = '+string(i1)+' Amp'); +i2=0.6*i1; +disp(' Current of I2 if = '+string(i2)+' Amp'); +i3=0.4*i1; +disp(' Current of I3 if = '+string(i3)+' Amp'); + + + + // p 24 2.6 + diff --git a/1628/CH2/EX2.7/Ex2_7.sce b/1628/CH2/EX2.7/Ex2_7.sce new file mode 100755 index 000000000..543def66f --- /dev/null +++ b/1628/CH2/EX2.7/Ex2_7.sce @@ -0,0 +1,14 @@ + + // Example 2.7 + + // p=i1^2*Rl i.e i1=p/Rl + +Rl=5; // Load resistance +p=20; // Power +i1=p/Rl; + // i1= i*(R/R+Rl) i.e i= i1*(R+Rl)/R +i=2*(10+5)/10; +disp(' Supply Current is = '+string(i)+' Amp'); + + + // p 25 2.7 diff --git a/1628/CH2/EX2.8/Ex2_8.sce b/1628/CH2/EX2.8/Ex2_8.sce new file mode 100755 index 000000000..ed5605981 --- /dev/null +++ b/1628/CH2/EX2.8/Ex2_8.sce @@ -0,0 +1,23 @@ + + // Example 2.8 + +v=120; // Supply voltage +p=60; // Power +R=v^2/p; // Resistance + + // the combination R of bulb B & C is Rbc=240/2 i.e Rbc=120 + // vb=vc + +Rbc=240/2; // R of each bulb +k=240+120; +vc=Rbc*(120/k); // volt across Vc & Vb {using Volt Divider Rule } +va=120-40; // volt across Va +disp(' the Voltage across bulb A & B = '+string(vc)+' Volt'); +disp(' the Voltage across bulb C = '+string(va)+' Volt'); +vb=40; +p=(va)^2/240+(vb)^2/240+(vc)^2/240; // p=pa+pb+pc total power + +disp(' Totale Power Dissipated is = '+string(p)+' Watt'); + + + // p 25 2.8 diff --git a/1628/CH2/EX2.9/Ex2_9.sce b/1628/CH2/EX2.9/Ex2_9.sce new file mode 100755 index 000000000..e2dbd87c1 --- /dev/null +++ b/1628/CH2/EX2.9/Ex2_9.sce @@ -0,0 +1,23 @@ +
+ // Example 2.9
+
+ // From the diagram 2.18
+ // Minimum value of Req is obtained if R=0
+ // Maximum value of Req is obtained if R= Open ckt
+
+R1=30; // Given the value of R1 & R1+R2= 75
+R2=75-R1; // The value of R2
+disp(' The value of R1 is = '+string(R1)+' Ohms ');
+disp(' The value of R2 is = '+string(R2)+' Ohms ');
+
+ // From the diagram 2.19
+
+Req= (30+75)/2; // Required value of Req is Req= (30+75)/2
+Rp=Req-R1; // Hance the parallel combination of R2 & R
+disp(' The value of Rp is = '+string(Rp)+' Ohms ');
+disp('The value of Rp is exactly half of R2= 45, hance the value of R should be '+string(R2)+' Ohms ');
+
+
+
+
+ // p 26 2.9
diff --git a/1628/CH3/EX2.26/Ex3_26.sce b/1628/CH3/EX2.26/Ex3_26.sce new file mode 100755 index 000000000..353997911 --- /dev/null +++ b/1628/CH3/EX2.26/Ex3_26.sce @@ -0,0 +1,31 @@ + + + // Examle 3.26 + + // Reffer Diagram (3.44a) + // First of all convert all resistor in to conductor + // From the obtained diagram (3.44c) Apply KCL to node 1 & 2 + // Node-1 0.7S1-0.2S2-= 3..................(i + // Node-2 -0.2S1-1.2S2= 2..................(ii + + // By using matrix form will get A*X = B formate + +delta=[0.7 -0.2 ; -0.2 1.2 ]; // value of A +d=det(delta); // Determinant of A + +delta1=[3 -0.2 ; 2 1.2 ]; // value of A1 (when 1st colomn is replace by B) +d1=det(delta1); // Determinant of A1 + +delta2=[0.7 3 ; -0.2 2 ]; // value of A2 (when 2nd colomn is replace by B) +d2=det(delta2); // Determinant of A2 + +V1=d1/d; // Voltage at node-1 +V2=d2/d; // Voltage at node-2 + +I=(V1-V2)/5; // Current through 5 ohm resistor (I) +disp(' Current through 5 ohm resistor = '+string(I)+' Amp'); + + + + + // p 84 3.26 diff --git a/1628/CH3/EX2.27/Ex3_27.sce b/1628/CH3/EX2.27/Ex3_27.sce new file mode 100755 index 000000000..68ac349ed --- /dev/null +++ b/1628/CH3/EX2.27/Ex3_27.sce @@ -0,0 +1,18 @@ + + + // Examle 3.27 + + // From the diagram (3.45) Apply KCL to the circuit + // will get (V-10)/2 +(V-0)/4 +(V-8)/6 = 0 + // Using nodal analysis + // hance we can get V= 6.91 +V=6.91; // Voltage at the node +I=V/(1+3); // Current (I) +disp(' Current (I) = '+string(I)+' Amp'); + + + + + // p 84 3.27 + + diff --git a/1628/CH3/EX3.1/Ex3_1.sce b/1628/CH3/EX3.1/Ex3_1.sce new file mode 100755 index 000000000..6c1f6164a --- /dev/null +++ b/1628/CH3/EX3.1/Ex3_1.sce @@ -0,0 +1,32 @@ + + + // Examle 3.1 + +A=0.113; // Area of parallel plate +eo=8.854*10^-12; // Permittivity of free space +er=10; // Relative Permittivity +d=0.1*10^-3; // Distance between 2 Plate +C=(eo*er*A)/d; // The value of capacitor Using case-1 +disp(' The value of capacitor Using case-1 = '+string(C*1000000)+' uF'); + +w=0.05; // Energy stored +v=100; // Voltage +C1=(2*w)/v^2; // The value of capacitor Using case-2 +disp(' The value of capacitor Using case-2 = '+string(C1*1000000)+' uF'); + +i=5*10^-3; // Current +dv=100; // Increase iv voltage +dt=0.1; // Time required +C2=i/(dv/dt); // The value of capacitor Using case-3 +disp(' The value of capacitor Using case-3 = '+string(C2*1000000)+' uF'); + + + + + + + // p 53 3.1 + + + +
\ No newline at end of file diff --git a/1628/CH3/EX3.10/Ex3_10.sce b/1628/CH3/EX3.10/Ex3_10.sce new file mode 100755 index 000000000..87922daf5 --- /dev/null +++ b/1628/CH3/EX3.10/Ex3_10.sce @@ -0,0 +1,27 @@ + + // Examle 3.10 + + +Rl=6; // Load resistance +Rs=2; // Source resistance +Is=16; // Source current +I2=Is*(Rl/(Rl+Rs)); // Current through Rs +disp(' Current through Rs (with Current as source ) = '+string(I2)+' Amp'); + +I6=Is-I2; // Current through Rl +disp(' Current through Rl (with Current as source ) = '+string(I6)+' Amp'); + + // After transforming the current source in to voltage source + +Vs=32; // Source voltage +i2=Vs/(Rl+Rs); // Current through Rs +i6=i2; // Current through Rl +disp(' Current through Rs & Rl (with voltage as source ) = '+string(i2)+' Amp'); + + + + + + // p 62 3.10 + + diff --git a/1628/CH3/EX3.13/Ex3_13.sce b/1628/CH3/EX3.13/Ex3_13.sce new file mode 100755 index 000000000..126e2988a --- /dev/null +++ b/1628/CH3/EX3.13/Ex3_13.sce @@ -0,0 +1,22 @@ + + + // Examle 3.13 + + // From Diagram (3.26) Apply KVL to get 24-4I-2I+18I= 0 +I=(-24/12); // Current +disp(' The value of Current = '+string(I)+' Amp'); + +V1=4*I; // Voltage across 4 Ohm Resistor +p=-(4.5*V1*I); // Power absorbed +disp(' Power absorbed by dependent source = '+string(p)+' Watt'); + +V=24; // Independent voltage source +R=V/I; // Resistence Seen from Independent source +disp(' Resistence Seen from Independent source = '+string(R)+' Ohm'); + + + + + // p 67 3.13 + + diff --git a/1628/CH3/EX3.14/Ex3_14.sce b/1628/CH3/EX3.14/Ex3_14.sce new file mode 100755 index 000000000..a0fbf19fc --- /dev/null +++ b/1628/CH3/EX3.14/Ex3_14.sce @@ -0,0 +1,22 @@ + + + + // Examle 3.14 + + // From Diagram (3.28) Apply KVL to get 100-40I-60I= 0 +I=100/100; // Current +disp(' The value of Current = '+string(I)+' Amp'); + +R=60; // Resistor +V1=I*R; // Voltage across 60 ohm resistor +disp(' Voltage across 60 ohm resistor = '+string(V1)+' Volt'); + + // By using Voltage divider concept +Vab=-10+V1+0*10+30; // Voltage Vab +disp(' Voltage across open-circuit Vab = '+string(Vab)+' Volt'); + + + + // p 68 3.14 + + diff --git a/1628/CH3/EX3.15/Ex3_15.sce b/1628/CH3/EX3.15/Ex3_15.sce new file mode 100755 index 000000000..c23e6bea8 --- /dev/null +++ b/1628/CH3/EX3.15/Ex3_15.sce @@ -0,0 +1,22 @@ + + // Examle 3.15 + + // From Diagram (3.29) let us confirm that the given voltage satisfy KVL + // 10-6-4= 0 , satisfy KVl + // From Diagram Apply KVL to right loop get { -(-4)+4+Vx= 0 } + +Vx=-4-4; // Voltage Vx +disp(' Voltage across Vx = '+string(Vx)+' Volt'); + + // To find Vcd Stand a point d & walk towards c i.e { Vcd= -4+6 } + +Vcd=-4+6; // Voltage Vcd +disp(' Voltage across Vcd = '+string(Vcd)+' Volt'); + + + + + + + // p 69 3.15 + diff --git a/1628/CH3/EX3.16/Ex3_16.sce b/1628/CH3/EX3.16/Ex3_16.sce new file mode 100755 index 000000000..2e4360618 --- /dev/null +++ b/1628/CH3/EX3.16/Ex3_16.sce @@ -0,0 +1,32 @@ + + // Examle 3.16 + + // From the diagram (3.30) Apply KVL to all the 3 loop. + // Loop-1 5Ix+0Iy-10I1-= 100..............(i + // Loop-2 7Ix+ 2Iy-2I1= -50...............(ii + // Loop-3 3Ix-5Iy-3I1= -50................(iii + + // By using matrix form will get A*X = B formate + +delta=[5 0 10 ; 7 2 -2 ; 3 -5 -3 ]; // value of A +d=det(delta); // Determinant of A + +delta1=[100 0 10 ; -50 2 -2 ; -50 -5 -3 ]; // value of A1 (when 1st colomn is replace by B) +d1=det(delta1); // Determinant of A1 + +delta2=[5 100 10 ; 7 -50 -2 ; 3 -50 -3 ]; // value of A2 (when 2nd colomn is replace by B) +d2=det(delta2); // Determinant of A2 + +Ix=d1/d; // Current (Ix) +disp(' The value of Current (Ix) = '+string(Ix)+' Amp'); + +Iy=d2/d; // Current (Iy) +disp(' The value of Current (Iy) = '+string(Iy)+' Amp'); + + + + + // p 71 3.16 + + + diff --git a/1628/CH3/EX3.17/Ex3_17.sce b/1628/CH3/EX3.17/Ex3_17.sce new file mode 100755 index 000000000..7dea52cd7 --- /dev/null +++ b/1628/CH3/EX3.17/Ex3_17.sce @@ -0,0 +1,31 @@ + + // Examle 3.17 + + // From the diagram (3.31) Apply KCL to node B & C + // will get { I1+I2= 20 } & { I3-I2= 30 } + // Apply KVL to Bigger loop will get i.e { I1-3I2-2I3= -100 } + // By solving All the 3 equation we get + +I1=10; // Current in loop-1 +disp(' The value of Current (I1) = '+string(I1)+' Amp'); + +I2=10; // Current in loop-2 +disp(' The value of Current (I2) = '+string(I2)+' Amp'); + +I3=40; // Current in loop-3 +disp(' The value of Current (I3) = '+string(I3)+' Amp'); + + // For Resistors Apply KVL to loop-1 & loop-3 + // we get { -0.1I1-20R1+110= 0 } & { 0.2I3-120+30R2= 0 } + +R1=(110-0.1*I1)/20; // Resistence (R1) +disp(' The value of Resistence (R1) = '+string(R1)+' Ohm'); + +R2=(120-0.2*I3)/30; // Resistence (R2) +disp(' The value of Resistence (R2) = '+string(R2)+' Ohm'); + + + + + // p 71 3.17 + diff --git a/1628/CH3/EX3.18/Ex3_18.sce b/1628/CH3/EX3.18/Ex3_18.sce new file mode 100755 index 000000000..83daecdb3 --- /dev/null +++ b/1628/CH3/EX3.18/Ex3_18.sce @@ -0,0 +1,23 @@ + + + // Examle 3.18 + + // From the diagram (3.33a) Apply KVL to Bigger loop i.e (For I1 ) + // Will get { 10-5(I1-2)-8I1= 0 } + // Using loop-circuit analysis + +I1=20/13; // Current through 8 ohm resistor +disp(' Current through 8 ohm resistor (I1) = '+string(I1)+' Amp'); + + + + + // p 74 3.18 + + + + + + + + diff --git a/1628/CH3/EX3.19/Ex3_19.sce b/1628/CH3/EX3.19/Ex3_19.sce new file mode 100755 index 000000000..c45bcfcac --- /dev/null +++ b/1628/CH3/EX3.19/Ex3_19.sce @@ -0,0 +1,35 @@ + + + + // Examle 3.19 + + // From the diagram (3.34a) Apply KVL to loop-2 i.e (For I ) + // Will get { -2I-3I+6-1(I+5-4)= 0 } + // Using loop-circuit analysis + +I=5/6; // Current in loop-2 +V=3*I; // Unknown voltage. +disp(' Unknown voltage V = '+string(V)+' Volt'); + + + + // p 74 3.19 + + + + + + + + + + + + + + + + + + + diff --git a/1628/CH3/EX3.2/Ex3_2.sce b/1628/CH3/EX3.2/Ex3_2.sce new file mode 100755 index 000000000..a21d9bacb --- /dev/null +++ b/1628/CH3/EX3.2/Ex3_2.sce @@ -0,0 +1,26 @@ + + + // Examle 3.2 + +w=0.2; // Energy stored +i=0.2; // Current +L1=(2*w)/i^2; // The value of Inductor Using case-1 +disp(' The value of Inductor Using case-1 = '+string(L1)+' H'); + +v=10; // Voltage +di1=0.1; // Increase current +dt1=0.2; // Time required +L2=v/(di1/dt1); // The value of Inductor Using case-2 +disp(' The value of Inductor Using case-2 = '+string(L2)+' H'); + + +p=2.5; // Power +di2=0.1; // Increase current +dt2=0.5; // Time required +L3=p/(di2*dt2); // The value of Inductor Using case-3 +disp(' The value of Inductor Using case-3 = '+string(L3)+' H'); + + + + + // p 54 3.2
\ No newline at end of file diff --git a/1628/CH3/EX3.20/Ex3_20.sce b/1628/CH3/EX3.20/Ex3_20.sce new file mode 100755 index 000000000..c4f287492 --- /dev/null +++ b/1628/CH3/EX3.20/Ex3_20.sce @@ -0,0 +1,25 @@ + + + // Examle 3.20 + + // From the diagram (3.38) Apply KVL to all the 3 loop. + // Loop-1 19I1-12I2+0I3-= 60................(i + // Loop-2 -12I1+18I2-6I3= 0...............(ii + // Loop-3 0I1-6I2+18I3= 0.................(iii + + // By using matrix form will get A*X = B formate + +delta=[19 -12 0 ; -12 18 -6 ; 0 -6 18 ]; // value of A +d=det(delta); // Determinant of A + +delta1=[60 -12 0 ; 0 18 -6 ; 0 -6 18 ]; // value of A1 (when 1st colomn is replace by B) +d1=det(delta1); // Determinant of A1 + +Is=d1/d; // Current drawn from source (Is=I1) +disp(' Current drawn from source (Is) = '+string(Is)+' Amp'); + + + + + + // p 79 3.20 diff --git a/1628/CH3/EX3.21/Ex3_21.sce b/1628/CH3/EX3.21/Ex3_21.sce new file mode 100755 index 000000000..41fe449e7 --- /dev/null +++ b/1628/CH3/EX3.21/Ex3_21.sce @@ -0,0 +1,25 @@ + + + // Examle 3.21 + + // From the diagram (3.39) Apply KVL to all the 3 loop. + // Loop-1 7I1-4I2+0I3-= 67..................(i + // Loop-2 -4I1+15I2-6I3= -152...............(ii + // Loop-3 0I1-6I2+13I3= 74..................(iii + + // By using matrix form will get A*X = B formate + +delta=[7 -4 0 ; -4 15 -6 ; 0 -6 13 ]; // value of A +d=det(delta); // Determinant of A + +delta1=[7 -4 67 ; -4 15 -152 ; 0 -6 74 ]; // value of A1 (when 3rd colomn is replace by B) +d1=det(delta1); // Determinant of A1 + +I3=d1/d; // Current through 7 ohm resistor (I3) +disp(' Current through 7 ohm resistor = '+string(I3)+' Amp'); + + + + + + // p 79 3.21 diff --git a/1628/CH3/EX3.22/Ex3_22.sce b/1628/CH3/EX3.22/Ex3_22.sce new file mode 100755 index 000000000..d2c4e7c70 --- /dev/null +++ b/1628/CH3/EX3.22/Ex3_22.sce @@ -0,0 +1,19 @@ + + // Examle 3.22 + + // From the diagram (3.40b) Apply KCL to node a + // will get { (va-0)/2+ (va-vb)/3 = 5 }............(1 + // Similarly apply KCL at node b + // will get { (vb-va)/3+ vb-0)/4 = -6 }............(2 + + // After solving these 2 equation will have + +Va=2.44; // Voltage at node a +Vb=-8.89; // Voltage at node b +Vab=Va-Vb; // Voltage across 3 ohm resistor +disp(' Voltage across 3 ohm resistor = '+string(Vab)+' Volt'); + + + + + // p 80 3.22 diff --git a/1628/CH3/EX3.23/Ex3_23.sce b/1628/CH3/EX3.23/Ex3_23.sce new file mode 100755 index 000000000..9c8771127 --- /dev/null +++ b/1628/CH3/EX3.23/Ex3_23.sce @@ -0,0 +1,17 @@ + + // Examle 3.23 + + // From the diagram (3.41) Apply KCL to node + // will get { (v1-0)/12+ (v1-60)/3+ (v1-0)/4 = 5 } + // After solving above equation we get V1= 18 V + +V1=18; // Voltage at node 1 +I1=(V1-0)/12; // Current through 12 ohm resistor (I1) +disp(' Current through 12 ohm resistor = '+string(I1)+' Amp'); + + + + + // p 81 3.23 + + diff --git a/1628/CH3/EX3.24/Ex3_24.sce b/1628/CH3/EX3.24/Ex3_24.sce new file mode 100755 index 000000000..cf6c920d5 --- /dev/null +++ b/1628/CH3/EX3.24/Ex3_24.sce @@ -0,0 +1,31 @@ + + + // Examle 3.24 + + // From the diagram (3.42) Node voltages are + // Have { va-vb+0vc = 6 }.......................(1 + // Apply KCL at Super node + // will get { 0.33va+0.25vb-0.25vc = 2 }.......(2 + // Apply KCL at node c + // will get { 0va-0.25vb+4.5vc = -7 }..........(3 + + // By using matrix form will get A*X = B formate + +delta=[1 -1 0 ; 0.33 0.25 -0.25 ; 0 -0.25 0.45]; // value of A +d=det(delta); // Determinant of A + +delta1=[1 6 0 ; 0.33 2 -0.25 ; 0 -7 0.45]; // value of A1 (when 2nd colomn is replace by B) +d1=det(delta1); // Determinant of A1 + +delta2=[1 -1 6 ; 0.33 0.25 2 ; 0 -0.25 -7]; // value of A2 (when 3rd colomn is replace by B) +d2=det(delta2); // Determinant of A2 + +Vb=d1/d; // Voltage at node-b +Vc=d2/d; // Voltage at node-c + +I=(Vb-Vc)/4; // Current through 4 ohm resistor (I) +disp(' Current through 4 ohm resistor = '+string(I)+' Amp'); + + + + // p 82 3.24
\ No newline at end of file diff --git a/1628/CH3/EX3.25/Ex3_25.sce b/1628/CH3/EX3.25/Ex3_25.sce new file mode 100755 index 000000000..e403f2dc6 --- /dev/null +++ b/1628/CH3/EX3.25/Ex3_25.sce @@ -0,0 +1,23 @@ + + // Examle 3.25 + + // From the diagram (3.43b) Apply KCL to node a + // will get { (va-6)/1+ (va-0)/5 =4-5 } + +Va=(6-1)/1.2; // Voltage at node a + + // by using voltage divider rule + +V=Va*(3/(2+3)); // Voltage across 3 ohm resistor +disp(' Voltage across 3 ohm resistor = '+string(V)+' Volt'); + + + + + + // p 82 3.25 + + + + + diff --git a/1628/CH3/EX3.3/Ex3_3.sce b/1628/CH3/EX3.3/Ex3_3.sce new file mode 100755 index 000000000..c77016dad --- /dev/null +++ b/1628/CH3/EX3.3/Ex3_3.sce @@ -0,0 +1,20 @@ + + // Examle 3.3 + + // Given L1= 2L2 + // From the Diagram Leq= 0.5+ (L1*L2)/(L1+L2) + // there for (L1*L2)/(L1+L2)= 0.2 ,( where Leq= 0.7) + // i.e (2*L2*L2)/3L2= 0.2; + // it means L2= 0.3 H + +L2=0.3; // Value of Inductor 1 +L1=2*L2; // Value of Inductor 2 +disp(' Value of Inductors are L1= '+string(L1)+' H & L2= '+string(L2)+' H'); + + + + + + + // p 55 3.3 + diff --git a/1628/CH3/EX3.4/Ex3_4.sce b/1628/CH3/EX3.4/Ex3_4.sce new file mode 100755 index 000000000..a6a3972d6 --- /dev/null +++ b/1628/CH3/EX3.4/Ex3_4.sce @@ -0,0 +1,29 @@ + + // Examle 3.4 + +C1=0.05; // Capacitor 1 ( in Micro ) +C2=0.1; // Capacitor 2 ( in Micro ) +C3=0.2; // Capacitor 3 ( in Micro ) +C4=0.05; // Capacitor 4 ( in Micro ) +C=(1/C1)+(1/C2)+(1/C3)+(1/C4); // Addition of capacitors +Cs=1/C; // Equivalent capacitor +disp(' Equivalent capacitor = '+string(Cs)+' uF'); + +V=220; // Supply voltage +Q=Cs*V; // Charge transfer +V1=Q/C1; // Voltage drop across capacitor 1 +disp(' Voltage drop across capacitor 1 = '+string(V1)+' Volt'); + +V2=Q/C2; // Voltage drop across capacitor 2 +disp(' Voltage drop across capacitor 2 = '+string(V2)+' Volt'); + +V3=Q/C3; // Voltage drop across capacitor 3 +disp(' Voltage drop across capacitor 3 = '+string(V3)+' Volt'); + +V4=Q/C4; // Voltage drop across capacitor 4 +disp(' Voltage drop across capacitor 4 = '+string(V4)+' Volt'); + + + + + // p 55 3.4 diff --git a/1628/CH3/EX3.5/Ex3_5.sce b/1628/CH3/EX3.5/Ex3_5.sce new file mode 100755 index 000000000..cf2612138 --- /dev/null +++ b/1628/CH3/EX3.5/Ex3_5.sce @@ -0,0 +1,21 @@ + + // Examle 3.5 + +C1=2*10^-6; // Value of capacitor-1 +C2=10*10^-6; // Value of capacitor-2 +Q1=400*10^-6; // Charge of capacitor-1 +Q2=200*10^-6; // Charge of capacitor-2 +Q=Q1+Q2; // Total Charge of capacitors +C=C1+C2; // Equivalentss capacitor +V=Q/C; // Voltage across the capacitor +disp(' Voltage across the capacitor = '+string(V)+' Volt'); + + + + + + + // p 55 3.5 + + + diff --git a/1628/CH3/EX3.6/Ex3_6.sce b/1628/CH3/EX3.6/Ex3_6.sce new file mode 100755 index 000000000..3affe4a31 --- /dev/null +++ b/1628/CH3/EX3.6/Ex3_6.sce @@ -0,0 +1,30 @@ + + // Examle 3.6 + +C1=2*10^-6; // Capacitor 1 +C2=8*10^-6; // Capacitor 2 +C=(C1*C2)/(C1+C2); // Equivalentss capacitor +V=300; // Supply voltage +Q=C*V; // Charge on each capacitor +disp('(a) Charge on each capacitor = '+string(Q*1000000)+' uC'); + +V1=Q/C1; // Voltage drop across capacitor 1 +disp('(b).1 Voltage drop across capacitor 1 = '+string(V1)+' Volt'); + +V2=Q/C2; // Voltage drop across capacitor 2 +disp('(b).2 Voltage drop across capacitor 2 = '+string(V2)+' Volt'); + +V1=240; +w1=0.5*C1*V1^2; // Energy stored in capacitor-1 +disp('(c).1 Energy stored in capacitor-1 = '+string(w1*1000)+' mJ'); + +V2=60; +w2=0.5*C2*V2^2; // Energy stored in capacitor-2 +disp('(c).2 Energy stored in capacitor-2 = '+string(w2*1000)+' mJ'); + + + + + + + // p 56 3.6
\ No newline at end of file diff --git a/1628/CH3/EX3.7/Ex3_7.sce b/1628/CH3/EX3.7/Ex3_7.sce new file mode 100755 index 000000000..9c6744fc6 --- /dev/null +++ b/1628/CH3/EX3.7/Ex3_7.sce @@ -0,0 +1,20 @@ + + + // Examle 3.7 + + // Given that Ceq= 1 uF between A & B + // By reducing the circuit will get 2 capacitor. + // that is C & C13= 32/9 uF + // there for (1/1)= 1/C+ 9/32 + // Hance 1/C= 1-9/32 +C=1/{1-(9/32)}; // Value of Capacitor-C +disp(' Value of Capacitor C = '+string(C)+' uF'); + + + + + + + + // p 56 3.7 + diff --git a/1628/CH3/EX3.8/Ex3_8.sce b/1628/CH3/EX3.8/Ex3_8.sce new file mode 100755 index 000000000..90c7b732c --- /dev/null +++ b/1628/CH3/EX3.8/Ex3_8.sce @@ -0,0 +1,40 @@ + + // Examle 3.8 + + // for the extreme value of Rl voltage (Vl) & Current (Il) +E=3; // Supply voltage +Ri=1; // I/p Resistance +Rl1=100; // Minimum load resistance +Il1=E/(Rl1+Ri); // Current at minimum load Rl1 +Vl1=E-(Il1*Ri); // Voltage at minimum load Rl1 + +Rl2=1000; // Maximum load resistance +Il2=E/(Rl2+Ri); // Current at maximum load Rl2 +Vl2=E-(Il2*Ri); // Voltage at maximum load Rl2 + +Il={(Il1-Il2)/Il1}*100; // Change in current Il +disp(' The % chenge (a Decrease ) in Il = '+string(Il)+' % '); + +Vl={(Vl1-Vl2)/Vl1}*100; // Change in voltage Vl +disp(' The % chenge (a Increase ) in Vl = '+string(-Vl)+' % '); + +rl1=0.001; // Minimum load resistance (for 2nd case) +il1=E/(rl1+Ri); // Current at minimum load rl1 +vl1=E-(il1*Ri); // Voltage at minimum load rl1 + +rl2=0.01; // Maximum load resistance (for 2nd case) +il2=E/(rl2+Ri); // Current at maximum load rl2 +vl2=E-(il2*Ri); // Voltage at maximum load rl2 + +il={(il1-il2)/il1}*100; // Change in current il +disp(' The % chenge (a Decrease ) in Il = '+string(il)+' % '); + +vl={(0.003-0.03)/0.003}*100; // Change in voltage vl ==> (vl1=0.003 & vl2=0.03) +disp(' The % chenge (a Increase ) in Vl = '+string(-vl)+' % '); + + + + + + // p 59 3.8 + diff --git a/1628/CH3/EX3.9/Ex3_9.sce b/1628/CH3/EX3.9/Ex3_9.sce new file mode 100755 index 000000000..53f90deca --- /dev/null +++ b/1628/CH3/EX3.9/Ex3_9.sce @@ -0,0 +1,32 @@ + + + // Examle 3.9 + +Is=3; // Source current +Rs=2; // Source resistance +Vs=Rs*Is; // Source voltage +Rl=4; // Load resistance +R=(Rs*Rl)/(Rs+Rl); // Eqviualent resistance +Il1=(Is*Rs)/(Rs+Rl); // Load current in case-1 +disp(' Load current in case-1 = '+string(Il1)+' Amp'); + +Vl1=1*Rl; // Load voltage in case-1 +disp(' Load voltage in case-1 = '+string(Vl1)+' Volt'); + +Ps1=Is^2*R; // Power delivered in case-1 +disp(' Power delivered in case-1 = '+string(Ps1)+' Watt'); + +Il2=Vs/(Rs+Rl); // Load current in case-2 +disp(' Load current in case-2 = '+string(Il2)+' Amp'); + +Vl2=Vs*(Rl/(Rl+Rs)); // Load voltage in case-2 +disp(' Load voltage in case-2 = '+string(Vl2)+' Volt'); + +Ps2=Vs^2/(Rs+Rl); // Power delivered in case-2 +disp(' Power delivered in case-2 = '+string(Ps2)+' Watt'); + + + + + // p 61 3.9 + diff --git a/1628/CH4/EX4.1/Ex4_1.sce b/1628/CH4/EX4.1/Ex4_1.sce new file mode 100755 index 000000000..78a0055c2 --- /dev/null +++ b/1628/CH4/EX4.1/Ex4_1.sce @@ -0,0 +1,21 @@ + + // Examle 4.1 + + // Reffer the diagram (4.2a) + // Using Superpositon theorem + +I=-0.5; // Source current +I1=I*(0.3/(0.1+0.3)); // When 0.5-A Current source is on { by voltage divider } + +V=80*10^-3; // Voltage source +I2=(V/(0.1+0.3)); // When 80-mV voltage source is on { by ohm's law } + +i=I1+I2; // Current in the circuit { by Superpositon theorem } +disp(' Current in the circuit = '+string(i)+' Amp'); + + + + + + // p 105 4.1 + diff --git a/1628/CH4/EX4.10/Ex4_10.sce b/1628/CH4/EX4.10/Ex4_10.sce new file mode 100755 index 000000000..fbc0b8fa7 --- /dev/null +++ b/1628/CH4/EX4.10/Ex4_10.sce @@ -0,0 +1,29 @@ +
+ // Examle 4.10
+
+ // From Diagram 4.12
+
+P=25; // Power
+Rl=8; // Load resistance
+Vth=P*4*Rl; // Thevenin's equivalent voltage
+
+ // If Load is Short-ckt (RL=0)
+Vo=0; // Voltage
+IL=1; // load current
+Po1=Vo*IL; // O/p power
+
+ // If Load is Open-ckt ( RL=infinity )
+IL1=0; // Load current
+Vo1=1; // Voltage
+Po2=Vo1*IL1; // O/p power
+
+x=[0 2 4 6 8 16 32 ]; // Diffrent value of RL
+y=[0 16 22.22 24.49 25 22.22 16 ] // Value of Power
+
+plot2d(x,y); // To plot graph
+xlabel('RL (in Ohms )--->'); // For X-Label
+ylabel('Po (in W ---->') // For Y-Label
+
+
+
+ // View p 115 4.10
diff --git a/1628/CH4/EX4.11/Ex4_11.sce b/1628/CH4/EX4.11/Ex4_11.sce new file mode 100755 index 000000000..96b356d68 --- /dev/null +++ b/1628/CH4/EX4.11/Ex4_11.sce @@ -0,0 +1,23 @@ + + // Examle 4.11 + + // From the diagram (4.14) + +Req=2+{(12*4)/(12+4)}+4; // Equivalent resistance (for 4.14a ) +v=36; // Voltage source +i=v/Req; // Current supply by the voltage source +I=i*(12/(12+4)); // Current in branch B ==> { by current divider } +disp(' Current in branch B = '+string(I)+' Amp'); + +Req1=3+{(12*6)/(12+6)}+1; // Equivalent resistance (for 4.14b ) +i1=v/Req1; // Current supply by the voltage source +I1=i1*(12/(12+6)); // Current in branch A ==> { by current divider } +disp(' Current in branch A = '+string(I1)+' Amp'); + +Rtr=v/I; // Transfer resistance +disp(' Transfer resistance from Branch A to B = '+string(Rtr)+' Ohm'); + + + + // p 117 4.11 + diff --git a/1628/CH4/EX4.2/Ex4_2.sce b/1628/CH4/EX4.2/Ex4_2.sce new file mode 100755 index 000000000..800cdb97b --- /dev/null +++ b/1628/CH4/EX4.2/Ex4_2.sce @@ -0,0 +1,34 @@ + + + // Examle 4.2 + + // Reffer the diagram (4.3) + // Using Superpositon theorem + +V=10; // Voltage source +I1=(V/(50+150)); // When 10-V voltage source is on { by ohm's law } + +i1=40; // Source current +I2=i1*(150/(50+150)); // When 40-A Current source is on { by current divider } + +i2=-120; // Source current +I3=i2*(50/(50+150)); // When (-120)-A Current source is on { by current divider } + + +I=I1+I2+I3; // Current in the circuit { by Superpositon theorem } +disp(' Current in the circuit = '+string(I)+' Amp'); + + + + + + // p 106 4.2 + + + + + + + + + diff --git a/1628/CH4/EX4.3/Ex4_3.sce b/1628/CH4/EX4.3/Ex4_3.sce new file mode 100755 index 000000000..e616a9549 --- /dev/null +++ b/1628/CH4/EX4.3/Ex4_3.sce @@ -0,0 +1,27 @@ +
+
+ // Example 4.3
+
+ // From the diagram 4.5
+ // Using super position theorem
+ // 4-A current source is active
+
+i=4/{1+(2+3)}; // Current
+R=3; // Rsistance of 3 Ohms
+V4=i*R; // Voltage across 3 Ohms resistance in Case-1
+
+ // 5-A current source is active
+i5=5; // 5-A current source
+V5=(-i5)*{1/[1+(2+3)]*3}; // Voltage across 3 Ohms resistance in Case-2
+
+ // 6-V voltage source is active
+i6=6; // 6-A current source
+V6=i6*{3/[1+(2+3)]}; // Voltage across 3 Ohms resistance in Case-3
+
+V=V4+V5+V6; // Voltage across 3 Ohms resistance
+disp(' Voltage across 3 Ohms resistance is = '+string(V)+' Volt');
+
+
+
+
+ // p 106 4.3
\ No newline at end of file diff --git a/1628/CH4/EX4.4/Ex4_4.sce b/1628/CH4/EX4.4/Ex4_4.sce new file mode 100755 index 000000000..cf12bfb6c --- /dev/null +++ b/1628/CH4/EX4.4/Ex4_4.sce @@ -0,0 +1,23 @@ + + + // Examle 4.4 + + // From the diagram (4.6a) + // Using Superpositon theorem + +V=10; // Voltage source +I1=(V/(2+4+6)); // When 10-V voltage source is on { by ohm's law } + + // we have to find Is= ? + // When Is-A Current source is on + // will have { I2= -(2/3)Is } + // given that I1+I2= 0 + // there for 5/6 - (2/3)Is= 0 +Is=(5*3)/(6*2); // Source current +disp(' The value of source current (Is) = '+string(Is)+' Amp'); + + + + + + // p 108 4.4 diff --git a/1628/CH4/EX4.5/Ex4_5.sce b/1628/CH4/EX4.5/Ex4_5.sce new file mode 100755 index 000000000..4e36b7966 --- /dev/null +++ b/1628/CH4/EX4.5/Ex4_5.sce @@ -0,0 +1,26 @@ + + // Examle 4.5 + + // From the diagram (4.8) + // Using thevenin's equivalent theorem + +V1=50; // Voltage source V1 +V2=10; // Voltage source V2 +I1=(V1-V2)/(10+10+20); // Current through the ckt ( when Current source is off ) + +i=1.5; // Current source i +I2=i*(10/(10+(10+20))); // Current through the ckt ( when Current source is active ) +I=I1+I2; // Addition of I1 & I2 +Vth= I*20; // Thevenin's voltage at 20 Ohms R + +Rth=(20*(10+10))/(20+(10+10)); // Thevenin's resistance + +Vl=Vth*(5/(5+10)); // Voltage across Rl +disp(' Voltage across olad resistor (Rl) = '+string(Vl)+' Volt'); + + + + + + + // p 110 4.5 diff --git a/1628/CH4/EX4.6/Ex4_6.sce b/1628/CH4/EX4.6/Ex4_6.sce new file mode 100755 index 000000000..f5f2a4f15 --- /dev/null +++ b/1628/CH4/EX4.6/Ex4_6.sce @@ -0,0 +1,23 @@ + + // Examle 4.6 + + // From the diagram (3.24a) + // Using thevenin's equivalent theorem + +Vth=5; // Thevenin's voltage ==> { by Circuit reduction } + +Rth=3; // Thevenin's resistance ==> { by Circuit reduction } + +Vl=Vth*(3/(3+3)); // Voltage across Rl +disp(' Voltage across olad resistor (Rl) = '+string(Vl)+' Volt'); + + + + + + + // p 111 4.6 + + + + diff --git a/1628/CH4/EX4.7/Ex4_7.sce b/1628/CH4/EX4.7/Ex4_7.sce new file mode 100755 index 000000000..510ae012e --- /dev/null +++ b/1628/CH4/EX4.7/Ex4_7.sce @@ -0,0 +1,25 @@ + + // Examle 4.7 + + // From the diagram (4.11a) + + // Using Nortan's equivalent theorem + +R1=5; // Resistance R1 +R2=10; // Resistance R2 +V1=10; // Voltage source V1 +I1=V1/R1; // Current I1 + +V2=5; // Voltage source V2 +I2=V2/R2; // Current I2 +IN=I1+I2; // Nortan's current + +RN=(R1*R2)/(R1+R2); // Nortan's resistance + +Rl=5; // Load resistance +Il=IN*(RN/(RN+Rl)); // Load current +disp(' Load current (Il) = '+string(Il)+' Amp'); + + + + // p 113 4.7 diff --git a/1628/CH4/EX4.8/Ex4_8.sce b/1628/CH4/EX4.8/Ex4_8.sce new file mode 100755 index 000000000..67b9a7e6f --- /dev/null +++ b/1628/CH4/EX4.8/Ex4_8.sce @@ -0,0 +1,16 @@ + + // Examle 4.8 + +Voc=12.6; // Voltage of car battery +Isc=300; // Short-circuit current +Ro=Voc/Isc; // O/p resistance + + // { P=Vht^2/4Rth } , but here Vth= Voc & Rth= Ro +Pavl=Voc^2/(4*Ro); // Available power +disp(' Available power is = '+string(Pavl)+ ' Watt'); + + + + + + // p 114 4.8
\ No newline at end of file diff --git a/1628/CH4/EX4.9/Ex4_9.sce b/1628/CH4/EX4.9/Ex4_9.sce new file mode 100755 index 000000000..a82126c38 --- /dev/null +++ b/1628/CH4/EX4.9/Ex4_9.sce @@ -0,0 +1,25 @@ + + // Examle 4.9 + +n=8; // No.Of dry cells +E=1.5; // Emf of cell +Voc=n*E; // open-circuit Voltage of battery +r=0.75; // Internal resistance +Ro=r*n; // O/p resistance + + // ==> { P=Vht^2/4Rth } , but here Vth= Voc & Rth= Ro + +Pavl=Voc^2/(4*Ro); // Available power +disp(' Available power is = '+string(Pavl)+ ' Watt'); + + + + + + // p 115 4.9 + + + + + + diff --git a/1628/CH5/EX5.1/Ex5_1.sce b/1628/CH5/EX5.1/Ex5_1.sce new file mode 100755 index 000000000..fa3b1f5ee --- /dev/null +++ b/1628/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,13 @@ + + + // Example 5.1 + +B=20*10^-3; // Megnetic Field intensity +m=4*%pi*10^-7; // Permeability of free Space +n=20*100; // No.Of Turns per meter +I=B/(m*n); +disp(' Necessary Current is = '+string(round(I))+' Amp'); + + + + // p 187 5.1 diff --git a/1628/CH5/EX5.2/Ex5_2.sce b/1628/CH5/EX5.2/Ex5_2.sce new file mode 100755 index 000000000..24004c7e2 --- /dev/null +++ b/1628/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,20 @@ + + + + // Example 5.2 + +l=4; // Layers of Solenoid +w=350; // turns Winding +s=0.5; // Length of Solenoid +n=(l*w)/s; // No.Of turns +I=6; // Current in the Solenoid +mo=4*%pi*10^-7; // Permeability of free Space +B=mo*n*I; // Formula for Megnetic Field at the centre +disp('(a) Megnitude of field near the Centre of Solenoid = '+string(B)+' Tesla'); +B1=B/2; // Formula for Megnetic Field at the end +disp('(b) Megnitude of field at the end of Solenoid = '+string(B1)+' Tesla'); +disp('(c) Megnetic Field outside the solenoid is Negligible'); + + + + // p 188 5.2 diff --git a/1628/CH5/EX5.3/Ex5_3.sce b/1628/CH5/EX5.3/Ex5_3.sce new file mode 100755 index 000000000..6d4c71a93 --- /dev/null +++ b/1628/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,17 @@ + + + // Example 5.3 + +mo=4*%pi*10^-7; // Permeability of free Space +i1=80; // Current in 1st Wire +i2=30; // Current in 2nd Wire +r=2; // Distance between 2 wires + +F=(mo*i1*i2)/(2*%pi*r); +disp(' Force between 2 wires = '+string(F)+' N/m'); + + + + + + // p 192 5.3 diff --git a/1628/CH5/EX5.4/Ex5_4.sce b/1628/CH5/EX5.4/Ex5_4.sce new file mode 100755 index 000000000..61fe13fa4 --- /dev/null +++ b/1628/CH5/EX5.4/Ex5_4.sce @@ -0,0 +1,20 @@ + + + + // Example 5.4 + +mo=4*%pi*10^-7; // Permeability of free Space +i1=4; // Current in 1st Wire +i2=6; // Current in 2nd Wire +r=0.03; // Distance between 2 wires + +F=(mo*i1*i2)/(2*%pi*r); +l=0.15; // Section of wire +Fnet=F*l; +disp(' Force on 15 cm of wire B is = '+string(Fnet)+' N'); + + + + + + // p 192 5.4 diff --git a/1628/CH5/EX5.5/Ex5_5.sce b/1628/CH5/EX5.5/Ex5_5.sce new file mode 100755 index 000000000..b934e7c28 --- /dev/null +++ b/1628/CH5/EX5.5/Ex5_5.sce @@ -0,0 +1,24 @@ + + + + // Example 5.5 + +B=0.5; // Megnetic Field +l=0.2; // Length of conductor +v=5; // velocity Conductor +Q1=0; // Angle of Motion in case 1 +Q2=90; // Angle of Motion in case 2 +Q3=30; // Angle of Motion in case 3 + +e1=B*l*v*sind(Q1); +disp(' emf of conductor when move Parallel to Megnetic field = '+string(e1)+' Volt'); +e2=B*l*v*sind(Q2); +disp(' emf of conductor when move Perpendicular to Megnetic field = '+string(e2)+' Volt'); +e3=B*l*v*sind(Q3); +disp(' emf of conductor when move at an Angle 30 to Megnetic field = '+string(e3)+' Volt'); + + + + + + // p 198 5.5 diff --git a/1628/CH5/EX5.6/Ex5_6.sce b/1628/CH5/EX5.6/Ex5_6.sce new file mode 100755 index 000000000..5ef622c59 --- /dev/null +++ b/1628/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,18 @@ + + + + + // Example 5.6 + +B=38*10^-6; // Megnetic Field +l=52; // Length of conductor +Q=90; // Angle of Motion in case 1 +v=(1100*1000)/3600; // velocity in m/s +e=B*l*v*sind(Q); // Formula of emf +disp(' emf Generated between wing-tips = '+string(e)+' Volt'); + + + + + + // p 198 5.6 diff --git a/1628/CH5/EX5.7/Ex5_7.sce b/1628/CH5/EX5.7/Ex5_7.sce new file mode 100755 index 000000000..a78ea5093 --- /dev/null +++ b/1628/CH5/EX5.7/Ex5_7.sce @@ -0,0 +1,22 @@ + + + + + + // Example 5.7 + + // We know that Area of Ring is (A=Pi*R*R) + // i.e A=%pi*R*R*(Q/2%pi)=0.5*R*R*Q; + // Hance by using Faraday's Law + // e= dQ/dt= d(BA)/dt. + // 0.5*B*R*R*(dq/dt). + +B=1; +R=1; +f=50; +e=0.5*B*R*R*f*2*%pi; // by using Faraday's Law + +disp(' emf Devloped between Centre & ring = '+string(round(e))+' Volt'); + + + // p 198 5.7 diff --git a/1628/CH5/EX5.8/Ex5_8.sce b/1628/CH5/EX5.8/Ex5_8.sce new file mode 100755 index 000000000..ea6468501 --- /dev/null +++ b/1628/CH5/EX5.8/Ex5_8.sce @@ -0,0 +1,27 @@ + + + // Example 5.8 + + +B=0.5; // Megnetic Field +l1=0.03; // Length of conductor +v=0.01; // velocity in m/s +e1=B*l1*v; // Formula of emf +disp('(a) The induced emf is = '+string(e1)+' Volt'); +l2=0.1; // Length +t1=l2/v; +disp(' Time for which the induced Voltage lasts is = '+string(t1)+' Second'); + +e2=B*l2*v; // Formula of emf +disp(' (b) The induced emf is = '+string(e2)+' Volt'); +t2=l1/v; +disp(' Time for which the induced Voltage lasts is = '+string(t2)+' Second'); +disp(' (c) Because of the gap, No Current can flow. there for no force Required to Pull the coil.'); +R=0.001; +F1=(B*B*l1*l1*v)/R; // Formula of Force +disp(' (d.1) Force Required to pull the loop 1 = '+string(F1)+' N'); +F2=(B*B*l2*l2*v)/R; // Formula of Force +disp(' (d.2) Force Required to pull the loop 1 = '+string(F2)+' N'); + + + // p 199 5.8 diff --git a/1628/CH6/EX6.1/Ex6_1.sce b/1628/CH6/EX6.1/Ex6_1.sce new file mode 100755 index 000000000..ae79c3c28 --- /dev/null +++ b/1628/CH6/EX6.1/Ex6_1.sce @@ -0,0 +1,19 @@ + + // Example 6.1 + +N=200; // No.Of turns +I=4; // Current of a Coil +l=.06; // circumference of Coil +H=(N*I)/l; // Formula of Megnetic Field Strength +disp('(a) The Megnetic Field Strength = '+string(H)+' A/m'); +mo=4*%pi*10^-7; // Permeability of free Space +mr=1; //Permeability of coil +B=mr*mo*H; // Formula of Flux Density +disp('(b) The Flux Density is = '+string(B)+' Tesla'); +A=500*10^-6; // Area of Coil +Q=B*A; // Total Flux +disp('(c) The total Flux is = '+string(Q)+' Wb'); + + + + // p 211 6.1 diff --git a/1628/CH6/EX6.2/Ex6_2.sce b/1628/CH6/EX6.2/Ex6_2.sce new file mode 100755 index 000000000..9fc96cdf0 --- /dev/null +++ b/1628/CH6/EX6.2/Ex6_2.sce @@ -0,0 +1,18 @@ + + + // Example 6.2 + +Q=0.015; // Flux +A=200*10^-4; // Area of Conductor +mo=4*%pi*10^-7; // Permeability of free Space +B=Q/A; // Megnetic Flux Density +H=B/mo; // Megnetic Field Strength +l=2.5*10^-3; // Air Gap +F=H*l; // Formula of Magnetomotive Force (mmf) + +disp(' Magnetomotive Force (mmf) is = '+string(round(F))+' At'); + + + + + // p 212 6.2 diff --git a/1628/CH6/EX6.3/Ex6_3.sce b/1628/CH6/EX6.3/Ex6_3.sce new file mode 100755 index 000000000..dafe0ff3b --- /dev/null +++ b/1628/CH6/EX6.3/Ex6_3.sce @@ -0,0 +1,20 @@ + + + + // Example 6.3 + +Q=800*10^-6; // Flux +A=500*10^-6; // Area of Coil +mo=4*%pi*10^-7; // Permeability of free Space +mr=380; // Permeability of of Coil +l=0.4; // circumference of Coil +R=l/(mr*mo*A); // Formula of Reluctance +disp(' Reluctance of Ring is = '+string(R)+' A/Wb'); +F=Q*R; // Formula of Magnetomotive Force (mmf) +N=200; // No.Of turns +I=F/N; // Formula of Magnetising Current +disp(' Magnetising Current is = '+string(I)+' At'); + + + + // p 212 6.3 diff --git a/1628/CH6/EX6.4/Ex6_4.sce b/1628/CH6/EX6.4/Ex6_4.sce new file mode 100755 index 000000000..cf3c2519c --- /dev/null +++ b/1628/CH6/EX6.4/Ex6_4.sce @@ -0,0 +1,23 @@ + + + // Example 6.4 + +B=0.9; // Megnetic Flux Density +N=4000; // No.Of turns +mo=4*%pi*10^-7; // Permeability of free Space +Hc=820; // Megnetic Field Strength for Core +lc=0.22; // Length of Circuit +Ac=50*10^-6; // Area of Circuit +Fc=Hc*lc; // Magnetomotive Force (mmf) for Core +lg=0.001; // Length of Air Gap +Ag=50*10^-6; // Area of Megnetic Circuit +Hg=B/mo; // Megnetic Field Strength for Air Gap +Fg=Hg*lg; // Magnetomotive Force (mmf) for Air Gap +F=Fc+Fg; // Total Magnetomotive Force (mmf) +I=F/N; // Formula of Magnetising Current +disp(' Magnetising Current is = '+string(I)+' Amp'); + + + + + // p 215 6.4 diff --git a/1628/CH7/EX7.1/Ex7_1.sce b/1628/CH7/EX7.1/Ex7_1.sce new file mode 100755 index 000000000..be6018790 --- /dev/null +++ b/1628/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,13 @@ + + + // Example 7.1 + +L=4; // Induction of a Coil +di=10-4; // Decrease in Current +dt=0.1; // time Required to Decrease Current +e=L*(di/dt); // Formula of Self induction +disp(' emf induced in a Coil is = '+string(e)+' Volt'); + + + + // p 228 7.1 diff --git a/1628/CH7/EX7.10/Ex7_10.sce b/1628/CH7/EX7.10/Ex7_10.sce new file mode 100755 index 000000000..8ad44d304 --- /dev/null +++ b/1628/CH7/EX7.10/Ex7_10.sce @@ -0,0 +1,21 @@ + + + // Example 7.10 + +La=1.4; // Inductance of 2 Similar Coupled Coil in Series +Lo=0.6; // Inductance of 2 Similar Coupled Coil in Opposing +M=(La-Lo)/4; // Formula for (Mutual Inductance of Coils) +disp('(a) Mutual induction of a Coil = '+string(M)+' mH'); + + // Since La= L1+L2+2M but (M=0.2 mH) + // there for L1= L2= 5 mh + +L1=0.5*10^-3; // Self Inductance of Coil 1 +L2=0.5*10^-3; // Self Inductance of Coil 2 +k=(M*10^-3)/sqrt(L1*L2); // Mutual Inductance of Coil 1 & 2 +disp('(b) Coefficient of Coupling between the Coils = '+string(k)); + + + + + // p136 7.10
\ No newline at end of file diff --git a/1628/CH7/EX7.11/Ex7_11.sce b/1628/CH7/EX7.11/Ex7_11.sce new file mode 100755 index 000000000..82a58d3c0 --- /dev/null +++ b/1628/CH7/EX7.11/Ex7_11.sce @@ -0,0 +1,29 @@ + + + // Example 7.11 + + // Net Induction When in Same Direction i.e 1.8= L1+L2+2M + // Net Induction When in Opposite i.e 0.8= L1+L2-2M + // by Solving 2 equation we get M= 0.25 +k=0.6; +M=0.25; +disp('(a) Mutual induction of a Coil = '+string(M)+' H'); + // by Adding Eq 1 & 2 will get L1+L2= 1.3 H + // we know that k= M/(L1*L2) +L1L2=M^2/k^2; // using above Formula + // By using L1L2 & L1+L2 +L12=1.3; // L1+L2 +L1_L2=sqrt(L12^2-4*L1L2); // Value of L1-L2 + + // by using L1+L2 & L1-L2 will get + +L1=1.149; +L2=0.151; +disp('(b.1) Self Induction of a Coil 1 = '+string(L1)+' H'); +disp('(b.2) Self Induction of a Coil 2 = '+string(L2)+' H'); + + + + // p 237 7.11 + +
\ No newline at end of file diff --git a/1628/CH7/EX7.12/Ex7_12.sce b/1628/CH7/EX7.12/Ex7_12.sce new file mode 100755 index 000000000..e40802aa8 --- /dev/null +++ b/1628/CH7/EX7.12/Ex7_12.sce @@ -0,0 +1,20 @@ + + + // Example 7.12 + +k=0.433; // Coefficient of Coupling Constant +L1=8; //Self Inductance of Coil 1 +L2=6; //Self Inductance of Coil 2 +M=k*sqrt(L1*L2); // Mutual Inductance of Coil 1 & 2 + +Lpa=(L1*L2-M^2)/(L1+L2-2*M); // Mutual Induction assists Self Induction +disp('(a) Mutual Induction assists Self Induction = '+string(Lpa)+' H'); + +Lpo=(L1*L2-M^2)/(L1+L2+2*M); // Mutual Induction Opposes Self Induction +disp('(b) Mutual Induction Opposes Self Induction = '+string(Lpo)+' H'); + + + + + + // p 239 7.12
\ No newline at end of file diff --git a/1628/CH7/EX7.2/Ex7_2.sce b/1628/CH7/EX7.2/Ex7_2.sce new file mode 100755 index 000000000..8f9ab29b7 --- /dev/null +++ b/1628/CH7/EX7.2/Ex7_2.sce @@ -0,0 +1,18 @@ + + + + // Example 7.2 + +N=150; // turns of Coil +Q=0.01; // Flux of Coil +I=10; // Current in Coil +L=N*(Q/I); // Induction of a Coil +di=10-(-10); // Decrease in Current +dt=0.01; // time Required to Decrease Current +e=L*(di/dt); // Formula of Self induction +disp(' Induction of a Coil = '+string(L)+' H'); +disp(' emf induced in a Coil is = '+string(e)+' Volt'); + + + + // p 228 7.2 diff --git a/1628/CH7/EX7.3/Ex7_3.sce b/1628/CH7/EX7.3/Ex7_3.sce new file mode 100755 index 000000000..065cbe97b --- /dev/null +++ b/1628/CH7/EX7.3/Ex7_3.sce @@ -0,0 +1,18 @@ + + + + + // Example 7.3 + +N=100; // turns of Coil +dQ=0.4-(-0.4); // Flux of Coil +di=10-(-10); // Decrease in Current +L=N*(dQ/di)*10^-3; // Induction of a Coil +disp(' (a) induction of a Coil is = '+string(L)+' H'); +dt=0.01; // time Required to Decrease Current +e=L*(di/dt); // Formula of emf (using Self induction) +disp('(b) emf induced in a Coil is = '+string(e)+' Volt'); + + + + // p 229 7.3 diff --git a/1628/CH7/EX7.4/Ex7_4.sce b/1628/CH7/EX7.4/Ex7_4.sce new file mode 100755 index 000000000..8e6515acd --- /dev/null +++ b/1628/CH7/EX7.4/Ex7_4.sce @@ -0,0 +1,18 @@ + + + // Example 7.4 + +r=0.75*10^-2; // Radius of Solenoid +A=%pi*r*r; // area of Solenoid +N=900; // No,of turns +l=0.3; // Length of Solenoid +mo=4*%pi*10^-7; // Permeability of free Space +L=(N*N*mo*A)/l; // Formula of Induction of a Coil +I=5; // Current of Coil +disp(' Induction of a Coil = '+string(L)+' H'); +w=0.5*L*I*I; // Energy Store +disp(' Energy Stored is = '+string(w)+' J'); + + + + // p 229 7.4 diff --git a/1628/CH7/EX7.5/Ex7_5.sce b/1628/CH7/EX7.5/Ex7_5.sce new file mode 100755 index 000000000..2fb2041a7 --- /dev/null +++ b/1628/CH7/EX7.5/Ex7_5.sce @@ -0,0 +1,27 @@ + + // Example 7.5 + +r=1*10^-2; // Radius of rod +A=%pi*r*r; // area of rod +N=3000; // No.of turns +I=0.5; // Current in the rod +l=0.2; // Diameter of rod +B=1.2; // Megnetic Flux Density +H=(N*I)/l; // Megnetic Field Strength +m=B/H; // Permeability of rod +disp(' (a) Permeability of iron = '+string(m)+' Tm/A'); +mo=4*%pi*10^-7; // Permeability of free Space +mr=m/mo; // relative Permeability +disp(' (b) Relative Permeability of iron = '+string(round(mr))); +Q=B*A; // Flux +dQ=Q*0.9; // Chenge in Flux +L=(N*Q)/I; // Formula of Induction of a Coil +disp(' (c) Induction of a Coil = '+string(L)+' H'); +di=0.01; +e=N*(dQ/di) // Formula of emf (using Self induction) +disp(' (d) Voltage in a Coil = '+string(e)+' Volt'); + + + + // p 229 7.5 + diff --git a/1628/CH7/EX7.6/Ex7_6.sce b/1628/CH7/EX7.6/Ex7_6.sce new file mode 100755 index 000000000..ac665f39e --- /dev/null +++ b/1628/CH7/EX7.6/Ex7_6.sce @@ -0,0 +1,16 @@ + + + // Example 7.6 + +i=1; // Current in A Coil +R=3; // R of Coil +L=0.1*10^-3; // Inductance of Coil +di=10000; // Decrease in Current +dt=1; // time Required to Decrease Current +V=(i*R)+L*(di/dt); // Formula Of Potential Diffrence +disp(' Potential Diffrence Across the Terminal is = '+string(V)+' Volt'); + + + + + // p 230 7.6
\ No newline at end of file diff --git a/1628/CH7/EX7.7/Ex7_7.sce b/1628/CH7/EX7.7/Ex7_7.sce new file mode 100755 index 000000000..1c3ba780b --- /dev/null +++ b/1628/CH7/EX7.7/Ex7_7.sce @@ -0,0 +1,20 @@ + + // Example 7.7 + +k=1; // Constant +N1=2000; // turns of Solenoid +N2=500; // turns of Coil +mo=4*%pi*10^-7; // Permeability of free Space +A=30*10^-4; // Area of aCoil +l=0.7; // Length of Solenoid +z=k*N1*N2*mo*A; // alphabet for simplicity +M=z/l; // Formula of Mutual Inductance +disp('(a) Mutual induction of a Coil = '+string(M)+' H'); +dit=260; // Rate of Chenge of Current +e=M*dit; // Formula of emf (using Mutual induction) +disp('(b) emf induced in a Coil is = '+string(e)+' Volt') + + + + + // p232 7.7 diff --git a/1628/CH7/EX7.8/Ex7_8.sce b/1628/CH7/EX7.8/Ex7_8.sce new file mode 100755 index 000000000..2f4ebce2d --- /dev/null +++ b/1628/CH7/EX7.8/Ex7_8.sce @@ -0,0 +1,20 @@ + + // Example 7.8 + +N2=1700; // turns of Coil 1 +Q2=0.8*10^-3; // total Megnetic Flux +I2=6; // Current in A Coil 2 +L2=N2*(Q2/I2); // Formula for (Self Inductance of Coil 1) +disp('(a) Self Induction of a Coil 2 = '+string(L2)+' H'); +N1=600; // turns of Coil 2 +L1=L2*(N1^2/N2^2); // Formula for(Self Inductance of Coil 2) +disp('(b) Self Induction of a Coil 1 = '+string(L1)+' H'); +Q21=0.5*10^-3; // Megnetic Flux in 1st Coil +k=Q21/Q2; // Constant +disp( '(c) Perposnality Constant (k) = '+string(k)); +M=k*sqrt(L1*L2); // Mutual Inductance of Coil 1 & 2 +disp('(d) Mutual induction of a Coil = '+string(M)+' H'); + + + + // p 233 7.8
\ No newline at end of file diff --git a/1628/CH7/EX7.9/Ex7_9.sce b/1628/CH7/EX7.9/Ex7_9.sce new file mode 100755 index 000000000..1a1b83cf7 --- /dev/null +++ b/1628/CH7/EX7.9/Ex7_9.sce @@ -0,0 +1,28 @@ + + + // Example 7.9 + +N2=800; // turns of Coil 2 +N1=1200; // turns of Coil 1 +Q2=0.15*10^-3; // Megnetic Flux in Coil 2 +Q1=0.25*10^-3; // Megnetic Flux in Coil 1 +I2=5; // Current in A Coil 2 +I1=5; // Current in A Coil 1 + +L1=N1*(Q1/I1); // Formula for (Self Inductance of Coil 1) +disp('(a) Self Induction of a Coil 1 = '+string(L1)+' H'); + +L2=N2*(Q2/I2); // Formula for (Self Inductance of Coil 2) +disp('(b) Self Induction of a Coil 2 = '+string(L2)+' H'); + +k=0.6; // Coefficient of Coupling Constant +Q12=k*Q1; // Formula for (Megnetic Flux in 2nd Coil) +M=N2*(Q2/I1); // Formula for (Mutual Inductance of Coils) +disp('(c) Mutual induction of a Coil = '+string(M)+' H'); + +k1=M/sqrt(L1*L2); // Mutual Inductance of Coil 1 & 2 +disp('(d) Coefficient of Coupling between the Coil = '+string(k1)+' H'); + + + + // p 233 7.9
\ No newline at end of file diff --git a/1628/CH8/EX8.1/Ex8_1.sce b/1628/CH8/EX8.1/Ex8_1.sce new file mode 100755 index 000000000..876aad6de --- /dev/null +++ b/1628/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,29 @@ +
+ // Example 8.1
+
+ // From diagram 8.3
+
+ // Equivalent resistance i.e Req= 20+ (20||10)
+
+Req= 20+{(20*10)/(20+10)}; // Equivalent resistance
+V=24; // Supply voltage
+I=V/Req; // Supply current
+R=20; // Resistance
+R1=20+10; // Total Resistance [ from Fig 8.3b ]
+Il=I*{20/(20+10)}; // Current through inductor
+io=Il; // Open-ckt current
+disp(' Open-ckt current = '+string(io)+' Amp');
+
+Vr=-io*R; // Voltage across 20 Ohms resistor
+disp(' Voltage across 20 Ohms resistor = '+string(Vr)+' Volt');
+
+ // Voltage across inductor is given by i.e [ e=L*{io*(R/L)} ]
+ // that is [ e= io*R ]
+
+e=io*R1; // Voltage across inductor
+disp(' Voltage across inductor = '+string(e)+' Volt');
+
+
+
+
+ // p 276 8.1
diff --git a/1628/CH8/EX8.2/Ex8_2.sce b/1628/CH8/EX8.2/Ex8_2.sce new file mode 100755 index 000000000..dea278ded --- /dev/null +++ b/1628/CH8/EX8.2/Ex8_2.sce @@ -0,0 +1,27 @@ +
+ // Example 8.2
+
+
+R=0.8; // Resistance
+L=1.6; // Inductor
+t1=L/R; // Time
+
+ // Instantaneous current is ( it= Io*e(-t/2) )
+
+Io=20/exp (0.5); // The current ( at t= -1 & i= 20A )
+disp(' The value of current at t=0 i(0) = '+string(Io)+' Amp');
+
+i1=Io*exp (-0.5); // Current through inductor at t= 1S
+i=7.36; // i1=7.357 we have taken as ( i=7.36 )
+p1=i*i*R; // Power absorbed by Resistor
+disp(' Power absorbed by inductor at t= 1S P(1) = '+string(-p1)+' Watt');
+
+ // We know that w=0.5*L*it^2; w= 100 J
+
+it=sqrt(200/1.6); // Flow of current
+t=log (Io/it)*2; // Time required to store Energy 100J
+disp(' Time required to store Energy 100J = '+string(t)+' Second');
+
+
+
+ // p 277 8.2
diff --git a/1628/CH8/EX8.3/Ex8_3.sce b/1628/CH8/EX8.3/Ex8_3.sce new file mode 100755 index 000000000..76c0e225f --- /dev/null +++ b/1628/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,23 @@ +
+
+ // Example 8.3
+
+R=10; // Resistance
+L=14; // Inductor
+t1=L/R; // Time
+
+V=140; // Voltage
+Io=V/R; // Steady State current
+t2=0.4; // Time
+i=Io*(1-exp (-t2/t1)); // Value of current at t= 0.4
+disp(' Value of current at (t=0.4) = '+string(i)+' Amp');
+
+ // ==> We have formula it=Io*exp (-t/t1) .
+it=8; // Current of 8 Amp
+t=-log(it/14)*t1; // Time taken to rech at i=8 A
+disp('Time taken to rech at i=8 A = '+string(t)+' Second');
+
+
+
+
+ // p 279 8.3
\ No newline at end of file diff --git a/1628/CH8/EX8.4/Ex8_4.sce b/1628/CH8/EX8.4/Ex8_4.sce new file mode 100755 index 000000000..2de0c6e1b --- /dev/null +++ b/1628/CH8/EX8.4/Ex8_4.sce @@ -0,0 +1,29 @@ +
+ // Example 8.4
+
+ // From the diagram 4.5
+
+V1=20; // Source voltage
+R=80; // Series resistance
+io1=V1/R; // Steay state current
+disp(' Steay state current (at t=0- ) = '+string(io1)+' Amp');
+
+ // Because current in inducor can't charge instantaneously
+
+disp(' Steay state current (at t=0+ ) = '+string(io1)+' Amp');
+
+V2=40; // Source voltage
+Io2=(V1+V2)/R; // Steay state current at t= infinity
+disp(' Steay state current (at t= infinity ) = '+string(Io2)+' Amp');
+
+L=40*10^-3; // Inductor
+t1=L/R; // Time COnstant
+t=0.001; // Time of 1 ms
+ // By the formula ==> i(1 ms)= io1*(io1-Io2)*(1-e-(t/t1))
+
+Ims=io1+(Io2-io1)*(1-exp (-t/t1)); // Steay state current (at t=1ms)
+disp(' Steay state current (at t= 1ms ) = '+string(Ims)+' Amp');
+
+
+
+ // p 279 8.4
\ No newline at end of file diff --git a/1628/CH8/EX8.5/Ex8_5.sce b/1628/CH8/EX8.5/Ex8_5.sce new file mode 100755 index 000000000..59ba8aa57 --- /dev/null +++ b/1628/CH8/EX8.5/Ex8_5.sce @@ -0,0 +1,36 @@ +
+ // Example 8.5
+
+ // From the diagram 4.6
+
+V=20; // Source Voltage
+Io=V/(25+5); // Current iL(0-)
+disp('Current iL(0-) is = '+string(Io)+' Amp');
+
+R1=30; // Resistance of 30 Ohms
+i2=V/R1; // Current i2(0-)
+disp('Current i2(0-) is = '+string(i2)+' Amp');
+
+ // Because current in inducor can't charge instantaneously.
+disp('Current iL(0+) is = '+string(i2)+' Amp');
+
+R12=60; // Resistance of 60 Ohms
+R3=30; // Resistance of 30 Ohms
+R45=30; // Resistance of 30 Ohms
+Req=R45+[(R12*R3)/(R12+R3)]; // Equivalent Resistance
+L=2; // Inductor
+t=L/Req; // Time constant
+t1=0.02; // Current of 20 mA
+I1=0.667*exp(-t1/t); // Inductor current ( iL(t)= Io*e-t1/t )
+disp('Inductor current iL(t) is = '+string(I1)+' Amp');
+
+ // ==> [ By using Current divider ]
+I2=-I1*(R12/(R12+R3)); // Inductor current at( t=20 mA)
+disp('Inductor current at( t=20 mA) is = '+string(I2)+' Amp');
+
+
+ // p 280 8.5
+
+
+
+
\ No newline at end of file diff --git a/1628/CH8/EX8.6/Ex8_6.sce b/1628/CH8/EX8.6/Ex8_6.sce new file mode 100755 index 000000000..a0a9d66de --- /dev/null +++ b/1628/CH8/EX8.6/Ex8_6.sce @@ -0,0 +1,31 @@ + + + + // Examle 8.6 + +Vo=3; // Supply voltage +vo=0; // Voltage at V(o+) {Because instantly capacitor can't charge } +disp(' Voltage across capacitor at V(o+) = '+string(vo)+' Volt'); + +R=1500; // Resistance +Io=Vo/R; // Current of capacitor +io=Io; // Current of capacitor at i(o+) +disp(' Current across capacitor at i(o+) = '+string(io)+' Amp'); + +C=5*10^-6; // Capacitor +t=R*C; // Time constant +disp(' Time constant = '+string(t)+' Second'); + +t1=15*10^-3; // Time instant ==> { v=Vo*(1-e-(t1/t)) } +v=Vo*(1-0.135); // Voltage at Time t1 { e-(t1/t)=0.135 } +disp(' Voltage across capacitor at ( t=15 mS ) = '+string(v)+' Volt'); + +i=Io*0.135; // Current at Time t1 ==> { i=Io*e-(t1/t) } +disp(' Current of capacitor at ( t=15 mS ) = '+string(i)+' Amp'); + + + + + + + // p 284 8.6 diff --git a/1628/CH8/EX8.7/Ex8_7.sce b/1628/CH8/EX8.7/Ex8_7.sce new file mode 100755 index 000000000..15d95812c --- /dev/null +++ b/1628/CH8/EX8.7/Ex8_7.sce @@ -0,0 +1,31 @@ + + + // Examle 8.7 + +Vo=3; // Supply voltage +vo=Vo; // Voltage at V(o+) +vio=Vo; // Voltage at V(o-) +disp(' Voltage across capacitor at V(o+) = '+string(vo)+' Volt'); + +R=100; // Resistance +Io=Vo/R; // Current of capacitor +io=-Io; // Current of capacitor at i(o+) +disp(' Current across capacitor at i(o+) = '+string(io)+' Amp'); + +C=5*10^-6; // Capacitor +t=R*C; // Time constant +disp(' Time constant = '+string(t)+' Second'); + +t1=1.2*10^-3; // Time instant ==> { v=Vo*e-(t1/t) } +v=Vo*0.0907; // Voltage at Time t1 { e-(t1/t)=0.0907 } +disp(' Voltage across capacitor at ( t=1.2 mS ) = '+string(v)+' Volt'); + +i=-Io*0.0907; // Current at Time t1 ==> { i=-Io*e-(t1/t) } +disp(' Current of capacitor at ( t=1.2 mS ) = '+string(i)+' Amp'); + + + + + + + // p 285 8.7 diff --git a/1628/CH8/EX8.8/Ex8_8.sce b/1628/CH8/EX8.8/Ex8_8.sce new file mode 100755 index 000000000..671ae2b7c --- /dev/null +++ b/1628/CH8/EX8.8/Ex8_8.sce @@ -0,0 +1,28 @@ +
+ // Example 8.8
+
+ // From the diagram 8.15
+
+R1=1000; // Resistance of 1 kilo-Ohms
+R2=10000; // Resistance of 10 kilo-Ohms
+R3=1000; // Resistance of 1 kilo-Ohms
+Rth=[(R1+R2)*R3]/(R1+R2+R3); // Equivalent resistance
+C=10*10^-6; // capacitor
+t=Rth*C; // Time constant
+V=30; // Source voltage
+Vc=V*(R1/(R1+R2)); // Voltage across the capacitor
+
+ // Apply KVL to outer loop
+ // we get 30-Io*R1-15= 0
+Io=15/R1; // Current in the outer loop
+Iin=V/(R1+R2+R3); // Open=ckt current
+
+ // We know that ==> it=Iin+[Io-Iin]*e(-t1/t)
+t1=0.001; // Assume t1=1 mS
+it=Iin+[Io-Iin]*exp(-t1/t); // Current i(t)
+disp(' Current i(t) is = '+string(it)+' Amp oR i(t)= 2.5+(15-2.5)*e(-t/9.17ms) mA');
+
+
+
+
+ // p 287 8.8
diff --git a/1628/CH9/EX9.1/Ex9_1.sce b/1628/CH9/EX9.1/Ex9_1.sce new file mode 100755 index 000000000..59876765c --- /dev/null +++ b/1628/CH9/EX9.1/Ex9_1.sce @@ -0,0 +1,12 @@ + + // Example 9.1 + + // Given v= 20 sinwt +Q=asind(10/20); // Angle +disp('(a) The Angle at which (v=10v) is = '+string(Q)+' Digree'); +disp('(b.1) The maximum value is (Vm)= 20 Volt'); +disp('(b.2) This Occurs twice in acycle i.e at( wt = 90 or 270)'); + + + + // p 305 9.1 diff --git a/1628/CH9/EX9.10/Ex9_10.sce b/1628/CH9/EX9.10/Ex9_10.sce new file mode 100755 index 000000000..6ad2ffb19 --- /dev/null +++ b/1628/CH9/EX9.10/Ex9_10.sce @@ -0,0 +1,23 @@ + + + // Example 9.10 + + + // Given i= 10+10SinQ A + // Since it is Unsymetrical waveform + // Average can be found over 1 cycle + // i.e Average Value of Current is i= 10 Amp +I1=10; // Dc Current 10 Amp +I2=10/1.414; // Sinusoidal Current 10/root(2) +Irms=sqrt(I1^2+I2^2); // Rms Value of resultant Current +disp(' Average value of Resultant Current = '+string(I1)+' Amp'); +disp(' Rms value of Resultant Current = '+string(Irms)+' Amp'); + + + + + + // p 319 9.10 + + + diff --git a/1628/CH9/EX9.11/Ex9_11.sce b/1628/CH9/EX9.11/Ex9_11.sce new file mode 100755 index 000000000..7a400d36f --- /dev/null +++ b/1628/CH9/EX9.11/Ex9_11.sce @@ -0,0 +1,20 @@ + + + // Example 9.11 + +T=8*10^-3; // Time period +A01=10*10^-3; // Area between t= 0-1 +A13=-5*2*10^-3; // Area between t= 1-3 +A34=20*10^-3; // Area between t= 3-4 +A45=0*10^-3; // Area between t= 4-5 +A58=5*3*10^-3; // Area between t= 5-8 +A=A01+A13+A34+A45+A58; // Total Area of waveform +V=A/T; // Average value of waveform +disp(' Average value of waveform = '+string(V)+' Volt'); + + + + + + + // p 230 9.11
\ No newline at end of file diff --git a/1628/CH9/EX9.12/Ex9_12.sce b/1628/CH9/EX9.12/Ex9_12.sce new file mode 100755 index 000000000..798b3aa81 --- /dev/null +++ b/1628/CH9/EX9.12/Ex9_12.sce @@ -0,0 +1,19 @@ + + + // Example 9.12 + +T=20*10^-3; // Time period +A0_10=40*100*10^-3; // Area between t= 0-10 +A10_20=100*10*10^-3; // Area between t= 10-20 +A=A0_10+A10_20; // Total Area of waveform +V=A/T; // Average value of waveform +disp(' Average value of waveform = '+string(V)+' Volt'); + +v=sqrt(V); // Rms value +disp(' Rms value of waveform = '+string(v)+' Volt'); + + + + + + // p 230 9.12
\ No newline at end of file diff --git a/1628/CH9/EX9.13/Ex9_13.sce b/1628/CH9/EX9.13/Ex9_13.sce new file mode 100755 index 000000000..62fd9cf59 --- /dev/null +++ b/1628/CH9/EX9.13/Ex9_13.sce @@ -0,0 +1,24 @@ + + // Example 9.13 + +T=3; // Time period +A1=10; //Current under Area between t= 0-2 +A2=0; //Current under Area between t= 2-3 + +Irms=sqrt((A1*A1*2+A2*A2)/3); // Rms value +disp(' Rms value of waveform = '+string(Irms)+' Amp'); + +Iav=(A1*2+A2*1)/3; // Average Value +disp(' Average value of waveform = '+string(Iav)+' Amp'); + +F=Irms/Iav; // Form Factor +disp(' Form Factor of waveform = '+string(F)); + + + + // p 321 9.13 + + + + + diff --git a/1628/CH9/EX9.14/Ex9_14.sce b/1628/CH9/EX9.14/Ex9_14.sce new file mode 100755 index 000000000..05c3e3852 --- /dev/null +++ b/1628/CH9/EX9.14/Ex9_14.sce @@ -0,0 +1,27 @@ + + + // Example 9.14 + + +T=5*10^-3; // Time period +Vm=10; // Peak Value + +Vav=Vm/2; // Average Value +disp(' Average value of waveform = '+string(Vav)+' Volt'); + +Vrms=Vm/sqrt(3); // Rms value of Saw-tooth waveform +disp(' Rms value of waveform = '+string(Vrms)+' Volt'); + +F=Vrms/Vav; // Form Factor +disp(' Form Factor of waveform = '+string(F)); + +Pf=Vm/Vrms; // Peak Factor +disp(' Peak Factor of waveform = '+string(Pf)); + + + + + // p 321 9.14 + + + diff --git a/1628/CH9/EX9.15/Ex9_15.sce b/1628/CH9/EX9.15/Ex9_15.sce new file mode 100755 index 000000000..c966541f5 --- /dev/null +++ b/1628/CH9/EX9.15/Ex9_15.sce @@ -0,0 +1,26 @@ + + // Example 9.15 + + // Given v= 55 Sin(wt)V & i= 6.1Sin(wt-pi/5)A +Q=%pi/5; // Phase Angle +Vm=55; // Peak Value of Voltage +Im=6.1; // Peak Value of Current +V=Vm/sqrt(2); // Rms value of Voltage +I=Im/sqrt(2); // Rms value of Current + +Pav=V*I*cos(Q); // Average Value of power +disp(' Average value of Power = '+string(Pav)+' Watt'); + +Pa=V*I; // Apparent Value of power +disp(' Apparent value of Power = '+string(Pa)+' VA'); + +P=Pav-(V*I*cos(0.6-Q)); // Instant Power at (wt= 0.3) +disp(' Instant Power at (wt= 0.3) = '+string(P)+' VA'); + +pf=cos(Q); // Power Factor +disp(' Power Factor = '+string(pf*100)+' %'); + + + + // p 323 9.15 + diff --git a/1628/CH9/EX9.2/Ex9_2.sce b/1628/CH9/EX9.2/Ex9_2.sce new file mode 100755 index 000000000..e8369e266 --- /dev/null +++ b/1628/CH9/EX9.2/Ex9_2.sce @@ -0,0 +1,24 @@ + + // Example 9.2 + + // Given v=0.04 sin(2000t+60)V + +w=2000; // Angular Velocity +disp(' The Angular Velocity is = '+string(w)+' rad/s'); + +f=w/(2*%pi); // frequency +disp(' Frequency is = '+string(f)+' Hz'); + +v=0.04*sind(2000*160*10^-6*(180/%pi)+60); // Voltage at (t=160 us) +disp(' Voltage at (t=160 us) = '+string(v*1000)+' mV'); + +T=1/f; // Time Period +t=(60/360)*T; // Time represent y 60 phase Angle +disp(' Time represent y 60 phase Angle = '+string(t*1000)+' mS'); + + + + + + + // p 305 9.2 diff --git a/1628/CH9/EX9.3/Ex9_3.sce b/1628/CH9/EX9.3/Ex9_3.sce new file mode 100755 index 000000000..0853ed878 --- /dev/null +++ b/1628/CH9/EX9.3/Ex9_3.sce @@ -0,0 +1,21 @@ + + + // Example 9.3 + +vm=20/2; // Maximum value of Voltage +T=2*5*10^-3; // Timwe Period +f=1/T; // Frequency +w=2*%pi*f; // Angular Frequency +disp('Angular Frequency is = '+string(w)+' rad/s'); +disp('instantaneous value of Voltage is v= 10 sin(628.3t+Q)'); + + // at (t=0 v= -3.6 V) i.e v=10sinQ + +Q=asind(-0.36); // Angle at (t=0) ( ==> in Book Q=-158.9 given Which is wrong) +v= 10*sind(628.3*0.012*(180/%pi)-Q); +disp('the Voltage at (t=12 mS) = '+string(-v)+' Volt'); + + + + + // p306 9.3 diff --git a/1628/CH9/EX9.4/Ex9_4.sce b/1628/CH9/EX9.4/Ex9_4.sce new file mode 100755 index 000000000..ce2b03c55 --- /dev/null +++ b/1628/CH9/EX9.4/Ex9_4.sce @@ -0,0 +1,29 @@ + + + // Example 9.4 + +f=60; // Frequency +w=2*%pi*f; // Angular Frequency +disp(' Angular Frequency is = '+string(w)+' rad/s'); + +disp(' instantaneous value of Voltage is i= 12 sin(377t)A'); + +i= 12*sind(377*(1/360)*(180/%pi)); // Formula of Current +disp(' The Value ofCurrent After (t=1/360 s) = '+string(i)+' Amp'); + +i1=9.6; // Current +t={asind(i1/12)*%pi}/(377*180); // formula of Time Derived from Current Eq +disp(' Time Required to Rech at (t=9.6) = '+string(t*1000)+' mS'); + + + + + // p306 9.4 + + + + + + + + diff --git a/1628/CH9/EX9.5/Ex9_5.sce b/1628/CH9/EX9.5/Ex9_5.sce new file mode 100755 index 000000000..fa7f16e9c --- /dev/null +++ b/1628/CH9/EX9.5/Ex9_5.sce @@ -0,0 +1,22 @@ + + // Example 9.5 + + // Given I1=4 Sin(100*pi*t+30) + // Given I2= 6 sin(100*pi*t) +f=50; // Frequency +w=2*%pi*f; // Angular Frequency +T=1/f; // Time Period +t=20*10^-3*(30/360); // Time for 30 Digree Revolution +disp('Time for 30 Digree Revolution = '+string(t*1000)+' mS'); +disp('The Phasor i1 Leads the Phasor i2 by 30 Digree or (t=1.67 mS)'); + + + + + // p 312 9.5 + + + + + + diff --git a/1628/CH9/EX9.6/Ex9_6.sce b/1628/CH9/EX9.6/Ex9_6.sce new file mode 100755 index 000000000..b945e4794 --- /dev/null +++ b/1628/CH9/EX9.6/Ex9_6.sce @@ -0,0 +1,22 @@ + + + // Example 9.6 + +R=10; // Resistance +i=4+%i*3; // Current +I=sqrt(4^2+3^2); // Absolute Value of Current +Ir=4; // Real Component of Current +Ii=3; // Imaginary Component of Current +Q=atand(3/4); // Phase Angle +Pr=Ir^2*R; // Power Due to Real Component +disp('Power Due to Real Component is = '+string(Pr)+' Watt'); + +Pi=Ii^2*R; // Power Due to Imaginary Component +disp('Power Due to Imaginary Component is = '+string(Pi)+' Watt'); + +P=I^2*R; // total PowerConsumed +disp('total Power Consumed is = '+string(P)+' Watt'); + + + + // p 316 9.6 diff --git a/1628/CH9/EX9.7/Ex9_7.sce b/1628/CH9/EX9.7/Ex9_7.sce new file mode 100755 index 000000000..d01ec7441 --- /dev/null +++ b/1628/CH9/EX9.7/Ex9_7.sce @@ -0,0 +1,14 @@ + + + // Example 9.7 + +I1=10+%i*0; // Sinusoidal Current I1 +I2=10+(%i*10*sqrt(3)); // Sinusoidal Current I2 +I=I1+I2; // Resultant Current +disp(' resultant Current is = '+string(I)+' Amp OR ('+string(abs(I))+' <'+string(atand(imag(I),real(I)))+' Amp )'); + + + + + + // p 318 9.7 diff --git a/1628/CH9/EX9.8/Ex9_8.sce b/1628/CH9/EX9.8/Ex9_8.sce new file mode 100755 index 000000000..624a6f50e --- /dev/null +++ b/1628/CH9/EX9.8/Ex9_8.sce @@ -0,0 +1,20 @@ + + + // Example 9.8 + +I1=10+%i*0; // Current i1=14.14 sin(wt) A +I2=10+%i*17.32; // Current i2=28.28 sin(wt+60) A +I=I1+I2; // Summation of 2 Current +disp(' Summation of 2 Current is = '+string(I)+' Amp or 37.42<40.9 '); + + // I= 20+i17.32 i.e I= 37.42<40.9 + +disp(' Expration for Sum of 2 Current i= 37.42 Sin(wt+40.9)A'); +Im=37.42; // Absolute Value of I +i=Im/sqrt(2); // RMS value I +disp(' Rms Value of sum is = '+string(i)+' Amp'); + + + + + // p 318 9.8 diff --git a/1628/CH9/EX9.9/Ex9_9.sce b/1628/CH9/EX9.9/Ex9_9.sce new file mode 100755 index 000000000..5a3eb227a --- /dev/null +++ b/1628/CH9/EX9.9/Ex9_9.sce @@ -0,0 +1,16 @@ + + // Example 9.9 + +I1=3.535+%i*0; // Rectangular form RMS of I1 i.e I1= 5/1.14<0 +I2=3.061+%i*1.768; // Rectangular form RMS of I2 i.e I2= 5/1.14<30 +I3=-1.768-%i*3.061; // Rectangular form RMS of I3 i.e I3= 5/1.14<-120 +I=I1+I2+I3; // Resultant of Current +disp(' Resultant Rms Value of Cuttent = '+string(I)+' Amp OR ('+string(abs(I))+' <'+string(atand(imag(I),real(I)))+' Amp )'); + + + + + + // p 318 9.9 + + |