diff options
Diffstat (limited to '3811')
124 files changed, 1524 insertions, 0 deletions
diff --git a/3811/CH10/EX10.1/Ex10_1.jpg b/3811/CH10/EX10.1/Ex10_1.jpg Binary files differnew file mode 100644 index 000000000..4ccb41365 --- /dev/null +++ b/3811/CH10/EX10.1/Ex10_1.jpg diff --git a/3811/CH10/EX10.1/Ex10_1.sce b/3811/CH10/EX10.1/Ex10_1.sce new file mode 100644 index 000000000..c0ed65907 --- /dev/null +++ b/3811/CH10/EX10.1/Ex10_1.sce @@ -0,0 +1,30 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 10
+//example 10.1
+//edition 1
+//publishing place:Thomson Learning
+clc;
+clear;
+V=208;//source voltage in volts
+p=6;//number of poles
+R1=0.6;//given resistance in ohm
+R2=0.4;//given R'2 in ohm
+Xeq=5;//given Xeq in ohm
+Td=30;//load torque of the motor in ohm
+f=60;//frequency for 3 phase line
+ns=(120*f)/p
+disp('a)To find the regenerative speed:')
+Tl=-Td//reversed load torque
+rpss=ns/60;
+omegas=(2*%pi*rpss);//angular speed
+s=(Tl*omegas*R2)/V^2;
+n=ns*(1-s);
+mprintf("The regenerative speed is %f rpm",n)
+disp('b)To calculate the regenerative speed :')
+rps=n/60;
+omega=(2*%pi*rps);
+Pd=Td*omega;
+I2=sqrt(-Pd/(3*(R2/s)*(1-s)));//to find I'2 which is taken as I2
+Ploss=3*(R1+R2)*I2'^(2)
+Pds=Pd-Ploss;
+mprintf("The power delivered to the electric supply is %f watt",Pds)
diff --git a/3811/CH10/EX10.2/Ex10_2.jpg b/3811/CH10/EX10.2/Ex10_2.jpg Binary files differnew file mode 100644 index 000000000..7cd2c09d1 --- /dev/null +++ b/3811/CH10/EX10.2/Ex10_2.jpg diff --git a/3811/CH10/EX10.2/Ex10_2.sce b/3811/CH10/EX10.2/Ex10_2.sce new file mode 100644 index 000000000..b8d8fe152 --- /dev/null +++ b/3811/CH10/EX10.2/Ex10_2.sce @@ -0,0 +1,14 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 10
+//example 10.2
+//edition 1
+//publishing place:Thomson Learning
+clc;
+clear;
+Vdc=200;//voltage at the dc link in volt
+I=25;//motor current in A
+R1=0.5;//stator resistance in ohm
+Ib=3*I;
+Vb=Ib*1.5*R1;//braking voltage in volt
+d=1.5*(Vb/Vdc)^2;
+mprintf("\nThe duty ratio of the FWM is %f",d)
diff --git a/3811/CH10/EX10.3/Ex10_3.jpg b/3811/CH10/EX10.3/Ex10_3.jpg Binary files differnew file mode 100644 index 000000000..7f787876a --- /dev/null +++ b/3811/CH10/EX10.3/Ex10_3.jpg diff --git a/3811/CH10/EX10.3/Ex10_3.sce b/3811/CH10/EX10.3/Ex10_3.sce new file mode 100644 index 000000000..554c51dfa --- /dev/null +++ b/3811/CH10/EX10.3/Ex10_3.sce @@ -0,0 +1,24 @@ +//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 10
+//example 10.3
+//edition 1
+//publishing place:Thomson Learning
+clc;
+clear;
+n1=1150;//full load speed in rpm
+V=300;//terminal voltage in volt
+f=80;//frequency in Hz
+Rr=0.5;//rotor resistance of the motor in ohm
+Xeq=3;//equivalent inductive reactance in ohm
+ns=1200;//nearest synchronous speed in rpm
+rpss=ns/60;
+omegas=(2*%pi*rpss);
+s1=(ns-n1)/ns;
+T6=(V^(2)*s1)/(omegas*Rr);//torque at the point 6
+T6=ceil(T6);
+mprintf("\nThe torque developed is %d Nm",T6)//approximated value
+s6=(T6*Rr*(-omegas))/V^(2);
+mprintf("\nThe slip is %f",s6)
+n6=(-ns)*(1-s6);
+mprintf("\nThe current of the induction motor does not surge to high value when the concurrent braking is implemented")
+
diff --git a/3811/CH11/EX11.1/Ex11_1.jpg b/3811/CH11/EX11.1/Ex11_1.jpg Binary files differnew file mode 100644 index 000000000..8b9f3caa0 --- /dev/null +++ b/3811/CH11/EX11.1/Ex11_1.jpg diff --git a/3811/CH11/EX11.1/Ex11_1.sce b/3811/CH11/EX11.1/Ex11_1.sce new file mode 100644 index 000000000..d0a29f77a --- /dev/null +++ b/3811/CH11/EX11.1/Ex11_1.sce @@ -0,0 +1,18 @@ +//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 11
+//example 11.1
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Kphi=3; //constant in Vsec
+Ra=1; //resistance in ohm
+La=10; //inductance in mH
+V=600; //rated voltage of the motor in volt
+Vt=150; //starting voltage in volt
+Tl=20; //constant torque in Nm
+m=6; //total moment of inertia in Nm sec^2
+omegaf=(Vt/Kphi)-((Ra*Tl)/Kphi^(2));
+nf=(omegaf*60)/(2*%pi);
+mprintf("\nThe motor speed after 5 sec is %d rpm",nf)
+//The plot obtained in the book is using a simulation software using specific design that is avaliable in the software.In scilab or xcos there is no option to simulate DC shunt motor
diff --git a/3811/CH11/EX11.10/Ex11_10.jpg b/3811/CH11/EX11.10/Ex11_10.jpg Binary files differnew file mode 100644 index 000000000..4887220e0 --- /dev/null +++ b/3811/CH11/EX11.10/Ex11_10.jpg diff --git a/3811/CH11/EX11.10/Ex11_10.sce b/3811/CH11/EX11.10/Ex11_10.sce new file mode 100644 index 000000000..0942497ff --- /dev/null +++ b/3811/CH11/EX11.10/Ex11_10.sce @@ -0,0 +1,31 @@ +//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 11
+//example 11.10
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+V=480;//terminal voltage in volt
+n=1120;//related full load speed of the motor in rpm
+R1=1;//stator resistance in ohm
+R2=1;//rotor resistance referred to stator in ohm
+X1=5;//equivalent winding resistance in ohm
+J=4;//inertia of the motor in NM sec^2
+ns=1200;//nearest synchronous speed of the motor in rpm
+K=1.196;
+Tl=60;//load torque in Nm
+rps=ns/60;
+omegas=(2*%pi*rps);
+Tmax1=V^(2)/(2*omegas*(R1+sqrt(R1^(2)+X1^(2))));
+Tmax=fix(Tmax1)
+tau=(J*omegas)/Tmax;
+smax=R2/sqrt(R1^(2)+X1^(2));
+TR=Tl/Tmax;
+A=2*(smax^(2)-((K*smax)/TR));
+Q=A^(2)-(4*smax^(2));
+B=1+A+smax^(2);
+mB=abs(B);
+D1=(-2/sqrt(Q))*(atanh(abs(2+A)/sqrt(Q)));
+D=abs(D1);
+tst=(tau/TR)*(1-(((0.5*A)-smax^(2))*(abs(A*D)+log10(mB))));
+mprintf("\nThe starting time of the induction machine is %f sec",tst)
diff --git a/3811/CH11/EX11.3/Ex11_3.jpg b/3811/CH11/EX11.3/Ex11_3.jpg Binary files differnew file mode 100644 index 000000000..be0943773 --- /dev/null +++ b/3811/CH11/EX11.3/Ex11_3.jpg diff --git a/3811/CH11/EX11.3/Ex11_3.sce b/3811/CH11/EX11.3/Ex11_3.sce new file mode 100644 index 000000000..77c19215a --- /dev/null +++ b/3811/CH11/EX11.3/Ex11_3.sce @@ -0,0 +1,17 @@ +//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 11
+//example 11.3
+//edition 1
+//publishing place:Thomson Learning
+clc;
+clear;
+Ra=2;//armature resistance in ohm
+Tst1=2;//limited starting time in sec
+Kphi=3;//field constant in V sec
+Jm=1;//motor moment of inertia in Nm
+Jl=5;//load moment of inertia in Nm
+tau=((Jl+Jm)*Ra)/Kphi^(2);
+Tst=3*tau;//starting time of the motor based on given data in sec
+Jeq=(Tst1*(Kphi^(2)))/(3*Ra);
+gr=sqrt((Jeq-Jm)/Jl);//gear ratio n1/n2
+mprintf("To achieve the desired starting current the gear ratio n1/n2 must be between %f",gr)
diff --git a/3811/CH11/EX11.4/Ex11_4.jpg b/3811/CH11/EX11.4/Ex11_4.jpg Binary files differnew file mode 100644 index 000000000..54abe358f --- /dev/null +++ b/3811/CH11/EX11.4/Ex11_4.jpg diff --git a/3811/CH11/EX11.4/Ex11_4.sce b/3811/CH11/EX11.4/Ex11_4.sce new file mode 100644 index 000000000..1cdf12506 --- /dev/null +++ b/3811/CH11/EX11.4/Ex11_4.sce @@ -0,0 +1,18 @@ +//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 11
+//example 11.4
+//edition 1
+//publishing place:Thomson Learning
+clc;
+clear;
+Ra=1;//armature resistance in ohm
+Kphi=3;//field constant in V sec
+Vt=500;//terminal voltage in volt
+Vf=600;//increased motor voltage in volt
+Td=20;//constant torque of thmotor in Nm
+J=6;//total moment of inertia of the drive in Nm
+omega0=(Vt/Kphi)-((Ra*Td)/Kphi^(2));//initial speed in rad/sec
+omegaf=(Vf/Kphi)-((Ra*Td)/Kphi^(2));//final speed in rad/sec
+tau=(J*Ra)/Kphi^(2);
+t=-(tau*log((0.05*omegaf)/(omegaf-omega0)));//obtained from the equation of omega=omega(f)(1-e^-t/tau)+omega(0)e^-t/tau
+mprintf("The time required to change the motor speed is %f sec",t)
diff --git a/3811/CH11/EX11.5/Ex11_5.jpg b/3811/CH11/EX11.5/Ex11_5.jpg Binary files differnew file mode 100644 index 000000000..c4da99bb7 --- /dev/null +++ b/3811/CH11/EX11.5/Ex11_5.jpg diff --git a/3811/CH11/EX11.5/Ex11_5.sce b/3811/CH11/EX11.5/Ex11_5.sce new file mode 100644 index 000000000..661bbf416 --- /dev/null +++ b/3811/CH11/EX11.5/Ex11_5.sce @@ -0,0 +1,18 @@ +//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 11
+//example 11.5
+//edition 1
+//publishing place:Thomson Learning
+clc;
+clear;
+Ra=1;//armature resistance in ohm
+Kphi=3;//field constant in V sec
+Vt=500;//terminal voltage in volt
+Td=20;//constant torque of the motor in Nm
+J=6;//total moment of inertia of the drive in Nm
+omegaf=0;
+Vb=(omegaf+((Ra*Td)/Kphi^(2)))*Kphi;
+mprintf("\nThe terminal voltage that stop the motor and keep it at holding is %f V",Vb)
+tau=(J*Ra)/Kphi^(2);
+t=3*tau;//the motor reaches the holding state when speed is 5% of initial speed
+mprintf("\nThe traveling time during the braking is %d sec",t)
diff --git a/3811/CH11/EX11.6/Ex11_6.jpg b/3811/CH11/EX11.6/Ex11_6.jpg Binary files differnew file mode 100644 index 000000000..01369ed14 --- /dev/null +++ b/3811/CH11/EX11.6/Ex11_6.jpg diff --git a/3811/CH11/EX11.6/Ex11_6.sce b/3811/CH11/EX11.6/Ex11_6.sce new file mode 100644 index 000000000..321bd541b --- /dev/null +++ b/3811/CH11/EX11.6/Ex11_6.sce @@ -0,0 +1,22 @@ +//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 11
+//example 11.6
+//edition 1
+//publishing place:Thomson Learning
+clc;
+clear;
+V=480;//terminal voltage in volt
+n=1120;//related full load speed of the motor in rpm
+R1=1;//stator resistance in ohm
+R2=1;//rotor resistance referred to stator in ohm
+X1=5;//equivalent winding resistance in ohm
+J=4;//inertia of the motor in NM sec^2
+ns=1200;//nearest synchronous speed of the motor in rpm
+K=1.196;
+rps=ns/60;
+omegas=(2*%pi*rps);
+Tmax=V^(2)/(2*omegas*(R1+sqrt(R1^(2)+X1^(2))));
+tau=(J*omegas)/Tmax;
+smax=R2/sqrt(R1^(2)+X1^(2));
+tst=(tau/K)*((0.25/smax)+(1.95*smax)+smax);
+mprintf("The starting time of the motor at no load and full voltage and frequency is %f sec",tst)
diff --git a/3811/CH11/EX11.7/Ex11_7.jpg b/3811/CH11/EX11.7/Ex11_7.jpg Binary files differnew file mode 100644 index 000000000..f4197da3c --- /dev/null +++ b/3811/CH11/EX11.7/Ex11_7.jpg diff --git a/3811/CH11/EX11.7/Ex11_7.sce b/3811/CH11/EX11.7/Ex11_7.sce new file mode 100644 index 000000000..cc907d097 --- /dev/null +++ b/3811/CH11/EX11.7/Ex11_7.sce @@ -0,0 +1,24 @@ +//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 11
+//example 11.7
+//edition 1
+//publishing place:Thomson Learning
+clc;
+clear;
+V=480;//terminal voltage in volt
+n=1120;//related full load speed of the motor in rpm
+R1=1;//stator resistance in ohm
+R2=1;//rotor resistance referred to stator in ohm
+Radd=1;//starting resistance inserted in the rotor circuit in ohm
+X1=5;//equivalent winding resistance in ohm
+J=4;//inertia of the motor in NM sec^2
+ns=1200;//nearest synchronous speed of the motor in rpm
+rps=ns/60;
+omegas=(2*%pi*rps);
+smax=(R2+Radd)/sqrt(R1^(2)+X1^(2));
+K=1.392;
+Tmax=V^(2)/(2*omegas*(R1+sqrt(R1^(2)+X1^(2))));
+tau=(J*omegas)/Tmax;
+tst=(tau/K)*((0.25/smax)+(1.95*smax)+smax);
+mprintf("The starting time of the induction machine is %f sec",tst)
+
diff --git a/3811/CH11/EX11.8/Ex11_8.jpg b/3811/CH11/EX11.8/Ex11_8.jpg Binary files differnew file mode 100644 index 000000000..8ed0d1e62 --- /dev/null +++ b/3811/CH11/EX11.8/Ex11_8.jpg diff --git a/3811/CH11/EX11.8/Ex11_8.sce b/3811/CH11/EX11.8/Ex11_8.sce new file mode 100644 index 000000000..036beb4fd --- /dev/null +++ b/3811/CH11/EX11.8/Ex11_8.sce @@ -0,0 +1,27 @@ +//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 11
+//example 11.8
+//edition 1
+//publishing place:Thomson Learning
+clc;
+clear;
+V=480;//terminal voltage in volt
+n=1120;//related full load speed of the motor in rpm
+R1=1;//stator resistance in ohm
+R2=1;//rotor resistance referred to stator in ohm
+X1=5;//equivalent winding resistance in ohm
+J=4;//inertia of the motor in NM sec^2
+ns=1200;//nearest synchronous speed of the motor in rpm
+tbr=15;//time taken to stop the motor in sec
+s1=2;
+s2=1;
+rps=ns/60;
+omegas=(2*%pi*rps);
+smax=R2/sqrt(R1^(2)+X1^(2));
+Tmax=V^(2)/(2*omegas*(R1+sqrt(R1^(2)+X1^(2))));
+tau=(2*tbr)/(((s1^(2)-s2^(2))/(2*smax))+(smax*log(s1/s2))+(2*smax*(s1-s2)));
+Tmax1=(J*omegas)/tau;
+Vbr=sqrt(Tmax1/Tmax)*V;
+mprintf("The magnitude of motor voltage during braking is %f volt",Vbr)
+//The answer provided in the textbook is wrong
+
diff --git a/3811/CH11/EX11.9/Ex11_9.jpg b/3811/CH11/EX11.9/Ex11_9.jpg Binary files differnew file mode 100644 index 000000000..5a7ef1820 --- /dev/null +++ b/3811/CH11/EX11.9/Ex11_9.jpg diff --git a/3811/CH11/EX11.9/Ex11_9.sce b/3811/CH11/EX11.9/Ex11_9.sce new file mode 100644 index 000000000..3a1d44358 --- /dev/null +++ b/3811/CH11/EX11.9/Ex11_9.sce @@ -0,0 +1,24 @@ +//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 11
+//example 11.9
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+V=480;//terminal voltage in volt
+n=1120;//related full load speed of the motor in rpm
+R1=1;//stator resistance in ohm
+R2=1;//rotor resistance referred to stator in ohm
+Xeq=5;//equivalent winding resistance in ohm
+J=4;//inertia of the motor in NM sec^2
+ns=1200;//nearest synchronous speed of the motor in rpm
+K=1.196;
+rps=ns/60;
+omegas=(2*%pi*rps);
+s1=2;
+s2=1;
+Tmax=V^(2)/(2*omegas*(R1+sqrt(R1^(2)+Xeq^(2))));
+tau=(J*omegas)/Tmax;
+smax=sqrt((s2^2-s1^2)/(((-log(s1/s2))-(2*(s1-s2)))*2));//the equation is obtained by differentiating tbr with respect to smax
+Radd=(smax*sqrt(R1^2+Xeq^2))-R2;//equation to find the Radd
+mprintf("\nThe value of braking resistance to minimize the braking time is %f ohm",Radd)
diff --git a/3811/CH2/EX2.1/Ex2_1.jpg b/3811/CH2/EX2.1/Ex2_1.jpg Binary files differnew file mode 100644 index 000000000..213a367fc --- /dev/null +++ b/3811/CH2/EX2.1/Ex2_1.jpg diff --git a/3811/CH2/EX2.1/Ex2_1.sce b/3811/CH2/EX2.1/Ex2_1.sce new file mode 100644 index 000000000..af4212e5d --- /dev/null +++ b/3811/CH2/EX2.1/Ex2_1.sce @@ -0,0 +1,14 @@ +//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 2
+//example 2.1
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Ic=10;//collector current in ampere
+beta1=200; // current gain in the linear region
+beta2=10; //current gain in the saturation region
+Ib1=(Ic/beta1); //base current in the linear region in ampere
+Ib2=(Ic/beta2); //base current in the saturation region in ampere
+disp(Ib1,'The base current in the linear region in ampere is')
+disp(Ib2,'The base current in the saturation region in ampere is')
diff --git a/3811/CH2/EX2.2/Ex2_2.jpg b/3811/CH2/EX2.2/Ex2_2.jpg Binary files differnew file mode 100644 index 000000000..e920307f6 --- /dev/null +++ b/3811/CH2/EX2.2/Ex2_2.jpg diff --git a/3811/CH2/EX2.2/Ex2_2.sce b/3811/CH2/EX2.2/Ex2_2.sce new file mode 100644 index 000000000..cadb33a00 --- /dev/null +++ b/3811/CH2/EX2.2/Ex2_2.sce @@ -0,0 +1,10 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi +//chapter2 +//example 2.2 +clc; +clear; +sv=(2^(1/2))*120*sind(30);//rms value of voltage source +K=0.2; // constant whose value dependent ondevice characteristics +bv=200; //base voltage in volts +ig=((log(sv/bv))/(-K)); //gate current in mA +disp(ig,'gate current required to trigger the SCR at 30 degree in milliamphere is') diff --git a/3811/CH2/EX2.3/Ex2_3.jpg b/3811/CH2/EX2.3/Ex2_3.jpg Binary files differnew file mode 100644 index 000000000..f48e6f1a8 --- /dev/null +++ b/3811/CH2/EX2.3/Ex2_3.jpg diff --git a/3811/CH2/EX2.3/Ex2_3.sce b/3811/CH2/EX2.3/Ex2_3.sce new file mode 100644 index 000000000..e0b2777ae --- /dev/null +++ b/3811/CH2/EX2.3/Ex2_3.sce @@ -0,0 +1,12 @@ +// Book Name: Fundametals of electrical drives by Mohamad A. El- Sharkawi +//chapter 2 +//example 2.3 +//edition 1 +//publisher and place:Nelson Engineering +clc; +clear; +VBO=300; //base voltage in volts +de=100; //maximum di/dt of SCR in A/microsec +Vs=120; //source voltage rms value in volts +L=(VBO/(0.5*de)); +disp(L,'The minimum value of snubbing inductance in microhenry is') diff --git a/3811/CH2/EX2.4/Ex2_4.jpg b/3811/CH2/EX2.4/Ex2_4.jpg Binary files differnew file mode 100644 index 000000000..1f25bf001 --- /dev/null +++ b/3811/CH2/EX2.4/Ex2_4.jpg diff --git a/3811/CH2/EX2.4/Ex2_4.sce b/3811/CH2/EX2.4/Ex2_4.sce new file mode 100644 index 000000000..f85ac280d --- /dev/null +++ b/3811/CH2/EX2.4/Ex2_4.sce @@ -0,0 +1,16 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi +//chapter2 +//example 2.4 +//edition 1 +//publisher and place:Nelson Engineering +clc; +clear; +Ls=8;//snubbing inductor in microhenry +VBO=4000;//base voltage in volts +di=200;//rate of change of current (di/dt) in amperes per microsec +dv=1500;//rate of change of voltage (dv/dt) in volt per microsce +Cs=10;//snubbing capacitance in microfarad +Rs=sqrt(VBO/(0.5*di*Cs));//snubbing resistance in ohms +dVscr=((Rs*VBO)/Ls);///rate of change of SCR voltage with respect to time +mprintf("The given snubber circuit is suitable for protecting the SCR from excessive %f volt per microsec",dVscr) + diff --git a/3811/CH3/EX3.1/Ex3_1.jpg b/3811/CH3/EX3.1/Ex3_1.jpg Binary files differnew file mode 100644 index 000000000..15760efda --- /dev/null +++ b/3811/CH3/EX3.1/Ex3_1.jpg diff --git a/3811/CH3/EX3.1/Ex3_1.sce b/3811/CH3/EX3.1/Ex3_1.sce new file mode 100644 index 000000000..8d60e173c --- /dev/null +++ b/3811/CH3/EX3.1/Ex3_1.sce @@ -0,0 +1,14 @@ +o//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 3
+//example 3.1
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Vrms=110; //source voltage of the circuit in volts
+alpha=90; //triggering angle in degree
+Vm=Vrms*(2)^(1/2); //maximum voltage in volts
+Vave=(Vm/(2*%pi))*(1+cosd(alpha));
+R=(0.2*(Vave)^(2))+5; //load resistance in ohm
+Iave=Vave/R; //average current of the load
+disp(Iave,'The average current when the triggering angle 90 degree in ampere is:')
diff --git a/3811/CH3/EX3.10/Ex3_10.jpg b/3811/CH3/EX3.10/Ex3_10.jpg Binary files differnew file mode 100644 index 000000000..b74fc16b1 --- /dev/null +++ b/3811/CH3/EX3.10/Ex3_10.jpg diff --git a/3811/CH3/EX3.10/Ex3_10.sce b/3811/CH3/EX3.10/Ex3_10.sce new file mode 100644 index 000000000..4663b25e4 --- /dev/null +++ b/3811/CH3/EX3.10/Ex3_10.sce @@ -0,0 +1,27 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 3
+//example 3.10
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+f=2; //switching frequency of chopper in kilohertz
+Vs=80; //source voltage in volts
+k=.3; //duty ratio
+R=4; //load resistance in ohm
+mprintf("\na.To calculate on time and switching period:")
+t=1/f; //switching period in milli sec
+ton=k*t; //on time in milli sec
+mprintf("\nThe switching period and on time in milli second are %f %f",t,ton)
+mprintf("\nTo calculate average voltage across the load:")
+Vave=k*Vs;
+mprintf("\nThe average voltage across the load is %d volt",Vave)
+mprintf("\nc.To calculate average voltage across the load:")
+Vdave=(1-k)*Vs; //obtained by integrating Vs with respect to ton and t
+mprintf("\nThe average voltage across the load is %d volt",Vdave)
+mprintf("\nd.To calculate average current of the load:")
+Iave=Vave/R;
+mprintf("\nThe average current of the load is %d ampere",Iave)
+mprintf("\ne.To calculate load power:")
+P=Vave*Iave;
+mprintf("\nThe load power is %d watt",P)
diff --git a/3811/CH3/EX3.12/Ex3_12.jpg b/3811/CH3/EX3.12/Ex3_12.jpg Binary files differnew file mode 100644 index 000000000..73bdc8276 --- /dev/null +++ b/3811/CH3/EX3.12/Ex3_12.jpg diff --git a/3811/CH3/EX3.12/Ex3_12.sce b/3811/CH3/EX3.12/Ex3_12.sce new file mode 100644 index 000000000..0c48d7af4 --- /dev/null +++ b/3811/CH3/EX3.12/Ex3_12.sce @@ -0,0 +1,13 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 3
+//example 3.12
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+f=500; //frequency at the load side in Hz
+t=1/f; //time for one cycle in sec
+tseg=t/6; //time of the switching segment in sec
+tcon=3*tseg; //conduction period of each transistor in sec
+tcon1=tcon*10^3; //conduction period of each transistor in msec
+disp(tcon1,'The conduction period of each transistor in msec is')
diff --git a/3811/CH3/EX3.13/Ex3_13.jpg b/3811/CH3/EX3.13/Ex3_13.jpg Binary files differnew file mode 100644 index 000000000..e82718532 --- /dev/null +++ b/3811/CH3/EX3.13/Ex3_13.jpg diff --git a/3811/CH3/EX3.13/Ex3_13.sce b/3811/CH3/EX3.13/Ex3_13.sce new file mode 100644 index 000000000..0d0d57072 --- /dev/null +++ b/3811/CH3/EX3.13/Ex3_13.sce @@ -0,0 +1,13 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 3
+//example 3.13
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+d=.25; //duty ratio
+Vdc=150; //source voltage in volts
+Vab=((2*d)/3)^(1/2)*Vdc; //rms voltage applied to the motor winding with FWM
+disp(Vab,'The rms voltage applied to the motor winding with FWM in volts is:')
+Vab1=(Vab/d^(1/2)); //rms voltage applied to the motor winding without FWM
+disp(Vab1,'The rms voltage applied to the motor winding without FWM in volts is')
diff --git a/3811/CH3/EX3.14/Ex3_14.jpg b/3811/CH3/EX3.14/Ex3_14.jpg Binary files differnew file mode 100644 index 000000000..83e0222d0 --- /dev/null +++ b/3811/CH3/EX3.14/Ex3_14.jpg diff --git a/3811/CH3/EX3.14/Ex3_14.sce b/3811/CH3/EX3.14/Ex3_14.sce new file mode 100644 index 000000000..46417c716 --- /dev/null +++ b/3811/CH3/EX3.14/Ex3_14.sce @@ -0,0 +1,28 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 3
+//example 3.14
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Vs=110; //source voltage in volts
+Vdc=150; //DC voltage in volts
+Vm=Vs*2^(1/2); //maximum voltage in volts
+a=90; //triggering angle in degree
+R=1; //resistance in ohm
+theta=asind(Vdc/Vm);
+theta1=75; //approximated value of theta in degree
+B=180-theta1; //The value of bete
+gama=B-a; //conduction period in degree
+VRrms=((Vdc^(2)*gama/180)+((Vm^(2)/(2*%pi))*(gama*(%pi/180)-(sind(2*B)-sind(2*a))/2)-((2*Vdc*Vm)/%pi)*(cosd(a)-cosd(B))))^(1/2);
+Icrms=VRrms/R; //rms current
+mprintf("\nThe rms current delivered to the battery during charging is %f ampere",Icrms)
+mprintf("\nTo find the power delivered to the battery during charging:")
+a1=((Vm/(R*%pi))*(((1-cosd(2*B))/2)-((1-cosd(2*a))/2)))-(((2*Vdc)/(R*%pi))*(sind(B)-sind(a)));
+b1=((Vm/(R*%pi))*(gama*(%pi/180)+((sind(2*a)-sind(2*B))/2)))-(((2*Vdc)/(R*%pi))*(cosd(a)-cosd(B)));
+pie1=atand(a1/b1);
+I1crms=sqrt(a1^2+b1^2)/sqrt(2);
+Ps=Vs*I1crms*cosd(pie1);
+Ploss=Icrms*R;
+Pcharge=Ps-Ploss;
+mprintf("\nThe power delivered to the battery during charging is %f degree",Pcharge)
diff --git a/3811/CH3/EX3.15/Ex3_15.jpg b/3811/CH3/EX3.15/Ex3_15.jpg Binary files differnew file mode 100644 index 000000000..4b1586417 --- /dev/null +++ b/3811/CH3/EX3.15/Ex3_15.jpg diff --git a/3811/CH3/EX3.15/Ex3_15.sce b/3811/CH3/EX3.15/Ex3_15.sce new file mode 100644 index 000000000..0683f7a5b --- /dev/null +++ b/3811/CH3/EX3.15/Ex3_15.sce @@ -0,0 +1,25 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 3
+//example 3.15
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Vs=110;//source voltage in volts
+Vdc=150;//DC voltage in volts
+Vm=Vs*2^(1/2);//maximum voltage in volts
+alphamin=0;//triggering angle in degree
+R=1;//resistance in ohm
+Beta=180;//The value of bete
+gama=Beta-alphamin;//conduction period in degree
+VRrms=sqrt(Vdc^(2)+((Vs*2^(1/2))^(2)/2)-((4*Vdc*Vm)/%pi));
+VRrms=ceil(VRrms)
+Idrms=VRrms/R;
+mprintf("\nThe total rms current during discharging is %f A",Idrms)
+a1=((Vm/(R*%pi))*(((1-cosd(2*Beta))/2)-((1-cosd(2*alphamin))/2)))-(((2*Vdc)/(R*%pi))*(sind(Beta)-sind(alphamin)));
+b1=((4*Vdc)/(R*%pi))-(Vm/R);
+pie1=atand(a1/b1);
+I1drms=sqrt((a1^2+b1^2)/2);//rms value of fundamental component
+Pac=Vs*I1drms*cosd(pie1);
+Pac=Pac*10^(-3);
+mprintf("\nThe power delivered to the ac source during discharging is %f kW",Pac)
diff --git a/3811/CH3/EX3.16/Ex3_16.jpg b/3811/CH3/EX3.16/Ex3_16.jpg Binary files differnew file mode 100644 index 000000000..152f50833 --- /dev/null +++ b/3811/CH3/EX3.16/Ex3_16.jpg diff --git a/3811/CH3/EX3.16/Ex3_16.sce b/3811/CH3/EX3.16/Ex3_16.sce new file mode 100644 index 000000000..5c283818f --- /dev/null +++ b/3811/CH3/EX3.16/Ex3_16.sce @@ -0,0 +1,23 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 3
+//example 3.16
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Vdc=250;
+Vs=208;//line to line ac voltage
+R=3;//system resistance between battery bank and source in ohm
+Beta=122;
+Vmax=(sqrt(2)*Vs)/sqrt(3);
+mprintf("\na.To calculate minimum triggering angle and associated conduction period:")
+alphamin=60-asind(Vdc/(sqrt(3)*Vmax));
+alphamin=ceil(alphamin);
+gama=Beta-alphamin;
+mprintf("\nThe minimum triggering angle is %d degree and the associated time period is %d degree",alphamin,gama)
+mprintf("\nTo compute the average charging current for the minimum triggering angle:")
+VR=Vdc+(((9*Vmax)/(2*%pi))*cosd(alphamin+150));
+l=((9*Vmax)/(2*%pi))*cosd(alphamin+150);
+IRave=VR/R;
+mprintf("\nThe average charging current of minimum triggering angle is %f A",IRave)
+//The answers vary due to round off error
diff --git a/3811/CH3/EX3.2/Ex3_2.jpg b/3811/CH3/EX3.2/Ex3_2.jpg Binary files differnew file mode 100644 index 000000000..e29473198 --- /dev/null +++ b/3811/CH3/EX3.2/Ex3_2.jpg diff --git a/3811/CH3/EX3.2/Ex3_2.sce b/3811/CH3/EX3.2/Ex3_2.sce new file mode 100644 index 000000000..954021ee5 --- /dev/null +++ b/3811/CH3/EX3.2/Ex3_2.sce @@ -0,0 +1,28 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter3
+//example 3.2
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Vsrms=110; //source voltage of the circuit in volts
+Vm=Vsrms*(2)^(1/2); //maximum voltage in volts
+R=2; //resistance in ohm
+alpha1=45; //triggering angle in degree
+alpha2=90; //triggering angle in degree
+//when a1=45
+disp('case 1')
+Vrms=(Vsrms/(2)^(1/2))*(1-(alpha1*(%pi/180)/%pi)+(sind(2*alpha1)/(2*%pi)))^(1/2);
+disp(Vrms,'rms voltage across the load resistance in volt is:')
+Irms=Vrms/R ;
+disp(Irms,'rms current of the resistance in ampere is:')
+Vscr=-(Vm/(2*%pi))*(1+cosd(alpha1));
+disp(Vscr,'average voltage drop across the SCR in volt is:')
+//when a2=90
+disp('case 2')
+Vrms1=(Vsrms/(2)^(1/2))*(1-(alpha2*(%pi/180)/%pi)+(sind(2*alpha2)/(2*%pi)))^(1/2);
+disp(Vrms1,'rms voltage across the load resistance in volt is:')
+Irms1=Vrms1/R ;
+disp(Irms1,'rms current of the resistance in ampere is:')
+Vscr1=-(Vm/(2*%pi))*(1+cosd(alpha2));
+disp(Vscr1,'average voltage drop across the SCR in volt is:')
diff --git a/3811/CH3/EX3.3/Ex3_3.jpg b/3811/CH3/EX3.3/Ex3_3.jpg Binary files differnew file mode 100644 index 000000000..591e31e94 --- /dev/null +++ b/3811/CH3/EX3.3/Ex3_3.jpg diff --git a/3811/CH3/EX3.3/Ex3_3.sce b/3811/CH3/EX3.3/Ex3_3.sce new file mode 100644 index 000000000..0c135fc53 --- /dev/null +++ b/3811/CH3/EX3.3/Ex3_3.sce @@ -0,0 +1,22 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi +//chapter 3 +//example 3.3 +//edition 1 +//publisher and place:Nelson Engineering +clc; +clear; +Vrms=110; //The voltage on the ac side in volts +R=10; //Resistance value of the resistive load in ohm +alpha=60; //triggering angle of the converter in degree +Vm=110*(2)^(1/2); //maximum voltage in volts +disp('Instantaneous power method:') +P=((Vm)^(2)/(8*%pi*R))*(2*(%pi-alpha*(%pi/180))+sind(2*alpha)); +disp(P,'Power dissipated in the load resistance in watt is:') +disp('Harmonic method:') +a1=(Vm/(2*%pi*R))*(cosd(2*alpha)-1); +b1=(Vm/(4*%pi*R))*(sind(2*alpha)+(2*(%pi-alpha*(%pi/180)))); +c1=(a1^(2)+b1^(2))^(1/2); +pie1=atand(a1/b1); +P1=(Vm*c1*cosd(pie1))/2; +disp(P1,'The power computed by harmonic method in watt is:') + diff --git a/3811/CH3/EX3.4/Ex3_4.jpg b/3811/CH3/EX3.4/Ex3_4.jpg Binary files differnew file mode 100644 index 000000000..acb3fdf6e --- /dev/null +++ b/3811/CH3/EX3.4/Ex3_4.jpg diff --git a/3811/CH3/EX3.4/Ex3_4.sce b/3811/CH3/EX3.4/Ex3_4.sce new file mode 100644 index 000000000..4bd29df32 --- /dev/null +++ b/3811/CH3/EX3.4/Ex3_4.sce @@ -0,0 +1,21 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 3
+//example 3.4
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Vrms=110; //The voltage on the ac side in volts
+R=10; //Resistance value of the resistive load in ohm
+alpha=60; //triggering angle of the converter in degree
+Vm=110*(2)^(1/2); //maximum voltage in volts
+a1=(Vm/(2*%pi*R))*(cosd(2*alpha)-1);
+b1=(Vm/(4*%pi*R))*(sind(2*alpha)+(2*(%pi-alpha*(%pi/180))));
+c1=(a1^(2)+b1^(2))^(1/2);
+pie1=atand(a1/b1);
+pie1=abs(pie1);
+I1rms=c1/sqrt(2);
+Irms=(Vrms/R)*sqrt(1-((alpha/%pi)*(%pi/180))+(sin(2*alpha)/(2*%pi)));
+pf=(I1rms/Irms)*cos(pie1);
+disp(pf,'The power factor on the ac side is')
+//The answers vary due to round off error
diff --git a/3811/CH3/EX3.5/Ex3_5.jpg b/3811/CH3/EX3.5/Ex3_5.jpg Binary files differnew file mode 100644 index 000000000..505a80261 --- /dev/null +++ b/3811/CH3/EX3.5/Ex3_5.jpg diff --git a/3811/CH3/EX3.5/Ex3_5.sce b/3811/CH3/EX3.5/Ex3_5.sce new file mode 100644 index 000000000..673c0e53c --- /dev/null +++ b/3811/CH3/EX3.5/Ex3_5.sce @@ -0,0 +1,24 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi +//chapter 3 +//example 3.5 +//edition 1 +//publishing place:Thomson Learning +clc; +clear; +Vsrms=110;//The voltage on the ac side in volts +R=5;//Resistance value of the resistive load in ohm +Vrms=55;//voltage across the load +//iteration method +xold=1;//assumed value +x=(180/%pi)*(2.25+(sind(2*xold)/2)); +err=100;//assumed value +while(err>0.0001) + xnew=(180/%pi)*(2.25+(sind(2*x)/2)); + x=xnew; + err=abs(xnew-xold); + xold=x; + end +disp(x,'The triggering angle in degree is') +P=(Vrms)^2/R; +disp(P,'The load power in watt is:') +//The answer given in the book is wrong diff --git a/3811/CH3/EX3.6/Ex3_6.jpg b/3811/CH3/EX3.6/Ex3_6.jpg Binary files differnew file mode 100644 index 000000000..18dae7553 --- /dev/null +++ b/3811/CH3/EX3.6/Ex3_6.jpg diff --git a/3811/CH3/EX3.6/Ex3_6.sce b/3811/CH3/EX3.6/Ex3_6.sce new file mode 100644 index 000000000..54ae9efc9 --- /dev/null +++ b/3811/CH3/EX3.6/Ex3_6.sce @@ -0,0 +1,29 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi +//chapter 3 +//example 3.6 +//edition 1 +//publisher and place:Nelson Engineering +clc; +clear; +R=10;//resistance of the load in ohm +L=0.03;//inductance in H +Vrms=100;//source voltage in volt +f=60;//frequency in Hz +alpha=60;//triggering angle in degree +omega=2*%pi*f; +tau=L/R; +Q=atand((omega*L)/R); +//iteration method +xold=1;//assumed value +x=Q+asind(sind(Q-alpha)*exp((-1)*(((xold-alpha)*(%pi/180))/(omega*tau)))); +err=10;//assumed value +while(err>0.01) + xnew=Q+asind(sind(Q-alpha)*exp((-1)*((x-alpha)*(%pi/180)/(omega*tau)))); + x=xnew; + err=abs(xnew-xold); + xold=x; + end +disp(x,'The value of beta in degree is') +r=x-alpha; +disp(r,'The conduction period in degree is ') +//The answer given in the book is wrong.While using the book answer both LHS and RHS are not equal. diff --git a/3811/CH3/EX3.7/Ex3_7.jpg b/3811/CH3/EX3.7/Ex3_7.jpg Binary files differnew file mode 100644 index 000000000..ca9170e87 --- /dev/null +++ b/3811/CH3/EX3.7/Ex3_7.jpg diff --git a/3811/CH3/EX3.7/Ex3_7.sce b/3811/CH3/EX3.7/Ex3_7.sce new file mode 100644 index 000000000..4168001cc --- /dev/null +++ b/3811/CH3/EX3.7/Ex3_7.sce @@ -0,0 +1,37 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 3
+//example 3.7
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Vs=110;//source voltage in volts
+L=20e-3;//inductance of the circuit in henry
+R=10;//resistance of the circuit in ohm
+a=60;//trigerring angle in degree
+r1=a*(%pi/180);
+Vm=Vs*2^(1/2);
+T=L/R;//Time constant of the circuit in sec
+w=2*%pi*a;//rotational speed in rad/sec
+mprintf("\n To find Conduction period:")
+b=(%pi-(w*T*log(0.05)))*(180/%pi);
+gama=b-a;//conduction period in degree
+mprintf("\nThe conduction period is %d dgree",gama)
+mprintf("\nTo find maximum diode current:")
+Z=sqrt(R^2+(w*L)^2);
+wtau=(w*L)/R;
+Q=atand(wtau);
+l=exp((-1)*((%pi-(a*(%pi/180)))/wtau));
+c=(%pi-(a*(%pi/180)));
+id=(Vm/Z)*(sind(Q)+((sind(Q-a))*l));
+mprintf("\nThe maximum diode current is %f ampere",id)
+mprintf("\nTo calculate average current of the diode:")
+Idave=(id/(2*%pi))*(-wtau)*(exp((-1)*(b*(%pi/180)-%pi))-1);
+mprintf("\nThe average current of the diode is %f ampere",Idave)
+mprintf("\nTo calculate average load current:")
+Vave=(Vm/(2*%pi))*(1+(cosd(a)));
+Iave=Vave/R;
+mprintf("\nThe average load current is %f ampere",Iave)
+mprintf("\nTo calculate average current of the SCR:")
+ISCR=Iave-Idave;
+mprintf("\nThe average current of the SCR is %f ampere",ISCR)
diff --git a/3811/CH3/EX3.8/Ex3_8.jpg b/3811/CH3/EX3.8/Ex3_8.jpg Binary files differnew file mode 100644 index 000000000..ab1f1052f --- /dev/null +++ b/3811/CH3/EX3.8/Ex3_8.jpg diff --git a/3811/CH3/EX3.8/Ex3_8.sce b/3811/CH3/EX3.8/Ex3_8.sce new file mode 100644 index 000000000..0dbe554c8 --- /dev/null +++ b/3811/CH3/EX3.8/Ex3_8.sce @@ -0,0 +1,28 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 3
+//example 3.8
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Vab=208;//source voltage in volts
+Vs=Vab/3^(1/2);//rms voltage in volts
+Vm=Vs*2^(1/2);//maximum peak voltage in volts
+R=10;//resistance of the circuit in ohm
+a1=80;//triggering angle 1 in degree
+a2=30;//triggering angle 2 in degree
+if a1<60 then
+ disp(a1,'The current is discontinous')
+else if (a2>60)
+ disp(a2,'The current is discontinous')
+end
+disp('To find the power delivered at a1=80 degree:')
+B1=180;
+p=(((3*Vm^(2))/(8*%pi*10))*(2*(B1-a1)*(%pi/180)+sind(2*a1)-sind(2*B1)));//power delivered when triggering angle a1=180 degree
+P=p*10^-3;//power interms of kilowatt
+disp(P,'The power delivered at the triggering angle 80 degree in kilowatt is')
+disp('To find the power delivered at a2=30 degree:')
+B2=120+a2;
+p1=(((3*Vm^(2))/(8*%pi*10))*(2*(B2-a2)*(%pi/180)+sind(2*a2)-sind(2*B2)));//power delivered when triggering angle a2=30 degree
+P1=p1*10^-3;//power interms of kilowatt
+disp(P1,'The power delivered at the triggering angle 80 degree in kilowatt is')
diff --git a/3811/CH3/EX3.9/Ex3_9.jpg b/3811/CH3/EX3.9/Ex3_9.jpg Binary files differnew file mode 100644 index 000000000..a89e1b7f1 --- /dev/null +++ b/3811/CH3/EX3.9/Ex3_9.jpg diff --git a/3811/CH3/EX3.9/Ex3_9.sce b/3811/CH3/EX3.9/Ex3_9.sce new file mode 100644 index 000000000..73d716810 --- /dev/null +++ b/3811/CH3/EX3.9/Ex3_9.sce @@ -0,0 +1,29 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 3
+//example 3.9
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Vab=208;//source voltage in volts
+Vs=Vab/3^(1/2);//rms voltage in volts
+Vm=Vs*2^(1/2);//maximum peak voltage in volts
+disp('a)To find maximum average voltage across the load:')
+Vavemax=(3*3^(1/2)*Vm)/%pi;
+disp(Vavemax,'maximum average voltage across the load')
+disp('b)To find the triggering angle at the average voltage of the load:')
+xold=1;//assumed value
+c=30;//constant value
+x=asind((%pi/(3*sqrt(3)))-(cosd(xold+c)));
+err=100;//assumed value
+while(err>0.0001)
+ xnew=asind((%pi/(3*sqrt(3)))-(cosd(x+c)));
+ x=xnew;
+ err=abs(xnew-xold);
+ xold=x;
+ end
+disp(x,'The triggering angle in degree is')
+disp('c)To find load voltage when the triggering angle is -30 degree :')
+Vave=(3*3^(1/2)*Vm)/(2*%pi);
+disp(Vave,'Load voltage when the triggering angle is -30 degree in volt is')
+//The part (b) answer given in the book is wrong
diff --git a/3811/CH4/EX4.1/Ex4_1.jpg b/3811/CH4/EX4.1/Ex4_1.jpg Binary files differnew file mode 100644 index 000000000..2515065b3 --- /dev/null +++ b/3811/CH4/EX4.1/Ex4_1.jpg diff --git a/3811/CH4/EX4.1/Ex4_1.sce b/3811/CH4/EX4.1/Ex4_1.sce new file mode 100644 index 000000000..5b7f75468 --- /dev/null +++ b/3811/CH4/EX4.1/Ex4_1.sce @@ -0,0 +1,24 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 4
+//example 4.1
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+m=5000; //mass of the electric bus in kg
+d=1; //diameter of the wheel in m
+r=d/2; //radius of the wheel in m
+v=50; //speed of the bus going to uphill in kg/hr
+a=30; //slope of the hill in degree
+u=0.4; //friction coefficient
+g=9.8; //gravitational acceleration
+Fg=m*g; //gravitational force in newton(N)
+F=Fg*cosd(a); //normal force in newton(N)
+Fl=Fg*sind(a); //load pulling force in newton (N)
+Fr=u*F; //friction force in newton(N)
+Fm=Fl+Fr; //total force seen by motor in newton(N)
+Tm=Fm*r; //Torque seen by the motor in Nm
+omega=v/r; //angular speed
+Pm=Tm*omega; //power consumed by the motor in watt
+Pm=Pm*10^-3; //power consumed by the motor in kilowatt
+disp(Pm,'The power consumed by the motor in kilowatt is:')
diff --git a/3811/CH5/EX5.1/Ex5_1.jpg b/3811/CH5/EX5.1/Ex5_1.jpg Binary files differnew file mode 100644 index 000000000..0de34e10d --- /dev/null +++ b/3811/CH5/EX5.1/Ex5_1.jpg diff --git a/3811/CH5/EX5.1/Ex5_1.sce b/3811/CH5/EX5.1/Ex5_1.sce new file mode 100644 index 000000000..33def8fdb --- /dev/null +++ b/3811/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,17 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 5
+//example 5.1
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+kpie=3; //flux in voltsec
+Vt=600; //voltage in volts
+Ra=2; //armature resistance in ohms
+Ia=5; //armature current at fullload in ampere
+Td=kpie*Ia; //rated torque in Nm
+disp(Td,'The rated torque in Nm is')
+Tst=(Vt*kpie)/Ra; //starting torque
+disp(Tst,'The starting torque in Nm is')
+Ist=Vt/Ra; //starting current
+disp(Ist,'The starting current in ampere is')
diff --git a/3811/CH5/EX5.2/Ex5_2.jpg b/3811/CH5/EX5.2/Ex5_2.jpg Binary files differnew file mode 100644 index 000000000..83353413e --- /dev/null +++ b/3811/CH5/EX5.2/Ex5_2.jpg diff --git a/3811/CH5/EX5.2/Ex5_2.sce b/3811/CH5/EX5.2/Ex5_2.sce new file mode 100644 index 000000000..18c9d91cf --- /dev/null +++ b/3811/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,22 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 5
+//example 5.2
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+l=50; //load in hp
+f=60; //frequency in hertz
+n=1764; //full load speed in rpm
+ns=1800; //synchronous speed of motor in rpm
+Pr=.950; //rotational loss in kilowatts
+Pcu=1.600; //stator copper loss in kilowatt
+Pi=1.200; //iron loss in kilowatt
+Pout=l/1.34; //output power at full load is 50 hp in kilowatt
+Pd=Pout+Pr; //power developed in kilowatt
+s=(ns-n)/ns; //slip of the motor
+Pg=Pd/(1-s);
+Pin=Pg+Pcu+Pi; //input power in kilowatt
+efficiency=Pout/Pin; //motor efficiency
+efficiency=efficiency*100;//efficiency in percentage
+mprintf("The efficiency of the motor is %d percentage",efficiency)
diff --git a/3811/CH5/EX5.3/Ex5_3.jpg b/3811/CH5/EX5.3/Ex5_3.jpg Binary files differnew file mode 100644 index 000000000..8f24efaae --- /dev/null +++ b/3811/CH5/EX5.3/Ex5_3.jpg diff --git a/3811/CH5/EX5.3/Ex5_3.sce b/3811/CH5/EX5.3/Ex5_3.sce new file mode 100644 index 000000000..3e5a9128a --- /dev/null +++ b/3811/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,31 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 5
+//example 5.3
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+l=50;//load in hp
+f=60;//frequency in hertz
+V=440;//voltage of the motor in volts
+p=4;//Number of poles of the motor
+Tmax=2.5;//maximum torque of the motor
+T=1;//motor torque
+smax=0.1;//maximum slip
+ns=(120*f)/p;//synchronous speed in rpm
+disp('a). Motor speed :')
+s=(T/Tmax)*(smax/2);//the equation is obtained from the equation T=3V^2s/wsR2
+n=ns*(1-s);//speed of the motor in rpm
+disp(n,'The speed of the motor at full load in rpm is')
+disp('b).Copper loss of the rotor')
+Pd=l/1.34;//power developed or Pout in kilowatt
+Pcu2=Pd*(s/(1-s));//copper loss in kilowatt which is obtained from two equationsPcu2=Pg*s,Pd=Pg*(1-s)
+Pcu=Pcu2*10^3;//copper loss in watt
+disp(Pcu,'The copper loss of the rotor in watt is')
+disp('c).Starting torque')
+//At starting slip s=1
+omega=(2*%pi*n)/f;
+Pout=Pd*10^3;//Pout value in watts
+Tst=(smax^(2)*Pout)/(s*omega);
+disp(Tst,'The starting torque in Nm is')
+//The answers vary due to round off error
diff --git a/3811/CH5/EX5.4/EX5_4.sce b/3811/CH5/EX5.4/EX5_4.sce new file mode 100644 index 000000000..ffb82f22f --- /dev/null +++ b/3811/CH5/EX5.4/EX5_4.sce @@ -0,0 +1,20 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 5
+//example 5.4
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+R1=3; //stator resistance in ohm
+R2=2; //rotor resistance referred to stator in ohm
+Xeq=10; //equivalent inductive reactance in ohm
+l=10; //voltage reduction in percentage
+V=1; //assumed value of V
+TA=(1*V)^2; //starting torque at the rated voltage
+TB=(0.9*V)^2; //starting torque after 10% voltage reduction
+r=1-TB; //reduction in starting torque
+r=r*100; //reduction in starting torque in percentage
+mprintf("\nThe reduction in starting torque is %f percentage",r)
+Radd=sqrt(R1^(2)+Xeq^(2))-R2;
+mprintf("\nThe resistance added to the rotor circuit to achieve the maximum torque is %f",Radd)
+//The answer given in the book is wrong
diff --git a/3811/CH5/EX5.4/Ex5_4.jpg b/3811/CH5/EX5.4/Ex5_4.jpg Binary files differnew file mode 100644 index 000000000..b22c66b85 --- /dev/null +++ b/3811/CH5/EX5.4/Ex5_4.jpg diff --git a/3811/CH5/EX5.5/Ex5_5.jpg b/3811/CH5/EX5.5/Ex5_5.jpg Binary files differnew file mode 100644 index 000000000..3c4c474bd --- /dev/null +++ b/3811/CH5/EX5.5/Ex5_5.jpg diff --git a/3811/CH5/EX5.5/Ex5_5.sce b/3811/CH5/EX5.5/Ex5_5.sce new file mode 100644 index 000000000..349d43faa --- /dev/null +++ b/3811/CH5/EX5.5/Ex5_5.sce @@ -0,0 +1,23 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 5
+//example 5.5
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+P=40; //load of an industrial plant in Mw
+pf=.85; //power factor lagging
+pfnew=.95 //To improve new power factor
+V=5000; //motor rated voltage in volts
+Xs=5; //synchronous reactance in ohm
+c=200; //constant value given
+Vt=V/3^(1/2);
+a=acosd(pf); //power factor angle of the load in degree
+Ql=P*tand(a); //load reactive power in KVAR
+Qtot=P*tand(acosd(pfnew)); //total reactive power for .95 power factor lagging
+disp(Qtot,'The total reactive power for .95 power factor lagging in KVAR is')
+Qm=Qtot-Ql;
+Vt=(V/sqrt(3));
+Ef=((Qm*Xs)/(3*Vt))+Vt;
+If=Ef/c;
+disp(If,'The excitation current required to improve overall power factor of the plant in A is')
diff --git a/3811/CH5/EX5.6/Ex5_6.jpg b/3811/CH5/EX5.6/Ex5_6.jpg Binary files differnew file mode 100644 index 000000000..dcbfe3c1a --- /dev/null +++ b/3811/CH5/EX5.6/Ex5_6.jpg diff --git a/3811/CH5/EX5.6/Ex5_6.sce b/3811/CH5/EX5.6/Ex5_6.sce new file mode 100644 index 000000000..3caed4519 --- /dev/null +++ b/3811/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,17 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 5
+//example 5.6
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+V=2300; //rated voltage of the synchronous motor in volt
+Vt=V/3^(1/2);
+f=60; //frequency in Hertz
+p=6; //number of poles
+Tl=5000; //constant torque of the load in Nm
+Xs=6; //synchronous reactance of the motor in ohm
+ns=(120*f)/p; //synchronous speed of the motor in rpm
+omegas=(2*%pi*ns)/60;
+Ef=(Tl*omegas*Xs)/(3*Vt); //The minimum excitation that machine must maintain to provide the needed torque
+disp(Ef,'The minimum excitation that machine must maintain to provide the needed torque in volt is:')
diff --git a/3811/CH6/EX6.1/Ex6_1.jpg b/3811/CH6/EX6.1/Ex6_1.jpg Binary files differnew file mode 100644 index 000000000..f28820754 --- /dev/null +++ b/3811/CH6/EX6.1/Ex6_1.jpg diff --git a/3811/CH6/EX6.1/Ex6_1.sce b/3811/CH6/EX6.1/Ex6_1.sce new file mode 100644 index 000000000..65c68b55a --- /dev/null +++ b/3811/CH6/EX6.1/Ex6_1.sce @@ -0,0 +1,35 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 6
+//example 6.1
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Vs=150;//source voltage of DC shunt motor in volt
+n1=1200;//synchronous speed in rpm
+Ra=1;//armature resistance in ohm
+Rf=150;//field resistance in ohm
+I=10;//line current in ampere
+If=(Vs/Rf);//Field current before adding the resistance in ampere
+disp('a)Calculate the resistance that should be added to the armature circuit to reduce the speed by 50%')
+//consider that the motoring point 1 represents without adding resistance & point 2 for the operating point at 50% load reduction
+Ia1=I-If;//armature current without adding resistance
+n2=0.5*n1;//50% speed is reduced
+Ea1=Vs-(Ia1*Ra);//speed equation at operating point 1
+Radd=Ea1/(2*Ia1);//Obtained from the equation of Ea1/Ea2=n1/n2
+disp(Radd,'The resistance which should be added to reduce the speed by 50% in ohm is:')
+disp('b)To calculate the motor efficiency')
+Prloss=100;//rotational loss in watt
+Pfloss=If^(2)*Rf;//field loss in watt
+Paloss=Ia1^(2)*Ra//armature losses in watt
+Pin=Vs*I;//Input power in watt
+Ploss=Prloss+Pfloss+Paloss;//Total losses before adding armature resistance in watt
+Ploss1=Prloss+Pfloss+Paloss*(Ra+Radd);//Total losses after adding armature resistance in watt
+eff=((Pin-Ploss)/Pin)*100;//efficiency of the motor without adding resistance in %
+eff1=((Pin-Ploss1)/Pin)*100;//efficiency of the motor with adding resistance in %
+disp(eff,'The efficiency of the motor without adding resistance in % is:')
+disp(eff1,'The efficiency of the motor with adding resistance in % is:')
+disp('c)To calculate the resistance to be added to the armature for the holding operation')
+//set motor speed equal to zero
+Radd=(Vs/Ia1)-Ra;
+disp(Radd,'The resistance to be added to the armature for the holding operation in ohm is:')
diff --git a/3811/CH6/EX6.3/Ex6_3.jpg b/3811/CH6/EX6.3/Ex6_3.jpg Binary files differnew file mode 100644 index 000000000..8cdcfe289 --- /dev/null +++ b/3811/CH6/EX6.3/Ex6_3.jpg diff --git a/3811/CH6/EX6.3/Ex6_3.sce b/3811/CH6/EX6.3/Ex6_3.sce new file mode 100644 index 000000000..bc3be6507 --- /dev/null +++ b/3811/CH6/EX6.3/Ex6_3.sce @@ -0,0 +1,26 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 6
+//example 6.3
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Vs=150;//source voltage of DC shunt motor in volt
+n1=1200;//synchronous speed in rpm
+Ra=2;//armature resistance in ohm
+Rf=150;//field resistance in ohm
+I=10;//line current in ampere
+If1=(Vs/Rf);//Field current before adding the resistance in ampere
+//Assume the resistance added in the field circuit to reduce the field current by 20%
+If2=.8;//Field current after adding the resistance in ampere
+Ia1=I-If1;//Armature current before inserting the resistance in ampere
+Ia2=(If1*Ia1)/If2;//Armature current after inserting the resistance in ampere
+disp(Ia2,'The armature current after inserting the resistance in ampere is:')
+Ea1=Vs-(Ia1*Ra);
+Ea2=Vs-(Ia2*Ra);
+n2=(If1*n1*Ea2)/(Ea1*If2);
+disp(n2,'The motor speed in rpm is:')
+Radd=(Vs-(If2*Rf))/If2;
+disp(Radd,'The value of added resistance in ohm is:')
+P=If2^(2)*Radd;
+disp(P,'The extra field loss due to the addition of resistance in watt is:')
diff --git a/3811/CH6/EX6.4/Ex6_4.jpg b/3811/CH6/EX6.4/Ex6_4.jpg Binary files differnew file mode 100644 index 000000000..c91f05ccf --- /dev/null +++ b/3811/CH6/EX6.4/Ex6_4.jpg diff --git a/3811/CH6/EX6.4/Ex6_4.sce b/3811/CH6/EX6.4/Ex6_4.sce new file mode 100644 index 000000000..527e1dc65 --- /dev/null +++ b/3811/CH6/EX6.4/Ex6_4.sce @@ -0,0 +1,22 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 6
+//example 6.4
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+L=1;//load of shunt motor in hp
+T=10;//constant torque of motor in Nm
+Ra=5;//armature resistance of the motor in ohm
+KQ=2.5;//The field constant in V sec
+V=120;//source voltage in volt
+f=60;//supply frequency in Hertz
+a=60;//trigerring angle of the converter in degree
+b=150;//conduction period in degree
+Iave=T/KQ;//average current in ampere
+Vm=V*2^(1/2);
+W=((Vm/(2*%pi))*(cosd(a)-cosd(b+a))-(Iave*Ra))/((b/360)*KQ);//angular speed of the motor
+n=W*(f/(2*%pi));
+disp(n,'The speed of the motor in rpm is:')
+Pd=KQ*W*Iave;//power developed by the motor
+disp(Pd,'The power developed by the motor in terms of watt is:')
diff --git a/3811/CH6/EX6.5/Ex6_5.jpg b/3811/CH6/EX6.5/Ex6_5.jpg Binary files differnew file mode 100644 index 000000000..4413b5533 --- /dev/null +++ b/3811/CH6/EX6.5/Ex6_5.jpg diff --git a/3811/CH6/EX6.5/Ex6_5.sce b/3811/CH6/EX6.5/Ex6_5.sce new file mode 100644 index 000000000..09e48bf9a --- /dev/null +++ b/3811/CH6/EX6.5/Ex6_5.sce @@ -0,0 +1,22 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 6
+//example 6.5
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+L=1;//load of shunt motor in hp
+T=10;//constant torque of motor in Nm
+Ra=5;//armature resistance of the motor in ohm
+KQ=2.5;//The field constant in V sec
+V=120;//source voltage in volt
+f=60;//supply frequency in Hertz
+a=60;//trigerring angle of the converter in degree
+b=150;//conduction period in degree
+Iave=T/KQ;//average current in amphere
+Vm=V*2^(1/2);
+W=((Vm/%pi)*(cosd(a)-cosd(b+a))-(Iave*Ra))/((b/180)*KQ);//angular speed of the motor
+n=W*(60/(2*%pi));
+mprintf("\nThe speed of the motor is %f rpm",n)
+Pd=KQ*W*Iave;//power developed by the motor
+mprintf("\nThe power developed by the motor is %f watt",Pd)
diff --git a/3811/CH6/EX6.6/Ex6_6.jpg b/3811/CH6/EX6.6/Ex6_6.jpg Binary files differnew file mode 100644 index 000000000..23e8cefe2 --- /dev/null +++ b/3811/CH6/EX6.6/Ex6_6.jpg diff --git a/3811/CH6/EX6.6/Ex6_6.sce b/3811/CH6/EX6.6/Ex6_6.sce new file mode 100644 index 000000000..b364f178c --- /dev/null +++ b/3811/CH6/EX6.6/Ex6_6.sce @@ -0,0 +1,18 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 6
+//example 6.6
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+T=60;//Constant load torque in Nm
+V=120;//supply voltage in volt
+KQ=2.5;//Field constant of the motor
+Ra=2;//Armature resistance in ohm
+n=200;//speed of the motor in rpm
+Vm=V*2^(1/2);//maximum voltage in volt
+w=(2*%pi*n)/T;//angular speed
+Iave=T/KQ;
+b=((%pi/(2*Vm))*((Ra*Iave)+(KQ*w)));
+alpha=acosd(b);
+mprintf("\nThe triggering angle of the motor is %f degree",alpha)
diff --git a/3811/CH6/EX6.7/Ex6_7.jpg b/3811/CH6/EX6.7/Ex6_7.jpg Binary files differnew file mode 100644 index 000000000..7f7992d16 --- /dev/null +++ b/3811/CH6/EX6.7/Ex6_7.jpg diff --git a/3811/CH6/EX6.7/Ex6_7.sce b/3811/CH6/EX6.7/Ex6_7.sce new file mode 100644 index 000000000..d13c2228c --- /dev/null +++ b/3811/CH6/EX6.7/Ex6_7.sce @@ -0,0 +1,27 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 6
+//example 6.7
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Ra=2;//armature resistance in ohm
+Rf=3;//field resistance in ohm
+V=320;//terminal voltage in volt
+T=60;//full load torque in Nm
+n=600;//motor speed in rpm
+mprintf("\nCalculate the field current:")
+KC=0.248;//calculated by solving two equations
+Ia=sqrt(T/KC);
+mprintf("\nThe field current is %f A",Ia)
+mprintf("\nCalculate the motor voltage:")
+n1=400;
+omega1=(2*%pi*n1)/T;
+Vt=Ia*(Ra+Rf+(KC*omega1));
+mprintf("\nThe motor voltage is %f volt",Vt)
+mprintf("\nCalculate the motor speed :")
+AR=Ra/Rf;
+Ia=sqrt(T/(KC*AR));
+w=(V/(KC*AR*Ia))-((Ra+(AR*Rf))/(KC*AR));
+n2=(w*T)/(2*%pi);
+mprintf("\nThe speed of the motor is %f rpm",n2)
diff --git a/3811/CH7/EX7.1/Ex7_1.jpg b/3811/CH7/EX7.1/Ex7_1.jpg Binary files differnew file mode 100644 index 000000000..19d9fe6e1 --- /dev/null +++ b/3811/CH7/EX7.1/Ex7_1.jpg diff --git a/3811/CH7/EX7.1/Ex7_1.sce b/3811/CH7/EX7.1/Ex7_1.sce new file mode 100644 index 000000000..1f35287fb --- /dev/null +++ b/3811/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,57 @@ +//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 7
+//example 7.1
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+V=480;//terminal voltage in volt
+p=6;//number of poles
+f=60;//frequency in hertz
+Pout=30*746;//rated output voltage in volts
+R1=0.5;//stator resistance in ohm
+R2=0.5;//rotor resistance reffered to stator in ohm
+Protational=500;//rotational loss in watt
+Pcu=600;//core losses in watt
+c=0.05;//cost of energy
+t1=100;//time which the motor operates in a week
+Pd=Pout+Protational;//developed power in watt
+a=1;// the s^2 value from the equation s^2-s+0.039
+b=-1;//the s value from the equation s^2-s+0.039
+c=0.039;//the constant value from the equation s^2-s+0.039
+s1=(-(b)+sqrt((b)^2-(4*a*c)))/(2*a);
+s2=(-(b)-sqrt((b)^2-(4*a*c)))/(2*a);//roots to find the value of s from the equation s^2-s+0.03
+s=s2;//s1 is very large hence neglected thus slip=s2
+a1=120;//constant value in the formula
+ns=(a1*f)/p;//synchronous speed in rpm
+n=ns*(1-s);
+mprintf("\nThe speed of the motor is %d rpm",n)
+I2=sqrt((Pd*s)/(3*R2*(1-s)));//motor current in amps
+Pwinding=3*I2^(2)*(R1+R2);
+Pin=Pd+Pwinding+Pcu;
+eta=Pout/Pin;//efficiency of the motor
+eta=eta*100;//efficiency in percentage
+mprintf("\nThe efficiency of the motor without added resistance is %d percentage",eta)
+nnew=0.8*n;//speed after 20% reduction
+snew=(ns-nnew)/ns;
+rmsnew=nnew/60;//speed in rps
+omegadnew=(2*%pi*rmsnew);
+rps=n/60;//speed in rps
+omega=(2*%pi*rps);
+Pdnew=(Pd*omegadnew)/omega;
+Radd=R2*((snew-s)/s);//resistance added to reduce 20% of the speed
+mprintf("\nThe resistance added to reduce 20 percentage of the speed is %f ohm",Radd)
+I2new=sqrt((Pdnew*snew)/(3*(R2+Radd)*(1-snew)))
+Pwindingnew=3*I2^(2)*(R1+R2+Radd);
+Pinnew=Pdnew+Pwindingnew+Pcu;
+Poutnew=Pdnew-Protational;
+etanew=Poutnew/Pinnew;
+etanew=etanew*100;
+mprintf("\nThe efficiency of the motor with added resistance is %d percentage",etanew)
+Padd=3*I2^(2)*Radd;
+Padd=Padd*10^(-3);
+t=100*52;//total hours of operation in one year
+C=Padd*t*c;
+mprintf("\nThe annual cost of the operating motor is $%f",C)
+//The answer may vary due to roundoff error
+
diff --git a/3811/CH7/EX7.10/Ex7_10.jpg b/3811/CH7/EX7.10/Ex7_10.jpg Binary files differnew file mode 100644 index 000000000..dfb908e92 --- /dev/null +++ b/3811/CH7/EX7.10/Ex7_10.jpg diff --git a/3811/CH7/EX7.10/Ex7_10.sce b/3811/CH7/EX7.10/Ex7_10.sce new file mode 100644 index 000000000..529847e30 --- /dev/null +++ b/3811/CH7/EX7.10/Ex7_10.sce @@ -0,0 +1,23 @@ +//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 7
+//example 7.10
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+V=480; //terminal voltage in volt
+p=6; //number of poles
+f=60; //frequency in hertz
+Xl=3; //inductive reactance in ohm
+Rs=.2; //stator resistance in ohm
+X2=2; //rotor reactance in ohm
+R2=0.1; //resistance reffered to the stator in ohm
+Xm=120; //magnetizing reactance in the linear region in ohm
+Xm1=42; //magnetizing reactance in the saturation region in ohm
+Td=100; //constant load torque in Nm
+n=900; //speed of the motor in rpm
+Is=21.6;
+rps=n/60;
+omega=(2*%pi*rps);
+f=(((3*Is^(2)*R2)/((2*%pi*Td)/f))+n)*(p/Xm);
+mprintf("\nThe frequency of the CSI to drive the machine at 900 rpm is %f Hz",f)
diff --git a/3811/CH7/EX7.2/Ex7_2.jpg b/3811/CH7/EX7.2/Ex7_2.jpg Binary files differnew file mode 100644 index 000000000..d24de09e2 --- /dev/null +++ b/3811/CH7/EX7.2/Ex7_2.jpg diff --git a/3811/CH7/EX7.2/Ex7_2.sce b/3811/CH7/EX7.2/Ex7_2.sce new file mode 100644 index 000000000..058a41a2c --- /dev/null +++ b/3811/CH7/EX7.2/Ex7_2.sce @@ -0,0 +1,37 @@ +//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 7
+//example 7.2
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+V=480;//terminal voltage in volt
+p=4;//number of poles
+f=60;//frequency in hertz
+Td=60;//constant torque load in Nm
+R1=0.4;
+R2=0.1;
+Xeq=4;
+N1=2;
+N2=1;
+n=1000;//speed of the motor in rpm
+a1=120;
+ns=(a1*f)/p;
+s=(ns-n)/ns;
+R21=R2*(N1/N2)^(2);
+theta=atand(Xeq/(R1+(R21/s)));
+a=0.05;
+b=8;
+c=-80.74;
+Vi11=(-b+sqrt(8^2-(4*a*c)))/(2*a);//obtained from the equation 0.05Vi^2+8Vi-80.74
+Vi12=(-b-sqrt(8^2-(4*a*c)))/(2*a);//obtained from the equation 0.05Vi^2+8Vi-80.74
+Vi1=Vi11;//because negative voltage is neglected
+Vi=(Vi1*N2)/N1;
+c1=122;//calculated constant values of the equation
+c2=1.85;//calculated constant values of the equation
+I2=(c1-Vi1)/c2;
+V1=sqrt(3)*Vi;//line to line injected voltage
+mprintf("\nThe magnitude of injected voltage is %f volt",V1)
+Pr=3*I2*Vi1*cosd(theta);
+mprintf("\nThe power delivered by the source of injected voltage is %f watt",Pr)
+//The answers vary due to round off error
diff --git a/3811/CH7/EX7.3/Ex7_3.jpg b/3811/CH7/EX7.3/Ex7_3.jpg Binary files differnew file mode 100644 index 000000000..9abadd43b --- /dev/null +++ b/3811/CH7/EX7.3/Ex7_3.jpg diff --git a/3811/CH7/EX7.3/Ex7_3.sce b/3811/CH7/EX7.3/Ex7_3.sce new file mode 100644 index 000000000..2837d90bb --- /dev/null +++ b/3811/CH7/EX7.3/Ex7_3.sce @@ -0,0 +1,35 @@ +//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 7
+//example 7.3
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+V=480;//terminal voltage in volt
+p=4;//number of poles
+f=60;//frequency in hertz
+Tl=60;//load torque in Nm
+R1=0.4;
+R2=0.1;
+Xeq=4;
+N1=2;//obtained from the equation N1/N2=2
+n=1000;//motor speed in rpm
+a=120;
+ns=(a*f)/p;
+rps=ns/60;
+omegas=(2*%pi*rps);
+mprintf("\na)Without injected voltage Vi=0v")
+Vs=V/sqrt(3);
+R21=R2*(N1^(2));
+I2st=Vs/sqrt((R1+R21)^(2)+Xeq^(2));//starting current in A
+I2st=ceil(I2st)//rounding off the starting current
+Tst=(3*I2st^(2)*R1)/omegas;//staring torque
+mprintf("\nThe starting current without injected voltage is %f A",I2st)
+mprintf("\nThe starting torque without injected voltage is %f Nm",Tst)
+mprintf("\nb)With injected voltage Vi=9.5v")
+Vi=9.5;//injected voltage in volt
+I2st1=(Vs-Vi)/sqrt((R1+R21)^(2)+Xeq^(2));//starting current with injected resistance in A
+thetar=atand(Xeq/(R1+R21));
+Tst1=(3/omegas)*((I2st1^2*R1)+(I2st*Vi)*cosd(thetar));
+mprintf("\nThe starting current with injected voltage is %f A",I2st1)
+mprintf("\nThe starting torque with injected voltage is %f Nm",Tst1)
diff --git a/3811/CH7/EX7.4/Ex7_4.jpg b/3811/CH7/EX7.4/Ex7_4.jpg Binary files differnew file mode 100644 index 000000000..463dc9c04 --- /dev/null +++ b/3811/CH7/EX7.4/Ex7_4.jpg diff --git a/3811/CH7/EX7.4/Ex7_4.sce b/3811/CH7/EX7.4/Ex7_4.sce new file mode 100644 index 000000000..161dcd5fe --- /dev/null +++ b/3811/CH7/EX7.4/Ex7_4.sce @@ -0,0 +1,49 @@ +//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 7
+//example 7.4
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+V=480;//terminal voltage in volt
+p=6;//number of poles
+f=60;//frequency in hertz
+Tout=300;//constant load torque in Nm
+N1=1;
+N2=1;
+Prot=1e3;//rotational power in watt
+alpha=120;//trigerring angle in degree
+mprintf("\nTo find speed of the motor:")
+a=120;//constant value
+ns=(a*f)/p;
+n=ns*(1+((N1/N2)*cosd(alpha)));
+mprintf("\nThe speed of the motor is %f rpm",n)
+s=(ns-n)/ns;
+mprintf("\nTo compute current in DC link:")
+rps=n/60;//speed in rps
+omega=(2*%pi*rps);
+Pout=Tout*omega;
+Pd=Pout+Prot;
+K=(3*sqrt(2))/%pi;
+I=(Pd/(1-s))/(K*V);
+mprintf("\nThe current in DC link is %f A",I)
+mprintf("\nTo compute rotor rms current:")
+itr=sqrt(2/3);//solved integration value
+I2=itr*I;
+mprintf("\nThe rotor rms current is %f A",I2)
+mprintf("\nTo compute stator rms current:")
+I1=(N1/N2)*I2
+mprintf("\nThe stator rms current is %f A",I1)
+mprintf("\nTo compute power returned to the source:")
+Pr=Pd;
+Pr=Pr*10^(-3);
+mprintf("\nThe power returned to the source is %f watt",Pr)
+mprintf("\nTo compute the losses when additional resistance is added:")
+Td=Pd/omega;
+rpss=ns/60;//speed in rps
+omegas=(2*%pi*rpss);
+Radd=(V^2*s)/(Td*omegas);//additional resistance added in ohm
+I2=sqrt(((s/(1-s))*(Pd/3))/Radd);//rotor current
+Padd=3*I2^2*Radd;//additional power loss
+Padd=Padd*10^(-3);
+mprintf("\nThe power losses when additional resistance added is %f watt",Padd)
diff --git a/3811/CH7/EX7.5/Ex7_5.jpg b/3811/CH7/EX7.5/Ex7_5.jpg Binary files differnew file mode 100644 index 000000000..04219237f --- /dev/null +++ b/3811/CH7/EX7.5/Ex7_5.jpg diff --git a/3811/CH7/EX7.5/Ex7_5.sce b/3811/CH7/EX7.5/Ex7_5.sce new file mode 100644 index 000000000..860fc8c16 --- /dev/null +++ b/3811/CH7/EX7.5/Ex7_5.sce @@ -0,0 +1,25 @@ +//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 7
+//example 7.5
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+V=480;//terminal voltage in volt
+p=6;//number of poles
+Pout=30*746;//output power interms of watt
+f=60;//frequency in hertz
+R1=0.5;//stator resistance in ohm
+R2=0.5;//rotor resistance reffered to stator in ohm
+ns=1200;//synchronus speed in rpm
+rps=ns/60;
+omegas=(2*%pi*rps);//angular synchronous speed
+Td=120;//load torque constant
+s=(Td*omegas*R2)/V^2;
+n=ns*(1-s);//the speed at full voltage in rpm
+n=ceil(n)
+Vnew=0.8*V;//when voltage is reduced by 20%
+snew=(V^2*s)/Vnew^2;//new slip after the reduction of 20% of the rated voltage
+nnew=ns*(1-snew);//new speed of the motor in rpm
+nnew=ceil(nnew)
+mprintf("The speed of the motor after the reduction of the rated voltage is %d rpm",nnew)
diff --git a/3811/CH7/EX7.6/Ex7_6.jpg b/3811/CH7/EX7.6/Ex7_6.jpg Binary files differnew file mode 100644 index 000000000..c2da97297 --- /dev/null +++ b/3811/CH7/EX7.6/Ex7_6.jpg diff --git a/3811/CH7/EX7.6/Ex7_6.sce b/3811/CH7/EX7.6/Ex7_6.sce new file mode 100644 index 000000000..99185d778 --- /dev/null +++ b/3811/CH7/EX7.6/Ex7_6.sce @@ -0,0 +1,44 @@ +//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 7
+//example 7.6
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+V=480;//terminal voltage in volt
+p=2;//number of poles
+f=60;//frequency in hertz
+Xeq=4;//inductive reactance in ohm
+R1=0.2;//stator resistance in ohm
+R2=0.3;//rotor resistance reffered to stator in ohm
+Td=60;//driving constant load torque in Nm
+n=3500;//speed of the motor in rpm
+a=120;//constant value
+ns=(a*f)/p;//synchronous speed in rpm
+mprintf("\nTo compute the maximum frequency of the supply voltage:")
+Tmax=Td;
+rpss=ns/60;
+omegas=(2*%pi*rpss);
+fmax=sqrt((V^2*f^2)/(Tmax*2*omegas*4));
+mprintf("\nThe maximum frequency of the supply voltage is %f Hz",fmax)
+mprintf("\nTo calculate the motor current at f and fmax:")
+s=(ns-n)/ns;//slip at 60Hz
+Vs=V/sqrt(3);
+I2=Vs/sqrt((R1+(R2/s))^2+Xeq^2);
+mprintf("\nThe motor current at 60 Hz is %f A",I2)
+Xeqmax=(fmax/f)*Xeq;
+smax=R2/sqrt(R1^2+Xeqmax^2);
+nmax=((a*fmax)/p)*(1-smax);
+I2max=Vs/sqrt((R1+(R2/smax))^2+Xeqmax^2);
+mprintf("\nThe motor current at 67.7Hz is %f A",I2max)
+mprintf("\nTo calculate the power delivered to the load at f and fmax:")
+rps=n/60;
+omega=(2*%pi*rps);
+Pd=Td*omega;//developed power at 60Hz
+Pd=Pd*10^(-3);//developed power in kilowatt
+mprintf("\nThe power delivered to the load at 60Hz is %f Kw",Pd)
+rpsmax=nmax/60;
+omegamax=(2*%pi*rpsmax);
+Pdmax=Td*omegamax;//developed power at 67.7Hz
+Pdmax=Pdmax*10^(-3);//developed power in kilowatt
+mprintf("\nThe power delivered to the load at 67.7Hz is %f Kw",Pdmax)
diff --git a/3811/CH7/EX7.7/Ex7_7.jpg b/3811/CH7/EX7.7/Ex7_7.jpg Binary files differnew file mode 100644 index 000000000..e5c1c41c3 --- /dev/null +++ b/3811/CH7/EX7.7/Ex7_7.jpg diff --git a/3811/CH7/EX7.7/Ex7_7.sce b/3811/CH7/EX7.7/Ex7_7.sce new file mode 100644 index 000000000..7f08ac482 --- /dev/null +++ b/3811/CH7/EX7.7/Ex7_7.sce @@ -0,0 +1,27 @@ +//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 7
+//example 7.7
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+V=480;//terminal voltage in volt
+p=2;//number of poles
+fst=60;//frequency in hertz
+f=50;//decreased frequency in Hz
+Xeq=4;//inductive reactance in ohm
+R1=0.2;//stator resistance in ohm
+R2=0.3;//rotor resistance reffered to stator in ohm
+Td=60;//driving constant load torque in Nm
+n=3500;//speed of the motor in rpm
+ns=(120*f)/p;//synchronous speed in rpm
+Vs=V/sqrt(3);
+rps=ns/60;
+omegas=(2*%pi*rps);
+s=(Td*omegas*R2)/V^2;
+n=ns*(1-s);//the new motor speed at 50Hz in rpm
+mprintf("\nThe new motor speed at 50Hz is %f rpm",n)
+I2st=Vs/sqrt((R1+R2)^(2)+Xeq^(2));//starting current in A
+Xeqnew=(f/fst)*Xeq;//inductive reactance at 50Hz
+I2stnew=Vs/sqrt((R1+R2)^(2)+Xeqnew^(2));//starting current at 50Hz in A
+mprintf("\nThe starting current at 50Hz is %f A",I2stnew)
diff --git a/3811/CH7/EX7.8/Ex7_8.jpg b/3811/CH7/EX7.8/Ex7_8.jpg Binary files differnew file mode 100644 index 000000000..51bc4807c --- /dev/null +++ b/3811/CH7/EX7.8/Ex7_8.jpg diff --git a/3811/CH7/EX7.8/Ex7_8.sce b/3811/CH7/EX7.8/Ex7_8.sce new file mode 100644 index 000000000..9f50eccee --- /dev/null +++ b/3811/CH7/EX7.8/Ex7_8.sce @@ -0,0 +1,36 @@ +//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 7
+//example 7.8
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+V=480;//terminal voltage in volt
+p=2;//number of poles
+f=60;//frequency in hertz
+fd=50;//decreased frequency in Hz
+Xeq=4;//inductive reactance in ohm
+R1=0.2;//stator resistance in ohm
+R2=0.3;//rotor resistance reffered to stator in ohm
+Td=60;//driving constant load torque in Nm
+n=3500;//speed of the motor in rpm
+VFR=V/f;//voltage frequency ratio
+Vnew=fd*VFR;
+a=120;//constant value
+ns=(a*fd)/p;//synchronous speed in rpm
+Vs=V/sqrt(3);
+rps=n/60;
+omegas=(2*%pi*rps);
+s=(Td*omegas*R2)/Vnew^2;
+n=ns*(1-s);//the new motor speed at 50Hz in rpm
+rpss=ns/60;
+omega=(2*%pi*rpss)/60;
+mprintf("\nTo compute the starting current at 60Hz,480v:")
+I2st=Vs/sqrt((R1+R2)^(2)+Xeq^(2));//starting current in A
+mprintf("\nThe starting current at 60Hz,480v is %f A",I2st)
+mprintf("\nTo compute the starting current at 50Hz,400v:")
+Vsnew=Vnew/sqrt(3);
+Xeqnew=(fd/f)*Xeq;//inductive reactance at 50Hz
+I2stnew=Vsnew/sqrt((R1+R2)^(2)+Xeqnew^(2));//starting current at 50Hz in A
+mprintf("\nThe starting current at 50Hz,400v is %f A",I2stnew)
+mprintf("\nThe starting current is almost unchanged due to the v/f control")
diff --git a/3811/CH7/EX7.9/Ex7_9.jpg b/3811/CH7/EX7.9/Ex7_9.jpg Binary files differnew file mode 100644 index 000000000..bdd6b7839 --- /dev/null +++ b/3811/CH7/EX7.9/Ex7_9.jpg diff --git a/3811/CH7/EX7.9/Ex7_9.sce b/3811/CH7/EX7.9/Ex7_9.sce new file mode 100644 index 000000000..52652c7e3 --- /dev/null +++ b/3811/CH7/EX7.9/Ex7_9.sce @@ -0,0 +1,30 @@ +//Book Name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 7
+//example 7.9
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+V=480;//terminal voltage in volt
+p=6;//number of poles
+f=60;//frequency in hertz
+Xl=3;//inductive reactance in ohm
+Rs=.2;//stator resistance in ohm
+X2=2;//rotor reactance in ohm
+R2=0.1;//resistance reffered to the stator in ohm
+Xm=120;//magnetizing reactance in the linear region in ohm
+Xm1=42;//magnetizing reactance in the saturation region in ohm
+Td=100;//constant load torque in Nm
+n=900;//speed of the motor in rpm
+ns=(120*f)/p;//synchronous speed of the machine in rpm
+s=(ns-n)/ns;//slip of the machine
+//If the machine is in the linear region
+rps=ns/60;
+omegas=(2*%pi*rps);
+Is=sqrt(((Td*s*omegas)*((R2/s)^2+(X2+Xm)^2))/(3*Xm^2*R2));
+costheta=0.7;//assumed power factor value
+I1rated=(Td*omegas)/(sqrt(3)*V*costheta);
+mprintf("\nThe input current if the machine is in the linear region is %f A",I1rated)
+//if the machine is in saturation region
+Is1=sqrt(((Td*s*omegas)*((R2/s)^2+(X2+Xm1)^2))/(3*Xm^2*R2));
+mprintf("\nThe input current if the machine is in the saturation region is %f A",Is1)
diff --git a/3811/CH9/EX9.1/Ex9_1.jpg b/3811/CH9/EX9.1/Ex9_1.jpg Binary files differnew file mode 100644 index 000000000..58ae219ab --- /dev/null +++ b/3811/CH9/EX9.1/Ex9_1.jpg diff --git a/3811/CH9/EX9.1/Ex9_1.sce b/3811/CH9/EX9.1/Ex9_1.sce new file mode 100644 index 000000000..c2a91f6a8 --- /dev/null +++ b/3811/CH9/EX9.1/Ex9_1.sce @@ -0,0 +1,50 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 9
+//example 9.1
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+V=440;//source voltage in volt
+Ia=76;//armature current in ampere
+ns=1000;//speed of the DC shunt motor in rpm
+Ra=.377;//armature resistance of the motor in ohm
+Rf=110;//field resistance of the motor in ohm
+Prloss=1000;//rotational losses in watt
+se=60;//seconds for 1 minute
+Ea=V-(Ra*Ia);
+rps=ns/se;
+omega=(2*%pi*rps);//angular speed of the motor
+KQ=Ea/omega;//field constant
+disp('a) To calculate no load speed of the motor:')
+omegao=V/KQ;//angular no load speed
+no=(omegao*se)/(2*%pi);
+mprintf("The no load speed of the motor in rpm is %f",no)
+disp('b)To calculate motor speed when Ia=60 ampere:')
+Ia3=60;
+omega3=(V+(Ra*Ia3))/KQ;
+n3=(omega3*se)/(2*%pi);
+mprintf("The speed of the motor in rpm is %f",n3)
+disp('c)To calculate the torque developed during regenerative braking:')
+Tl3=KQ*Ia3;
+mprintf("The torque developed during regenerative braking in Nm is %f",Tl3)
+disp('d)To calculate Ea during regenerative braking:')
+Ea3=KQ*omega3;
+mprintf("The back emf in volt is %f",Ea3)
+disp('e)Power delivered by the source')
+If=V/Rf;
+I1=Ia+If;
+Ps=I1*V;
+mprintf("The power delivered by the source in watt is %f",Ps)
+disp('f)To calculate terminal current under regenerative braking:')
+I3=Ia3-If;
+mprintf('The terminal current under regenerative braking in ampere is %f',I3)
+disp('g)To calculate power generater during regenerative braking')
+Pg=Ea3*Ia3;
+mprintf("power generater during regenerative braking in watt is %f",Pg)
+disp('h)To calculate total losses under regenerative braking')
+Ploss=(Ra*(Ia3^(2)))+((V^(2))/Rf)+Prloss;
+mprintf("The total losses under regenerative braking in watt is %f",Ploss)
+disp('i)To calculate power delivered under regenerative braking:')
+Pd=Pg-Ploss;
+mprintf("The power delivered under regenerative braking in watt is %f",Pd)
diff --git a/3811/CH9/EX9.2/Ex9_2.jpg b/3811/CH9/EX9.2/Ex9_2.jpg Binary files differnew file mode 100644 index 000000000..258426fb2 --- /dev/null +++ b/3811/CH9/EX9.2/Ex9_2.jpg diff --git a/3811/CH9/EX9.2/Ex9_2.sce b/3811/CH9/EX9.2/Ex9_2.sce new file mode 100644 index 000000000..90f51ef35 --- /dev/null +++ b/3811/CH9/EX9.2/Ex9_2.sce @@ -0,0 +1,15 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 9
+//example 9.2
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Ib=40;//current of the motor in ampere
+Rb=2;//braking resistance in ohm
+Ra=0.377;//armature resistance in ohm
+KQ=3.93;//field constant
+omega=-(Ib*(Ra+Rb))/KQ;//angular speed in rad/sec
+se=60;//seconds in 1 minute
+n=omega*(se/(2*%pi));
+mprintf("The speed at steady state operating point in rpm is %f",n)
diff --git a/3811/CH9/EX9.3/Ex9_3.jpg b/3811/CH9/EX9.3/Ex9_3.jpg Binary files differnew file mode 100644 index 000000000..8d9686bc2 --- /dev/null +++ b/3811/CH9/EX9.3/Ex9_3.jpg diff --git a/3811/CH9/EX9.3/Ex9_3.sce b/3811/CH9/EX9.3/Ex9_3.sce new file mode 100644 index 000000000..df2e842da --- /dev/null +++ b/3811/CH9/EX9.3/Ex9_3.sce @@ -0,0 +1,20 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 9
+//example 9.3
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Ra=.5;//armature resistance in ohm
+KQ=3;//field constant
+V=277;//source voltage in volt
+Tup=100;//upward directional load torque in Nm
+a=20;//triggering angle in degree
+Tdw=200;//downward directional load torque in Nm
+Vm=V*sqrt(2);
+Veq=((2*Vm)/%pi)*cosd(a);
+omega1=((Veq/KQ))-((Ra*Tup)/KQ^(2));
+n1=omega1*(60/(2*%pi));//downward speed in rpm
+b1=((-KQ*omega1)+((Ra*Tdw)/KQ))/((2*Vm)/%pi);
+alpha2=acosd(b1);
+mprintf("The triggering angle required to keep the downward speed equal in magnitude to the upward speed in degree is %f",alpha2)
diff --git a/3811/CH9/EX9.4/Ex9_4.jpg b/3811/CH9/EX9.4/Ex9_4.jpg Binary files differnew file mode 100644 index 000000000..1b3ade662 --- /dev/null +++ b/3811/CH9/EX9.4/Ex9_4.jpg diff --git a/3811/CH9/EX9.4/Ex9_4.sce b/3811/CH9/EX9.4/Ex9_4.sce new file mode 100644 index 000000000..8d1c04637 --- /dev/null +++ b/3811/CH9/EX9.4/Ex9_4.sce @@ -0,0 +1,15 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 9
+//example 9.4
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Ra=.5;//armature resistance in ohm
+KQ=3;//field constant
+V=277;//source voltage in volt
+Tup=100;//upward directional load torque in Nm
+Vm=V*sqrt(2);
+b1=((Ra*Tup)/KQ)/((2*Vm)/%pi);
+alpha3=acosd(b1);//triggering angle at the upward motion
+mprintf("The triggering angle at the motor changes during the upward motion to keep the motor constant in degree is %f",alpha3)
diff --git a/3811/CH9/EX9.5/Ex9_5.jpg b/3811/CH9/EX9.5/Ex9_5.jpg Binary files differnew file mode 100644 index 000000000..21cc46297 --- /dev/null +++ b/3811/CH9/EX9.5/Ex9_5.jpg diff --git a/3811/CH9/EX9.5/Ex9_5.sce b/3811/CH9/EX9.5/Ex9_5.sce new file mode 100644 index 000000000..44dccd75b --- /dev/null +++ b/3811/CH9/EX9.5/Ex9_5.sce @@ -0,0 +1,20 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 9
+//example 9.5
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Ra=1;//armature resistance in ohm
+KQ=3;//field constant
+V=320;//Terminal voltage in volts
+n=1000;//motor speed in rpm
+omega=(2*%pi*n)/60;
+Ea1=KQ*omega;
+Ia=(V-Ea1)/Ra;//normal field current in ampere
+Ib=2*Ia;//maximum braking current which is twice the armature voltage in A
+Rb=-(V+Ea1+(Ib*Ra))/Ib;//braking resistance
+Rb=abs(Rb);
+mprintf("The maximum braking resistance in ohm is %f",Rb)
+//the answer given in the book is wrong
+
diff --git a/3811/CH9/EX9.6/Ex9_6.jpg b/3811/CH9/EX9.6/Ex9_6.jpg Binary files differnew file mode 100644 index 000000000..3b171eab9 --- /dev/null +++ b/3811/CH9/EX9.6/Ex9_6.jpg diff --git a/3811/CH9/EX9.6/Ex9_6.sce b/3811/CH9/EX9.6/Ex9_6.sce new file mode 100644 index 000000000..f3a19a7e3 --- /dev/null +++ b/3811/CH9/EX9.6/Ex9_6.sce @@ -0,0 +1,21 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 9
+//example 9.6
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Ra=1;//armature resistance in ohm
+KQ=3;//field constant
+V=480;//Terminal voltage in volts
+Tl=120;//load torque in Nm
+alpha=30;//triggering angle of SCR 1 and 2
+Vm=V*sqrt(2);
+Iave1=Tl/KQ;
+omega1=(((2*Vm)/%pi)*cosd(alpha)-(Iave1*Ra))/KQ;
+se=60;//seconds in one minute
+n1=(omega1*se)/(2*%pi);
+Ib=-3*Iave1;
+b1=-((KQ*omega1)-(3*Iave1))/((2*Vm)/%pi);
+alpha2=acosd(b1);
+mprintf("The triggering angle for scr 3 and 4 to reduce the minimum braking current in degree is %f",alpha2)
diff --git a/3811/CH9/EX9.7/Ex9_7.jpg b/3811/CH9/EX9.7/Ex9_7.jpg Binary files differnew file mode 100644 index 000000000..8cd93624d --- /dev/null +++ b/3811/CH9/EX9.7/Ex9_7.jpg diff --git a/3811/CH9/EX9.7/Ex9_7.sce b/3811/CH9/EX9.7/Ex9_7.sce new file mode 100644 index 000000000..2a3665f71 --- /dev/null +++ b/3811/CH9/EX9.7/Ex9_7.sce @@ -0,0 +1,18 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 9
+//example 9.7
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Ra=1;//armature resistance in ohm
+KQ=3;//field constant
+V=480;//Terminal voltage in volts
+Tl=120;//load torque in Nm
+Vm=V*sqrt(2);
+Iave1=Tl/KQ;
+omega3=0;//motor speed at holding condition
+Iave3=-Iave1;
+b1=((KQ*omega3)+(Ra*Iave3))/-((2*Vm)/%pi);
+alpha2=acosd(b1);
+mprintf("The triggering angle for scr 3 and 4 in degree is %f",alpha2)
diff --git a/3811/CH9/EX9.8/Ex9_8.jpg b/3811/CH9/EX9.8/Ex9_8.jpg Binary files differnew file mode 100644 index 000000000..f51930277 --- /dev/null +++ b/3811/CH9/EX9.8/Ex9_8.jpg diff --git a/3811/CH9/EX9.8/Ex9_8.sce b/3811/CH9/EX9.8/Ex9_8.sce new file mode 100644 index 000000000..1cc4c729c --- /dev/null +++ b/3811/CH9/EX9.8/Ex9_8.sce @@ -0,0 +1,18 @@ +//Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi
+//chapter 9
+//example 9.8
+//edition 1
+//publisher and place:Nelson Engineering
+clc;
+clear;
+Ra=0.5;//armature resistance in ohm
+KQ=3;//field resistance
+V=200;//source voltage in volt
+T=180;//troque of the forklift in Nm
+V1=-30;//terminal voltage of the motor in volt
+omega5=((V1/KQ))-((Ra*T)/KQ^(2));
+se=60;//seconds in one minute
+n5=omega5*(se/(2*%pi));//new steady state speed at point 5 in rpm
+mprintf("The new steady state speed in is %f rpm",n5)
+I5=(V1-(KQ*omega5))/Ra;//current at point 5
+mprintf("\n The armature current at new speed in is %d A",I5)
|