summaryrefslogtreecommitdiff
path: root/2672
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2672
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2672')
-rwxr-xr-x2672/CH1/EX1.1/Ex1_1.sce13
-rwxr-xr-x2672/CH1/EX1.10/Ex1_10.sce21
-rwxr-xr-x2672/CH1/EX1.11/Ex1_11.sce17
-rwxr-xr-x2672/CH1/EX1.12/Ex1_12.sce17
-rwxr-xr-x2672/CH1/EX1.13/Ex1_13.sce15
-rwxr-xr-x2672/CH1/EX1.14/Ex1_14.sce26
-rwxr-xr-x2672/CH1/EX1.15/Ex1_15.sce20
-rwxr-xr-x2672/CH1/EX1.16/Ex1_16.sce25
-rwxr-xr-x2672/CH1/EX1.17/Ex1_17.sce22
-rwxr-xr-x2672/CH1/EX1.18/Ex1_18.sce28
-rwxr-xr-x2672/CH1/EX1.19/Ex1_19.sce23
-rwxr-xr-x2672/CH1/EX1.2/Ex1_2.sce13
-rwxr-xr-x2672/CH1/EX1.20/Ex1_20.sce18
-rwxr-xr-x2672/CH1/EX1.21/Ex1_21.sce26
-rwxr-xr-x2672/CH1/EX1.22/Ex1_22.sce28
-rwxr-xr-x2672/CH1/EX1.23/Ex1_23.sce28
-rwxr-xr-x2672/CH1/EX1.24/Ex1_24.sce24
-rwxr-xr-x2672/CH1/EX1.25/Ex1_25.sce22
-rwxr-xr-x2672/CH1/EX1.26/Ex1_26.sce25
-rwxr-xr-x2672/CH1/EX1.27/Ex1_27.sce29
-rwxr-xr-x2672/CH1/EX1.28/Ex1_28.sce27
-rwxr-xr-x2672/CH1/EX1.29/Ex1_29.sce40
-rwxr-xr-x2672/CH1/EX1.3/Ex1_3.sce15
-rwxr-xr-x2672/CH1/EX1.30/Ex1_30.sce34
-rwxr-xr-x2672/CH1/EX1.31/Ex1_31.sce50
-rwxr-xr-x2672/CH1/EX1.32/Ex1_32.sce21
-rwxr-xr-x2672/CH1/EX1.33/Ex1_33.sce26
-rwxr-xr-x2672/CH1/EX1.34/Ex1_34.sce31
-rwxr-xr-x2672/CH1/EX1.35/Ex1_35.sce25
-rwxr-xr-x2672/CH1/EX1.36/Ex1_36.sce21
-rwxr-xr-x2672/CH1/EX1.37/Ex1_37.sce18
-rwxr-xr-x2672/CH1/EX1.4/Ex1_4.sce13
-rwxr-xr-x2672/CH1/EX1.40/Ex1_40.sce19
-rwxr-xr-x2672/CH1/EX1.41/Ex1_41.sce12
-rwxr-xr-x2672/CH1/EX1.42/Ex1_42.sce25
-rwxr-xr-x2672/CH1/EX1.43/Ex1_43.sce18
-rwxr-xr-x2672/CH1/EX1.45/Ex1_45.sce16
-rwxr-xr-x2672/CH1/EX1.46/Ex1_46.sce16
-rwxr-xr-x2672/CH1/EX1.47/Ex1_47.sce24
-rwxr-xr-x2672/CH1/EX1.48/Ex1_48.sce37
-rwxr-xr-x2672/CH1/EX1.49/Ex1_49.sce52
-rwxr-xr-x2672/CH1/EX1.5/Ex1_5.sce11
-rwxr-xr-x2672/CH1/EX1.50/Ex1_50.sce31
-rwxr-xr-x2672/CH1/EX1.6/Ex1_6.sce19
-rwxr-xr-x2672/CH1/EX1.7/Ex1_7.sce15
-rwxr-xr-x2672/CH1/EX1.8/Ex1_8.sce17
-rwxr-xr-x2672/CH1/EX1.9/Ex1_9.sce16
-rwxr-xr-x2672/CH2/EX2.1/Ex2_1.sce14
-rwxr-xr-x2672/CH2/EX2.10/Ex2_10.sce15
-rwxr-xr-x2672/CH2/EX2.11/Ex2_11.sce16
-rwxr-xr-x2672/CH2/EX2.12/Ex2_12.sce20
-rwxr-xr-x2672/CH2/EX2.13/Ex2_13.sce20
-rwxr-xr-x2672/CH2/EX2.14/Ex2_14.sce19
-rwxr-xr-x2672/CH2/EX2.15/Ex2_15.sce33
-rwxr-xr-x2672/CH2/EX2.16/Ex2_16.sce18
-rwxr-xr-x2672/CH2/EX2.17/Ex2_17.sce25
-rwxr-xr-x2672/CH2/EX2.18/Ex2_18.sce20
-rwxr-xr-x2672/CH2/EX2.19/Ex2_19.sce11
-rwxr-xr-x2672/CH2/EX2.2/Ex2_2.sce14
-rwxr-xr-x2672/CH2/EX2.20/Ex2_20.sce19
-rwxr-xr-x2672/CH2/EX2.21/Ex2_21.sce19
-rwxr-xr-x2672/CH2/EX2.3/Ex2_3.sce17
-rwxr-xr-x2672/CH2/EX2.4/Ex2_4.sce16
-rwxr-xr-x2672/CH2/EX2.5/Ex2_5.sce20
-rwxr-xr-x2672/CH2/EX2.6/Ex2_6.sce21
-rwxr-xr-x2672/CH2/EX2.7/Ex2_7.sce15
-rwxr-xr-x2672/CH2/EX2.8/Ex2_8.sce19
-rwxr-xr-x2672/CH2/EX2.9/Ex2_9.sce12
-rwxr-xr-x2672/CH3/EX3.1/Ex3_1.sce13
-rwxr-xr-x2672/CH3/EX3.10/Ex3_10.sce19
-rwxr-xr-x2672/CH3/EX3.11/Ex3_11.sce34
-rwxr-xr-x2672/CH3/EX3.12/Ex3_12.sce22
-rwxr-xr-x2672/CH3/EX3.13/Ex3_13.sce25
-rwxr-xr-x2672/CH3/EX3.14/Ex3_14.sce21
-rwxr-xr-x2672/CH3/EX3.15/Ex3_15.sce20
-rwxr-xr-x2672/CH3/EX3.16/Ex3_16.sce25
-rwxr-xr-x2672/CH3/EX3.17/Ex3_17.sce13
-rwxr-xr-x2672/CH3/EX3.18/Ex3_18.sce25
-rwxr-xr-x2672/CH3/EX3.19/Ex3_19.sce29
-rwxr-xr-x2672/CH3/EX3.2/Ex3_2.sce19
-rwxr-xr-x2672/CH3/EX3.20/Ex3_20.sce17
-rwxr-xr-x2672/CH3/EX3.21/Ex3_21.sce23
-rwxr-xr-x2672/CH3/EX3.22/Ex3_22.sce24
-rwxr-xr-x2672/CH3/EX3.23/Ex3_23.sce27
-rwxr-xr-x2672/CH3/EX3.24/Ex3_24.sce22
-rwxr-xr-x2672/CH3/EX3.25/Ex3_25.sce35
-rwxr-xr-x2672/CH3/EX3.26/Ex3_26.sce35
-rwxr-xr-x2672/CH3/EX3.27/Ex3_27.sce36
-rwxr-xr-x2672/CH3/EX3.28/Ex3_28.sce28
-rwxr-xr-x2672/CH3/EX3.29/Ex3_29.sce21
-rwxr-xr-x2672/CH3/EX3.3/Ex3_3.sce15
-rwxr-xr-x2672/CH3/EX3.30/Ex3_30.sce40
-rwxr-xr-x2672/CH3/EX3.31/Ex3_31.sce26
-rwxr-xr-x2672/CH3/EX3.32/Ex3_32.sce42
-rwxr-xr-x2672/CH3/EX3.33/Ex3_33.sce19
-rwxr-xr-x2672/CH3/EX3.34/Ex3_34.sce18
-rwxr-xr-x2672/CH3/EX3.35/Ex3_35.sce22
-rwxr-xr-x2672/CH3/EX3.36/Ex3_36.sce19
-rwxr-xr-x2672/CH3/EX3.37/Ex3_37.sce24
-rwxr-xr-x2672/CH3/EX3.38/Ex3_38.sce15
-rwxr-xr-x2672/CH3/EX3.39/Ex3_39.sce21
-rwxr-xr-x2672/CH3/EX3.4/Ex3_4.sce14
-rwxr-xr-x2672/CH3/EX3.40/Ex3_40.sce19
-rwxr-xr-x2672/CH3/EX3.41/Ex3_41.sce21
-rwxr-xr-x2672/CH3/EX3.42/Ex3_42.sce22
-rwxr-xr-x2672/CH3/EX3.43/Ex3_43.sce19
-rwxr-xr-x2672/CH3/EX3.5/Ex3_5.sce17
-rwxr-xr-x2672/CH3/EX3.6/Ex3_6.sce17
-rwxr-xr-x2672/CH3/EX3.7/Ex3_7.sce24
-rwxr-xr-x2672/CH3/EX3.8/Ex3_8.sce19
-rwxr-xr-x2672/CH3/EX3.9/Ex3_9.sce39
-rwxr-xr-x2672/CH4/EX4.1/Ex4_1.sce15
-rwxr-xr-x2672/CH4/EX4.10/Ex4_10.sce15
-rwxr-xr-x2672/CH4/EX4.11/Ex4_11.sce14
-rwxr-xr-x2672/CH4/EX4.12/Ex4_12.sce27
-rwxr-xr-x2672/CH4/EX4.13/Ex4_13.sce20
-rwxr-xr-x2672/CH4/EX4.14/Ex4_14.sce13
-rwxr-xr-x2672/CH4/EX4.15/Ex4_15.sce13
-rwxr-xr-x2672/CH4/EX4.16/Ex4_16.sce14
-rwxr-xr-x2672/CH4/EX4.17/Ex4_17.sce11
-rwxr-xr-x2672/CH4/EX4.18/Ex4_18.sce14
-rwxr-xr-x2672/CH4/EX4.19/Ex4_19.sce15
-rwxr-xr-x2672/CH4/EX4.2/Ex4_2.sce14
-rwxr-xr-x2672/CH4/EX4.20/Ex4_20.sce13
-rwxr-xr-x2672/CH4/EX4.21/Ex4_21.sce19
-rwxr-xr-x2672/CH4/EX4.22/Ex4_22.sce14
-rwxr-xr-x2672/CH4/EX4.23/Ex4_23.sce11
-rwxr-xr-x2672/CH4/EX4.24/Ex4_24.sce22
-rwxr-xr-x2672/CH4/EX4.25/Ex4_25.sce40
-rwxr-xr-x2672/CH4/EX4.26/Ex4_26.sce26
-rwxr-xr-x2672/CH4/EX4.27/Ex4_27.sce15
-rwxr-xr-x2672/CH4/EX4.28/Ex4_28.sce28
-rwxr-xr-x2672/CH4/EX4.3/Ex4_3.sce14
-rwxr-xr-x2672/CH4/EX4.4/Ex4_4.sce20
-rwxr-xr-x2672/CH4/EX4.5/Ex4_5.sce15
-rwxr-xr-x2672/CH4/EX4.6/Ex4_6.sce15
-rwxr-xr-x2672/CH4/EX4.7/Ex4_7.sce20
-rwxr-xr-x2672/CH4/EX4.8/Ex4_8.sce11
-rwxr-xr-x2672/CH4/EX4.9/Ex4_9.sce14
-rwxr-xr-x2672/CH5/EX5.1/Ex5_1.sce30
-rwxr-xr-x2672/CH5/EX5.10/Ex5_10.sce21
-rwxr-xr-x2672/CH5/EX5.12/Ex5_12.sce21
-rwxr-xr-x2672/CH5/EX5.13/Ex5_13.sce30
-rwxr-xr-x2672/CH5/EX5.14/Ex5_14.sce11
-rwxr-xr-x2672/CH5/EX5.15/Ex5_15.sce17
-rwxr-xr-x2672/CH5/EX5.16/Ex5_16.sce25
-rwxr-xr-x2672/CH5/EX5.17/Ex5_17.sce36
-rwxr-xr-x2672/CH5/EX5.18/Ex5_18.sce28
-rwxr-xr-x2672/CH5/EX5.19/Ex5_19.sce20
-rwxr-xr-x2672/CH5/EX5.2/Ex5_2.sce19
-rwxr-xr-x2672/CH5/EX5.20/Ex5_20.sce14
-rwxr-xr-x2672/CH5/EX5.21/Ex5_21.sce16
-rwxr-xr-x2672/CH5/EX5.22/Ex5_22.sce23
-rwxr-xr-x2672/CH5/EX5.24/Ex5_24.sce13
-rwxr-xr-x2672/CH5/EX5.25/Ex5_25.sce17
-rwxr-xr-x2672/CH5/EX5.26/Ex5_26.sce20
-rwxr-xr-x2672/CH5/EX5.27/Ex5_27.sce14
-rwxr-xr-x2672/CH5/EX5.28/Ex5_28.sce14
-rwxr-xr-x2672/CH5/EX5.29/Ex5_29.sce27
-rwxr-xr-x2672/CH5/EX5.3/Ex5_3.sce18
-rwxr-xr-x2672/CH5/EX5.30/Ex5_30.sce20
-rwxr-xr-x2672/CH5/EX5.31/Ex5_31.sce16
-rwxr-xr-x2672/CH5/EX5.32/Ex5_32.sce24
-rwxr-xr-x2672/CH5/EX5.33/Ex5_33.sce14
-rwxr-xr-x2672/CH5/EX5.35/Ex5_35.sce28
-rwxr-xr-x2672/CH5/EX5.36/Ex5_36.sce25
-rwxr-xr-x2672/CH5/EX5.37/Ex5_37.sce14
-rwxr-xr-x2672/CH5/EX5.38/Ex5_38.sce13
-rwxr-xr-x2672/CH5/EX5.39/Ex5_39.sce27
-rwxr-xr-x2672/CH5/EX5.4/Ex5_4.sce19
-rwxr-xr-x2672/CH5/EX5.5/Ex5_5.sce23
-rwxr-xr-x2672/CH5/EX5.6/Ex5_6.sce15
-rwxr-xr-x2672/CH5/EX5.7/Ex5_7.sce12
-rwxr-xr-x2672/CH5/EX5.8/Ex5_8.sce38
-rwxr-xr-x2672/CH6/EX6.1/Ex6_1.sce39
-rwxr-xr-x2672/CH6/EX6.10/Ex6_10.sce13
-rwxr-xr-x2672/CH6/EX6.11/Ex6_11.sce15
-rwxr-xr-x2672/CH6/EX6.12/Ex6_12.sce20
-rwxr-xr-x2672/CH6/EX6.13/Ex6_13.sce14
-rwxr-xr-x2672/CH6/EX6.14/Ex6_14.sce16
-rwxr-xr-x2672/CH6/EX6.15/Ex6_15.sce19
-rwxr-xr-x2672/CH6/EX6.16/Ex6_16.sce18
-rwxr-xr-x2672/CH6/EX6.17/Ex6_17.sce16
-rwxr-xr-x2672/CH6/EX6.18/Ex6_18.sce20
-rwxr-xr-x2672/CH6/EX6.19/Ex6_19.sce18
-rwxr-xr-x2672/CH6/EX6.2/Ex6_2.sce52
-rwxr-xr-x2672/CH6/EX6.20/Ex6_20.sce17
-rwxr-xr-x2672/CH6/EX6.21/Ex6_21.sce16
-rwxr-xr-x2672/CH6/EX6.22/Ex6_22.sce19
-rwxr-xr-x2672/CH6/EX6.3/Ex6_3.sce17
-rwxr-xr-x2672/CH6/EX6.4/Ex6_4.sce35
-rwxr-xr-x2672/CH6/EX6.8/Ex6_8.sce30
-rwxr-xr-x2672/CH7/EX7.1/Ex7_1.sce14
-rwxr-xr-x2672/CH7/EX7.10/Ex7_10.sce10
-rwxr-xr-x2672/CH7/EX7.11/Ex7_11.sce67
-rwxr-xr-x2672/CH7/EX7.2/Ex7_2.sce14
-rwxr-xr-x2672/CH7/EX7.3/Ex7_3.sce12
-rwxr-xr-x2672/CH7/EX7.4/Ex7_4.sce10
-rwxr-xr-x2672/CH7/EX7.5/Ex7_5.sce18
-rwxr-xr-x2672/CH7/EX7.6/Ex7_6.sce14
-rwxr-xr-x2672/CH7/EX7.7/Ex7_7.sce41
-rwxr-xr-x2672/CH7/EX7.8/Ex7_8.sce20
-rwxr-xr-x2672/CH7/EX7.9/Ex7_9.sce27
-rwxr-xr-x2672/CH8/EX8.1/Ex8_1.sce28
-rwxr-xr-x2672/CH8/EX8.4/Ex8_4.sce25
-rwxr-xr-x2672/CH8/EX8.5/Ex8_5.sce47
-rwxr-xr-x2672/CH8/EX8.6/Ex8_6.sce26
207 files changed, 4448 insertions, 0 deletions
diff --git a/2672/CH1/EX1.1/Ex1_1.sce b/2672/CH1/EX1.1/Ex1_1.sce
new file mode 100755
index 000000000..1e54fb568
--- /dev/null
+++ b/2672/CH1/EX1.1/Ex1_1.sce
@@ -0,0 +1,13 @@
+//Example 1_1
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+Vs=20;//V
+Rse=5;//ohm(Internal Resistance)
+//Source Conversion
+Is=Vs/Rse;//A
+Rsh=Rse;//ohm(same)
+disp(Is,"Equivalent current source(A)");
+disp(Rsh,"Internal resistance in parallel(ohm)")
diff --git a/2672/CH1/EX1.10/Ex1_10.sce b/2672/CH1/EX1.10/Ex1_10.sce
new file mode 100755
index 000000000..a678a579d
--- /dev/null
+++ b/2672/CH1/EX1.10/Ex1_10.sce
@@ -0,0 +1,21 @@
+//Example 1_10
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+VD=10;//V
+VE=6;//V
+R1=3;R2=4;R3=14;R4=8;R5=12;//ohm
+//Ohm's current law
+//I1=(VD-VB)/R1;I2=VB/R4;I3=(VK-VC)/R2;//A
+//Where VK=VB-3;//V
+//KCL at Node B : 17*VB-6*VC=98
+//KCL at Node C : 21*VB-34*VC=27
+A=[17 -6;21 -34];//Coefficient Matrix
+B=[98;27];//Coefficient Matrix
+X=A^-1*B;//solution
+VB=X(1);//V
+VC=X(2);//V
+I2=VB/R4;//A
+disp(I2,"Current through the 8 ohm resistor(A) : ");
diff --git a/2672/CH1/EX1.11/Ex1_11.sce b/2672/CH1/EX1.11/Ex1_11.sce
new file mode 100755
index 000000000..ef7d12324
--- /dev/null
+++ b/2672/CH1/EX1.11/Ex1_11.sce
@@ -0,0 +1,17 @@
+//Example 1_11
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+VA=24;//V
+VC=12;//V
+R1=6;R2=6;R3=6;//ohm
+//Considering VA only, making VC short circuit
+I=VA/(R1+R2*R3/(R2+R3));//A//from source VA
+I1A=I*R2/(R1+R2);//A//through BD from VA only
+//Considering VC only, making VA short circuit
+I=VC/(R3+R1*R2/(R1+R2));//A//from source VC
+I1C=I*R2/(R1+R2);//A//through BD from VA only
+IBD=I1A+I1C;//A
+disp(IBD,"Current IBD in the Circuit(A) : ");
diff --git a/2672/CH1/EX1.12/Ex1_12.sce b/2672/CH1/EX1.12/Ex1_12.sce
new file mode 100755
index 000000000..916f453f8
--- /dev/null
+++ b/2672/CH1/EX1.12/Ex1_12.sce
@@ -0,0 +1,17 @@
+//Example 1_12
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+VA=75;//V
+VB=64;//V
+R1=5;R2=5;R3=4;R4=20;R5=12;//ohm
+//Considering VA only, making VB short circuit
+I=VA/(R1+(R3*R5/(R3+R5)+R2)*R4/(R4+R3*R5/(R3+R5)+R2));//A//from source VA
+I1A=I*R4/(R4+R2+R3*R5/(R3+R5));//A//through AB from VA only
+//Considering VB only, making VA short circuit
+I=VB/(R3+(R1*R4/(R1+R4)+R2)*R5/(R5+R1*R4/(R1+R4)+R2));//A//from source VB
+I1B=I*R5/(R5+(R1*R4/(R1+R4)+R2));//A//through AB from VB only
+IAB=I1A-I1B;//A//total current through R2=5 ohm
+disp(IAB,"Current I in the Circuit is equal to IAB(A) : ");
diff --git a/2672/CH1/EX1.13/Ex1_13.sce b/2672/CH1/EX1.13/Ex1_13.sce
new file mode 100755
index 000000000..0004cff89
--- /dev/null
+++ b/2672/CH1/EX1.13/Ex1_13.sce
@@ -0,0 +1,15 @@
+//Example 1_13
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V=20;//V
+I=2;//V
+R1=2;R2=4;R3=8;//ohm
+//Considering current source only, making Voltage source short circuit
+I1=I*R1/(R1+R3);//A//through B to A
+//Considering Voltage source only, making current source open circuit
+I2=V/(R1+R3);//A//through A to B
+IAB=I2-I1;//A//total current through R2=5 ohm
+disp(IAB,"Current through 8ohm resistor(A) : ");
diff --git a/2672/CH1/EX1.14/Ex1_14.sce b/2672/CH1/EX1.14/Ex1_14.sce
new file mode 100755
index 000000000..e247923e1
--- /dev/null
+++ b/2672/CH1/EX1.14/Ex1_14.sce
@@ -0,0 +1,26 @@
+//Example 1_14
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V1=40;//V
+V2=44;//V
+R1=2;//ohm
+R2=4;//ohm
+R3=6;//ohm
+I1=poly(0,'I1');
+I2=poly(0,'I2');
+//From Mesh ABEFA//eq1=V1-R1*I1+R2*I2-V2;
+//-R1*I1+R2*I2=V2-V1;//eqn(1)
+//From Mesh BCDED//eq2=-R2*I2-R3*(I1+I2)+V2;
+//R3*I1+(R2+R3)*I2=V2;//eqn(2)
+A=[-R1 R2;R3 (R2+R3)];//coefficient matrix
+B=[V2-V1;V2];//coefficient matrix
+X=A^-1*B;//
+I1=X(1);//A
+disp(I1,"Current I1(A)");
+I2=X(2);//A
+disp(I2,"Current I2(A)");
+I=I1+I2;//A
+disp(I,"Total Current I(A)");
diff --git a/2672/CH1/EX1.15/Ex1_15.sce b/2672/CH1/EX1.15/Ex1_15.sce
new file mode 100755
index 000000000..e4ce063aa
--- /dev/null
+++ b/2672/CH1/EX1.15/Ex1_15.sce
@@ -0,0 +1,20 @@
+//Example 1_15
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+V=2;//V
+R1=1;//ohm
+R2=2;//ohm
+R3=3;//ohm
+R4=2;//ohm
+R5=4;//ohm
+//Mesh ABDA: -I1-R5*I3+R4*I2=0
+//Mesh BCDB: -R2*(I1-I3)+R3*(I2+I3)+R5*I3=0
+//Mesh ABCA: -I1-R2*(I1-I3)+V=0
+A=[-R1 R4 -R5;-R2 R3 R3+R2+R5;-R3 0 R2];//coefficient matrix
+B=[0;0;-V];//coefficient matrix
+X=A^-1*B;//
+I3=X(3);//A
+disp(I3,"Current through galvanometer, I3(A)");
diff --git a/2672/CH1/EX1.16/Ex1_16.sce b/2672/CH1/EX1.16/Ex1_16.sce
new file mode 100755
index 000000000..1408d2631
--- /dev/null
+++ b/2672/CH1/EX1.16/Ex1_16.sce
@@ -0,0 +1,25 @@
+//Example 1_16
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+R1=4;//ohm
+R2=6;//ohm
+R3=8;//ohm
+//I1=I2+IS//eqn(1)
+//I2+I3=V1/4//eqn(2)
+Vo=16;//V
+//VAC+VAB=Vo : V1+R1*I2=Vo///eqn(3)
+//I1=V1/R2;//eqn(4)
+I3=Vo/R3;//A
+//V1/4-I2=I3//eqn(5)
+//solving eqn(3) & eqn(5)
+A=[1 R1;1/4 -1];
+B=[Vo;I3];
+X=A^-1*B;
+V1=X(1);//V
+I2=X(2);//A
+I1=V1/6;//A
+Is=I1-I2;//A
+disp(Is,"Current Is(A)");
diff --git a/2672/CH1/EX1.17/Ex1_17.sce b/2672/CH1/EX1.17/Ex1_17.sce
new file mode 100755
index 000000000..76b3381f5
--- /dev/null
+++ b/2672/CH1/EX1.17/Ex1_17.sce
@@ -0,0 +1,22 @@
+//Example 1_17
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V1=12;//V
+V2=10;//V
+R1=2;//ohm
+R2=1;//ohm
+R3=10;//ohm
+//Node A : I1=(V1-VA)/2
+//Node B : I2=(V2-VB)/2
+//IL=VB/R3;//A
+//IL=I1+I2
+VA=10;VB=10//V
+I1=(V1-VA)/2;//A//from Node A
+I2=(V2-VB)/2;//A//from Node B
+IL=VB/R3;//A
+disp(I1,"Current by Battery A, IA(A)");
+disp(I2,"Current by Battery B, IA(A)");
+disp(IL,"Load Current(A)");
diff --git a/2672/CH1/EX1.18/Ex1_18.sce b/2672/CH1/EX1.18/Ex1_18.sce
new file mode 100755
index 000000000..682906ac0
--- /dev/null
+++ b/2672/CH1/EX1.18/Ex1_18.sce
@@ -0,0 +1,28 @@
+//Example 1_18
+clc;
+clear;
+close;
+format('v',8);
+//given data :
+V1=10;//V
+V2=3;//V
+V3=6;//V
+R1=3;//ohm
+R2=4;//ohm
+R3=14;//ohm
+R4=8;//ohm
+R5=12;//ohm
+//Node B : (V1-VB)/R1=VB/R4+(VB-VC-V2)/R2
+//VB(1/R4+1/R1+1/R2)+VC*(-1/R2)=V2/R2+V1/R1//eq(1)
+A1=[(1/R4+1/R1+1/R2) (-1/R2)];//Coefficient Matrix
+B1=[V2/R2+V1/R1];//Coefficient Matrix
+//Node C: VC/R5=(VB-VC-V2)/R2+(V3-VC)/R3
+//VB*(-1/R2)+VC(1/R2+1/R5+1/R3)=V3/R3-V2/R2//eq(2)
+A2=[(-1/R2) (1/R2+1/R5+1/R3)]////Coefficient Matrix
+B2=[V3/R3-V2/R2];////Coefficient Matrix
+A=[A1;A2];B=[B1;B2];//Coefficient Matrix
+X=A^-1*B;//solution of matrix
+VB=X(1);//V
+VC=X(2);//V
+I2=VB/R4;//A
+disp(I2,"Current through 8 ohm resistor(A)");
diff --git a/2672/CH1/EX1.19/Ex1_19.sce b/2672/CH1/EX1.19/Ex1_19.sce
new file mode 100755
index 000000000..0976378e8
--- /dev/null
+++ b/2672/CH1/EX1.19/Ex1_19.sce
@@ -0,0 +1,23 @@
+//Example 1_19
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+E1=2.05;//V
+E2=2.15;//V
+V3=6;//V
+R1=0.05;//ohm
+R2=0.04;//ohm
+R3=1;//ohm
+//Considering E1 only, Make E2 short circuit
+I1=E1/(R1+R2*R3/(R2+R3));//A
+disp(I1,"Current supplied by battery1(A)");
+I1dash=I1*R2/(R2+R3);//A
+format('v',6);
+//Considering E2 only, Make E1 short circuit
+I2=E2/(R2+R1*R3/(R1+R3));//A
+disp(I2,"Current supplied by battery2(A)");
+I2dash=I2*R1/(R1+R3);//A
+I=I1dash+I2dash;//A
+disp(I,"Current through 1ohm resistance, Load current(A)");
diff --git a/2672/CH1/EX1.2/Ex1_2.sce b/2672/CH1/EX1.2/Ex1_2.sce
new file mode 100755
index 000000000..d8607d97f
--- /dev/null
+++ b/2672/CH1/EX1.2/Ex1_2.sce
@@ -0,0 +1,13 @@
+//Example 1_2
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+Is=100;//A
+Rsh=10;//ohm
+//Source Conversion
+Vs=Is*Rsh;//V
+disp(Vs,"Equivalent voltage source(V)");
+Rse=Rsh;//ohm
+disp(Rse,"Internal resistance in series(ohm)");
diff --git a/2672/CH1/EX1.20/Ex1_20.sce b/2672/CH1/EX1.20/Ex1_20.sce
new file mode 100755
index 000000000..13348879a
--- /dev/null
+++ b/2672/CH1/EX1.20/Ex1_20.sce
@@ -0,0 +1,18 @@
+//Example 1_20
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V=20;//V
+I=2;//A
+V3=6;//V
+R1=2;//ohm
+R2=4;//ohm
+R3=8;//ohm
+//Considering current source only, Make Voltage source short circuit
+I1dash=I*R1/(R1+R3);//A
+//Considering Voltage source only, Make Current source opent circuit
+I1dash2=V/(R1+R3);//A
+I=I1dash2-I1dash;//A
+disp(I,"Current through 8 ohm resistor from A to B(A)");
diff --git a/2672/CH1/EX1.21/Ex1_21.sce b/2672/CH1/EX1.21/Ex1_21.sce
new file mode 100755
index 000000000..47b23475f
--- /dev/null
+++ b/2672/CH1/EX1.21/Ex1_21.sce
@@ -0,0 +1,26 @@
+//Example 1_21
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V1=90;//V
+V2=50;//V
+V3=100;//V
+R1=60;//ohm
+R2=40;//ohm
+R3=30;//ohm
+R4=60;//ohm
+R=6:36;//ohm
+//Open circuit AB
+I1=V1/(R1+R3);//A
+I2=V3/(R2+R4);//A
+//Potential of point A
+VA=I1*R3+V2;//V
+//Potential of point B
+VB=I2*R4;//V
+VOC=VA-VB;//V
+Req=R1*R3/(R1+R3)+R2*R4/(R2+R4);//ohm
+Imin=VOC/(Req+max(R));//A
+Imax=VOC/(Req+min(R));//A
+disp("The current through resistor R will vary from "+string(Imin)+" A to "+string(Imax)+" A.");
diff --git a/2672/CH1/EX1.22/Ex1_22.sce b/2672/CH1/EX1.22/Ex1_22.sce
new file mode 100755
index 000000000..ab79e5eea
--- /dev/null
+++ b/2672/CH1/EX1.22/Ex1_22.sce
@@ -0,0 +1,28 @@
+//Example 1_22
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+V1=24;//V
+V2=12;//V
+R1=4;//ohm
+R2=5;//ohm
+R3=3;//ohm
+R4=5;//ohm
+R5=3;//ohm
+RL=10;//ohm
+//Open circuit AB
+I=V1/(R1+R2+R3);//A
+//Potential of point A
+VBQ=0;//V//there is no current
+VPS=0;//V//there is no current
+VQP=I*(R2+R3);//V
+VSA=V2;//V
+//Potential of point A with respect to B
+VAB=VBQ+VQP+VPS-VSA;//V
+VOC=VAB;//V
+Req=R1*(R2+R3)/(R1+R2+R3)+R4+R5;//ohm
+//Thevenin equivalent current
+I=VOC/(Req+RL);//A
+disp(I,"Current flowing through load resistance(A)");
diff --git a/2672/CH1/EX1.23/Ex1_23.sce b/2672/CH1/EX1.23/Ex1_23.sce
new file mode 100755
index 000000000..79711ac99
--- /dev/null
+++ b/2672/CH1/EX1.23/Ex1_23.sce
@@ -0,0 +1,28 @@
+//Example 1_23
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+V1=12;//V
+I=2;//A
+R1=2;//ohm
+R2=4;//ohm
+R3=3;//ohm
+R4=3;//ohm
+R5=5;//ohm
+//Converting current source into Voltage source
+V2=I*R3;//V//Converted source
+//writing KVL equation for the loop
+I1=poly(0,'I1');
+eqn=-R1*I1+V1-R2*I1-R3*I1-V2;//KVL equation
+I1=roots(eqn);//A
+VSR=V2+R3*I1;//V
+VRA=0;//V//there is no current
+//Potential of point A with respect to B
+VAB=VSR+VRA;//V
+VOC=VAB;//V
+Req=(R1+R2)*R3/(R1+R2+R3)+R4;//ohm
+//Thevenin equivalent current
+I=VOC/(Req+R5);//A
+disp(I,"Current flowing through 5 ohm Resistance(A)");
diff --git a/2672/CH1/EX1.24/Ex1_24.sce b/2672/CH1/EX1.24/Ex1_24.sce
new file mode 100755
index 000000000..1d831b5ab
--- /dev/null
+++ b/2672/CH1/EX1.24/Ex1_24.sce
@@ -0,0 +1,24 @@
+//Example 1_24
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+V1=6;//V
+V2=15;//V
+R1=6;//ohm
+R2=3;//ohm
+R3=4;//ohm
+R4=6;//ohm
+//writing KVL equation for the loop
+I=poly(0,'I');
+eqn=V2-R2*I-R1*I-V1;//KVL equation
+I=roots(eqn);//A
+VCD=V2-R2*I;//V
+//Potential of point A with respect to B
+VAB=VCD;//V
+VOC=VAB;//V
+Req=R1*R2/(R1+R2)+R3;//ohm
+//Thevenin equivalent current
+I=VOC/(Req+R4);//A
+disp(I,"Current flowing through terminal AB(A)");
diff --git a/2672/CH1/EX1.25/Ex1_25.sce b/2672/CH1/EX1.25/Ex1_25.sce
new file mode 100755
index 000000000..8161fef5b
--- /dev/null
+++ b/2672/CH1/EX1.25/Ex1_25.sce
@@ -0,0 +1,22 @@
+//Example 1_25
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+V1=2;//V
+R1=10;//ohm
+R2=20;//ohm
+R3=40;//ohm
+R4=30;//ohm
+R5=15;//ohm
+//solution
+VBC=R4/(R4+R1)*V1;//V
+VDC=R5/(R2+R5)*V1;//V
+VBD=VBC-VDC;//V
+Vth=VBD;//V
+Req=R1*R4/(R1+R4)+R2*R5/(R2+R5);//ohm
+//Thevenin equivalent current
+IL=Vth/(Req+R3);//A
+IL=IL*1000;//mA
+disp(IL,"Current through BD, from B to D(mA)");
diff --git a/2672/CH1/EX1.26/Ex1_26.sce b/2672/CH1/EX1.26/Ex1_26.sce
new file mode 100755
index 000000000..7e5fad1f2
--- /dev/null
+++ b/2672/CH1/EX1.26/Ex1_26.sce
@@ -0,0 +1,25 @@
+//Example 1_26
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+E1=140;//V
+R1=30;//ohm
+R2=70;//ohm
+E2=85;//V
+RL=[5 15 50];//ohm
+//solution
+//writing KVL equation for the loop
+I=poly(0,'I');
+eqn=E1-R1*I-R2*I-E2;//KVL equation
+I=roots(eqn);//A
+Vth=E1-I*R1;//V
+Req=R1*R2/(R1+R2);//ohm
+//Thevenin equivalent current
+IL1=Vth/(Req+RL(1));//A//for RL=5 ohm
+IL2=Vth/(Req+RL(2));//A//for RL=15 ohm
+IL3=Vth/(Req+RL(3));//A//for RL=50 ohm
+disp(IL1,"RL=5 ohm, branch current I2(A)");
+disp(IL2,"RL=15 ohm, branch current I2(A)");
+disp(IL3,"RL=50 ohm, branch current I2(A)");
diff --git a/2672/CH1/EX1.27/Ex1_27.sce b/2672/CH1/EX1.27/Ex1_27.sce
new file mode 100755
index 000000000..0d58cdf74
--- /dev/null
+++ b/2672/CH1/EX1.27/Ex1_27.sce
@@ -0,0 +1,29 @@
+//Example 1_27
+clc;
+clear;
+close;
+format('v',4);
+//given data :
+V1=20;//V
+V2=4;//V
+R1=500;//ohm
+R2=1000;//ohm
+R3=100;//ohm
+R4=800;//ohm
+RL=1000;//ohm
+//solution
+VCB=-R2/(R4+R2)*V1;//V
+//writing KVL equation for the loop
+I=poly(0,'I');
+eqn=V1-R1*I-V2-R3*I;//KVL equation
+I=roots(eqn);//A
+VCA=-I*R1;//V
+//Potential at point B with respect to A
+VBA=VCB-VCA;//V
+VOC=VBA;//V
+Vth=VOC;//V
+Req=R1*R3/(R1+R3)+R2*R4/(R2+R4);//ohm
+//Thevenin equivalent current
+IL=Vth/(Req+RL);//A
+IL=IL*1000;//mA
+disp(IL,"Current through 1000 ohm resistor(mA)");
diff --git a/2672/CH1/EX1.28/Ex1_28.sce b/2672/CH1/EX1.28/Ex1_28.sce
new file mode 100755
index 000000000..a28f2bb16
--- /dev/null
+++ b/2672/CH1/EX1.28/Ex1_28.sce
@@ -0,0 +1,27 @@
+//Example 1_28
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V1=15;//V
+V2=4;//V
+R1=4;//ohm
+R2=3;//ohm
+R3=2;//ohm
+R4=5;//ohm
+I1=6;//A
+RL=R4;//ohm
+//solution
+Req=R1*R3/(R1+R3)+R2;//ohm
+//Converting current source into Voltage source
+V2=I1*R3;//V//Converted source
+//writing KVL equation for the loop
+I=poly(0,'I');
+eqn=V1-R1*I-R3*I-V2;//KVL equation
+I=roots(eqn);//A
+//Potential at point A with respect to B
+VAB=V2+R3*I;//V
+//Thevenin equivalent current
+I=VAB/(Req+RL);//A
+disp(I,"Current through 5 ohm resistor(A)");
diff --git a/2672/CH1/EX1.29/Ex1_29.sce b/2672/CH1/EX1.29/Ex1_29.sce
new file mode 100755
index 000000000..7b57aeed9
--- /dev/null
+++ b/2672/CH1/EX1.29/Ex1_29.sce
@@ -0,0 +1,40 @@
+//Example 1_29
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V1=12;//V
+V2=24;//V
+R1=4;//ohm
+R2=4;//ohm
+R3=4;//ohm
+RL=5;//ohm
+//solution by Norton Theorem
+//Short Circuit AB
+I=V1/(R1*R3/(R1+R3));//A
+ISC1=I*R3/(R1+R3);//A
+ISC2=V2/R3;//A
+ISC=ISC1+ISC2;//A
+Req=R1*R3/(R1+R3);//ohm
+//Norton equivalent current
+IL=ISC*Req/(Req+RL);//A
+disp(IL,"By Nortons theorem, Current through load resistance(A)");
+//solution by Thevenin Theorem
+Rth=Req;//ohm
+//Loop PQRS, Applying KVL
+//V1-I1*R1-I2*R1=0
+A1=[-R1 -R1];//Coefficient Matrix
+B1=[-V1];//Coefficient Matrix
+//Loop NTRS, Applying KVL
+//V2-I2*R3-R2*I2-R1*I1-R1*I2=0
+A2=[-R3-R2-R1 -R1];//Coefficient Matrix
+B2=[-V2];//Coefficient Matrix
+A=[A1;A2];//Coefficient Matrix
+B=[B1;B2];//Coefficient Matrix
+X=A^-1*B;//soolution matrix
+I1=X(1);//A
+I2=X(2);//A
+VOC=V2-R3*I2;//A
+IL=VOC/(Rth+RL);//A
+disp(IL,"By Thevenins theorem, Current through load resistance(A)");
diff --git a/2672/CH1/EX1.3/Ex1_3.sce b/2672/CH1/EX1.3/Ex1_3.sce
new file mode 100755
index 000000000..af3eeff7f
--- /dev/null
+++ b/2672/CH1/EX1.3/Ex1_3.sce
@@ -0,0 +1,15 @@
+//Example 1_3
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+Vs=12;//V
+Req=2+4*(2+2)/(4+(2+2));//ohm
+I=Vs/Req;//A
+I1=I;//A(Current in first 2 ohm resistance)
+disp(I1,"Current in first 2 ohm resistance(A)");
+I2=I/2;//A(Current in 4 ohm resistance)
+disp(I2,"Current in 4 ohm resistance(A)");
+I3=I/2;//A(Current in remaining 2 ohm resistances)
+disp(I3,"Current in remaining 2 ohm resistances(A)");
diff --git a/2672/CH1/EX1.30/Ex1_30.sce b/2672/CH1/EX1.30/Ex1_30.sce
new file mode 100755
index 000000000..42dc8dd6e
--- /dev/null
+++ b/2672/CH1/EX1.30/Ex1_30.sce
@@ -0,0 +1,34 @@
+//Example 1_30
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+I1=10;//A
+V2=12;//V
+R1=2;//ohm
+R2=2;//ohm
+R3=6;//ohm
+R4=6;//ohm
+//solution by Norton Theorem
+RL=R4;//ohm
+//Short Circuit AB
+ISC1=I1*R1/(R1+R2);//A//by current source
+ISC2=V2/R3;//A///by voltage source
+ISC=ISC1+ISC2;//A
+Req=(R1+R2)*R3/(R1+R2+R3);//ohm
+//Norton equivalent current
+I=ISC*Req/(Req+RL);//A
+disp(I,"By Nortons theorem, Current through 6 ohm resistance connected across AB(A)");
+//solution by Thevenin Theorem
+Rth=Req;//ohm
+//Converting current source into Voltage source
+V1=I1*R1;//V//Converted source
+//Applying KVL
+I=poly(0,'I');//A
+eqn=V1-R1*I-R2*I-R3*I-V2;//
+I=roots(eqn);//A
+VOC=V2+R3*I;//A
+I=VOC/(Rth+RL);//A
+disp(I,"By Thevenins theorem, Current through 6 ohm resistance connected across AB(A)");
+//Unit of current is given wrong in the book.
diff --git a/2672/CH1/EX1.31/Ex1_31.sce b/2672/CH1/EX1.31/Ex1_31.sce
new file mode 100755
index 000000000..996e28882
--- /dev/null
+++ b/2672/CH1/EX1.31/Ex1_31.sce
@@ -0,0 +1,50 @@
+//Example 1_31
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V1=12;//V
+V2=6;//V
+V3=24;//V
+R1=4;//ohm
+R2=2;//ohm
+R3=6;//ohm
+R4=3;//ohm
+R5=12;//ohm
+R6=16;//ohm
+//solution by Norton Theorem
+RL=R6;//ohm
+//Thevenin theorem
+//Loop 1 applying KVL
+//V1-(R1+R2)*I1+V2-R3*(I1+I2);
+A1=[-R1-R2-R3 -R3];//Coefficient Matrix
+B1=[-V1-V2];//Coefficient Matrix
+//Loop 2 applying KVL
+//V3-R4*I2+V2-R3*(I1+I2)-R5*I2;
+A2=[-R3 -R4-R3-R5];//Coefficient Matrix
+B2=[-V3-V2];//Coefficient Matrix
+A=[A1;A2];//Coefficient Matrix
+B=[B1;B2];//Coefficient Matrix
+X=A^-1*B;//soolution matrix
+I1=X(1);//A
+I2=X(2);//A
+VOC=-R5*I2+V3;//V
+Rth=((R1+R2)*R3/(R1+R2+R3)+R4)*R5/((R1+R2)*R3/(R1+R2+R3)+R4+R5);//ohm
+I=VOC/(Rth+RL);//A
+disp(I,"By Thevenin Theorem, current through 16 ohm resistor(A)");
+//solution by Norton Theorem
+//Converting Voltage sources into current sources
+I1=V1/(R1+R2);//A
+I2=V2/R3;//A
+I3=V3/R5;//A
+Req=Rth;//ohm
+//Combining I1 & I2 | parallel & opposite
+I1=I1-I2;//A
+I2=0;//A
+ISC1=I1/2;//A//considering I1 only
+ISC2=I3;//A//considering I3 only
+ISC=ISC1+ISC2;//A
+//Norton equivalent current
+I=ISC*Req/(Req+RL);//A
+disp(I,"By Nortons theorem, current through 16 ohm resistor(A)");
diff --git a/2672/CH1/EX1.32/Ex1_32.sce b/2672/CH1/EX1.32/Ex1_32.sce
new file mode 100755
index 000000000..2ac431656
--- /dev/null
+++ b/2672/CH1/EX1.32/Ex1_32.sce
@@ -0,0 +1,21 @@
+//Example 1_32
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V=12;//V
+R1=2;//ohm
+R2=2;//ohm
+R3=2;//ohm
+R4=2;//ohm
+R5=2;//ohm
+//calculating Open circuit voltage :
+I=V/(R1+R2+R3);//V
+VCD=I*R3;//V
+VAB=VCD;//V//Open circuit voltage
+Req=(R1+R2)*R3/(R1+R2+R3)+R4+R5;//ohm
+RL=Req;//ohm//For maximum Power transfer
+disp(RL,"For maximum Power transfer, RL(ohm)");
+PLmax=VAB^2/4/RL;//W
+disp(PLmax,"Value of maximum Power(W)");
diff --git a/2672/CH1/EX1.33/Ex1_33.sce b/2672/CH1/EX1.33/Ex1_33.sce
new file mode 100755
index 000000000..21eddb671
--- /dev/null
+++ b/2672/CH1/EX1.33/Ex1_33.sce
@@ -0,0 +1,26 @@
+//Example 1_33
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V1=12;//V
+R1=3;//ohm
+R2=3;//ohm
+I2=6;//A
+//Converting currrent sources into Voltage sources
+V2=I2*R2;//V
+//writing KVL equation for the loop
+I=poly(0,'I');
+eqn=V1-R1*I-R2*I-V2;//KVL equation
+I=roots(eqn);//A
+VOC=V2+R2*I;//V
+Req=R1*R2/(R1+R2);//ohm
+RL=Req;//ohm//For maximum Power transfer
+disp(RL,"For maximum Power transfer, RL(ohm)");
+I=VOC/(Req+RL);//A
+PLmax=I^2*RL;//W
+disp(PLmax,"Value of maximum Power(W)");
+Ri=Req;//ohm
+Eta=1/(1+Ri/RL)*100;//%
+disp(Eta,"Power Transfer Efficiency(%)");
diff --git a/2672/CH1/EX1.34/Ex1_34.sce b/2672/CH1/EX1.34/Ex1_34.sce
new file mode 100755
index 000000000..40d8c5bed
--- /dev/null
+++ b/2672/CH1/EX1.34/Ex1_34.sce
@@ -0,0 +1,31 @@
+//Example 1_34
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V1=48;//V
+R1=4;//ohm
+R2=20;//ohm
+R3=12;//ohm
+R4=12;//ohm
+V2=12;//V
+//Open circuit AB
+I1=V1/(R1+R2);//A
+I2=V1/(R3+R4);//A
+VR1=V1*R1/(R1+R2);//V//across 4 ohm resistance
+VR2=V1*R2/(R1+R2);//V//across 20 ohm resistance
+VR3=V1*R3/(R3+R4);//V//across 12 ohm resistance
+VCE=VR2;//V
+VCD=VR3;//V
+VBC=V2+VR3;//V
+//POtential of A wih respect to B
+VOC=VCE-VBC;//V
+Rth=R1*R2/(R1+R2)+R3*R4/(R3+R4);//ohm
+Ri=Rth;//ohm
+RL=Ri;//ohm//For maximum Power transfer
+disp(RL,"For maximum Power transfer, RL(ohm)");
+I=VOC/(Rth+RL);//A
+PL=I^2*RL;//W
+disp(PL,"Value of maximum Power(W)");
+//Answer in the textbook is wrong.
diff --git a/2672/CH1/EX1.35/Ex1_35.sce b/2672/CH1/EX1.35/Ex1_35.sce
new file mode 100755
index 000000000..7f62bb93e
--- /dev/null
+++ b/2672/CH1/EX1.35/Ex1_35.sce
@@ -0,0 +1,25 @@
+//Example 1_35
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V=12;//V
+R1=4;//ohm
+R2=6;//ohm
+R3=6;//ohm
+R4=6;//ohm
+//Current by the source while -AB open circuit
+I=V/(R2*R3*R4/(R2*R3+R3*R4+R2*R4)+R1);//A
+//Voltage across AB
+VOC=I*(R2*R3*R4/(R2*R3+R3*R4+R2*R4));//V\
+//Thevenin equivalent Resistance
+Rth=(R2*R3*R4/(R2*R3+R3*R4+R2*R4)*R1/(R2*R3*R4/(R2*R3+R3*R4+R2*R4)+R1));//ohm
+Ri=Rth;//ohm
+RL=Ri;//ohm//For maximum Power transfer
+disp(RL,"For maximum Power transfer, RL(ohm)");
+I=VOC/(Rth+RL);//A
+PL=I^2*RL;//W
+disp(PL,"Value of maximum Power(W)");
+Eta=RL/(RL+Ri)*100;//%
+disp(Eta,"Power Transfer Efficiency(%)");
diff --git a/2672/CH1/EX1.36/Ex1_36.sce b/2672/CH1/EX1.36/Ex1_36.sce
new file mode 100755
index 000000000..39e553280
--- /dev/null
+++ b/2672/CH1/EX1.36/Ex1_36.sce
@@ -0,0 +1,21 @@
+//Example 1_36
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+R1=3;//ohm
+R2=6;//ohm
+R3=3;//ohm
+R4=3;//ohm
+R5=6;//ohm
+R6=3;//ohm
+R25=R2*R5/(R2+R5);//ohm
+RBC=R25;//ohm
+RAB=R4;//ohm
+RAC=R6;//ohm
+RA=RAB*RAC/(RAB+RAC+RBC);//ohm
+RB=RAB*RBC/(RAB+RAC+RBC);//ohm
+RC=RAC*RBC/(RAB+RAC+RBC);//ohm
+RPQ=(R1+RB)*(R3+RA)/(R1+RB+R3+RA)+RC;//ohm
+disp(RPQ,"Equivalent Resistance across P & Q(ohm)");
diff --git a/2672/CH1/EX1.37/Ex1_37.sce b/2672/CH1/EX1.37/Ex1_37.sce
new file mode 100755
index 000000000..d38cc4cd8
--- /dev/null
+++ b/2672/CH1/EX1.37/Ex1_37.sce
@@ -0,0 +1,18 @@
+//Example 1_37
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V=12;//V
+RAB=3;//ohm
+RAC=3;//ohm
+RBC=3;//ohm
+RBD=3;//ohm
+RCD=3;//ohm
+RA=RAB*RAC/(RAB+RAC+RBC);//ohm
+RB=RAB*RBC/(RAB+RAC+RBC);//ohm
+RC=RAC*RBC/(RAB+RAC+RBC);//ohm
+Req=RA+(RB+RBD)*(RC+RCD)/(RB+RBD+RC+RCD);//ohm
+I=V/Req;//A
+disp(I,"Current I supplied by the battery(A)");
diff --git a/2672/CH1/EX1.4/Ex1_4.sce b/2672/CH1/EX1.4/Ex1_4.sce
new file mode 100755
index 000000000..0c9c6d453
--- /dev/null
+++ b/2672/CH1/EX1.4/Ex1_4.sce
@@ -0,0 +1,13 @@
+//Example 1_4
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+Vs=6;//V
+//Point A & C, B & D are shorted
+RAB=(4*4/(4+4));//ohm
+RDC=(4*4/(4+4));//ohm
+Req=RAB*RDC/(RAB+RDC);//ohm
+Is=Vs/Req;//A
+disp(Is,"Current supplied by the battery(A)");
diff --git a/2672/CH1/EX1.40/Ex1_40.sce b/2672/CH1/EX1.40/Ex1_40.sce
new file mode 100755
index 000000000..03325f790
--- /dev/null
+++ b/2672/CH1/EX1.40/Ex1_40.sce
@@ -0,0 +1,19 @@
+//Example 1_40
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V=24;//V
+R1=7;//ohm
+R2=7;//ohm
+R3=7;//ohm
+R4=7;//ohm
+R5=8;//ohm
+R6=10;//ohm
+RAB=(R5*R6/(R5+R6)+R4)*(R2+R3)/(R5*R6/(R5+R6)+R4+R2+R3)+R1;//ohm
+I=V/RAB;//A
+I2=I*(R2+R3)/(R2+R3+R5*R6/(R5+R6)+R4);//A
+VPQ=I2*(R5*R6/(R5+R6));//V
+disp(VPQ,"Voltage drop across the 10 ohm resistor(V)");
+//Answer in the book is not accurate.
diff --git a/2672/CH1/EX1.41/Ex1_41.sce b/2672/CH1/EX1.41/Ex1_41.sce
new file mode 100755
index 000000000..4aac80ea9
--- /dev/null
+++ b/2672/CH1/EX1.41/Ex1_41.sce
@@ -0,0 +1,12 @@
+//Example 1_41
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+R1=5;//ohm
+R2=5;//ohm
+R3=10;//ohm
+R4=10;//ohm
+RAB=(R1+R3)*(R2+R4)/(R1+R3+R2+R4);//ohm
+disp(RAB,"Equivalent resistance(ohm)");
diff --git a/2672/CH1/EX1.42/Ex1_42.sce b/2672/CH1/EX1.42/Ex1_42.sce
new file mode 100755
index 000000000..1c5770a67
--- /dev/null
+++ b/2672/CH1/EX1.42/Ex1_42.sce
@@ -0,0 +1,25 @@
+//Example 1_42
+clc;
+clear;
+close;
+format('v',4);
+//given data :
+V=24;//V
+R1=2;//ohm
+R2=3;//ohm
+R3=5;//ohm
+R4=8;//ohm
+R5=2;//ohm
+R6=5;//ohm
+R7=3;//ohm
+R8=6;//ohm
+R57=R5+R7;//ohm//in series
+RAB=R3;//ohm
+RAC=R57;//ohm
+RBC=R6;//ohm
+RA=RAB*RAC/(RAB+RAC+RBC);//ohm
+RB=RAB*RBC/(RAB+RAC+RBC);//ohm
+RC=RAC*RBC/(RAB+RAC+RBC);//ohm
+Req=R1+RA+(RC+R8)*(RB+R4)/(RC+R8+RB+R4)+R2;//ohm
+I=V/Req;//A
+disp(I,"Total current by the battery(A)");
diff --git a/2672/CH1/EX1.43/Ex1_43.sce b/2672/CH1/EX1.43/Ex1_43.sce
new file mode 100755
index 000000000..18c469495
--- /dev/null
+++ b/2672/CH1/EX1.43/Ex1_43.sce
@@ -0,0 +1,18 @@
+//Example 1_43
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+VAP=25;//V
+RAP=15;//ohm
+RAQ=5;//ohm
+R3=5;//ohm
+RBP=10;//ohm
+RBQ=20;//ohm
+RAB=RAP*RAQ/(RAP+RAQ)+RBP*RBQ/(RBP+RBQ);//ohm
+disp(RAB,"Equivalent resistance across terminal AB(ohm)");
+I=VAP/(RAP*RAQ/(RAP+RAQ));//A
+VBQ=(RBP*RBQ/(RBP+RBQ))*I;//V
+V=VAP+VBQ;///V
+disp(V,"Required Voltage(V)");
diff --git a/2672/CH1/EX1.45/Ex1_45.sce b/2672/CH1/EX1.45/Ex1_45.sce
new file mode 100755
index 000000000..3b440a45b
--- /dev/null
+++ b/2672/CH1/EX1.45/Ex1_45.sce
@@ -0,0 +1,16 @@
+//Example 1_45
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+RAB=4;//ohm
+RAC=6;//ohm
+RBC=2;//ohm
+RBD=10;//ohm
+RCD=14;//ohm
+RA=RAB*RAC/(RAB+RAC+RBC);//ohm
+RB=RAB*RBC/(RAB+RAC+RBC);//ohm
+RC=RAC*RBC/(RAB+RAC+RBC);//ohm
+Req=RA+(RB+RBD)*(RC+RCD)/(RB+RBD+RC+RCD);//ohm
+disp(Req,"Total Resistance(ohm)");
diff --git a/2672/CH1/EX1.46/Ex1_46.sce b/2672/CH1/EX1.46/Ex1_46.sce
new file mode 100755
index 000000000..5738b16f4
--- /dev/null
+++ b/2672/CH1/EX1.46/Ex1_46.sce
@@ -0,0 +1,16 @@
+//Example 1_46
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+RAD=20;//ohm
+RAC=30;//ohm
+RDC=50;//ohm
+RDB=50;//ohm
+RBC=45;//ohm
+RAN=RAD*RAC/(RAD+RAC+RDC);//ohm
+RDN=RAD*RDC/(RAD+RAC+RDC);//ohm
+RCN=RAC*RDC/(RAD+RAC+RDC);//ohm
+RAB=RAN+(RDN+RDB)*(RCN+RBC)/(RDN+RDB+RCN+RBC);//ohm
+disp(RAB,"Total Resistance between terminal A & B(ohm)");
diff --git a/2672/CH1/EX1.47/Ex1_47.sce b/2672/CH1/EX1.47/Ex1_47.sce
new file mode 100755
index 000000000..680c58433
--- /dev/null
+++ b/2672/CH1/EX1.47/Ex1_47.sce
@@ -0,0 +1,24 @@
+//Example 1_47
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V1=6;//V
+V2=5;//V
+V3=8;//V
+R1=2;//ohm
+R2=2;//ohm
+R3=5;//ohm
+R4=4;//ohm
+//Node A :
+VA=poly(0,'VA');
+I1=(V1-VA)/R1;//A
+I2=(V2-VA)/R2;//A
+I3=(V3+VA)/R3;//A
+//KCL at Node A
+eqn=I1+I2-I3;
+VA=roots(eqn);//V
+VB=-V3;//V
+I3=(VA-VB)/R3;//A
+disp(I3,"Current flowing through 5 ohm Resistance(A)");
diff --git a/2672/CH1/EX1.48/Ex1_48.sce b/2672/CH1/EX1.48/Ex1_48.sce
new file mode 100755
index 000000000..ba3568c3e
--- /dev/null
+++ b/2672/CH1/EX1.48/Ex1_48.sce
@@ -0,0 +1,37 @@
+//Example 1_48
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V1=12;//V
+V2=3;//V
+V3=6;//V
+R1=2;//ohm
+R2=8;//ohm
+R3=4;//ohm
+R4=10;//ohm
+R5=12;//ohm
+//Node A//I1=I2+I3
+VA=poly(0,'VA');
+VB=poly(0,'VB');
+I1=(V1-VA)/R1;//A
+VK=VA-V2;//V
+//I2=(VK-VB)/R3;//A
+I3=VA/R2;//A
+//7*VA-2*VB=56//eqn(1)
+A1=[7 -2];//Coefficient Matrix
+B1=[56];//Coefficient Matrix
+//Node B //I2+I5=I4
+I5=(V3-VB)/R5;//A
+I4=VB/R4;//A
+//15*VA-26*VB=15//eqn(2)
+A2=[15 -26];//Coefficient Matrix
+B2=[15];//Coefficient Matrix
+A=[A1;A2];//Coefficient Matrix
+B=[B1;B2];//Coefficient Matrix
+X=A^-1*B;//solution Matrix
+VA=X(1);//V
+VB=X(2);//V
+I3=VA/R2;//A
+disp(I3,"Current through 8 ohm resistor(A)");
diff --git a/2672/CH1/EX1.49/Ex1_49.sce b/2672/CH1/EX1.49/Ex1_49.sce
new file mode 100755
index 000000000..eca0933d3
--- /dev/null
+++ b/2672/CH1/EX1.49/Ex1_49.sce
@@ -0,0 +1,52 @@
+//Example 1_49
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+I1=1;//A
+V3=12;//V
+I4=0.5;//A
+R1=10;//ohm
+R2=10;//ohm
+R3=20;//ohm
+R4=20;//ohm
+R5=20;//ohm
+//Node B//I1=I2+I3
+VB=poly(0,'VB');
+VC=poly(0,'VC');
+VD=poly(0,'VD');
+I2=(VB)/R1;//A
+//I3=(VB-VC)/R1;//A
+//2*VB-VC=10//eqn(1)
+A1=[2 -1 0];//Coefficient Matrix
+B1=[10];//Coefficient Matrix
+//Node C //I3=I4+I5
+I4=(VC-V3)/R3;//A
+//I5=(VC-VD)/R4;//A
+//2*VB-4*VC+VD=-12//eqn(2)
+A2=[2 -4 1];//Coefficient Matrix
+B2=[-12];//Coefficient Matrix
+//Node D //I6=I5+I7
+I6=VD/R5;//A
+I7=I4;//A
+//VC-2*VD=-10//eqn(3)
+A3=[0 1 -2];//Coefficient Matrix
+B3=[-10];//Coefficient Matrix
+A=[A1;A2;A3];//Coefficient Matrix
+B=[B1;B2;B3];//Coefficient Matrix
+X=A^-1*B;//solution Matrix
+VB=X(1);//V
+VC=X(2);//V
+VD=X(3);//V
+I2=(VB)/R1;//A
+I3=(VB-VC)/R1;//A
+I5=(VC-VD)/R4;//A
+I4=(-I3-I5);//A
+I6=VD/R5;//A
+disp("Current in various branches are : ");
+disp(I2,"Current I2(A)");
+disp(I3,"Current I3(A)");
+disp(I4,"Current I4(A)");
+disp(I5,"Current I5(A)");
+disp(I6,"Current I6(A)");
diff --git a/2672/CH1/EX1.5/Ex1_5.sce b/2672/CH1/EX1.5/Ex1_5.sce
new file mode 100755
index 000000000..6fc961c4f
--- /dev/null
+++ b/2672/CH1/EX1.5/Ex1_5.sce
@@ -0,0 +1,11 @@
+//Example 1_5
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+//Point B & C are shorted
+RAB=(4*4/(4+4));//ohm
+RBD=(4*4/(4+4));//ohm
+Req=RAB+RBD;//ohm
+disp(Req,"Equivalent Resistance(ohm)");
diff --git a/2672/CH1/EX1.50/Ex1_50.sce b/2672/CH1/EX1.50/Ex1_50.sce
new file mode 100755
index 000000000..25ec3958c
--- /dev/null
+++ b/2672/CH1/EX1.50/Ex1_50.sce
@@ -0,0 +1,31 @@
+//Example 1_50
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+I=8;//A
+I4=6;//A
+R1=3;//ohm
+R2=2;//ohm
+R3=4;//ohm
+//Applying KCL//I=I1+I2
+//I=V1/R1+V1/R2-V2/R2//eqn(1)
+A1=[1/R1+1/R2 -1/R2];//Coefficient Matrix
+B1=[I];//Coefficient Matrix
+//Applying KCL//I2=I3+I4
+//V1/R2-V2/R2-V2/R3=I4//eqn(2)
+A2=[1/R2 -1/R2-1/R3];//Coefficient Matrix
+B2=[I4];//Coefficient Matrix
+A=[A1;A2];//Coefficient Matrix
+B=[B1;B2];//Coefficient Matrix
+X=A^-1*B;//solution Matrix
+V1=X(1);//V
+V2=X(2);//V
+I1=V1/R1;//A
+I2=V1/R2-V2/R2;//A
+I3=(V2)/R3;//A
+disp("Current in various branches are : ");
+disp(I1,"Current I1(A)");
+disp(I2,"Current I2(A)");
+disp(I3,"Current I3(A)");
diff --git a/2672/CH1/EX1.6/Ex1_6.sce b/2672/CH1/EX1.6/Ex1_6.sce
new file mode 100755
index 000000000..fa68f68e2
--- /dev/null
+++ b/2672/CH1/EX1.6/Ex1_6.sce
@@ -0,0 +1,19 @@
+//Example 1_6
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+format('v',6);
+I=2;//A
+//3*I1+8*I2=6 from loop ABCA
+//7*I1-5*I2=0 from loop ADCA
+A=[3 8;7 -5];//coefiicient matrix
+B=[6;0];//coefiicient matrix
+X=A^-1*B;//Matrix multiplication
+I1=X(1);//A
+I2=X(2);//A
+I3=I-I1-I2;//A
+disp(I3,"Current in branch AB & BC(A)");
+disp(I1,"Current in branch AD & DC(A)");
+disp(I2,"Current in branch AC(A)");
diff --git a/2672/CH1/EX1.7/Ex1_7.sce b/2672/CH1/EX1.7/Ex1_7.sce
new file mode 100755
index 000000000..9c50ad6e8
--- /dev/null
+++ b/2672/CH1/EX1.7/Ex1_7.sce
@@ -0,0 +1,15 @@
+//Example 1_7
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+//11*I2+8*I3=4 from loop GDAG
+//8*I2+11*I3=6 from loop HDAH
+A=[11 8;8 11];//coefiicient matrix
+B=[4;6];//coefiicient matrix
+X=A^-1*B;//Matrix multiplication
+I2=X(1);//A
+I3=X(2);//A
+I8=I2+I3;//A
+disp(I8,"Current in 8 ohm resistor(A)");
diff --git a/2672/CH1/EX1.8/Ex1_8.sce b/2672/CH1/EX1.8/Ex1_8.sce
new file mode 100755
index 000000000..d841b77c7
--- /dev/null
+++ b/2672/CH1/EX1.8/Ex1_8.sce
@@ -0,0 +1,17 @@
+//Example 1_8
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+//6*I1-3*I2=2 from mesh 1
+//-6*I1+14*I2=4 from mesh 2
+A=[6 -3;-6 14];//coefiicient matrix
+B=[2;4];//coefiicient matrix
+X=A^-1*B;//Matrix multiplication
+I1=X(1);//A
+I2=X(2);//A
+disp(I1,"Current in 2ohm & 4ohm resistor(A)");
+disp(I2,"Current in 3ohm & 5ohm resistor(A)");
+I6ohm=I1-I2;//A(Current in 6ohm resistor)
+disp(I6ohm,"Current in 6ohm resistor(A)");
diff --git a/2672/CH1/EX1.9/Ex1_9.sce b/2672/CH1/EX1.9/Ex1_9.sce
new file mode 100755
index 000000000..da0243cc4
--- /dev/null
+++ b/2672/CH1/EX1.9/Ex1_9.sce
@@ -0,0 +1,16 @@
+//Example 1_9
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+//9*I1-2*I2-3*I3=24-V from mesh 1
+//I1-6*I2+3*I3=0 from mesh 2
+//3*I1+6*I2-11*I3=-V from mesh 3
+d=[9 -2 -3;1 -6 3;3 6 -11];
+delta=det(d);//determinant
+//d1=[24-V -2 -3;0 -6 3;-V 6 -11];
+//delta1=det(d1);determinant
+//Putting I1=delta1/delta=0
+V=(24*(66-18))/((66-18)+(-6-18));//V
+disp(V,"Unknown Voltage(V)");
diff --git a/2672/CH2/EX2.1/Ex2_1.sce b/2672/CH2/EX2.1/Ex2_1.sce
new file mode 100755
index 000000000..026474841
--- /dev/null
+++ b/2672/CH2/EX2.1/Ex2_1.sce
@@ -0,0 +1,14 @@
+//Ex_2_1
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+LTsc=1.6;//H(Series cumulative)
+LTd=0.4;//H(differentially)
+L1=0.6;//H
+M=(LTsc-LTd)/4;//H(Mutual Inductance)
+L2=LTsc-2*M-L1;//H
+K=M/sqrt(L1*L2);//Coupling Coefficient
+disp(M,"Mutual Inductance(H)");
+disp(K,"Coupling Coefficient");
diff --git a/2672/CH2/EX2.10/Ex2_10.sce b/2672/CH2/EX2.10/Ex2_10.sce
new file mode 100755
index 000000000..f7d4ca13a
--- /dev/null
+++ b/2672/CH2/EX2.10/Ex2_10.sce
@@ -0,0 +1,15 @@
+//Ex_2_10
+clc;
+clear;
+format('v',6);
+close;
+//given data :
+D=25/100;//m
+A=9/10000;//m^2
+N=100;//turns
+I=1.5;//A
+l=%pi*D;//m
+mur=2000;//relative permeability
+mu0=4*%pi*10^-7;//permeability
+fi=N*I/l*(mu0*mur*A);//Wb
+disp(fi*1000,"Flux produced(mWb)");
diff --git a/2672/CH2/EX2.11/Ex2_11.sce b/2672/CH2/EX2.11/Ex2_11.sce
new file mode 100755
index 000000000..e6361c0d1
--- /dev/null
+++ b/2672/CH2/EX2.11/Ex2_11.sce
@@ -0,0 +1,16 @@
+//Ex_2_11
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+lg=0.01/100;//m(airgap)
+li=39.99/100;//m(mean length)
+mur=2000;//relative permeability
+mu0=4*%pi*10^-7;//permeability
+N=1000;//turns
+A=9/10000;//m^2
+fi=1;//mWb
+S=li/(mu0*mur*A)+lg/(mu0*A);//AT/Wb
+I=fi*10^-3*S/N;//A
+disp(I,"Current required(A)");
diff --git a/2672/CH2/EX2.12/Ex2_12.sce b/2672/CH2/EX2.12/Ex2_12.sce
new file mode 100755
index 000000000..ebcc14c65
--- /dev/null
+++ b/2672/CH2/EX2.12/Ex2_12.sce
@@ -0,0 +1,20 @@
+//Ex_2_12
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+Ac=10/10000;//m^2
+Ao=5/10000;//m^2(outer limbs)
+Lo=25;//cm(outer limbs)
+Lc=16;//cm
+N=1000;//turns
+fic=1.2;//mWb
+fio=1.2;//mWb
+B=1.2;//Wb/m^2
+mmf=750;//AT/m
+Bc=fic*10^-3/Ac;//Wb/m^2
+Bo=fio*10^-3/Ao;//Wb/m^2
+mmf_total=mmf*Lo/100+mmf*Lc/100;//AT/m
+I=mmf_total/N;//A
+disp(I,"Current required(A)");
diff --git a/2672/CH2/EX2.13/Ex2_13.sce b/2672/CH2/EX2.13/Ex2_13.sce
new file mode 100755
index 000000000..bf2d1ecd7
--- /dev/null
+++ b/2672/CH2/EX2.13/Ex2_13.sce
@@ -0,0 +1,20 @@
+//Ex_2_13
+clc;
+clear;
+close;
+format('v',4);
+//given data :
+Ao=5/10000;//m^2(outer limbs)
+li=100/100;//m(iron path)
+A=10/10000;//m^2
+lg=1/1000;//m(airgap)
+I1=3;//A
+I2=2;//A
+N1=100;//turns
+N2=50;//turns
+mur=2000;//relative permeability
+mu0=4*%pi*10^-7;//permeability
+mmf=N1*I1-N2*I2;//AT
+S=1/(mu0*A)*[li/mur+lg];//AT/Wb
+fi=mmf/S*1000;//mWb
+disp(fi,"Flux available(mWb)");
diff --git a/2672/CH2/EX2.14/Ex2_14.sce b/2672/CH2/EX2.14/Ex2_14.sce
new file mode 100755
index 000000000..54b7cab52
--- /dev/null
+++ b/2672/CH2/EX2.14/Ex2_14.sce
@@ -0,0 +1,19 @@
+//Ex_2_14
+clc;
+clear;
+close;
+format('v',10);
+//given data :
+N1=100;//turns
+N2=80;//turns
+I1=10;//A
+I2=1.5;//A
+li=40/100;//m
+lg=1/1000;//m(airgap)
+A=10/10000;//m^2
+mur=2000;//relative permeability
+mu0=4*%pi*10^-7;//permeability
+mmf=N1*I1-N2*I2;//AT
+S=1/(mu0*A)*[li/mur+lg];//AT/Wb
+fi=mmf/S;//Wb
+disp(fi,"Flux produced(Wb)");
diff --git a/2672/CH2/EX2.15/Ex2_15.sce b/2672/CH2/EX2.15/Ex2_15.sce
new file mode 100755
index 000000000..4c4c832f5
--- /dev/null
+++ b/2672/CH2/EX2.15/Ex2_15.sce
@@ -0,0 +1,33 @@
+//Ex_2_15
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+N=2000;//turns
+lg=2/1000;//m(airgap)
+lc=20/100;//m(mean diameter)
+Ac=10/10000;//m^2(cross section central limb)
+Ao=5/10000;//m^2(cross section outer limb)
+B=[1 1.1 1.2 1.3 1.4];//Wb/m^2
+H=[550 650.750 820 870];//AT/m
+fi=1.1/1000;//Wb
+Bc=fi/Ac;//Wb/m^2(For central limb)
+Bo=fi/Ao;//Wb/m^2(For outer limb)
+for i=1:5
+ if Bc==B(i) then
+ H=H(i);//AT/m
+B=B(i);//Wb/m^2
+ break;
+ end;
+end;
+lo=%pi*lc/2;//m(outer limb, including airgap)
+//H=NI/l
+NIc=H*lc;//AT//NI for central limb
+NIo=H*(lo-lg);//AT//NI for outer limb
+mu0=4*%pi*10^-7;//permeability of air
+Hg=B/mu0;//AT/m
+NIag=Hg*lg;////AT//NI for airgap
+NI=NIc+NIo+NIag;//AT//Total AT required
+I=NI/N;//A
+disp(I,"Current I(A)");
diff --git a/2672/CH2/EX2.16/Ex2_16.sce b/2672/CH2/EX2.16/Ex2_16.sce
new file mode 100755
index 000000000..42a5392a0
--- /dev/null
+++ b/2672/CH2/EX2.16/Ex2_16.sce
@@ -0,0 +1,18 @@
+//Ex_2_16
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+LA=75/100;///m
+LB=25/100;///m
+lg=2/100;//m(airgap)
+mu_r1=1000;///relative permeability
+mu_r2=1500;///relative permeability
+mu0=4*%pi*10^-7;//permeability of air
+A=10*10^-4;//m^2//Area of core
+N=1000;//turns
+I=5;//A
+S=LA/(mu0*mu_r1*A)+LB/(mu0*mu_r2*A)+lg/(mu0*A);//Wb/m^2
+fi=N*I/S*1000;//mWb
+disp(fi,"Flux produced in the air-gap(mWb)");
diff --git a/2672/CH2/EX2.17/Ex2_17.sce b/2672/CH2/EX2.17/Ex2_17.sce
new file mode 100755
index 000000000..d61240907
--- /dev/null
+++ b/2672/CH2/EX2.17/Ex2_17.sce
@@ -0,0 +1,25 @@
+//Ex_2_17
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+CD=10/100;BE=10/100;AF=10/100;//m
+BC=8/100;ED=8/100;AB=8/100;EF=8/100;//m
+BCDE=BC+CD+ED;//m
+BAFE=AB+BE+EF;//m
+A=2*2*10^-4;//m^2
+mu_r=1200;///relative permeability
+N=800;//turns
+fi2=2*10^-3;//Wb
+mu0=4*%pi*10^-7;//permeability of air
+S2=BAFE/(mu0*mu_r*A);//Wb/m^2
+S1=BE/(mu0*mu_r*A);//Wb/m^2
+fi1=fi2*S2/S1;//Wb
+fi=fi1+fi2;//Wb
+AT2=fi*S2;//AT//for portion BAFE
+AT1=fi1*S1;//AT//for portion BCDE
+AT=AT1+AT2;//AT//Toal AT required
+NI=AT;//AT
+I=NI/N;//A
+disp(I,"Magnetizing current(A)");
diff --git a/2672/CH2/EX2.18/Ex2_18.sce b/2672/CH2/EX2.18/Ex2_18.sce
new file mode 100755
index 000000000..fdcd13ae6
--- /dev/null
+++ b/2672/CH2/EX2.18/Ex2_18.sce
@@ -0,0 +1,20 @@
+//Ex_2_18
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+lg=1/1000;//m//air-gap
+li=20/100;//m//flux path
+mu0=4*%pi*10^-7;//permeability of air
+mu_r=500;///relative permeability
+A=0.5*10^-4;//m^2//Area
+I=50/1000;//A
+N=8000;//turns
+S=li/mu0/mu_r/A+2*lg/mu0/A;//AT/Wb
+fi=N*I/S;//Wb
+B=fi/A;//Wb/m^2
+disp(B,"Flux Density(Wb/m^2)");
+format('v',5);
+F=B*A/2/mu0;//N
+disp(F,"Magnetic Pull(N)");
diff --git a/2672/CH2/EX2.19/Ex2_19.sce b/2672/CH2/EX2.19/Ex2_19.sce
new file mode 100755
index 000000000..19b27deaa
--- /dev/null
+++ b/2672/CH2/EX2.19/Ex2_19.sce
@@ -0,0 +1,11 @@
+//Ex_2_19
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+I=100;//A
+r=1;//m
+mu0=4*%pi*10^-7;//permeability of air
+B=mu0*I/2/%pi/r;//Wb/m^2
+disp(B,"Magnetic field produced(Wb/m^2)");
diff --git a/2672/CH2/EX2.2/Ex2_2.sce b/2672/CH2/EX2.2/Ex2_2.sce
new file mode 100755
index 000000000..63a86c6e9
--- /dev/null
+++ b/2672/CH2/EX2.2/Ex2_2.sce
@@ -0,0 +1,14 @@
+//Ex_2_2
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+l=0.5;//m
+B=0.5;//Wb/m^2
+I=50;//A
+v=20;//m/s
+F=B*l*I;//N
+disp(F,"Force expereinced by the conductor(N)");
+e=B*l*v;//V
+disp(e,"emf induced(V)");
diff --git a/2672/CH2/EX2.20/Ex2_20.sce b/2672/CH2/EX2.20/Ex2_20.sce
new file mode 100755
index 000000000..9f9de5c9e
--- /dev/null
+++ b/2672/CH2/EX2.20/Ex2_20.sce
@@ -0,0 +1,19 @@
+//Ex_2_20
+clc;
+clear;
+close;
+format('e',9);
+//given data :
+I1=100;//A
+I2=10;//A
+l=20/100;//m
+r1=1/100;//m
+r2=11/100;//m
+mu0=4*%pi*10^-7;//permeability of air
+//Force of attraction between Conductor & AB
+F1=mu0*I1*I2*l/2/%pi/r1;//N
+//Force of repulsion between Conductor & CD
+F2=mu0*I1*I2*l/2/%pi/r2;//N
+//Net Force
+F=F1-F2;//N
+disp(F,"Resultant force developed(N)");
diff --git a/2672/CH2/EX2.21/Ex2_21.sce b/2672/CH2/EX2.21/Ex2_21.sce
new file mode 100755
index 000000000..fb5adc7fb
--- /dev/null
+++ b/2672/CH2/EX2.21/Ex2_21.sce
@@ -0,0 +1,19 @@
+//Ex_2_21
+clc;
+clear;
+close;
+format('v',4);
+//given data :
+N=500;//turns
+A=0.01;//m^2(Area of cross section of poles)
+l=0.5;//m(mean length)
+mu0=4*%pi*10^-7;//permeability of air
+mu_r=1000;///relative permeability
+g=9.8;//gravitational acceleration
+W=200;//kg
+F=W/2;//kg
+F=F*g;//N
+B=sqrt(F*2*mu0/A);//Wb/m^2
+H=B/mu0/mu_r;//Wb/m^2
+I=H*l/N;//A
+disp(I,"Exciting current(A)");
diff --git a/2672/CH2/EX2.3/Ex2_3.sce b/2672/CH2/EX2.3/Ex2_3.sce
new file mode 100755
index 000000000..8c0d401ee
--- /dev/null
+++ b/2672/CH2/EX2.3/Ex2_3.sce
@@ -0,0 +1,17 @@
+//Ex_2_3
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+N=100;//turns
+l=0.5;//m
+A=10/10000;//m^2
+mur=2000;//relative permeability of iron
+mu0=4*%pi*10^-7;//permeability
+I=5;//A
+t=10;//ms
+L=mur*mu0*N^2*A/l*1000;//mH
+disp(L,"Inductance of the coil(mH)");
+E=L*2*I/t;//V
+disp(E,"Induced emf in the coil(V)");
diff --git a/2672/CH2/EX2.4/Ex2_4.sce b/2672/CH2/EX2.4/Ex2_4.sce
new file mode 100755
index 000000000..4e5375168
--- /dev/null
+++ b/2672/CH2/EX2.4/Ex2_4.sce
@@ -0,0 +1,16 @@
+//Ex_2_4
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+N1=500;//turns
+N2=2000;//turns
+K=50/100;//coefficient for 50% flux linked
+diBYdt=10;//A/s
+L1=200;//mH
+fi1BYI1=L1/N1;
+M=N2*fi1BYI1;//mH
+e2=M*10^-3*diBYdt;//V
+disp(M/1000,"Mutual Inductance of two coil(H)");
+disp(e2,"Induced emf in the coil having 1000 turns(V)");
diff --git a/2672/CH2/EX2.5/Ex2_5.sce b/2672/CH2/EX2.5/Ex2_5.sce
new file mode 100755
index 000000000..c9db33d19
--- /dev/null
+++ b/2672/CH2/EX2.5/Ex2_5.sce
@@ -0,0 +1,20 @@
+//Ex_2_5
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+I1=5;//A
+N1=500;//turns
+fi1=1;//mWb
+dt=10;//ms
+e2=50;//V
+K=60/100;//coefficient of coupling
+di1=2*(I1);//A(as current changes from +5A to -5A)
+M=e2*dt*10^-3/di1;//H
+L1=N1*fi1/1000/I1;//H
+L2=L1*M^2/K^2;//H
+disp(M,"Mutual Inductance of two coil(H)");
+disp(L1,"Self inductance of coil 1(H)");
+disp(L2,"Self inductance of coil 2(H)");
+//Answer is wrong in the book.
diff --git a/2672/CH2/EX2.6/Ex2_6.sce b/2672/CH2/EX2.6/Ex2_6.sce
new file mode 100755
index 000000000..63542883c
--- /dev/null
+++ b/2672/CH2/EX2.6/Ex2_6.sce
@@ -0,0 +1,21 @@
+//Ex_2_6
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+N1=1000;//turns
+N2=400;//turns
+K1=75/100;//coefficient of coupling
+I1=6;//A
+I2=6;//A
+fi1=0.8;//mWb
+fi2=0.5;//mWb
+L1=N1*fi1*10^-3/I1;//H
+L2=N2*fi2*10^-3/I2;//H
+M=N2*K1*fi1*10^-3/I1;//H
+K=M/sqrt(L1*L2);
+disp(L1,"Self inductance of coil 1(H)");
+disp(L2,"Self inductance of coil 2(H)");
+disp(M,"Mutual Inductance of two coil(H)");
+disp(K,"Coefficient of coupling");
diff --git a/2672/CH2/EX2.7/Ex2_7.sce b/2672/CH2/EX2.7/Ex2_7.sce
new file mode 100755
index 000000000..fe64d82ea
--- /dev/null
+++ b/2672/CH2/EX2.7/Ex2_7.sce
@@ -0,0 +1,15 @@
+//Ex_2_7
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+r=10;//cm
+I=100;//A
+d=5;//cm
+mu0=4*%pi*10^-7;//permeability
+Bc=mu0*I/2/(r/100);//Wb/m^2 or T
+B=mu0*I*(r/100)^2/(2*((r/100)^2+(d/100)^2)^(3/2));//Wb/m^2
+disp(Bc,"Flux density at the centre(Wb/m^2)");
+disp(B,"Flux density in the plane(Wb/m^2)");
+//Answer is wrong in the book.
diff --git a/2672/CH2/EX2.8/Ex2_8.sce b/2672/CH2/EX2.8/Ex2_8.sce
new file mode 100755
index 000000000..55b033437
--- /dev/null
+++ b/2672/CH2/EX2.8/Ex2_8.sce
@@ -0,0 +1,19 @@
+//Ex_2_8
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+D=0.5;//m(mean diameter)
+A=0.01;//m^2
+fi=10/1000;//Wb
+N=100;//turns
+mmf1=10;//A-turn//(for Ni alloy)
+mmf2=50;//A-turn//(for Si-steel alloy)
+l=%pi*D;//m(total length)
+lni=l/2;//m(length of Ni alloy)
+lsi=l/2;//m(length of Si-steel)
+mmf=mmf1*lni+mmf2*lsi;//A-turn///total mmf
+disp(mmf,"mmf required(A-turn)");
+I=mmf/N;//A
+disp(I,"Current(A)");
diff --git a/2672/CH2/EX2.9/Ex2_9.sce b/2672/CH2/EX2.9/Ex2_9.sce
new file mode 100755
index 000000000..561067086
--- /dev/null
+++ b/2672/CH2/EX2.9/Ex2_9.sce
@@ -0,0 +1,12 @@
+//Ex_2_9
+clc;
+clear;
+close;
+format('e',9);
+//given data :
+l=20/100;//m
+A=1.5/10000;//m^2
+mur=2000;//relative permeability
+mu0=4*%pi*10^-7;//permeability
+S=l/(mu0*mur*A);//AT/Wb
+disp(S,"Reluctance of silicon steel(AT/Wb)");
diff --git a/2672/CH3/EX3.1/Ex3_1.sce b/2672/CH3/EX3.1/Ex3_1.sce
new file mode 100755
index 000000000..2d119ddba
--- /dev/null
+++ b/2672/CH3/EX3.1/Ex3_1.sce
@@ -0,0 +1,13 @@
+//Example 3_1
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+//v=100*sin(314*t)
+R=20;//ohm
+Vm=100;//V
+omega=314;//
+Vrms=Vm/2;//V
+Irms=Vrms/R;//A
+disp(Irms,"rms value of current (A)");
diff --git a/2672/CH3/EX3.10/Ex3_10.sce b/2672/CH3/EX3.10/Ex3_10.sce
new file mode 100755
index 000000000..e4cabbe6c
--- /dev/null
+++ b/2672/CH3/EX3.10/Ex3_10.sce
@@ -0,0 +1,19 @@
+//Example 3_10
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+V=200;//V
+f=50;//Hz
+R=40;//ohm
+L=0.0637;//H
+XL=2*%pi*f*L;//ohm
+IR=V/R;//A
+IL=V/XL;//A
+I=sqrt(IR^2+IL^2);//A
+disp(I,"(a) Current drawn from supply(A)");
+S=V*I/1000;//kVA
+disp(S,"(b) Apparent Power(kVA)");
+P=V*IR/1000;//kW
+disp(P,"(c) Real Power(kW)");
diff --git a/2672/CH3/EX3.11/Ex3_11.sce b/2672/CH3/EX3.11/Ex3_11.sce
new file mode 100755
index 000000000..dd52d9853
--- /dev/null
+++ b/2672/CH3/EX3.11/Ex3_11.sce
@@ -0,0 +1,34 @@
+//Example 3_11
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+V=100;//V
+f=50;//Hz
+R1=8;//ohm
+X1=6;//ohm
+R2=6;//ohm
+X2=-8;//ohm
+Z1=R1+%i*X1;//ohm
+Z2=R2+%i*X2;//ohm
+I1=V/Z1;//A
+I1mag=abs(I1);//A
+I1ang=atand(imag(I1),real(I1));//degree
+disp(I1ang,I1mag,"Branch Current I1, magnitude(A) & angle(degree) are: ");
+I2=V/Z2;//A
+I2mag=abs(I2);//A
+I2ang=atand(imag(I2),real(I2));//degree
+disp(I2ang,I2mag,"Branch Current I2, magnitude(A) & angle(degree) are: ");
+I=I1+I2;//A
+Imag=abs(I);//A
+Iang=atand(imag(I),real(I));//degree
+disp(Iang,Imag,"Total Current I, magnitude(A) & angle(degree) are: ");
+fi=atand(imag(I),real(I));//degree
+pf=cosd(fi);//Power Factor lagging
+disp(pf,"Total Power Factor(lagging)");
+P=V*Imag*cosd(fi);//W
+disp(P,"Active Power(W)");
+S=V*Imag*sind(fi);//VAR
+disp(S,"Reactive Power(VAR)");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.12/Ex3_12.sce b/2672/CH3/EX3.12/Ex3_12.sce
new file mode 100755
index 000000000..efb51b4bc
--- /dev/null
+++ b/2672/CH3/EX3.12/Ex3_12.sce
@@ -0,0 +1,22 @@
+//Example 3_12
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+V=230;//V
+f=50;//Hz
+R=5;//ohm
+L=30;//mH
+XL=2*%pi*f*L*10^-3;//ohm
+Z=R+%i*XL;//ohm
+I=V/Z;//A
+Imag=abs(I);//A
+disp(Imag,"Magnitude of current(A) : ");
+fi=atand(imag(I),real(I));//degree
+format('v',5);
+pf=cosd(fi);//Power Factor
+disp(pf,"Power Factor(lagging)");
+P=V*Imag*cosd(fi);//W
+disp(P,"Power Consumed(W) : " );
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.13/Ex3_13.sce b/2672/CH3/EX3.13/Ex3_13.sce
new file mode 100755
index 000000000..e574312f8
--- /dev/null
+++ b/2672/CH3/EX3.13/Ex3_13.sce
@@ -0,0 +1,25 @@
+//Example 3_13
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+V=230;//V
+f=50;//Hz
+R=15;//ohm
+L=0.15;//H
+C=100;//micro F
+XL=2*%pi*f*L;//ohm
+XC=1/2/%pi/f/(C*10^-6);//ohm
+Z=R+%i*(XL-XC);//ohm
+I=V/Z;//A
+Imag=abs(I);//A
+fi=atand(imag(I),real(I));//degree
+disp(Imag,"Magnitude of current(A) : ");
+disp(fi,"Angle(lagging) of current(degree) : ");
+format('v',7);
+pf=cosd(fi);//Power Factor
+disp(pf,"Power Factor(lagging)");
+P=V*Imag*cosd(fi);//W
+disp(P,"Power Consumed(W) : " );
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.14/Ex3_14.sce b/2672/CH3/EX3.14/Ex3_14.sce
new file mode 100755
index 000000000..7524ff0e3
--- /dev/null
+++ b/2672/CH3/EX3.14/Ex3_14.sce
@@ -0,0 +1,21 @@
+//Example 3_14
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V=230;//V
+f=50;//Hz
+V1=120*expm(%i*30*%pi/180);//V
+Z1=15*expm(%i*40*%pi/180);//ohm
+V2=V-V1;//V
+I=V1/Z1;//A
+Z2=V2/I;//ohm
+R=real(Z2);//ohm
+XC=imag(Z2);//ohm
+C=-1/2/%pi/f/XC*10^6;//micro F
+disp(Z2,"Value of Z2(ohm) : ");
+disp(R,"Resistance(ohm)");
+format('v',7);
+disp(C,"Capacitance(micro F)");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.15/Ex3_15.sce b/2672/CH3/EX3.15/Ex3_15.sce
new file mode 100755
index 000000000..d2ba45150
--- /dev/null
+++ b/2672/CH3/EX3.15/Ex3_15.sce
@@ -0,0 +1,20 @@
+//Example 3_15
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+f=50;///Hz
+V=160+%i*170;//V
+I=12-%i*5;//A
+Z=V/I;//ohm
+disp(Z,"Impedence Z(ohm)");
+fi=atand(imag(Z)/real(Z));//degree
+pf=cosd(fi);//Power Factor
+disp(pf,"Power Factor(lagging)");
+P=abs(V)*abs(I)*pf;//W
+disp(P,"Power Consumed(W)");
+XL=imag(Z);//ohm
+L=XL/2/%pi/f*1000;//mH
+disp(L,"Inductance L(mH)");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.16/Ex3_16.sce b/2672/CH3/EX3.16/Ex3_16.sce
new file mode 100755
index 000000000..19cbe0747
--- /dev/null
+++ b/2672/CH3/EX3.16/Ex3_16.sce
@@ -0,0 +1,25 @@
+//Example 3_16
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+//v=325*sin(314*t)
+//i=14.14*sin(314*t-60)
+Vm=325;//V
+omega=314;//rad/s
+V=Vm/sqrt(2);//V
+f=omega/2/%pi;//Hz
+Im=14.14;//A
+I=Im/sqrt(2);//A
+fi=60;//degree
+pf=cosd(fi);//power factor
+P=V*I*cosd(fi);//W
+disp(P,"Powe Consumed(W)");
+Z=V/(I*expm(%i*-fi*%pi/180));//ohm
+R=real(Z);//ohm
+disp(R,"Value of R(ohm)");
+XL=imag(Z);//ohm
+L=XL/2/%pi/f*1000;//mH
+disp(L,"Value of L(mH)");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.17/Ex3_17.sce b/2672/CH3/EX3.17/Ex3_17.sce
new file mode 100755
index 000000000..8a2647652
--- /dev/null
+++ b/2672/CH3/EX3.17/Ex3_17.sce
@@ -0,0 +1,13 @@
+//Example 3_17
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+L=100;//mH
+f=50;//Hz
+XL=2*%pi*f*L/1000;///ohm
+//VL should be equal to 1/2*V
+//equalting : VL=I*XL & 1/2*V=1/2*I*Z=1/2*I*sqrt(R^2+XL^2)
+R=sqrt(3*XL^2);//ohm
+disp(R,"Value of R(ohm)");
diff --git a/2672/CH3/EX3.18/Ex3_18.sce b/2672/CH3/EX3.18/Ex3_18.sce
new file mode 100755
index 000000000..c3cd4dcfb
--- /dev/null
+++ b/2672/CH3/EX3.18/Ex3_18.sce
@@ -0,0 +1,25 @@
+//Example 3_18
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+//v=100*sin(314*t)
+//i=10*sin(314*t-%pi/6)
+Vm=100;//V
+omega=314;//rad/s
+V=Vm/sqrt(2);//V
+f=omega/2/%pi;//Hz
+Im=10;//A
+I=Im/sqrt(2);//A
+fi=%pi/6;//radian
+pf=cos(fi);//power factor
+disp(pf,"Power Factor(Lagging)");
+P=V*I*cos(fi);//W
+disp(P,"Powe Consumed(W)");
+Z=V/(I*expm(%i*-fi));//ohm
+R=real(Z);//ohm
+disp(R,"Value of R(ohm)");
+XL=imag(Z);//ohm
+L=XL/2/%pi/f*1000;//mH
+disp(L,"Value of L(mH)");
diff --git a/2672/CH3/EX3.19/Ex3_19.sce b/2672/CH3/EX3.19/Ex3_19.sce
new file mode 100755
index 000000000..144ba7833
--- /dev/null
+++ b/2672/CH3/EX3.19/Ex3_19.sce
@@ -0,0 +1,29 @@
+//Example 3_19
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+//v=200*sin(314*t+%pi/3)
+//i=20*sin(314*t+%pi/6)
+Vm=200;//V
+omega=314;//rad/s
+V=Vm/sqrt(2);//V
+f=omega/2/%pi;//Hz
+Im=20;//A
+I=Im/sqrt(2);//A
+fi=%pi/3-%pi/6;//radian
+pf=cos(fi);//power factor
+disp(pf,"(i) Power Factor(Lagging)");
+P=V*I*cos(fi);//W
+disp(P,"(ii) Average Power(W)");
+Z=V/(I*expm(%i*-fi));//ohm
+Zmag=abs(Z);//ohm
+Zang=atand(imag(Z),real(Z));//degree
+disp(Zang,Zmag,"(iii) Impedence in polar form, Magnitude(ohm) & angle(degree) are");
+disp(Z,"(iii) Impedence in rectangular form(ohm)");
+R=real(Z);//ohm
+disp(R,"(iv)Value of R(ohm)");
+XL=imag(Z);//ohm
+L=XL/2/%pi/f*1000;//mH
+disp(L,"(iv)Value of L(mH)");
diff --git a/2672/CH3/EX3.2/Ex3_2.sce b/2672/CH3/EX3.2/Ex3_2.sce
new file mode 100755
index 000000000..94596c1f8
--- /dev/null
+++ b/2672/CH3/EX3.2/Ex3_2.sce
@@ -0,0 +1,19 @@
+//Example 3_2
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+//v=150*sin(100*%pi*t)
+R=50;//ohm
+Vm=150;//V
+omega=100*%pi;//
+f=omega/2/%pi;//Hz
+Vrms=Vm/2;//V
+Vav=Vm/%pi;//V
+Irms=Vm/2/R;//A
+disp(Irms,"rms value of current (A)");
+Iav=Vm/%pi/R;//A
+disp(Iav,"Average value of current (A)");
+Kf=Irms/Iav;//Form Factor
+disp(Kf,"Form Factor")
diff --git a/2672/CH3/EX3.20/Ex3_20.sce b/2672/CH3/EX3.20/Ex3_20.sce
new file mode 100755
index 000000000..832bda81e
--- /dev/null
+++ b/2672/CH3/EX3.20/Ex3_20.sce
@@ -0,0 +1,17 @@
+//Example 3_20
+clc;
+clear;
+close;
+format('v',4);
+//given data :
+VR=20;//V
+VL=60;//V
+VC=30;//V
+V=sqrt(VR^2+(VL-VC)^2);//V
+disp(V,"Magnitude of voltage(V)");
+format('v',5);
+fi=acosd(VR/V);//degree
+disp(fi,"Power Factor angle(degree)");
+pf=cosd(fi);//Power Factor
+disp(pf,"Power Factor");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.21/Ex3_21.sce b/2672/CH3/EX3.21/Ex3_21.sce
new file mode 100755
index 000000000..8a47e3308
--- /dev/null
+++ b/2672/CH3/EX3.21/Ex3_21.sce
@@ -0,0 +1,23 @@
+//Example 3_21
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+L=100;//mH
+//i=14.148sin(314*t+%pi/6)
+//v=325*sin(314*t)
+Vm=325;//V
+Im=14.14;//A
+omega=314;//rad/s
+V=Vm/sqrt(2);//V
+I=Im/sqrt(2);//A
+Z=V/(I*expm(%i*%pi/6));//ohm
+R=real(Z);//ohm
+disp(R,"Value of R(ohm)");
+XCL=-imag(Z);//ohm//XCL=XC-XL
+XC=XCL+omega*L/1000;//ohm
+C=1/XC/omega;//F
+C=C*10^6;//micro F
+disp(C,"Value of C(micro F)");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.22/Ex3_22.sce b/2672/CH3/EX3.22/Ex3_22.sce
new file mode 100755
index 000000000..13aca62ac
--- /dev/null
+++ b/2672/CH3/EX3.22/Ex3_22.sce
@@ -0,0 +1,24 @@
+//Example 3_22
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+L=100;//mH
+R=15;//ohm
+V=230;//V
+f=50;//Hz
+XL=2*%pi*f*L/1000;//ohm
+IR=V/R;//A
+disp(IR,"Branch Current IR(A)");
+IL=V/XL;//A
+format('v',5);
+disp(IL,"Branch Current IL(A)");
+I=sqrt(IR^2+IL^2);//A
+disp(I,"Line Current I(A)");
+pf=IR/I;//Power factor(lagging)
+disp(pf,"Power Factor(lagging)");
+fi=acosd(pf);//degree
+P=V*I*cosd(fi);//W
+disp(P,"Power Consumed(W)");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.23/Ex3_23.sce b/2672/CH3/EX3.23/Ex3_23.sce
new file mode 100755
index 000000000..6275f0367
--- /dev/null
+++ b/2672/CH3/EX3.23/Ex3_23.sce
@@ -0,0 +1,27 @@
+//Example 3_23
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+R1=5;//ohm
+L1=150;//mH
+R2=50;//ohm
+L2=15;//mH
+V=230;//V
+f=50;//Hz
+Z1=R1+%i*2*%pi*f*L1/1000;//ohm
+Z2=R2+%i*2*%pi*f*L2/1000;//ohm
+I1=V/Z1;//A
+I2=V/Z2;//A
+I=I1+I2;//A
+Imag=abs(I);//A
+Iang=atand(imag(I)/real(I));//degree
+disp(Iang,Imag,"Total current drawn, magnitude(A) & Angle(degree) are");
+pf=cosd(Iang);//Power Factor(lagging)
+format('v',4);
+disp(pf,"Power Factor(lagging)");
+P=V*Imag*pf;//W
+format('v',5);
+disp(P,"Power Consumed(W)");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.24/Ex3_24.sce b/2672/CH3/EX3.24/Ex3_24.sce
new file mode 100755
index 000000000..be11c8173
--- /dev/null
+++ b/2672/CH3/EX3.24/Ex3_24.sce
@@ -0,0 +1,22 @@
+//Example 3_24
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+Z1=10+%i*12;//ohm
+Z2=12-%i*10;//ohm
+V=230;//V
+f=50;//Hz
+Z=Z1*Z2/(Z1+Z2);//ohm
+I=V/Z;//A
+Imag=abs(I);//A
+Iang=atand(imag(I)/real(I));//degree
+disp(Iang,Imag,"Total current drawn, magnitude(A) & Angle(degree) are");
+pf=cosd(Iang);//Power Factor(lagging)
+format('v',6);
+disp(pf,"Power Factor(lagging)");
+P=V*Imag*pf;//W
+P=P/1000;//kW
+disp(P,"Power Consumed(kW)");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.25/Ex3_25.sce b/2672/CH3/EX3.25/Ex3_25.sce
new file mode 100755
index 000000000..ca1738c58
--- /dev/null
+++ b/2672/CH3/EX3.25/Ex3_25.sce
@@ -0,0 +1,35 @@
+//Example 3_25
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+R1=12;//ohm
+L=50;//mH
+R2=50;//ohm
+C=50;//micro F
+V=200*expm(%i*30*%pi/180);//V
+f=50;//Hz
+XL=2*%pi*f*L/1000;//ohm
+XC=1/2/%pi/f/(C*10^-6);//ohm
+Z1=R1+%i*XL;//ohm
+Z2=R2+%i*XC;//ohm
+I1=V/Z1;//A
+I2=V/Z2;//A
+I=I1+I2;//A
+Imag=abs(I);//A
+Iang=atand(imag(I)/real(I));//degree
+disp(Iang,Imag,"Total current drawn, magnitude(A) & Angle(degree) are");
+pf=cosd(Iang);//Power Factor(lagging)
+fi=acosd(pf);//degree
+disp(pf,"Power Factor(lagging)");
+P=abs(V)*Imag*pf;//W
+P=P/1000;//kW
+disp(P,"Power Consumed(kW)");
+S=abs(V)*Imag*sind(fi);//VARs
+S=S/1000;//kVARs
+disp(S,"Reactive Power (kVARs)");
+Pa=abs(V)*Imag/1000;//kVA
+disp(Pa,"Apparent Power(kVA)");
+//Answer is not accurate in the book.
+
diff --git a/2672/CH3/EX3.26/Ex3_26.sce b/2672/CH3/EX3.26/Ex3_26.sce
new file mode 100755
index 000000000..5008b7782
--- /dev/null
+++ b/2672/CH3/EX3.26/Ex3_26.sce
@@ -0,0 +1,35 @@
+//Example 3_26
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+V=230;//V
+f=50;//Hz
+Z1=12*expm(%i*30*%pi/180);//ohm
+Z2=8*expm(%i*-30*%pi/180);//ohm
+Z3=10*expm(%i*60*%pi/180);//ohm
+Y1=1/Z1;//mho
+Y2=1/Z2;//mhob
+Y3=1/Z3;//mho
+Y=Y1+Y2+Y3;//mho
+Ymag=abs(Y);//mho
+Yang=atand(imag(Y)/real(Y));//degree
+disp(Yang,Ymag,"Total admittance, magnitude(mho) & Angle(degree) are");
+Z=1/Y;//ohm
+Zmag=abs(Z);//ohm
+Zang=atand(imag(Z)/real(Z));//degree
+disp(Zang,Zmag,"Equivallent Impedance, magnitude(ohm) & Angle(degree) are");
+I=V/Z;//A
+Imag=abs(I);//A
+Iang=atand(imag(I)/real(I));//degree
+disp(Iang,Imag,"Total current, magnitude(A) & Angle(degree) are");
+pf=cosd(Iang);//Power Factor(lagging)
+fi=acosd(pf);//degree
+disp(pf,"Power Factor(lagging)");
+format('v',7);
+P=abs(V)*Imag*pf;//W
+P=P/1000;//kW
+disp(P,"Power Consumed(kW)");
+//Answer is not accurate in the book.
+
diff --git a/2672/CH3/EX3.27/Ex3_27.sce b/2672/CH3/EX3.27/Ex3_27.sce
new file mode 100755
index 000000000..ec6da2fa2
--- /dev/null
+++ b/2672/CH3/EX3.27/Ex3_27.sce
@@ -0,0 +1,36 @@
+//Example 3_27
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+V=230;//V
+f=50;//Hz
+R1=12;//ohm
+XL1=12;//ohm
+R2=8;//ohm
+XL2=16;//ohm
+Z1=R1+%i*XL1;//ohm
+Z2=R2+%i*XL2;//ohm
+Y1=1/Z1;//mho
+Y2=1/Z2;//mhob
+I1=V*Y1;//A
+I1mag=abs(I1);//A
+I1ang=atand(imag(I1)/real(I1));//degree
+disp(I1ang,I1mag,"current I1, magnitude(A) & Angle(degree) are");
+I2=V*Y2;//A
+I2mag=abs(I2);//A
+I2ang=atand(imag(I2)/real(I2));//degree
+disp(I2ang,I2mag,"Current I2, magnitude(A) & Angle(degree) are");
+I=I1+I2;//A
+Imag=abs(I);//A
+Iang=atand(imag(I)/real(I));//degree
+disp(Iang,Imag,"Total current, magnitude(A) & Angle(degree) are");
+pf=cosd(Iang);//Power Factor(lagging)
+fi=acosd(pf);//degree
+disp(pf,"Power Factor(lagging)");
+P=abs(V)*Imag*pf;//W
+P=P/1000;//kW
+disp(P,"Power Consumed(kW)");
+//Answer is not accurate in the book.
+
diff --git a/2672/CH3/EX3.28/Ex3_28.sce b/2672/CH3/EX3.28/Ex3_28.sce
new file mode 100755
index 000000000..3b21b5dc8
--- /dev/null
+++ b/2672/CH3/EX3.28/Ex3_28.sce
@@ -0,0 +1,28 @@
+//Example 3_28
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V=230;//V
+f=50;//Hz
+R1=10;//ohm
+L1=0.0636;//H
+R2=8;//ohm
+C=398;//micro F
+R3=6;//ohm
+L2=0.0319;//H
+Z1=R1+%i*2*%pi*f*L1;//ohm
+Z2=R2-%i/2/%pi/f/(C*10^-6);//ohm
+Z3=R3+%i*2*%pi*f*L2;//ohm
+Z=Z1*Z2/(Z1+Z2)+Z3;//ohm
+I=V/Z;//A
+Imag=abs(I);//A
+Iang=atand(imag(I)/real(I));//degree
+disp(Iang,Imag,"Current, magnitude(A) & Angle(degree) are");
+disp(Imag,"Total Current(A)");
+pf=cosd(Iang);//Power Factor(lagging)
+fi=acosd(pf);//degree
+disp(pf,"Power Factor(lagging)");
+//Answer is not accurate in the book.
+
diff --git a/2672/CH3/EX3.29/Ex3_29.sce b/2672/CH3/EX3.29/Ex3_29.sce
new file mode 100755
index 000000000..a4df128e4
--- /dev/null
+++ b/2672/CH3/EX3.29/Ex3_29.sce
@@ -0,0 +1,21 @@
+//Example 3_29
+clc;
+clear;
+close;
+format('v',4);
+//given data :
+V=230;//V
+I=25;//A
+f=50;//Hz
+R1=5;//ohm
+R2=10;//ohm
+L2=50;//mH
+Z1=R1;//ohm
+Z2=R2+%i*2*%pi*f*L2/1000;//ohm
+R=poly(0,'R');
+Z3=R;//ohm
+Z12=Z1*Z2/(Z1+Z2);//ohm
+Z=V/I;//ohm//Zdash is Z durectly
+R3=Z-Z12;//ohm
+R3=real(R3);//ohm
+disp(R3,"Value of R(ohm)");
diff --git a/2672/CH3/EX3.3/Ex3_3.sce b/2672/CH3/EX3.3/Ex3_3.sce
new file mode 100755
index 000000000..010f03780
--- /dev/null
+++ b/2672/CH3/EX3.3/Ex3_3.sce
@@ -0,0 +1,15 @@
+//Example 3_3
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+v=10;//V
+T=0.2;//second
+Vav=1/T*integrate('1*v','t',0,T/2);//V
+Vrms=sqrt(1/T*integrate('v^2','t',0,T/2));//V
+disp(Vrms,"rms value of Voltage (V)");
+disp(Vav,"Average value of Voltage (V)");
+Kf=Vrms/Vav;//Form Factor
+disp(Kf,"Form Factor")
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.30/Ex3_30.sce b/2672/CH3/EX3.30/Ex3_30.sce
new file mode 100755
index 000000000..b19903226
--- /dev/null
+++ b/2672/CH3/EX3.30/Ex3_30.sce
@@ -0,0 +1,40 @@
+//Example 3_30
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V=200;//V
+f=50;//Hz
+ZA=4+%i*3;//ohm
+ZB=10-%i*7;//ohm
+ZC=6+%i*5;//ohm
+Z=ZC+ZA*ZB/(ZA*ZB);//ohm
+IC=V/Z;//A
+ICmag=abs(IC);//A
+ICang=atand(imag(IC)/real(IC));//degree
+disp(ICang,ICmag,"Current IC, magnitude(A) & Angle(degree) are");
+IA=IC*ZB/(ZA+ZB);//A
+IAmag=abs(IA);//A
+IAang=atand(imag(IA)/real(IA));//degree
+disp(IAang,IAmag,"Current IA, magnitude(A) & Angle(degree) are");
+IB=IC*ZA/(ZA+ZB);//A
+IBmag=abs(IB);//A
+IBang=atand(imag(IB)/real(IB));//degree
+disp(IBang,IBmag,"Current IB, magnitude(A) & Angle(degree) are");
+fi=ICang;//degree//angle of pf
+pf=cosd(fi);//Power Factor(lagging)
+disp(pf,"Power Factor(lagging)");
+VC=IC*ZC;//V
+VCmag=abs(VC);//A
+VCang=atand(imag(VC)/real(VC));//degree
+disp(VCang,VCmag,"Voltage VC, magnitude(V) & Angle(degree) are");
+VA=IC*ZA*ZB/(ZA+ZB);//V
+VAmag=abs(VA);//A
+VAang=atand(imag(VA)/real(VA));//degree
+disp(VAang,VAmag,"Voltage VA, magnitude(V) & Angle(degree) are");
+VB=IC*ZA*ZB/(ZA+ZB);//V
+VBmag=abs(VB);//A
+VBang=atand(imag(VB)/real(VB));//degree
+disp(VBang,VBmag,"Voltage VB, magnitude(V) & Angle(degree) are");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.31/Ex3_31.sce b/2672/CH3/EX3.31/Ex3_31.sce
new file mode 100755
index 000000000..17a74a7ce
--- /dev/null
+++ b/2672/CH3/EX3.31/Ex3_31.sce
@@ -0,0 +1,26 @@
+//Example 3_31
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+I2=10;//A
+f=50;//Hz
+R1=5;//ohm
+L1=0.0191;//H
+R2=7;//ohm
+C2=398;//micro F
+R3=8;//ohm
+L3=0.0318;//H
+Z1=R1+%i*2*%pi*f*L1;//ohm
+Z2=R2-%i/2/%pi/f/(C2*10^-6);//ohm
+Z3=R3+%i*2*%pi*f*L3;//ohm
+VAC=I2*Z2;//V
+I1=VAC/Z1;//A
+I=I1+I2;//A
+VCB=I*Z3;//V
+VAB=VAC+VCB;//V
+VABmag=abs(VAB);//A
+VABang=atand(imag(VAB)/real(VAB));//degree
+disp(VABang,VABmag,"Voltage AB, magnitude(V) & Angle(degree) are");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.32/Ex3_32.sce b/2672/CH3/EX3.32/Ex3_32.sce
new file mode 100755
index 000000000..7728d8c63
--- /dev/null
+++ b/2672/CH3/EX3.32/Ex3_32.sce
@@ -0,0 +1,42 @@
+//Example 3_32
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+V=110;//V
+f=50;//Hz
+ZA=2;//ohm
+ZB=3+%i*4;//ohm
+ZC=2-%i*2;//ohm
+ZAB=ZA*ZB/(ZA+ZB);//ohm
+ZP=ZAB*ZC/(ZAB+ZC);//ohm
+ZD=1+%i*1;//ohm
+z=ZP+ZD;//ohm
+zmag=abs(z);//A
+zang=atand(imag(z)/real(z));//degree
+disp(zang,zmag,"(a) Total impedence, magnitude(ohm) & Angle(degree) are");
+I=V/abs(z);//A
+format('v',5);
+disp(I,"(b) Current taken by circuit(A)");
+format('v',7);
+ID=I;//A
+RD=real(ZD);//ohm
+PD=ID^2*RD;///W
+disp(PD,"Power Consumed by branch D(W)");
+//VPQ=I*ZP;
+IA=I*abs(ZP)/abs(ZA);//A
+RA=2;//ohm
+PA=IA^2*RA;//W
+disp(PA,"Power Consumed by branch A(W)");
+IB=I*abs(ZP)/abs(ZB);//A
+RB=3;//ohm
+PB=IB^2*RB;//W
+disp(PB,"Power Consumed by branch B(W)");
+IC=I*abs(ZP)/abs(ZC);//A
+RC=2;//ohm
+PC=IC^2*RC;//W
+disp(PC,"Power Consumed by branch C(W)");
+P=PA+PB+PC+PD;//W
+disp(P,"Total Power Consumed(W)");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.33/Ex3_33.sce b/2672/CH3/EX3.33/Ex3_33.sce
new file mode 100755
index 000000000..b47ba8d7c
--- /dev/null
+++ b/2672/CH3/EX3.33/Ex3_33.sce
@@ -0,0 +1,19 @@
+//Example 3_33
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+R=10;///ohm
+L=0.1;//H
+C=8;//micro F
+f0=1/2/%pi/sqrt(L*C*10^-6);//Hz
+disp(f0,"(a) Resonant Frequency(Hz)");
+Q=2*%pi*f0*L/R;//Q-factor
+disp(Q,"(b) Q-factor");
+f1=f0-R/4/%pi/L;//Hz
+f2=f0+R/4/%pi/L;//Hz
+disp(f2,f1,"(c) Half power frequencies, f1 & f2 in Hz are");
+BW=f2-f1;//Hz
+disp(BW,"Bandwidth(Hz)");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.34/Ex3_34.sce b/2672/CH3/EX3.34/Ex3_34.sce
new file mode 100755
index 000000000..b7fb55e15
--- /dev/null
+++ b/2672/CH3/EX3.34/Ex3_34.sce
@@ -0,0 +1,18 @@
+//Example 3_34
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+R=4;///ohm
+L=0.5;//H
+V=100;///V
+f=50;//Hz
+C=(1/2/%pi/f)^2/L*10^6;//micro F
+disp(C,"(a) Capacitance at resonant Frequency(micro F)");
+I0=V/R;//A
+VC=I0/2/%pi/f/(C*10^-6);//V
+disp(VC,"(b) Voltage across the capacitor at resonant(V)");
+Q=VC/V;//Q-factor
+disp(Q,"(b) Q-factor");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.35/Ex3_35.sce b/2672/CH3/EX3.35/Ex3_35.sce
new file mode 100755
index 000000000..ea2a22579
--- /dev/null
+++ b/2672/CH3/EX3.35/Ex3_35.sce
@@ -0,0 +1,22 @@
+//Example 3_35
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+V=230;///V
+f=50;//Hz
+Im=1.5;//A//Maximum current
+VC=600;//V
+VL=600;//V
+R=V/Im;//ohm
+XL=VL/Im;//ohm
+L=XL/2/%pi/f;//H
+XC=XL;//ohm
+C=1/2/%pi/f/XC;//F
+disp(R,"Resistance(ohm)");
+format('v',5);
+disp(L,"Inductance(H)");
+format('v',11);
+disp(C,"Capacitance(F)");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.36/Ex3_36.sce b/2672/CH3/EX3.36/Ex3_36.sce
new file mode 100755
index 000000000..84cc2421a
--- /dev/null
+++ b/2672/CH3/EX3.36/Ex3_36.sce
@@ -0,0 +1,19 @@
+//Example 3_36
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+f=100;//Hz
+C=100;//micro F
+Cdash=200;//micro F//When current is half of maximum
+L=1/(2*%pi*f)^2/(C*10^-6);//H
+disp(L,"Inductance(H)");
+XL=2*%pi*f*L;//ohm
+XC=1/2/%pi/f/(Cdash*10^-6);//ohm
+//at I=Im/2 Z will be 2*R
+//Im=V/R and I=V/Z=V/sqrt(R^2+(XL-XC)^2)
+R=(XL-XC)/sqrt(3);//ohm
+format('v',5);
+disp(R,"Resistance(ohm)");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.37/Ex3_37.sce b/2672/CH3/EX3.37/Ex3_37.sce
new file mode 100755
index 000000000..17a614fcb
--- /dev/null
+++ b/2672/CH3/EX3.37/Ex3_37.sce
@@ -0,0 +1,24 @@
+//Example 3_37
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+R=10;//ohm
+L=20;//mH
+C=10;//micro F
+V=50;//V
+f0=1/2/%pi/sqrt(L/1000*C/10^6);//Hz
+disp(f0,"Resonance frequency(Hz)");
+I0=V/R;//A
+XL=2*%pi*f0*L/1000;//ohm
+VL=I0*XL;//V
+disp(VL,"Voltage across inductance(V)");
+VR=I0*R;//V
+disp(VR,"Voltage across Resistance(V)");
+XC=1/2/%pi/f0/(C*10^-6);//ohm
+VC=I0*XC;//V
+disp(VC,"Voltage across Capacitance(V)");
+Q=VL/V;//Q-factor
+disp(Q,"Q-factor");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.38/Ex3_38.sce b/2672/CH3/EX3.38/Ex3_38.sce
new file mode 100755
index 000000000..8ba1bb482
--- /dev/null
+++ b/2672/CH3/EX3.38/Ex3_38.sce
@@ -0,0 +1,15 @@
+//Example 3_38
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+R=50;//ohm
+L=1;//mH
+Im=5;//A//Maximum current
+f0=50;//Hz
+C=1/(2*%pi*f0)^2/(L/1000);//F
+disp(C,"Value of C(F)");
+V=Im*R;///V
+disp(V,"Applied Voltage(V)");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.39/Ex3_39.sce b/2672/CH3/EX3.39/Ex3_39.sce
new file mode 100755
index 000000000..df198802b
--- /dev/null
+++ b/2672/CH3/EX3.39/Ex3_39.sce
@@ -0,0 +1,21 @@
+//Example 3_39
+clc;
+clear;
+close;
+format('v',10);
+//given data :
+R=2.5;//ohm
+XL=25;//ohm
+V=200;//V
+f0=50;//Hz
+XC=XL;//ohm
+C=1/(2*%pi*f0*XC);//F
+disp(C,"For maximum current, Value of C(F)");
+//At resonance Z=R
+pf=1;//power factor
+disp(pf,"Power Factor ");
+Z=R;//ohm
+disp(Z,"Impedence(ohm)");
+Im=V/R;//A
+disp(Im,"Current(A)");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.4/Ex3_4.sce b/2672/CH3/EX3.4/Ex3_4.sce
new file mode 100755
index 000000000..7f9cd70a7
--- /dev/null
+++ b/2672/CH3/EX3.4/Ex3_4.sce
@@ -0,0 +1,14 @@
+//Example 3_4
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+//Let T=1 for calculation
+T=1;
+//i=5*t/T+5;//A
+Iav=1/T*integrate('5*t/T+5','t',0,T);
+disp(Iav,"Average value(A)");
+Irms=sqrt(1/T*integrate('(5*t/T+5)^2','t',0,T));//V
+disp(Irms,"rms value(A)");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.40/Ex3_40.sce b/2672/CH3/EX3.40/Ex3_40.sce
new file mode 100755
index 000000000..36b2987dc
--- /dev/null
+++ b/2672/CH3/EX3.40/Ex3_40.sce
@@ -0,0 +1,19 @@
+//Example 3_40
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+R=10;//ohm
+L=100;//mH
+C=20;//micro F
+V=100;//V
+f0=1/2/%pi*sqrt(1/(L/1000*C*10^-6)-R^2/(L/1000)^2);//Hz
+disp(f0,"Resonant frequency(Hz)");
+Q=2*%pi*f0*L/1000/R;//Q-factor
+disp(Q,"Q-factor");
+Z0=L/1000/(C*10^-6)/R;//ohm
+disp(Z0,"Dynamic Impedence(ohm)");
+I0=V/Z0;//A
+disp(I0,"Current at resonance(A)");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.41/Ex3_41.sce b/2672/CH3/EX3.41/Ex3_41.sce
new file mode 100755
index 000000000..bc9df9bf0
--- /dev/null
+++ b/2672/CH3/EX3.41/Ex3_41.sce
@@ -0,0 +1,21 @@
+//Example 3_41
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+R=5;//ohm
+XL=10;//ohm
+V=230;//V
+f=50;//Hz
+Z=R+%i*XL;//ohm
+IL=V/Z;//A
+fi_L=atand(imag(IL)/real(IL));//degree
+IC=abs(IL)*sind(fi_L);//A
+XC=-V/IC;//ohm
+C=1/2/%pi/f/XC*10^6;//micro F
+disp(C,"Value of capacitor(micro F)");
+I=abs(IL)*cosd(fi_L);//A
+format('v',3);
+disp(I,"Magnitude of in-phase current(A)");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.42/Ex3_42.sce b/2672/CH3/EX3.42/Ex3_42.sce
new file mode 100755
index 000000000..c3589be8d
--- /dev/null
+++ b/2672/CH3/EX3.42/Ex3_42.sce
@@ -0,0 +1,22 @@
+//Example 3_42
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+R=4;//ohm
+L=20;//mH
+V=230;//V
+f=50;//Hz
+omega=2*%pi*f;//rad/s
+ZL=R+%i*omega*L/1000;//ohm
+IL=V/ZL;//A
+fi_L=atand(imag(IL)/real(IL));//degree
+IC=abs(IL)*sind(fi_L);//A
+XC=-V/IC;//ohm
+C=1/2/%pi/f/XC*10^6;//micro F
+disp(C,"Value of capacitor(micro F)");
+I0=abs(IL)*cosd(fi_L);//A
+format('v',5);
+disp(I0,"Magnitude of in-phase current(A)");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.43/Ex3_43.sce b/2672/CH3/EX3.43/Ex3_43.sce
new file mode 100755
index 000000000..cd34f8bb6
--- /dev/null
+++ b/2672/CH3/EX3.43/Ex3_43.sce
@@ -0,0 +1,19 @@
+//Example 3_43
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+XL1=6;//ohm
+R2=10;//ohm
+XC2=4;//ohm
+R1=poly(0,'R1');
+Z1=R1+%i*XL1;//ohm
+Z2=R2-%i*XC2;//ohm
+Z=Z1*Z2/(Z1+Z2);//ohm
+//Imaginary part of Z will be zero
+//For Calculation
+eq=imag(numer(Z)*denom(Z'));//equaltion of imaginary part
+R1=roots(eq);//ohm
+R1=R1(1);//ohm//leaving -ve value
+disp(R1,"Value of R1(ohm)");
diff --git a/2672/CH3/EX3.5/Ex3_5.sce b/2672/CH3/EX3.5/Ex3_5.sce
new file mode 100755
index 000000000..3a38cbaf9
--- /dev/null
+++ b/2672/CH3/EX3.5/Ex3_5.sce
@@ -0,0 +1,17 @@
+//Example 3_5
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+//Let T=1 for calculation
+T=1;
+//y=m*x, m=10/T & x=t
+//i=10*t/T
+Im=10;//A
+Irms=sqrt(1/T*integrate('(10*t/T)^2','t',0,T));//V
+disp(Irms,"rms value(A)");
+Iav=Im/2;//A
+disp(Iav,"Average value(A)");
+Kf=Irms/Iav;//Form Factor
+disp(Kf,"Form Factor")
diff --git a/2672/CH3/EX3.6/Ex3_6.sce b/2672/CH3/EX3.6/Ex3_6.sce
new file mode 100755
index 000000000..f11bbb10b
--- /dev/null
+++ b/2672/CH3/EX3.6/Ex3_6.sce
@@ -0,0 +1,17 @@
+//Example 3_6
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+L=0.5;//H
+V=230;//V
+f=50;//Hz
+Vm=sqrt(2)*V;//V
+XL=2*%pi*f*L;//ohm
+I=V/XL;//A
+Im=sqrt(2)*I;//A
+disp("Equations are : ");
+disp("V="+string(Vm)+"*sin"+string(2*%pi*f)+"*t");
+disp("i="+string(Im)+"*sin("+string(2*%pi*f)+"*t-%pi/2)");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.7/Ex3_7.sce b/2672/CH3/EX3.7/Ex3_7.sce
new file mode 100755
index 000000000..4a2ff9969
--- /dev/null
+++ b/2672/CH3/EX3.7/Ex3_7.sce
@@ -0,0 +1,24 @@
+//Example 3_7
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+L=0.5;//H
+C=100;//micro F
+V=230;//V
+f=50;//Hz
+R=25;//ohm
+Vm=sqrt(2)*V;//V
+omega=2*%pi*f;//rad/s
+disp("Voltage equation")
+disp("V="+string(Vm)+"*sin"+string(omega)+"*t");
+XL=omega*L;//ohm
+XC=1/omega/(C*10^-6);///ohm
+disp("Current through the resistor will be ");
+disp("i="+string(Vm/R)+"*sin("+string(2*%pi*f)+"*t)");
+disp("Current through the inductor will be ");
+disp("i="+string(Vm/XL)+"*sin("+string(2*%pi*f)+"*t-90)");
+disp("Current through the capacitor will be ");
+disp("i="+string(Vm/XC)+"*sin("+string(2*%pi*f)+"*t+90)");
+//Answer is not accurate in the book.
diff --git a/2672/CH3/EX3.8/Ex3_8.sce b/2672/CH3/EX3.8/Ex3_8.sce
new file mode 100755
index 000000000..84d526a15
--- /dev/null
+++ b/2672/CH3/EX3.8/Ex3_8.sce
@@ -0,0 +1,19 @@
+//Example 3_8
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V=100;//V
+f=50;//Hz
+R=10;//ohm
+L=100;//mH
+C=100;//micro F
+XL=2*%pi*f*L*10^-3;//ohm
+XC=1/2/%pi/f/(C*10^-6);//ohm
+IR=V/R;//A
+disp(IR,"Current through R(A)");
+IL=V/XL;//A
+disp(IL,"Current through L(A)");
+IC=V/XC;//A
+disp(IC,"Current through C(A)");
diff --git a/2672/CH3/EX3.9/Ex3_9.sce b/2672/CH3/EX3.9/Ex3_9.sce
new file mode 100755
index 000000000..f7f30239a
--- /dev/null
+++ b/2672/CH3/EX3.9/Ex3_9.sce
@@ -0,0 +1,39 @@
+//Example 3_9
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V=230;//V
+f=50;//Hz
+R1=14;//ohm
+L1=16;//mH
+R2=18;//ohm
+L2=32;//mH
+XL1=2*%pi*f*L1*10^-3;//ohm
+XL2=2*%pi*f*L2*10^-3;//ohm
+Z1mag=sqrt(R1^2+XL1^2);//ohm
+Z2mag=sqrt(R2^2+XL2^2);//ohm
+fi1=atand(XL1/R1);//radian
+fi2=atand(XL2/R2);//radian
+Z1=Z1mag*expm(%i*fi1*%pi/180);//ohm
+Z2=Z2mag*expm(%i*fi2*%pi/180);//ohm
+Y1=1/Z1;//mho
+Y2=1/Z2;//mho
+I1=V*Y1;//A
+I1mag=abs(I1);//A
+I1ang=atand(imag(I1),real(I1));//degree
+disp(I1ang,I1mag,"Branch Current I1, magnitude(A) & angle(degree) are: ");
+I2=V*Y2;//A
+I2mag=abs(I2);//A
+I2ang=atand(imag(I2),real(I2));//degree
+disp(I2ang,I2mag,"Branch Current I2, magnitude(A) & angle(degree) are: ");
+I_cosfi=I1mag*cosd(fi1)+I2mag*cosd(fi1);
+I_sinfi=I1mag*sind(fi1)+I2mag*sind(fi1);
+tanfi=I_sinfi/I_cosfi;
+fi=atand(tanfi);//degree
+pf=cosd(fi);//Power Factor lagging
+disp(pf,"Total Power Factor(lagging)");
+I=sqrt(I_sinfi^2+I_cosfi^2);//A
+disp(fi,-I,"Line Current I, magnitude(A) & angle(degree) are: ");
+//Answer is not accurate in the book.
diff --git a/2672/CH4/EX4.1/Ex4_1.sce b/2672/CH4/EX4.1/Ex4_1.sce
new file mode 100755
index 000000000..3786cc5a2
--- /dev/null
+++ b/2672/CH4/EX4.1/Ex4_1.sce
@@ -0,0 +1,15 @@
+//Example 4_1
+clc;
+clear;
+close;
+format('v',9)
+//given data :
+E=2;//eV
+c=3*10^8;//m/s//Speed of light
+h=6.64*10^-34;//Js//Planks Constant
+E=E*1.6*10^-19;//J
+lambda=c*h/E;//m
+lambda=lambda/10^-10;//Angstrum
+disp(lambda,"Wavelength(Angstrum)");
+k=2*%pi/(lambda*10^-10);//m^-1
+disp(k,"k-vector(m^-1)");
diff --git a/2672/CH4/EX4.10/Ex4_10.sce b/2672/CH4/EX4.10/Ex4_10.sce
new file mode 100755
index 000000000..e68b8714f
--- /dev/null
+++ b/2672/CH4/EX4.10/Ex4_10.sce
@@ -0,0 +1,15 @@
+//Example 4_10
+clc;
+clear;
+close;
+format('v',7)
+//given data :
+h=1.05*10^-34;//Js//Planks Constant
+mc=0.067;//mo
+mc=mc*0.91*10^-30;//kg
+n0=10^18;//cm^-3
+n0=n0*10^6;//m^-3
+EF=(h^2/2/mc)*(3*%pi^2*n0)^(2/3);//J
+EF=EF/(1.6*10^-19);//eV
+disp(EF,"Position of fermi level(eV)");
+//Answer given in the textbook is wrong
diff --git a/2672/CH4/EX4.11/Ex4_11.sce b/2672/CH4/EX4.11/Ex4_11.sce
new file mode 100755
index 000000000..1ec7e0902
--- /dev/null
+++ b/2672/CH4/EX4.11/Ex4_11.sce
@@ -0,0 +1,14 @@
+//Example 4_11
+clc;
+clear;
+close;
+format('v',6)
+//given data :
+h=1.05*10^-34;//Js//Planks Constant
+e=1.6*10^-19;//C///Charge on electron
+E0=10^4;//V/cm
+a=5.62*10^-8;//cm//lattice constant for n-GaAs
+kB=2*%pi/a;//cm^-1///Brillouin Edge
+tau=h*kB/e/E0*10^12;//ps
+disp(tau,"Time taken by electron to reach Brillouin Zone(ps)");
+//Answer given in the textbook is wrong
diff --git a/2672/CH4/EX4.12/Ex4_12.sce b/2672/CH4/EX4.12/Ex4_12.sce
new file mode 100755
index 000000000..2497d09a9
--- /dev/null
+++ b/2672/CH4/EX4.12/Ex4_12.sce
@@ -0,0 +1,27 @@
+//Example 4_12
+clc;
+clear;
+close;
+format('e',9)
+//given data :
+h=1.05*10^-34;//Js//Planks Constant
+e=1.6*10^-19;//C///Charge on electron
+mc=0.067;//mo
+mc=mc*0.91*10^-30;//kg
+E0=1;//kV/cm
+E0=E0*10^3/10^-2;//V/m
+//Part (a)
+tau_sc=10^-13;//s
+v0=e*tau_sc*E0/mc;///m/s
+v0=v0*100;//cm/s
+disp(v0,"(a) Drift velocity(cm/s)");
+//Part (b)
+tau_sc=10^-12;//s
+v0=e*tau_sc*E0/mc;///m/s
+v0=v0*100;//cm/s
+disp(v0,"(b) Drift velocity(cm/s)");
+//Part (c)
+tau_sc=10^-11;//s
+v0=e*tau_sc*E0/mc;///m/s
+v0=v0*100;//cm/s
+disp(v0,"(c) Drift velocity(cm/s)");
diff --git a/2672/CH4/EX4.13/Ex4_13.sce b/2672/CH4/EX4.13/Ex4_13.sce
new file mode 100755
index 000000000..3b46ece31
--- /dev/null
+++ b/2672/CH4/EX4.13/Ex4_13.sce
@@ -0,0 +1,20 @@
+//Example 4_13
+clc;
+clear;
+close;
+format('v',9)
+//given data :
+n0=7.87*10^28;//m^-3
+mu=35.2;//cm^2/vs
+E0=30*10^2;//V/m
+h=1.05*10^-34;//Js//Planks Constant
+e=1.6*10^-19;//C///Charge on electron
+//Part (a)
+sigma=n0*e*mu*10^-4;//s/m
+disp(sigma,"(a) Conductivity(s/m)");
+//Part (b)
+V0=E0*mu*10^-4;//m/s
+disp(V0,"(b) Drift velocity of electron(m/s)");
+J=sigma*E0;//A/m^3
+disp(J,"(b) Current density(A/m^3)")
+//Answer given in the textbook is not accurate.
diff --git a/2672/CH4/EX4.14/Ex4_14.sce b/2672/CH4/EX4.14/Ex4_14.sce
new file mode 100755
index 000000000..c20c8ae95
--- /dev/null
+++ b/2672/CH4/EX4.14/Ex4_14.sce
@@ -0,0 +1,13 @@
+//Example 4_14
+clc;
+clear;
+close;
+format('e',9)
+//given data :
+A=10^-5;//m^2
+I=100;//A
+n0=8.5*10^28;//m^-3
+e=1.6*10^-19;//C///Charge on electron
+//Formula : I=no*A*vd*e
+vd=I/n0/A/e;//ms^-1
+disp(vd,"Drift Velocity(ms^-1)")
diff --git a/2672/CH4/EX4.15/Ex4_15.sce b/2672/CH4/EX4.15/Ex4_15.sce
new file mode 100755
index 000000000..a50241ff4
--- /dev/null
+++ b/2672/CH4/EX4.15/Ex4_15.sce
@@ -0,0 +1,13 @@
+//Example 4_15
+clc;
+clear;
+close;
+format('e',9)
+//given data :
+A=10^-5;//m^2
+I=100;//A
+n0=8.5*10^28;//m^-3
+e=1.6*10^-19;//C///Charge on electron
+//Formula : I=no*A*vd*e
+vd=I/n0/A/e;//ms^-1
+disp(vd,"Drift Velocity(ms^-1)")
diff --git a/2672/CH4/EX4.16/Ex4_16.sce b/2672/CH4/EX4.16/Ex4_16.sce
new file mode 100755
index 000000000..5b759f461
--- /dev/null
+++ b/2672/CH4/EX4.16/Ex4_16.sce
@@ -0,0 +1,14 @@
+//Example 4_16
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+V=1;//V
+L=10;//m
+tau=10^-14;//s
+e=1.6*10^-19;//C///Charge on electron
+m=0.02*9.1*10^-31;//kg//effective mass of electron
+E0=V/L;//V/m
+v0=e*E0*tau/m;//m/s
+disp(v0,"Drift Velocity(ms^-1)")
diff --git a/2672/CH4/EX4.17/Ex4_17.sce b/2672/CH4/EX4.17/Ex4_17.sce
new file mode 100755
index 000000000..06ba72d49
--- /dev/null
+++ b/2672/CH4/EX4.17/Ex4_17.sce
@@ -0,0 +1,11 @@
+//Example 4_17
+clc;
+clear;
+close;
+format('e',9);
+//given data :
+Nd=10^17;//atoms/cm^3
+ni=1.5*10^10;//atoms/cm^3
+n0=Nd;//atoms/cm^3(For Nd>>ni)
+p0=ni^2/n0;//atoms/cm^3
+disp(p0,"Equilibrium hole concentration(cm^-3)")
diff --git a/2672/CH4/EX4.18/Ex4_18.sce b/2672/CH4/EX4.18/Ex4_18.sce
new file mode 100755
index 000000000..e5ef304d9
--- /dev/null
+++ b/2672/CH4/EX4.18/Ex4_18.sce
@@ -0,0 +1,14 @@
+//Example 4_18
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+h=1.05*10^-34;//Js//Planks Constant
+e=1.6*10^-19;//C///Charge on electron
+E0=10^4;//V/cm
+a=5.62*10^-8;//cm//lattice constant for n-GaAs
+kB=2*%pi/a;//cm^-1///Brillouin Edge
+tau=h*kB/e/E0*10^12;//ps
+disp(tau,"Time taken by electron to reach Brillouin Zone(ps)");
+//Answer given in the textbook is wrong
diff --git a/2672/CH4/EX4.19/Ex4_19.sce b/2672/CH4/EX4.19/Ex4_19.sce
new file mode 100755
index 000000000..303595e64
--- /dev/null
+++ b/2672/CH4/EX4.19/Ex4_19.sce
@@ -0,0 +1,15 @@
+//Example 4_19
+clc;
+clear;
+close;
+format('v',8);
+//given data :
+c=3*10^8;//m/s//Speed of light
+h=1.05*10^-34;//Js//Planks Constant
+mc=0.067;//mo
+mc=mc*0.91*10^-30;//kg
+E=0.3;//eV
+E=E*1.6*10^-19;//J
+//Formula//E=3*h^2*kx^2/2/mc
+kx=sqrt(2*mc*E/3/h^2);//m^-1
+disp(kx,"Smallest k-vector along x-direction(m^-1)");
diff --git a/2672/CH4/EX4.2/Ex4_2.sce b/2672/CH4/EX4.2/Ex4_2.sce
new file mode 100755
index 000000000..bb6e25a07
--- /dev/null
+++ b/2672/CH4/EX4.2/Ex4_2.sce
@@ -0,0 +1,14 @@
+//Example 4_2
+clc;
+clear;
+close;
+format('v',7)
+//given data :
+c=3*10^8;//m/s//Speed of light
+h=1.05*10^-34;//Js//Planks Constant
+lambda=0.5;//micro m///or less
+lambda=lambda/10^6;//m
+Eg=2*%pi*h*c/lambda;//J
+Eg=Eg/(1.6*10^-19);//eV
+disp(Eg,"Bandgap Eg(eV)");
+disp("Semiconductors Guess: C, BN, GaN & SiC");
diff --git a/2672/CH4/EX4.20/Ex4_20.sce b/2672/CH4/EX4.20/Ex4_20.sce
new file mode 100755
index 000000000..757c20c2f
--- /dev/null
+++ b/2672/CH4/EX4.20/Ex4_20.sce
@@ -0,0 +1,13 @@
+//Example 4_20
+clc;
+clear;
+close;
+format('e',9);
+//given data :
+ni=1.5*10^10;//cm^-3
+mu_n=1350;//cm^2/V-s
+mu_p=450;//cm^2/V-s
+n0=ni*sqrt(mu_p/mu_n);//cm^-3
+p0=ni*sqrt(mu_n/mu_p);//cm^-3
+disp(n0,"Electron concentration(cm^-3)")
+disp(p0,"Hole concentration(cm^-3)")
diff --git a/2672/CH4/EX4.21/Ex4_21.sce b/2672/CH4/EX4.21/Ex4_21.sce
new file mode 100755
index 000000000..82cf1c885
--- /dev/null
+++ b/2672/CH4/EX4.21/Ex4_21.sce
@@ -0,0 +1,19 @@
+//Example 4_21
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+h=1.05*10^-34;//Js//Planks Constant
+n0=6.02*10^23;//atom/mole
+n0=n0/72.6;//atom/gram
+n0=n0*5.32;//atom/cm^3
+ND=1/10^7*n0;//cm^-3
+T=300;//K
+//mc=1/2*mo
+mcBYmo=1/2;
+kBT=0.026;//eV//For T=300K
+Nc=ND*(mcBYmo*T)^(3/2);//cm^-3
+n0=ND;//cm^-3///Considering full ionization
+EF=kBT*log(n0/Nc);//eV
+disp(EF,"Position of fermi level(eV)")
diff --git a/2672/CH4/EX4.22/Ex4_22.sce b/2672/CH4/EX4.22/Ex4_22.sce
new file mode 100755
index 000000000..6b8a620d3
--- /dev/null
+++ b/2672/CH4/EX4.22/Ex4_22.sce
@@ -0,0 +1,14 @@
+//Example 4_22
+clc;
+clear;
+close;
+format('e',8);
+//given data :
+e=1.6*10^-19;//C/electron
+d=270;//g/cm^3
+rho=3.44*10^-6;//ohm-cm
+ne=3;//electrons/atom
+me=26.97*1.66*10^-27
+n0=d/100*ne*10^-3/me*10^6;//m^-3
+mu=1/n0/e/rho*10^2;//V-sec
+disp(mu,"Mobility of free electron(m^2/V-s)")
diff --git a/2672/CH4/EX4.23/Ex4_23.sce b/2672/CH4/EX4.23/Ex4_23.sce
new file mode 100755
index 000000000..085c4838b
--- /dev/null
+++ b/2672/CH4/EX4.23/Ex4_23.sce
@@ -0,0 +1,11 @@
+//Example 4_23
+clc;
+clear;
+close;
+format('v',4);
+//given data :
+e=1.6*10^-19;//C/electron
+Eg=1.21;//eV
+ne=3;//electrons/atom
+dniBYni=(1.5+Eg/0.052)*(1/ne/100)*100;//% per degree
+disp(dniBYni,"100*dni/ni is ( % per degree)");
diff --git a/2672/CH4/EX4.24/Ex4_24.sce b/2672/CH4/EX4.24/Ex4_24.sce
new file mode 100755
index 000000000..683b8abf8
--- /dev/null
+++ b/2672/CH4/EX4.24/Ex4_24.sce
@@ -0,0 +1,22 @@
+//Example 4_24
+clc;
+clear;
+close;
+format('e',9);
+//given data :
+d=1.03;//mm
+R=6.51;//ohm per 1000 ft.
+n0=8.4*10^27;//electrons/m^3
+I=2;//A
+A=%pi/4*d^2*10^-6;//m^2
+J=I/A;//A/m^2
+e=1.6*10^-19;//C/electron
+v0=J/n0/e;//m/s
+disp(v0,"(a) Drift Velocity(m/s)");
+R=R/1000/0.304;//ohm/m
+E0=I*R;//V/m
+mu=v0/E0;//m^2/V-s
+disp(mu,"(b) Mobility(m^2/V-s)");
+sigma=n0*e*mu;//(ohm-m)^-1
+disp(sigma,"(c) Conductivity((ohm-m)^-1)")
+//Answer wrong in the book. calculation mistake.
diff --git a/2672/CH4/EX4.25/Ex4_25.sce b/2672/CH4/EX4.25/Ex4_25.sce
new file mode 100755
index 000000000..aa41cf94a
--- /dev/null
+++ b/2672/CH4/EX4.25/Ex4_25.sce
@@ -0,0 +1,40 @@
+//Example 4_25
+clc;
+clear;
+close;
+format('v',9);
+//given data :
+T=300;//K
+//Part (a)
+ND=2*10^14;//cm^-3//Donor
+NA=3*10^14;//cm^-3//Acceptor
+ni=2.5*10^19;//m^-3//Intrinsic
+ni=ni/10^6;//m^-3
+n0=-(NA-ND)/2+sqrt([((NA-ND)/2)^2+ni^2]);//cm^-3
+p0=-(ND-NA)/2+sqrt([((ND-NA)/2)^2+ni^2]);//cm^-3
+disp(n0,"n0 is(cm^-3)");
+disp(p0,"p0 is(cm^-3)");
+if p0>n0 then
+ disp("(a) Since p0>n0, Sample is of p-type.");
+end;
+//Part (b)
+format('v',4);
+ND=10^15;//cm^-3
+NA=10^15;//cm^-3
+p0=poly(0,'p0');
+n0=p0+ND-NA;//cm^-3
+disp(n0,"(b) n0 is equal to ");
+disp("It is Intrinsic Semiconductor")
+//Part (c)
+disp("Part(c) : ");
+format('v',7);
+ND=10^16;//cm^-3
+NA=10^14;//cm^-3
+n0=ND;//cm^-3(For NA<<ND)
+p0=ni^2/ND;//cm^-3
+disp(n0,"n0 is(cm^-3)");
+format('v',9);
+disp(p0,"p0 is(cm^-3)");
+if p0<n0 then
+ disp("(c) Since p0<n0, Sample is of n-type.");
+end;
diff --git a/2672/CH4/EX4.26/Ex4_26.sce b/2672/CH4/EX4.26/Ex4_26.sce
new file mode 100755
index 000000000..e6917be6e
--- /dev/null
+++ b/2672/CH4/EX4.26/Ex4_26.sce
@@ -0,0 +1,26 @@
+//Example 4_26
+clc;
+clear;
+close;
+format('e',9);
+//given data :
+T=300;//K
+e=1.6*10^-19;//C/electron
+disp("Part(a) :");
+sigma=100;//(ohm-cm)^-1
+ni=2.5*10^13;//cm^-3//For Ge
+mu_p=1800;//cm^2/V-s//For Ge
+//sigma=p0*e*mu_p, since p0>>n0
+p0=sigma/e/mu_p;//cm^-3
+n0=ni^2/p0*10^6;//m^-3
+disp(p0,"Concentration of holes(cm^-3)");
+disp(n0,"Concentration of electrones(m^-3)");
+disp("Part(b) :");
+sigma=0.1;//(ohm-cm)^-1
+ni=1.5*10^10;//cm^-3//For Si
+mu_n=1300;//cm^2/V-s//For Si
+//sigma=n0*e*mu_p, since n0>>p0
+n0=sigma/e/mu_n;//cm^-3
+p0=ni^2/n0*10^6;//m^-3
+disp(n0,"Concentration of electrones(cm^-3)");
+disp(p0,"Concentration of holes(m^-3)");
diff --git a/2672/CH4/EX4.27/Ex4_27.sce b/2672/CH4/EX4.27/Ex4_27.sce
new file mode 100755
index 000000000..89a946f37
--- /dev/null
+++ b/2672/CH4/EX4.27/Ex4_27.sce
@@ -0,0 +1,15 @@
+//Example 4_27
+clc;
+clear;
+close;
+format('v',5);
+//data for intrinsic Ge
+//n0=p0=ni;///for intrinsic
+ni=2.5*10^13;//cm^-3
+mu_n=3800;//cm^2/V-s
+mu_p=1800;//cm^2/V-s
+mu=mu_n+mu_p;//cm^2/V-s
+e=1.6*10^-19;//C/electron
+sigma=e*ni*(mu);//(s/cm)
+rho=1/sigma;//ohm-cm
+disp(rho,"Resistivity of intrinsic Ge(ohm-cm) : ");
diff --git a/2672/CH4/EX4.28/Ex4_28.sce b/2672/CH4/EX4.28/Ex4_28.sce
new file mode 100755
index 000000000..bc0bb2cbd
--- /dev/null
+++ b/2672/CH4/EX4.28/Ex4_28.sce
@@ -0,0 +1,28 @@
+//Example 4_28
+clc;
+clear;
+close;
+format('v',8);
+//data for intrinsic Ge
+//n0=p0=ni;///for intrinsic
+ni=2.5*10^13;//cm^-3
+mu_n=3800;//cm^2/V-s
+mu_p=1800;//cm^2/V-s
+mu=mu_n+mu_p;//cm^2/V-s
+e=1.6*10^-19;//C/electron
+sigma=e*ni*(mu);//(s/cm)
+disp(sigma,"(a) Conductivity of intrinsic Ge(s/cm) : ");
+format('v',5);
+n=4.41*10^22;//cm^-3//Concentration of Ge atom
+ND=n/10^7;//cm^-3
+n0=ND;//cm^-3
+p0=ni^2/ND;//cm^-3
+sigma=n0*e*mu_n;//s/cm(n0<<p0, n0 neglected)
+disp(sigma,"(b) Conductivity(s/cm)");
+NA=n/10^7;//cm^-3
+p0=NA;//cm^-3
+n0=ni^2/NA;//cm^-3
+sigma=p0*e*mu_p;//s/cm(p0<<n0, p0 neglected)
+disp(sigma,"(c) Conductivity(s/cm)");
+
+
diff --git a/2672/CH4/EX4.3/Ex4_3.sce b/2672/CH4/EX4.3/Ex4_3.sce
new file mode 100755
index 000000000..6895194bd
--- /dev/null
+++ b/2672/CH4/EX4.3/Ex4_3.sce
@@ -0,0 +1,14 @@
+//Example 4_3
+clc;
+clear;
+close;
+format('v',4)
+//given data :
+c=3*10^8;//m/s//Speed of light
+h=1.05*10^-34;//Js//Planks Constant
+mc=0.1;//mo
+mc=mc*0.91*10^-30;//kg
+k=0.3;///per Angstrum
+E=h^2*(k/10^-10)^2/2/mc;//J
+E=E/(1.6*10^-19);//eV
+disp(E,"Energy of the electron(eV)");
diff --git a/2672/CH4/EX4.4/Ex4_4.sce b/2672/CH4/EX4.4/Ex4_4.sce
new file mode 100755
index 000000000..a9116517d
--- /dev/null
+++ b/2672/CH4/EX4.4/Ex4_4.sce
@@ -0,0 +1,20 @@
+//Example 4_4
+clc;
+clear;
+close;
+format('v',6)
+//given data :
+c=3*10^8;//m/s//Speed of light
+h=1.05*10^-34;//Js//Planks Constant
+mc_GaAs=0.067;//mo
+mc_InAs=0.01;//mo
+k=0.01;///per Angstrum
+mc_GaAs=mc_GaAs*0.91*10^-30;//kg
+mc_InAs=mc_InAs*0.91*10^-30;//kg
+E_GaAs=h^2*(3*k*10^10)^2/2/mc_GaAs;//J
+E_GaAs=E_GaAs/(1.6*10^-19)*1000;//meV
+disp(E_GaAs,"Energy of the electron in GaAs(meV)");
+E_InAs=h^2*(3*k*10^10)^2/2/mc_InAs;//J
+E_InAs=E_InAs/(1.6*10^-19)*1000;//meV
+disp(E_InAs,"Energy of the electron in InAs(meV)");
+//Answer given in the textbook is wrong.
diff --git a/2672/CH4/EX4.5/Ex4_5.sce b/2672/CH4/EX4.5/Ex4_5.sce
new file mode 100755
index 000000000..aae7a30ce
--- /dev/null
+++ b/2672/CH4/EX4.5/Ex4_5.sce
@@ -0,0 +1,15 @@
+//Example 4_5
+clc;
+clear;
+close;
+format('v',6)
+//given data :
+c=3*10^8;//m/s//Speed of light
+h=1.05*10^-34;//Js//Planks Constant
+mc=0.067;//mo
+k=[0.1 0.1 0 0];///per Angstrum
+mc=mc*0.91*10^-30;//kg
+E=h^2*((k(1)*10^10)^2+(k(2)*10^10)^2)/2/mc;//J
+E=E/(1.6*10^-19);//eV
+disp(E,"Energy of the electron in GaAs(eV)");
+//Answer given in the textbook is wrong.
diff --git a/2672/CH4/EX4.6/Ex4_6.sce b/2672/CH4/EX4.6/Ex4_6.sce
new file mode 100755
index 000000000..485128b0c
--- /dev/null
+++ b/2672/CH4/EX4.6/Ex4_6.sce
@@ -0,0 +1,15 @@
+//Example 4_6
+clc;
+clear;
+close;
+format('v',8)
+//given data :
+c=3*10^8;//m/s//Speed of light
+h=1.05*10^-34;//Js//Planks Constant
+mc=0.067;//mo
+mc=mc*0.91*10^-30;//kg
+E=0.3;//eV
+E=E*1.6*10^-19;//J
+//Formula//E=3*h^2*kx^2/2/mc
+kx=sqrt(2*mc*E/3/h^2);//m^-1
+disp(kx,"Smallest k-vector along x-direction(m^-1)");
diff --git a/2672/CH4/EX4.7/Ex4_7.sce b/2672/CH4/EX4.7/Ex4_7.sce
new file mode 100755
index 000000000..5eb2a9462
--- /dev/null
+++ b/2672/CH4/EX4.7/Ex4_7.sce
@@ -0,0 +1,20 @@
+//Example 4_7
+clc;
+clear;
+close;
+format('v',6)
+//given data :
+c=3*10^8;//m/s//Speed of light
+h=1.05*10^-34;//Js//Planks Constant
+mc_GaAs=0.067;//mo
+mc_InAs=0.01;//mo
+k=[0.01 0.01 0.01];///per Angstrum
+mc_GaAs=mc_GaAs*0.91*10^-30;//kg
+mc_InAs=mc_InAs*0.91*10^-30;//kg
+E_GaAs=h^2*(3*k(1)*10^10)^2/2/mc_GaAs;//J
+E_GaAs=E_GaAs/(1.6*10^-19)*1000;//meV
+disp(E_GaAs,"Energy of the electron in GaAs(meV)");
+E_InAs=h^2*(3*k(1)*10^10)^2/2/mc_InAs;//J
+E_InAs=E_InAs/(1.6*10^-19)*1000;//meV
+disp(E_InAs,"Energy of the electron in InAs(meV)");
+//Answer given in the textbook is wrong.
diff --git a/2672/CH4/EX4.8/Ex4_8.sce b/2672/CH4/EX4.8/Ex4_8.sce
new file mode 100755
index 000000000..1b2d718e3
--- /dev/null
+++ b/2672/CH4/EX4.8/Ex4_8.sce
@@ -0,0 +1,11 @@
+//Example 4_8
+clc;
+clear;
+close;
+format('v',6)
+//given data :
+n0=6*10^17;//cm^-3
+Nc=4.45*10^17;//cm^-3
+kBT=0.026;//eV//at room temperature/T=300 K
+EF=kBT*log(n0/Nc)*1000;//meV
+disp(EF,"Position of fermi level(meV)");
diff --git a/2672/CH4/EX4.9/Ex4_9.sce b/2672/CH4/EX4.9/Ex4_9.sce
new file mode 100755
index 000000000..ca89c5ac3
--- /dev/null
+++ b/2672/CH4/EX4.9/Ex4_9.sce
@@ -0,0 +1,14 @@
+//Example 4_9
+clc;
+clear;
+close;
+format('v',6)
+//given data :
+//me=2*mh
+meBYmh=2;//ratio
+T=300;//K
+kT=0.026;//eV//at room temperature/T=300 K
+//EF=3/4*kT*log(1/meBYmh)-EG/2
+//position of fermi level below centre of forbidden gap
+EF=-3/4*kT*log(1/meBYmh);//eV
+disp(EF,"Position of fermi level below centre of forbidden gap by (eV) : ");
diff --git a/2672/CH5/EX5.1/Ex5_1.sce b/2672/CH5/EX5.1/Ex5_1.sce
new file mode 100755
index 000000000..0721113bc
--- /dev/null
+++ b/2672/CH5/EX5.1/Ex5_1.sce
@@ -0,0 +1,30 @@
+//Example 5_1
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+rho_p=1.5;//ohm-cm
+rho_n=1;//ohm-cm
+e=1.6*10^-19;//C/electron
+//For Ge diode
+mu_p=1800;//cm^2/V-s//For Ge
+mu_n=3800;//cm^2/V-s//For Si
+VT=0.026;///eV//at room temperature
+ni=2.5*10^13;//cm^-3s
+//rho=1/(NA*e*mu)
+NA=1/(rho_p*e*mu_p);//cm^-3
+ND=1/(rho_n*e*mu_n);//cm^-3
+V0=VT*log(NA*ND/ni^2);//eV
+disp(V0,"(a) Height of potential barrier(eV)");
+//For Si diode
+mu_p=500;//cm^2/V-s//For Ge
+mu_n=1300;//cm^2/V-s//For Si
+VT=0.026;///eV//at room temperature
+ni=1.5*10^10;//cm^-3s
+//rho=1/(NA*e*mu)
+NA=1/(rho_p*e*mu_p);//cm^-3
+ND=1/(rho_n*e*mu_n);//cm^-3
+V0=VT*log(NA*ND/ni^2);//eV
+disp(V0,"(b) Height of potential barrier(eV)");
+///Answer in the texbook is not accurate.
diff --git a/2672/CH5/EX5.10/Ex5_10.sce b/2672/CH5/EX5.10/Ex5_10.sce
new file mode 100755
index 000000000..49c1aaf67
--- /dev/null
+++ b/2672/CH5/EX5.10/Ex5_10.sce
@@ -0,0 +1,21 @@
+//Example 5_10
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+sigma_p=3;//(ohm-cm)^-1
+sigma_n=0.1;//(ohm-cm)^-1
+Ln=0.15;//cm
+Lp=0.15;//cm
+e=1.6*10^-19;//C/electron
+mu_p=1800;//cm^2/V-s//For Ge
+mu_n=3800;//cm^2/V-s//For Si
+VT=0.026;///eV//at T=27 degree C
+A=1.5;//mm^2
+A=A*10^-6;//m^2
+b=mu_n/mu_p;//unitless
+ni=2.5*10^15;//m^-3
+sigma_i=(mu_n+mu_p)*ni*e;//(ohm-m)^-1
+I0=A*VT*b*sigma_i^2/(1+b)^2*(1/Lp/sigma_p+1/Ln/sigma_n)*10^6;//micro A
+disp(I0,"Reverse saturation point of current(micro A)");
diff --git a/2672/CH5/EX5.12/Ex5_12.sce b/2672/CH5/EX5.12/Ex5_12.sce
new file mode 100755
index 000000000..19f107f20
--- /dev/null
+++ b/2672/CH5/EX5.12/Ex5_12.sce
@@ -0,0 +1,21 @@
+//Example 5_12
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+A=5;//mm^2
+A=A*10^-2;//cm^2
+Ln=0.01;//cm
+Lp=0.01;//cm
+sigma_p=0.01;//(ohm-cm)^-1
+sigma_n=0.01;//(ohm-cm)^-1
+mu_p=500;//cm^2/V-s//For Ge
+mu_n=1300;//cm^2/V-s//For Si
+e=1.6*10^-19;//C/electron
+VT=0.026;///eV//at T=27 degree C
+b=mu_n/mu_p;//unitless
+ni=1.5*10^10;//m^-3
+sigma_i=(mu_n+mu_p)*ni*e;//(ohm-m)^-1
+I0=A*VT*b*sigma_i^2/(1+b)^2*(1/Lp/sigma_p+1/Ln/sigma_n)*10^12;//pA
+disp(I0,"Reverse saturation current(pA)");
diff --git a/2672/CH5/EX5.13/Ex5_13.sce b/2672/CH5/EX5.13/Ex5_13.sce
new file mode 100755
index 000000000..ff89e60bb
--- /dev/null
+++ b/2672/CH5/EX5.13/Ex5_13.sce
@@ -0,0 +1,30 @@
+//Example 5_13
+clc;
+clear;
+close;
+format('e',9);
+//given data :
+Ln=0.1;//cm
+Lp=0.1;//cm
+e=1.6*10^-19;//C/electron
+//For Si
+ni=1.5*10^10;//m^-3
+sigma_p=0.01;//(ohm-cm)^-1
+sigma_n=0.01;//(ohm-cm)^-1
+mu_n=1300;//cm^2/V-s//For Si
+mu_p=500;//cm^2/V-s//For Ge
+b=mu_n/mu_p;//unitless
+sigma_i=(mu_n+mu_p)*ni*e;//(ohm-m)^-1
+YSi=b*sigma_i^2/(1+b)^2*(1/Lp/sigma_p+1/Ln/sigma_n);//(ohm-cm^2)^-1
+//For Ge
+ni=2.5*10^13;//m^-3
+sigma_p=1;//(ohm-cm)^-1
+sigma_n=1;//(ohm-cm)^-1
+mu_n=3800;//cm^2/V-s//For Si
+mu_p=1800;//cm^2/V-s//For Ge
+b=mu_n/mu_p;//unitless
+sigma_i=(mu_n+mu_p)*ni*e;//(ohm-m)^-1
+YGe=b*sigma_i^2/(1+b)^2*(1/Lp/sigma_p+1/Ln/sigma_n);//(ohm-cm^2)^-1
+ratio=YGe/YSi;
+disp(ratio,"Ratio of reverse saturation current in Ge to that in Si");
+//Answer given in the book is not accurate.
diff --git a/2672/CH5/EX5.14/Ex5_14.sce b/2672/CH5/EX5.14/Ex5_14.sce
new file mode 100755
index 000000000..f4d0bd0b2
--- /dev/null
+++ b/2672/CH5/EX5.14/Ex5_14.sce
@@ -0,0 +1,11 @@
+//Example 5_14
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+I0=9*10^-7;//A
+VF=0.1;//V
+I=I0*(exp(40*VF)-1)*10^6;//micro A
+disp(I,"Current flowing(micro A)");
+//Answer given in the book is not accurate.
diff --git a/2672/CH5/EX5.15/Ex5_15.sce b/2672/CH5/EX5.15/Ex5_15.sce
new file mode 100755
index 000000000..2f24e5e3d
--- /dev/null
+++ b/2672/CH5/EX5.15/Ex5_15.sce
@@ -0,0 +1,17 @@
+//Example 5_15
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+e=1.6*10^-19;//C/electron
+J0=500;//mA/m^2
+J0=J0/1000;//A/m^2
+T=350;//K
+Eta=1;//For Ge
+k=1.38*10^-23;//Boltzman constant
+J=10^5;//Am^-2
+//J=J0*(exp(e*V/Eta/kT-1)
+V=(1+log(J/J0))/e*Eta*k*T;//V
+disp(V,"Voltage to be applied at junction(V)");
+//Answer given in the book is not accurate.
diff --git a/2672/CH5/EX5.16/Ex5_16.sce b/2672/CH5/EX5.16/Ex5_16.sce
new file mode 100755
index 000000000..83636c289
--- /dev/null
+++ b/2672/CH5/EX5.16/Ex5_16.sce
@@ -0,0 +1,25 @@
+//Example 5_16
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+e=1.6*10^-19;//C/electron
+kB=1.38*10^-23;//Boltzman constant
+Is=0.15;//pA
+Is=Is*10^-12;//A
+V=0.55;//V(Forward Biased)
+Eta=1;//Assumed
+//At t=20 degee C
+t=20;//degree C
+T=t+273;//K
+VT=kB*T/e;//V
+I=Is*(exp(V/Eta/VT)-1)*1000;//mA
+//At t=100 degee C
+t=100;//degree C
+T=t+273;//K
+VT=kB*T/e;//V
+//Is increased by factor 2^8
+Is=Is*2^8;//A
+I=Is*(exp(V/Eta/VT)-1);//A
+disp(I,"Current in the diode(A)");
diff --git a/2672/CH5/EX5.17/Ex5_17.sce b/2672/CH5/EX5.17/Ex5_17.sce
new file mode 100755
index 000000000..6ff3e6d23
--- /dev/null
+++ b/2672/CH5/EX5.17/Ex5_17.sce
@@ -0,0 +1,36 @@
+//Example 5_17
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+e=1.6*10^-19;//C/electron
+kB=1.38*10^-23;//Boltzman constant
+Eta=2;//For Si diode
+I01=2;//micro A
+I02=4;//micro A
+Vz1=100;//V
+Vz2=100;//V
+VT=0.026;//V//Thermal temperature
+disp("When V=90V : ");
+V=90;//V
+//V<Vz1 & Vz2; Breakdown will not occur
+I1=I01/2;//micro A(For D1)
+disp(I1,"For D1, Current is (micro A)");
+I2=-I01/2;//micro A
+disp(I2,"For D2, Current is (micro A)");
+V2=Eta*VT*log(1-I01/I02);//V
+V1=V+V2;//V
+disp(V1,"Voltage V1(V) : ");
+format('v',5);
+V2=V2*1000;//mV
+disp(V2,"Voltage V2(mV) : ");
+disp("When V=110V : ");
+V=110;//V
+//V>Vz1 //D1 breakdown & D2 reverse biased
+I=I01;//micro A
+disp(I,"Current in the circuit is (micro A)");
+V1=-Vz1;///V
+V2=-(V-Vz2);//V
+disp(V1,"Voltage V1(V) : ");
+disp(V2,"Voltage V1(V) : ");
diff --git a/2672/CH5/EX5.18/Ex5_18.sce b/2672/CH5/EX5.18/Ex5_18.sce
new file mode 100755
index 000000000..125b5f256
--- /dev/null
+++ b/2672/CH5/EX5.18/Ex5_18.sce
@@ -0,0 +1,28 @@
+//Example 5_18
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+e=1.6*10^-19;//C/electron
+VT=0.026;//V//Thermal Voltage
+IBYI0=-90/100;//ratio
+//Part (a)
+//I=I0*(exp(V/VT)-1)
+V=log(IBYI0+1)*VT;//V
+disp(V,"(a) Required Voltage is (V)");
+//Part (b)
+format('v',5);
+V=0.05;//V(Forward bias)
+ratio=(exp(V/VT)-1)/(exp(-V/VT)-1);//ratio
+disp(ratio,"(b) Current ratio");
+//Part (c)
+format('v',6);
+I0=15;//micro A
+V=[0.1 0.2 0.3]*1000;//mV
+VT=VT*1000;//mV
+I1=I0*(exp(V(1)/VT)-1)/1000;//mA
+I2=I0*(exp(V(2)/VT)-1)/1000;//mA
+I3=I0*(exp(V(3)/VT)-1)/10^6;//A
+disp("(c) Current for 0.1 V is "+string(I1)+" mA, for 0.2 V is "+string(I2)+" mA & for 0.3 V is "+string(I3)+" A.");
+//Answer given in the book is not accurate.
diff --git a/2672/CH5/EX5.19/Ex5_19.sce b/2672/CH5/EX5.19/Ex5_19.sce
new file mode 100755
index 000000000..9453fc187
--- /dev/null
+++ b/2672/CH5/EX5.19/Ex5_19.sce
@@ -0,0 +1,20 @@
+//Example 5_19
+clc;
+clear;
+close;
+format('v',4);
+//given data :
+//Part (a)
+t1=25;//degree C
+t2=70;//degree C
+I0t2BYI0t1=2^((t2-t1)/10+1);//anticipated factor
+disp(I0t2BYI0t1,"(a) Anticipated factor");
+disp("I0(70 degree C) = "+string(I0t2BYI0t1)+"*I0(25 degree C)");
+//Part (b)
+format('v',6)
+t1=25;//degree C
+t2=150;//degree C
+I0t2BYI0t1=2^((t2-t1)/10);//anticipated factor
+disp(I0t2BYI0t1,"(b) Anticipated factor");
+disp("I0(150 degree C) = "+string(I0t2BYI0t1)+"*I0(25 degree C)");
+//Answer in the textbook is not accurate.
diff --git a/2672/CH5/EX5.2/Ex5_2.sce b/2672/CH5/EX5.2/Ex5_2.sce
new file mode 100755
index 000000000..30973afc2
--- /dev/null
+++ b/2672/CH5/EX5.2/Ex5_2.sce
@@ -0,0 +1,19 @@
+//Example 5_2
+clc;
+clear;
+close;
+format('e',9);
+//given data :
+ND=10^16;//cm^-3
+A=4*10^-4;//cm^2
+NA=5*10^18;//cm^-3
+T=300;//K
+epsilon0=8.85*10^-14;//vaccum permittivity
+epsilonr=11.8;//relative permittivity
+e=1.6*10^-19;//C/electron
+ni=1.5*10^10;//cm^-3
+kBT=0.0259;//eV//at room temperture
+V0=kBT*log(NA*ND/ni^2);//V
+W=sqrt(2*epsilonr*epsilon0*V0/e*(1/NA+1/ND));//cm
+disp(W,"Width of depletion zone(cm)");
+///Answer in the texbook is not accurate.Calculation mistake in W.
diff --git a/2672/CH5/EX5.20/Ex5_20.sce b/2672/CH5/EX5.20/Ex5_20.sce
new file mode 100755
index 000000000..225c93264
--- /dev/null
+++ b/2672/CH5/EX5.20/Ex5_20.sce
@@ -0,0 +1,14 @@
+//Example 5_20
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+I=5;//micro A
+V=10;//V
+//1/I0*dI0/dT=0.15 & 1/I*dI0/dT=0.07
+I0=I/(0.15/0.07);//micro A
+//I=I0+IR
+IR=I-I0;//micro A
+R=V/IR;//Mohm
+disp(R,"Leakage Resistance(Mohm)");
diff --git a/2672/CH5/EX5.21/Ex5_21.sce b/2672/CH5/EX5.21/Ex5_21.sce
new file mode 100755
index 000000000..70af8af82
--- /dev/null
+++ b/2672/CH5/EX5.21/Ex5_21.sce
@@ -0,0 +1,16 @@
+//Example 5_21
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+Rt=0.15;//mW/degree C(Thermal resistance)
+t1=25;//degree C
+I0_t1=5;//micro A(at 25 degree C)
+delt=10;//degree C
+t2=t1+delt;//degree C
+Pout=Rt*(t2-t1);//mW
+//reverse current doubles at evry 10 degree C
+I0_t2=2*I0_t1;//micro A
+V=Pout/(I0_t2/1000);//V
+disp(V,"Maximum reverse bias voltage(V)");
diff --git a/2672/CH5/EX5.22/Ex5_22.sce b/2672/CH5/EX5.22/Ex5_22.sce
new file mode 100755
index 000000000..71c2a6a10
--- /dev/null
+++ b/2672/CH5/EX5.22/Ex5_22.sce
@@ -0,0 +1,23 @@
+//Example 5_22
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V=0.4;//V(Forward voltage)
+t1=25;//degree C
+t=150;//degree C
+T=t+273;//K
+T1=t1+273;//K
+VT=T/11600;//V
+//I0T=I01*2^((T-T1)/10)
+I0TBYI0T1=2^((T-T1)/10);//ratio of current
+Eta=2;//for Si
+I2ByI0T=(exp(V/Eta/VT)-1);//ratio of current
+//At 25 degree C
+VT1=T1/11600;//V
+I1ByI0T1=(exp(V/Eta/VT1)-1);//A///at 25 degree C
+I2ByI1=I2ByI0T/I1ByI0T1*I0TBYI0T1;///ratio of I2 & I1
+disp(I2ByI1,"Current multiplying factor is ");
+//Note : Solution is complete in this code.
+//In the textbook, extra lines are given for which data is not given.
diff --git a/2672/CH5/EX5.24/Ex5_24.sce b/2672/CH5/EX5.24/Ex5_24.sce
new file mode 100755
index 000000000..b2baa7fbf
--- /dev/null
+++ b/2672/CH5/EX5.24/Ex5_24.sce
@@ -0,0 +1,13 @@
+//Example 5_24
+clc;
+clear;
+close;
+format('e',10);
+//given data :
+I=1;///mA
+CD=1.5;//micro F
+Eta=2;//for Si
+Dp=13;//for Si
+VT=0.026;//V(Thermal voltage)
+Lp=sqrt(CD/10^6*Dp*Eta*VT/(I*10^-3));//m
+disp(Lp,"Diffusion Length(m)");
diff --git a/2672/CH5/EX5.25/Ex5_25.sce b/2672/CH5/EX5.25/Ex5_25.sce
new file mode 100755
index 000000000..660ccd79f
--- /dev/null
+++ b/2672/CH5/EX5.25/Ex5_25.sce
@@ -0,0 +1,17 @@
+//Example 5_25
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+I0=20;///micro A
+VF=0.2;//V
+t=27;//degree C
+T=t+273;//K
+VT=T/11600;//V(Thermal voltage)
+Eta=1;//for Ge
+I=I0*10^-6*[exp(VF/Eta/VT)-1]*1000;//mA
+rdc=VT/(I0*10^-6)*exp(VF/Eta/VT)/10^6;//Mohm
+disp(rdc,"Static Resistance(Mohm) : ");
+//Note : Answer & Solution in the textbook is wrong as they calculated rdc for the values given in next example.
+//I0 taken 80micro A instead 20 micro A & VT taken for 125 degree C instead 25 degree C.
diff --git a/2672/CH5/EX5.26/Ex5_26.sce b/2672/CH5/EX5.26/Ex5_26.sce
new file mode 100755
index 000000000..0aef1363f
--- /dev/null
+++ b/2672/CH5/EX5.26/Ex5_26.sce
@@ -0,0 +1,20 @@
+//Example 5_26
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+I0=80;///micro A
+t=125;//degree C
+T=t+273;//K
+Eta=1;//for Ge
+VF=0.2;//V
+VT=T/11600;//V(Volt equivalent of temperature)
+///Part(a) In forward direction
+Rac=VT/(I0*10^-6)*exp(-VF/Eta/VT);//ohm
+disp(Rac,"(a) Dynamic Resistance in forward diection(ohm) : ");
+///Part(b) In reverse direction
+format('v',8);
+Rac=VT/(I0*10^-6)*exp(VF/Eta/VT)/10^6;//Mohm
+disp(Rac,"(b) Dynamic Resistance in reverse diection(Mohm) : ");
+//Answer in the textbook is not accurate.
diff --git a/2672/CH5/EX5.27/Ex5_27.sce b/2672/CH5/EX5.27/Ex5_27.sce
new file mode 100755
index 000000000..eee651a4d
--- /dev/null
+++ b/2672/CH5/EX5.27/Ex5_27.sce
@@ -0,0 +1,14 @@
+//Example 5_27
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+I0=1.5;///micro A
+T=300;//K
+VF=150;//mV
+kB=8.62*10^-5;//Boltzman Constant
+VT=T/11600;//V(Volt equivalent of temperature)
+rac=1/(I0*10^-6/kB/T*exp(VF/1000/VT));
+disp(rac,"Ac resistance(ohm)")
+//Answer and unit in the textbok is wrong.
diff --git a/2672/CH5/EX5.28/Ex5_28.sce b/2672/CH5/EX5.28/Ex5_28.sce
new file mode 100755
index 000000000..c7e1b9583
--- /dev/null
+++ b/2672/CH5/EX5.28/Ex5_28.sce
@@ -0,0 +1,14 @@
+//Example 5_28
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+Pmax=2.5;//W
+Vf=900;//mV
+If_max=Pmax/(Vf/1000);//A
+disp(If_max,"(a) Maximum allowable forward current(A) : ");
+Rf=Pmax/If_max^2;//ohm
+format('v',7);
+disp(Rf,"(b) Forward Diode Resistance(ohm)")
+//Answer in the textbok is wrong.
diff --git a/2672/CH5/EX5.29/Ex5_29.sce b/2672/CH5/EX5.29/Ex5_29.sce
new file mode 100755
index 000000000..21c849e27
--- /dev/null
+++ b/2672/CH5/EX5.29/Ex5_29.sce
@@ -0,0 +1,27 @@
+//Example 5_29
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+//for Ge diode
+rho_p=2;//ohm-cm(p-side resistivity)
+rho_n=1;//ohm-cm(n-side resistivity)
+e=1.6*10^-19;//C/electron
+mu_p=1800;//m^2/V-s
+mu_n=3800;//m^2/V-s
+VT=0.026;//V(Thermal Voltage)
+ni=2.5*10^13;//per cm^3(intrinsic concentration)
+NA=1/(rho_p*e*mu_p);//per cm^3
+ND=1/(rho_n*e*mu_n);//per cm^3
+V0=VT*log(ND*NA/ni^2);//eV
+disp(V0,"(a) Height of potential barrier(eV) : ");
+//for Si diode
+format('v',6);
+mu_p=500;//m^2/V-s
+mu_n=1300;//m^2/V-s
+ni=1.5*10^10;//per cm^3(intrinsic concentration)
+NA=1/(rho_p*e*mu_p);//per cm^3
+ND=1/(rho_n*e*mu_n);//per cm^3
+V0=VT*log(ND*NA/ni^2);//eV
+disp(V0,"(b) Height of potential barrier(eV) : ");
diff --git a/2672/CH5/EX5.3/Ex5_3.sce b/2672/CH5/EX5.3/Ex5_3.sce
new file mode 100755
index 000000000..834381f1a
--- /dev/null
+++ b/2672/CH5/EX5.3/Ex5_3.sce
@@ -0,0 +1,18 @@
+//Example 5_3
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+ND=1.2*10^21;//cm^-3
+NA=10^22;//cm^-3
+T=(273+30);//K
+kB=1.38*10^-23;//Boltzman constant
+e=1.6*10^-19;//C/electron
+VT=kB*T/e*1000;//mV//Thermal Voltage
+disp(VT,"Thermal Voltage(mV)")
+format('v',6);
+ni=1.5*10^16;//cm^-3
+V0=VT/1000*log(NA*ND/ni^2);//V
+disp(V0,"Barrier Voltage(V)");
+///Answer in the texbook is not accurate.
diff --git a/2672/CH5/EX5.30/Ex5_30.sce b/2672/CH5/EX5.30/Ex5_30.sce
new file mode 100755
index 000000000..96781ea05
--- /dev/null
+++ b/2672/CH5/EX5.30/Ex5_30.sce
@@ -0,0 +1,20 @@
+//Example 5_30
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+t=125;//degree C
+T=t+273;//K
+Eta=1;//for Ge
+VF=0.2;//V
+VT=T/11600;//V(Volt equivalent of temperature)
+I0=35;//micro A
+//Part(a) Forward Direction
+r=VT/(I0*10^-6)/exp(VF/VT);//ohm
+disp(r,"(a) Dynamic Resistance in forward direcion(ohm) : ");
+//Part(b) Reverse Direction
+r=VT/(I0*10^-6)/exp(-VF/VT);//ohm
+r=r/10^6;//Mohm
+disp(r,"(b) Dynamic Resistance in reverse direcion(Mohm) : ");
+///Answer in the textbook is not accurate.
diff --git a/2672/CH5/EX5.31/Ex5_31.sce b/2672/CH5/EX5.31/Ex5_31.sce
new file mode 100755
index 000000000..845d7a214
--- /dev/null
+++ b/2672/CH5/EX5.31/Ex5_31.sce
@@ -0,0 +1,16 @@
+//Example 5_31
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+Vz=10;//V
+Rs=1;//kohm
+RL=10;//kohm
+IL=5;//mA(Assumed)
+Vi=25:40;//V
+RLmin=Rs;//kohm
+Iz=(max(Vi)-Vz)/RLmin-IL;//mA
+disp(Iz,"(a) Maximum value of zener current(mA) : ");
+Iz_min=(min(Vi)-Vz)/Rs-IL;//mA
+disp(Iz_min,"(b) Minimum value of zener current(mA) : ");
diff --git a/2672/CH5/EX5.32/Ex5_32.sce b/2672/CH5/EX5.32/Ex5_32.sce
new file mode 100755
index 000000000..26aa1ea1f
--- /dev/null
+++ b/2672/CH5/EX5.32/Ex5_32.sce
@@ -0,0 +1,24 @@
+//Example 5_32
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+Vz=5;//V
+Pmax=250;//mW
+Vs=15;//V(Supply voltage)
+PL=50;//W(Load)
+Imax=Pmax/Vz;//mA(Maximum permissible current)
+//Minimum current to maintain constant voltage
+Imin=Imax-Imax*10/100;//mA
+Rmin=Vs/Imax;//kohm
+Rmax=Vs/Imin;//kohm
+disp("For maintainng constant voltage, Range of R is "+string(Rmin)+" kohm to "+string(Rmax)+" kohm.");
+//Diode loaded with 50W load
+Imax=PL/Vz;//mA(Maximum permissible current)
+//Minimum current to maintain constant voltage
+Imin=Imax-Imax*10/100;//mA
+Rmin=Vs/Imax;//kohm
+Rmax=Vs/Imin;//kohm
+disp("New range of R is "+string(Rmin)+" kohm to "+string(Rmax)+" kohm.");
+//Solution is not complete in the textbook.
diff --git a/2672/CH5/EX5.33/Ex5_33.sce b/2672/CH5/EX5.33/Ex5_33.sce
new file mode 100755
index 000000000..6945ce635
--- /dev/null
+++ b/2672/CH5/EX5.33/Ex5_33.sce
@@ -0,0 +1,14 @@
+//Example 5_33
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+ND=2*10^15;//cm^-3
+Ep=1.5*10^5;//V/cm
+epsilon=8.854*10^-14;//Permittivity
+e=1.6*10^-19;//C/electron
+//Width of depletion region
+W=Ep*11.9*epsilon/e/ND;
+VBR=W*Ep/2;//V
+disp(VBR,"Breakdown Voltage(V) : ");
diff --git a/2672/CH5/EX5.35/Ex5_35.sce b/2672/CH5/EX5.35/Ex5_35.sce
new file mode 100755
index 000000000..aa1b9cebe
--- /dev/null
+++ b/2672/CH5/EX5.35/Ex5_35.sce
@@ -0,0 +1,28 @@
+//Example 5_35
+clc;
+clear;
+close;
+format('v',4);
+//given data :
+Ez=2*10^7;///V/m
+//Vz=epsilon*Ez^2/(2*e*NA)
+//e*NA=sigp/mu_p; as sigp=NA*e*mu_p
+epsilon=16/(36*%pi*10^9);//F/m
+mu_p=1800;//cm^2/V-s
+sigp=poly(0,'sigp');//Notation : sigp=sigma_p
+Vz=epsilon*Ez^2/2*mu_p*10^-6/sigp;//V
+disp(Vz,"(a) Breakdown Voltage calculated and proved as ");
+format('v',6);
+sigma_i=1/45;//(ohm-cm)^-1
+sigma_p=sigma_i;//(ohm-cm)^-1//as p-material is intrinsic
+Vz=51/sigma_p;//V
+disp(Vz,"(b) Vz(V) : ");
+sigma_p=1/3.9;//(ohm-cm)^-1
+Vz=51/sigma_p;//V
+disp(Vz,"(c) Vz(V) : ");
+//Part (d)
+Vz=1.5;///V
+sigma_p=51/Vz;//V
+disp(sigma_p,"(d) Resistivity(ohm-cm)^-1 : ");
+//Note : Part(b) answer wrong in the book & part(d) not complete.
+//Note : sigp is used instead sigma_p as poly support only less than 5 character.
diff --git a/2672/CH5/EX5.36/Ex5_36.sce b/2672/CH5/EX5.36/Ex5_36.sce
new file mode 100755
index 000000000..506956e46
--- /dev/null
+++ b/2672/CH5/EX5.36/Ex5_36.sce
@@ -0,0 +1,25 @@
+//Example 5_36
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+Eta=1;//for Ge
+T=300;//K
+VT=0.026;//V(Thermal Voltage)
+VF=5;///V
+//I=I0;///given
+IByI0=1;//ratio
+//Using I=I0*(exp(V/VT)-1)
+V=log(IByI0+1)*VT;//V
+V2=VF-V;//V(Voltage across 2nd diode)
+disp(V2,"(a) Voltage across each junction(V) : ");
+//Part (b)
+format('v',6);
+Vz=4.9;//V
+Vrb=Vz;//V(Across reverse biased diode)
+V2=VF-Vrb;//V
+I0=6;//micro A
+I=I0*(exp(V2/VT)-1);//micro A
+disp(I,"(b) Current in the circuit(micro A) : ");
+//Note : Answer in the textbook is not accurate.
diff --git a/2672/CH5/EX5.37/Ex5_37.sce b/2672/CH5/EX5.37/Ex5_37.sce
new file mode 100755
index 000000000..9233db7f2
--- /dev/null
+++ b/2672/CH5/EX5.37/Ex5_37.sce
@@ -0,0 +1,14 @@
+//Example 5_37
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+I1=0.5;//mA
+V1=340;//mV
+I2=15;//mA
+V2=465;//mV
+kBTBye=25;//mV(It is kB*T/e)
+//I=Is*(exp(V/Eta/kBTBye)-1)
+Eta=(V2/kBTBye-V1/kBTBye)/log(I2/I1);//neglecting 1 as exp(V/Eta/kBTBye)>>1
+disp(Eta,"Ideality Factor(Eta) : ");
diff --git a/2672/CH5/EX5.38/Ex5_38.sce b/2672/CH5/EX5.38/Ex5_38.sce
new file mode 100755
index 000000000..d98452d64
--- /dev/null
+++ b/2672/CH5/EX5.38/Ex5_38.sce
@@ -0,0 +1,13 @@
+//Example 5_38
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+Vd=12;//V
+TC1=-1.7;//mV/degree C(Temperatre Coefficient of Si diode)
+//For series combination to have TC=0
+TC2=-TC1;//mV/degree C(Temperatre Coefficient of Avalanche diode)
+//In percentage
+TC2=TC2*10^-3/Vd*100;//%/degree C
+disp(TC2,"Required temperature coefficient(%/degree C) : ");
diff --git a/2672/CH5/EX5.39/Ex5_39.sce b/2672/CH5/EX5.39/Ex5_39.sce
new file mode 100755
index 000000000..99c58bb60
--- /dev/null
+++ b/2672/CH5/EX5.39/Ex5_39.sce
@@ -0,0 +1,27 @@
+//Example 5_39
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+//For IL=0;//A
+V0=60;//V
+V=200;//V(Supply Voltage)
+ID=5:40;//mA
+R=(V-V0)/max(ID);//kohm(R is >= this value)
+//For IL=ILmax;//A
+IT=max(ID);//mA
+ID=min(ID)///mA(ID<=this value)
+Imax=IT-ID;///mA
+disp(Imax,"(a) Imax(mA) : ");
+//Part (b)
+IL=25;//mA
+ID=5:40;//mA
+//Taking minimum current for good regulation
+IT=min(ID)+IL;///mA
+Vmax1=IT*R+V0;//V
+//Taking maximum current for good regulation
+IT=max(ID)+IL;///mA
+Vmax2=IT*R+V0;//V
+disp("(b) Without loss of regulation, V may vary from "+string(Vmax1)+" V to "+string(Vmax2)+" V.");
+
diff --git a/2672/CH5/EX5.4/Ex5_4.sce b/2672/CH5/EX5.4/Ex5_4.sce
new file mode 100755
index 000000000..33f86216e
--- /dev/null
+++ b/2672/CH5/EX5.4/Ex5_4.sce
@@ -0,0 +1,19 @@
+//Example 5_4
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+t1=25;//degree C
+t2=70;//degree C
+VB1=0.7;//V
+delV=-0.002*(t2-t1);//V
+VB2=VB1+delV;//V//barrier potential
+disp(VB2,"(a) Barrier potential at 70 degree C is (V)");
+//Part (b)
+t1=25;//degree C
+t2=0;//degree C
+VB1=0.7;//V
+delV=-0.002*(t2-t1);//V
+VB2=VB1+delV;//V//barrier potential
+disp(VB2,"(b) Barrier potential at 0 degree C is (V)");
diff --git a/2672/CH5/EX5.5/Ex5_5.sce b/2672/CH5/EX5.5/Ex5_5.sce
new file mode 100755
index 000000000..d2e531011
--- /dev/null
+++ b/2672/CH5/EX5.5/Ex5_5.sce
@@ -0,0 +1,23 @@
+//Example 5_5
+clc;
+clear;
+close;
+format('v',6);
+//Part(a) Derivation
+//Part(b)
+//given data :
+mu_p=500;//cm^2/V-s
+q=1.6*10^-19;//C/electron
+rho=3;//ohm-cm
+V0=0.4;//V//Barrier Height
+Vd=4.5;//V//Reverse Voltage
+D=40;//mils
+D=D*10^-3;//inch
+D=D*2.54;//cm/in
+A=%pi/4*D^2;//cm^2
+NA=1/rho/mu_p/q;//cm^-3
+W=sqrt((V0+Vd)/(14.13*10^10));//m^2
+Vj=V0+Vd;//V
+CT=2.9*10^-4*sqrt(NA/Vj)*A;///pF
+disp(CT,"CT(pF) : ");
+//Answer given in the textbook is not accurate.
diff --git a/2672/CH5/EX5.6/Ex5_6.sce b/2672/CH5/EX5.6/Ex5_6.sce
new file mode 100755
index 000000000..dec2c063f
--- /dev/null
+++ b/2672/CH5/EX5.6/Ex5_6.sce
@@ -0,0 +1,15 @@
+//Example 5_6
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V=5;//V
+CT=20;//pF
+lambda=CT*sqrt(V);//pm
+//increased V=V+1.5;//V
+V=V+1.5;//V
+CTnew=lambda/sqrt(V);//pF
+dCT=CT-CTnew;//pF
+disp(dCT,"Decrese in capacitance(pF)");
+//Answer given in the textbook is not accurate.
diff --git a/2672/CH5/EX5.7/Ex5_7.sce b/2672/CH5/EX5.7/Ex5_7.sce
new file mode 100755
index 000000000..588a66c97
--- /dev/null
+++ b/2672/CH5/EX5.7/Ex5_7.sce
@@ -0,0 +1,12 @@
+//Example 5_7
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+A=1.5*1.5;//mm^2
+A=A/100;//cm^2
+W=2*10^-4;//cm(Space charge thikness)
+epsilon=16/(36*%pi*10^11);//F/cm(For Ge)
+CT=epsilon*A/W*10^12;//pF
+disp(CT,"Barrier capacitance(pF)");
diff --git a/2672/CH5/EX5.8/Ex5_8.sce b/2672/CH5/EX5.8/Ex5_8.sce
new file mode 100755
index 000000000..0ac5985c1
--- /dev/null
+++ b/2672/CH5/EX5.8/Ex5_8.sce
@@ -0,0 +1,38 @@
+//Example 5_8
+clc;
+clear;
+close;
+format('v',4);
+//given data :
+e=1.6*10^-19;//C/electron
+NA=2.5*10^20;//atoms/m^3
+epsilon=16/(36*%pi*10^9);//F/m(For Ge)
+Vd=0.2;//V//Barrier height
+//Part(a)
+V0=10;//V(reverse bias)
+W=sqrt((V0+Vd)*2*epsilon/e/NA)*10^6;//micro m
+disp(W,"(a) Width of depletion layer(micro m)");
+format('v',5);
+//Part(b)
+V0=0.1;//V(reverse bias)
+W=sqrt((V0+Vd)*2*epsilon/e/NA)*10^6;//micro m
+disp(W,"(b) Width of depletion layer(micro m)");
+//Part(c)
+V0=0.1;//V(forward bias)
+W=sqrt((Vd-V0)*2*epsilon/e/NA)*10^6;//micro m
+disp(W,"(c) Width of depletion layer(micro m)");
+//Part(d)
+A=1;//mm^2//Cross section area
+A=A/10^6;//m^2
+format('v',6);
+//For (a)
+V0=10;//V(reverse bias)
+W=sqrt((V0+Vd)*2*epsilon/e/NA)*10^6;//micro m
+CT=epsilon*A/(W*10^-6)*10^12;//pF
+disp(CT,"(d)(a) Space Charge capacitance(pF) ");
+//For (b)
+V0=0.1;//V(reverse bias)
+W=sqrt((V0+Vd)*2*epsilon/e/NA)*10^6;//micro m
+CT=epsilon*A/(W*10^-6)*10^12;//pF
+disp(CT,"(d)(b) Space Charge capacitance(pF) ");
+//Answer given in the textbook is not accurate.
diff --git a/2672/CH6/EX6.1/Ex6_1.sce b/2672/CH6/EX6.1/Ex6_1.sce
new file mode 100755
index 000000000..85e17166f
--- /dev/null
+++ b/2672/CH6/EX6.1/Ex6_1.sce
@@ -0,0 +1,39 @@
+//Example 6_1
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+I0=10;//micro A
+Vz=100;//V
+R=1.5;//kohm
+V=45;//V
+///Part(a)
+I=V/R;//mA(neglecting diode threshold voltage)
+//I=I0*(exp(38.4*V)-1)//Diode Current Equation
+Vd=(log(I*10^-3/(I0*10^-6)+1))/38.4;//V(Diode Voltage)
+//Now calculating I again
+I=(V-Vd)/R;//mA
+disp(I,"(a) If diode is forward biased, Current(mA)");
+//Part(b)
+Vd=-V;//V(for reverse polarity of battery)
+I=-I0;//micro A
+//Voltage drop across resistor neglected
+disp(I,"(b) If battery inserted with reverse polarity, Current(micro A)");
+//Part(c)
+Vz=10;//V
+//in forward direction behaviour will remain same
+I=V/R;//mA(neglecting diode threshold voltage)
+//I=I0*(exp(38.4*V)-1)//Diode Current Equation
+Vd=(log(I*10^-3/(I0*10^-6)+1))/38.4;//V(Diode Voltage)
+//Now calculating I again
+I=(V-Vd)/R;//mA
+disp(I,"(c) If diode is forward biased, Current(mA)");
+//reverse direction
+//load line dataV=30;//
+V=30;//V
+I=-30;//mA
+V1=20;//V//from Load Line
+Idash=I*V1/V;///A
+disp(Idash,"(c) If battery inserted with reverse polarity, Current(mA)");
+//Answer in the book is not accurate,
diff --git a/2672/CH6/EX6.10/Ex6_10.sce b/2672/CH6/EX6.10/Ex6_10.sce
new file mode 100755
index 000000000..f1cc77e0d
--- /dev/null
+++ b/2672/CH6/EX6.10/Ex6_10.sce
@@ -0,0 +1,13 @@
+//Example 6_10
+clc;
+clear;
+close;
+format('v',4);
+Rm=20;//ohm(meter resistance)
+Rs=5;//kohm(series resistance)
+Im=1;///mA
+Idc=2*Im/%pi;//mA
+RL=Rm+Rs*1000;//ohm
+Vm=Idc/1000*%pi*RL/2;///V
+v0_max=2*sqrt(2)*Vm;//V
+disp(v0_max,"Full scale reading(V) : ");
diff --git a/2672/CH6/EX6.11/Ex6_11.sce b/2672/CH6/EX6.11/Ex6_11.sce
new file mode 100755
index 000000000..673b92517
--- /dev/null
+++ b/2672/CH6/EX6.11/Ex6_11.sce
@@ -0,0 +1,15 @@
+//Example 6_11
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V1=220;//V
+N1ByN2=10/1;//turns ratio
+V2=V1/N1ByN2;//V
+Vm=sqrt(2)*V2;//V
+Vdc=0.318*Vm;//V
+disp(Vdc,"(a) dc output voltage(V) : " );
+format('v',6);
+PIV=Vm;//V
+disp(PIV,"(b) PIV(V) : " );
diff --git a/2672/CH6/EX6.12/Ex6_12.sce b/2672/CH6/EX6.12/Ex6_12.sce
new file mode 100755
index 000000000..b27614a5b
--- /dev/null
+++ b/2672/CH6/EX6.12/Ex6_12.sce
@@ -0,0 +1,20 @@
+//Example 6_12
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+V1=230;//V
+N2ByN1=1/3;//turns ratio
+RL=200;//ohm
+V2=V1*N2ByN1;//V
+Vm=sqrt(2)*V2;//V
+Im=Vm/RL;//A
+Pmax=Im^2*RL;//W
+disp(Pmax,"Maximum load power(W) : ");
+format('v',5);
+Vdc=0.318*Vm;//V
+Idc=Vdc/RL;//A
+Pdc=Idc^2*RL;//W
+disp(Pdc,"Average value of load power(W) : ");
+//Answer in the textbook is not accurate.
diff --git a/2672/CH6/EX6.13/Ex6_13.sce b/2672/CH6/EX6.13/Ex6_13.sce
new file mode 100755
index 000000000..2aa54e579
--- /dev/null
+++ b/2672/CH6/EX6.13/Ex6_13.sce
@@ -0,0 +1,14 @@
+//Example 6_13
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+Vdc=30;//V
+rf=25;//ohm
+RL=500;//ohm
+Idc=Vdc/RL;//A
+Im=%pi*Idc;//A
+Vi_max=Im^2*(rf+RL);//V
+disp(Vi_max,"Voltage required at input(V) : ");
+//Answer in the textbook is not accurate.
diff --git a/2672/CH6/EX6.14/Ex6_14.sce b/2672/CH6/EX6.14/Ex6_14.sce
new file mode 100755
index 000000000..06b0bf1c3
--- /dev/null
+++ b/2672/CH6/EX6.14/Ex6_14.sce
@@ -0,0 +1,16 @@
+//Example 6_14
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+Vdc=100;//V
+rf=20;//ohm
+RL=500;//ohm
+Idc=Vdc/RL;//A
+Im=%pi*Idc;//A
+Vm=Im*(RL+rf);//V
+disp(Vm,"(a) The ac voltage required(V) : ");
+format('v',5);
+Eta=0.406/(1+rf/RL)*100;//%(Rectification Efficiency)
+disp(Eta,"Rectification Efficiency(%) : ");
diff --git a/2672/CH6/EX6.15/Ex6_15.sce b/2672/CH6/EX6.15/Ex6_15.sce
new file mode 100755
index 000000000..d311e2025
--- /dev/null
+++ b/2672/CH6/EX6.15/Ex6_15.sce
@@ -0,0 +1,19 @@
+//Example 6_15
+clc;
+clear;
+close;
+format('v',4);
+//given data :
+//v=50*sin(100*%pi*t)
+Vm=50;//V
+f=50;//Hz
+rf=20;//ohm
+RL=5000;//ohm
+Im=Vm/(rf+RL)*1000;//mA
+disp("(a) Current is "+string(Im)+"*sin(100*%pi*t) for %pi <100*%pi*t<2*%pi & it will be zero for 0 <100*%pi*t<%pi");
+format('v',5);
+Vdc=Im/1000/%pi*RL;//V
+disp("(b) Output Voltage, Vo = "+string(Vdc)+"*sin(100*%pi*t) for %pi <100*%pi*t<2*%pi & it will be zero for 0 <100*%pi*t<%pi ");
+//Assuming diode is ideal
+disp("(c) Voltage across diode, v = "+string(Vdc)+"*sin(100*%pi*t) for 0 <100*%pi*t<%pi & it will be zero for %pi <100*%pi*t<2*%pi ");
+
diff --git a/2672/CH6/EX6.16/Ex6_16.sce b/2672/CH6/EX6.16/Ex6_16.sce
new file mode 100755
index 000000000..83d04b2bd
--- /dev/null
+++ b/2672/CH6/EX6.16/Ex6_16.sce
@@ -0,0 +1,18 @@
+//Example 6_16
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+Vrms=230;//V
+f=50;//Hz
+Gamma=0:0.001:0.005;//Ripple factor(Gamma<=0.005)
+IL=0.5;//A
+Gamma=Gamma(4);//Taken for the solution
+Vm=sqrt(2)*Vrms;//V
+Vdc=Vm/%pi;//V
+Idc=IL;//A
+RL=Vdc/Idc;//ohm
+C=1/(2*sqrt(3)*f*RL*Gamma)*1000;//mF
+disp(C,"Value of capacitance(mF) : ");
+//Answer in the textbook is not accurate.
diff --git a/2672/CH6/EX6.17/Ex6_17.sce b/2672/CH6/EX6.17/Ex6_17.sce
new file mode 100755
index 000000000..8d22faa7a
--- /dev/null
+++ b/2672/CH6/EX6.17/Ex6_17.sce
@@ -0,0 +1,16 @@
+//Example 6_17
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+RL=3.15;//kohm
+rf=20;//ohm
+//v=230*sin(314*t)
+Vm=230;//V
+f=50;//Hz
+Irms=0.707*Vm/(rf+RL*1000);//A
+Im=Vm/(rf+RL*1000);//A
+Idc=0.637*Im
+Gamma=sqrt((Irms/Idc)^2-1);//Ripple factor
+disp(Gamma,"Ripple factor : ");
diff --git a/2672/CH6/EX6.18/Ex6_18.sce b/2672/CH6/EX6.18/Ex6_18.sce
new file mode 100755
index 000000000..9165726b5
--- /dev/null
+++ b/2672/CH6/EX6.18/Ex6_18.sce
@@ -0,0 +1,20 @@
+//Example 6_18
+clc;
+clear;
+close;
+format('v',4);
+//given data :
+Vp=230;//V
+fin=50;//Hz
+RL=200;//ohm
+NsByNp=1/4;//turns ratio
+Vs=Vp*NsByNp;//V
+Vrms=Vs;//V
+Vm=Vrms*sqrt(2);//V
+Idc=2*Vm/%pi/RL;//A
+RL=150;//ohm
+Vdc=Idc*RL;//V
+disp(Vdc,"dc output Voltage(V) : ");
+//Because of two output pulses
+fout=2*fin;///Hz
+disp(fout,"Pulse frequency of the output(Hz) : ");
diff --git a/2672/CH6/EX6.19/Ex6_19.sce b/2672/CH6/EX6.19/Ex6_19.sce
new file mode 100755
index 000000000..ec308b457
--- /dev/null
+++ b/2672/CH6/EX6.19/Ex6_19.sce
@@ -0,0 +1,18 @@
+//Example 6_19
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+Vp=220;//V
+fi=50;//Hz
+RL=1.5;//kohm
+Np=1000;//turns
+Ns=100;//turns
+Vs=Vp*Ns/Np;//V
+Vrms=Vs*sqrt(2);//V
+Vm=Vrms/2;//V(Across half secondary winding)
+Idc=2*Vm/%pi/(RL*1000);//A
+Vdc=Idc*RL*1000;//V
+disp(Vdc,"dc output Voltage(V) : ");
+//Answer in the textbook is not accurate.
diff --git a/2672/CH6/EX6.2/Ex6_2.sce b/2672/CH6/EX6.2/Ex6_2.sce
new file mode 100755
index 000000000..1524d0cfa
--- /dev/null
+++ b/2672/CH6/EX6.2/Ex6_2.sce
@@ -0,0 +1,52 @@
+//Example 6_2
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V=100;//V
+//For diode D1
+V1gamma=0.2;//V
+r1=20;//ohm
+//For diode D2
+V2gamma=0.6;//V
+r2=15;//ohm
+//Part(a)
+//Assume D1 & D2 are ON
+R=10;//kohm
+//Writing loop equations
+//V=(R+r1/1000)*I1+R*I2+V1gamma;(eqn(1))
+A1=[(R+r1/1000) R];//Coefficient matrix
+B1=[V-V1gamma];//Coefficient matrix
+//V=(R+r2/1000)*I2+R*I1+V2gamma;(eqn(2))
+A2=[R (R+r2/1000)];//Coefficient matrix
+B2=[V-V2gamma];//Coefficient matrix
+A=[A1;A2];//Coefficient matrix
+B=[B1;B2];//Coefficient matrix
+X=A^-1*B;//solution matrix
+I1=X(1);///mA
+I2=X(2);///mA
+if I2<0 then
+ disp("I2<0, Assumption D2 is ON, not valid.")
+//Assume D1 is ON & D2 is OFF
+I2=0;//A
+I1=(V-V1gamma)/(R+r1/1000);//mA
+disp(I2,I1,"(a) Diode current I1 & I2 in mA are : ");
+end;
+//Part(b)
+format('v',7);
+//Assume D1 & D2 are ON
+R=1.5;//kohm
+//Writing loop equations
+//V=(R+r1/1000)*I1+R*I2+V1gamma;(eqn(1))
+A1=[(R+r1/1000) R];//Coefficient matrix
+B1=[V-V1gamma];//Coefficient matrix
+//V=(R+r2/1000)*I2+R*I1+V2gamma;(eqn(2))
+A2=[R (R+r2/1000)];//Coefficient matrix
+B2=[V-V2gamma];//Coefficient matrix
+A=[A1;A2];//Coefficient matrix
+B=[B1;B2];//Coefficient matrix
+X=A^-1*B;//solution matrix
+I1=X(1);///mA
+I2=X(2);///mA
+disp(I2,I1,"(b) Diode current I1 & I2 in mA are : ");
diff --git a/2672/CH6/EX6.20/Ex6_20.sce b/2672/CH6/EX6.20/Ex6_20.sce
new file mode 100755
index 000000000..1a73c3734
--- /dev/null
+++ b/2672/CH6/EX6.20/Ex6_20.sce
@@ -0,0 +1,17 @@
+//Example 6_20
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+Vdc=30;//V
+RL=1;//kohm
+Gamma=0.015;//Ripple factor
+Idc=Vdc/RL;//mA
+C=2900/Gamma/(RL*1000);//micro F
+disp(C,"Filter capacitor(micro F) : ");
+format('v',6);
+Vm=Vdc+5000*Idc/1000/C;///V
+V2=2*Vm/sqrt(2);//V
+disp(V2,"Required intput Voltage(V) : ");
+//Answer in the textbook is not accurate.
diff --git a/2672/CH6/EX6.21/Ex6_21.sce b/2672/CH6/EX6.21/Ex6_21.sce
new file mode 100755
index 000000000..2b585b0d4
--- /dev/null
+++ b/2672/CH6/EX6.21/Ex6_21.sce
@@ -0,0 +1,16 @@
+//Example 6_21
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+IL=0.1;//A
+C=40;///micro F
+R=40;//ohm
+Vrms=40;//V
+Gamma=0.0001;//Ripple factor
+n=2;//For 2 stage filter
+L=1.76/C*(0.472/Gamma)^(1/n);//H
+disp(L,"(a) Value of inductance(H) : ");
+Vdc=2*sqrt(2)*Vrms/%pi-IL*R;//V
+disp(Vdc,"(b) Output Voltage(V) : " );
diff --git a/2672/CH6/EX6.22/Ex6_22.sce b/2672/CH6/EX6.22/Ex6_22.sce
new file mode 100755
index 000000000..ceea97230
--- /dev/null
+++ b/2672/CH6/EX6.22/Ex6_22.sce
@@ -0,0 +1,19 @@
+//Example 6_22
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+IL=50;//micro A
+C=4;///micro F
+C1=4;///micro F
+L=20;///H(Choke Inductance)
+R=200;//ohm(Choke Resistance)
+V=300;//V
+Idc=IL/1000;//mA
+Vdc=V*sqrt(2)-4170*Idc/C-Idc*R;//V
+disp(Vdc,"Output Voltage(V) : " );
+r=3300*Idc/C/C1/L/R;//Ripple factor
+Vrms=r*Vdc;//V
+disp(Vrms,"Ripple Voltage(V) : ");
+//Answer in the textbook is wrong. calculation & value putting mistake.
diff --git a/2672/CH6/EX6.3/Ex6_3.sce b/2672/CH6/EX6.3/Ex6_3.sce
new file mode 100755
index 000000000..3dc90a731
--- /dev/null
+++ b/2672/CH6/EX6.3/Ex6_3.sce
@@ -0,0 +1,17 @@
+//Example 6_3
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+r1BYr2=10000;//multipying factor
+//r=Eta*VT/I0*eps^(-V/Eta/VT)
+//log(r1BYr2)=(-V1/Eta/VT)/(-V2/Eta/VT)=delV/Eta/VT
+VT=26;//mV
+Eta=2;//for silicon
+delV=log(r1BYr2)*Eta*VT;
+disp(delV,"Break region for Si(mV)");
+Eta=1;//for Germenium
+delV=log(r1BYr2)*Eta*VT;
+disp(delV,"Break region for Ge(mV)");
+//Answer in the book is not accurate.
diff --git a/2672/CH6/EX6.4/Ex6_4.sce b/2672/CH6/EX6.4/Ex6_4.sce
new file mode 100755
index 000000000..9b0ded6a2
--- /dev/null
+++ b/2672/CH6/EX6.4/Ex6_4.sce
@@ -0,0 +1,35 @@
+//Example 6_4
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+Rf=30;//ohm
+RL=990;//ohm
+Vrms=110;//V
+//Part (a)
+Vm=Vrms*sqrt(2);//V
+Im=Vm/(Rf+RL)*1000;///mA
+disp(Im,"(a) Peak Load Current(mA)");
+//Part (b)
+format('v',5);
+Idc=Im/%pi;//mA
+disp(Idc,"(b) The dc Load Current(mA)");
+//Part (c)
+Irms=Im/2;//mA
+disp(Irms,"(c) The ac Load Current(mA)");
+//Part (d)
+format('v',4);
+Vdc=-Im*RL/1000/%pi;//mA
+disp(Vdc,"(d) The dc diode Voltage(mV)");
+//Part (e)
+format('v',5);
+Pi=(Irms*10^-3)^2*(Rf+RL);//W
+disp(Pi,"(e) Total Input Power(W)");
+//Part (f)
+format('v',6);
+VNL=Vm/%pi;//V
+VFL=Idc*RL/1000;//V
+Reg=(VNL-VFL)/VFL*100;//%(Regulation)
+disp(Reg,"(f) % Regulation(%)");
+//Answer not accurate in the book & unit of answer for part(d) is wrong.
diff --git a/2672/CH6/EX6.8/Ex6_8.sce b/2672/CH6/EX6.8/Ex6_8.sce
new file mode 100755
index 000000000..36f3f01e7
--- /dev/null
+++ b/2672/CH6/EX6.8/Ex6_8.sce
@@ -0,0 +1,30 @@
+//Example 6_8
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+Rf=500;//ohm
+RL=2000;//ohm
+Vrms=280;//V
+Vm=Vrms*sqrt(2);//V
+//Part (a)
+Idc=2*Vm/%pi/(Rf+RL);//A
+Idc=Idc*1000;//mA
+disp(Idc,"(a) The dc load current(mA) : ");
+//Part (b)
+Idc_tube=Idc/2;///mA
+disp(Idc_tube,"(b) Direct current in each tube(mA) : ");
+//Part (c)
+v2=Vm*Rf/(Rf+RL);//V
+v1=-2*Vm+v2;//V
+Vrms=sqrt(1/2/%pi*integrate('v2^2*(sin(alfa))^2','alfa',0,%pi)+1/2/%pi*integrate('v1^2*(sin(alfa))^2','alfa',%pi,2*%pi));//V
+Vrms=floor(Vrms);///V
+disp(Vrms,"(c) The ac voltage across each diode(V) : ");
+//Part (d)
+Pdc=(Idc/1000)^2*RL;//W
+disp(Pdc,"(d) The dc output power(W) : ");
+//Part(e)
+Reg=Rf/RL*100;//%
+disp(Reg,"(e) % Regulation : ");
+//Answer in the textbook is not accurate.
diff --git a/2672/CH7/EX7.1/Ex7_1.sce b/2672/CH7/EX7.1/Ex7_1.sce
new file mode 100755
index 000000000..b542cdeca
--- /dev/null
+++ b/2672/CH7/EX7.1/Ex7_1.sce
@@ -0,0 +1,14 @@
+//Ex_7_1
+clc;
+clear;
+close;
+//given data :
+format('v',6);
+alfa=0.90;//current gain
+ICO=15;//micro A(reverse saturation currenrt)
+IE=4;//mA(Emitter currenrt)
+IC=ICO*10^-3+alfa*IE;//mA
+IB=IE-IC;//mA
+IB=IB*1000;//micro A
+disp(IC,"Collector Current(mA)");
+disp(IB,"Base Current(micro A)");
diff --git a/2672/CH7/EX7.10/Ex7_10.sce b/2672/CH7/EX7.10/Ex7_10.sce
new file mode 100755
index 000000000..f7e71fbb4
--- /dev/null
+++ b/2672/CH7/EX7.10/Ex7_10.sce
@@ -0,0 +1,10 @@
+//Ex_7_10
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+delVB=0.4;//V
+delVC=0;//V//No change
+delVE=delVB;//V//Same change
+disp(delVC,delVE,"delVE(V) & delVC(V) are : ");
diff --git a/2672/CH7/EX7.11/Ex7_11.sce b/2672/CH7/EX7.11/Ex7_11.sce
new file mode 100755
index 000000000..14ea03fd2
--- /dev/null
+++ b/2672/CH7/EX7.11/Ex7_11.sce
@@ -0,0 +1,67 @@
+//Ex_7_11
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+VBE=0.7;////V
+Beta=100;///Current Gain
+//Part (a)
+VCC=6;////V
+VEE=0;////V
+VB=2;////V
+RE=18;//kohm
+RC=3;//kohm
+VE=VB-VBE;//V
+disp(VE,"(a) Emitter Voltage(V) : ");
+IE=1;///mA
+IC=IE*Beta/(1+Beta);///mA
+VC=VCC-IC*RC;//V
+if VC>VE then
+ disp("Circuit is in active mode.");
+end;
+//Part (b)
+VEE=6;////V
+VCC=0;////V
+VB=1;////V
+RE=10;//kohm
+RC=10;//kohm
+VE=VB+VBE;//V
+disp(VE,"(b) Emitter Voltage(V) : ");
+IE=(VEE-VE)/RE;///mA
+IC=IE;///mA(Assumed nearly equal)
+VC=VCC+IC*RC;//V
+if VC>VB then
+ disp("Circuit is in saturation mode.");
+end;
+//Part (c)
+VEE=9.5;////V
+VCC=-50;////V
+VB=-5;////V
+RE=200;//kohm
+RC=20;//kohm
+VE=VB+VBE;//V
+disp(VE,"(c) Emitter Voltage(V) : ");
+IE=(VEE-VE)/RE;///mA;///mA
+IC=IE*Beta/(1+Beta);///mA
+VC=VCC-IC*RC;//V
+if VC>VE then
+ disp("Circuit is in active mode.");
+elseif VC<VE
+ disp("Circuit is in reverse active mode.")
+end;
+//Part (d)
+VEE=-30;////V
+VCC=-10;////V
+VB=-20;////V
+RE=6;//kohm
+RC=2;//kohm
+VE=VB-VBE;//V
+disp(VE,"(d) Emitter Voltage(V) : ");
+IE=(VEE-VE)/RE;///mA;///mA
+IC=IE*Beta/(1+Beta);///mA
+VC=VCC-IC*RC;//V
+if VC>VE then
+ disp("Circuit is in active mode.");
+end;
+//Note : Printing error in part (a) in the textbook. Answer is also not accurate in the textbook for part(c)
diff --git a/2672/CH7/EX7.2/Ex7_2.sce b/2672/CH7/EX7.2/Ex7_2.sce
new file mode 100755
index 000000000..3a693368a
--- /dev/null
+++ b/2672/CH7/EX7.2/Ex7_2.sce
@@ -0,0 +1,14 @@
+//Ex_7_2
+clc;
+clear;
+close;
+//given data :
+format('v',6);
+Beta=90;//unitless
+IC=4;//mA(Collector Current)
+alfa=Beta/(1+Beta);//current gain
+IB=IC/Beta;//mA(Base Current)
+IE=IC+IB;//mA(Emitter currenrt)
+disp(alfa,"Value of alfa");
+disp(IB*1000,"Base Current(micro A)");
+disp(IE,"Emmiter Current(mA)");
diff --git a/2672/CH7/EX7.3/Ex7_3.sce b/2672/CH7/EX7.3/Ex7_3.sce
new file mode 100755
index 000000000..7ec629378
--- /dev/null
+++ b/2672/CH7/EX7.3/Ex7_3.sce
@@ -0,0 +1,12 @@
+//Ex_7_3
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+alfa=0.90;//current gain
+ICO=15;//micro A(reverse saturation currenrt)
+IB=0.5;///mA(Base Current)
+Beta=alfa/(1-alfa);//unitless
+IC=Beta*IB+(1+Beta)*ICO/1000;//mA(Collector Current)
+disp(IC,"Collector Current(mA)");
diff --git a/2672/CH7/EX7.4/Ex7_4.sce b/2672/CH7/EX7.4/Ex7_4.sce
new file mode 100755
index 000000000..d30dd3601
--- /dev/null
+++ b/2672/CH7/EX7.4/Ex7_4.sce
@@ -0,0 +1,10 @@
+//Ex_7_4
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+IB=20;///micro A(Base Current)
+IC=5;//mA(Collector Current)
+Beta=IC*1000/IB;//unitless
+disp(Beta,"Beta=");
diff --git a/2672/CH7/EX7.5/Ex7_5.sce b/2672/CH7/EX7.5/Ex7_5.sce
new file mode 100755
index 000000000..8ac3f8a44
--- /dev/null
+++ b/2672/CH7/EX7.5/Ex7_5.sce
@@ -0,0 +1,18 @@
+//Ex_7_5
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+IB=50;///micro A(Base Current)
+IC=5;//mA(Collector Current)
+IE=IC+IB/1000;//mA
+Beta=IC*1000/IB;//unitless
+alfa=IC/IE;//current gain
+disp(IE,"Emitter Current(mA)");
+disp(Beta,"Beta=");
+disp(alfa,"alfa=");
+disp("Verify that alfa=Beta/(Beta+1)");
+disp(string(alfa==Beta/(Beta+1)));
+disp("Verify that Beta=alfa/(1-alfa)");
+disp(string(Beta==round(alfa/(1-alfa))));
diff --git a/2672/CH7/EX7.6/Ex7_6.sce b/2672/CH7/EX7.6/Ex7_6.sce
new file mode 100755
index 000000000..13d5d80e2
--- /dev/null
+++ b/2672/CH7/EX7.6/Ex7_6.sce
@@ -0,0 +1,14 @@
+//Ex_7_6
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+IE=10;//mA
+IB=5;///mA(Base Current)
+IC=IE-IB;//mA(Collector Current)
+BetaR=IC/IB;//unitless
+alfaR=IC/IE;//current gain
+disp(BetaR,"BetaR=");
+disp(alfaR,"alfaR=");
+//Answer is wrong in the book.
diff --git a/2672/CH7/EX7.7/Ex7_7.sce b/2672/CH7/EX7.7/Ex7_7.sce
new file mode 100755
index 000000000..4c0debfdb
--- /dev/null
+++ b/2672/CH7/EX7.7/Ex7_7.sce
@@ -0,0 +1,41 @@
+//Ex_7_7
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+Beta=100;//unitless
+VBE=0.7;//V
+VCC=10;//V
+//(a) VE=-0.7;//V
+disp("For the circuit in fig(a)");
+VE=-0.7;//V(Constant voltage)
+R1=10;//kohm
+R2=10;//kohm
+IE=(VCC+VE)/R2;//mA
+IB=IE/(Beta+1);//mA
+VC=VCC-R1*1000*(IE-IB)/1000;//V
+disp(VE,"Constant voltage fo the given transistor, VE(V)");
+disp(IE,"Emitter current(mA)");
+format('v',5);
+IB=IB*1000;///micro A
+disp(IB,"Base current(micro A)");
+format('v',6);
+disp(VC,"VC(V)");
+
+//(b) VE=-0.7;//V
+R1=5;//kohm
+R2=5;//kohm
+VEE=-15;//V
+disp("For the circuit in fig(b)");
+VE=-0.7;//V(Constant voltage)
+R1=5;//kohm
+R2=5;//kohm
+IE=(VCC+VE)/R2;//mA
+IC=IE*Beta/(Beta+1);//mA
+VC=VEE+R2*IC;//V
+disp(VE,"Constant voltage fo the given transistor, VE(V)");
+disp(IE,"Emitter current(mA)");
+disp(IC,"Base current(mA)");
+format('v',5);
+disp(VC,"VC(V)");
diff --git a/2672/CH7/EX7.8/Ex7_8.sce b/2672/CH7/EX7.8/Ex7_8.sce
new file mode 100755
index 000000000..12608aeb2
--- /dev/null
+++ b/2672/CH7/EX7.8/Ex7_8.sce
@@ -0,0 +1,20 @@
+//Ex_7_8
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+Beta=%inf;//Current gain
+VBE=0.7;////V
+VB=0;//V(For large Beta)
+VE=VB-VBE;////V
+disp(VE,VB,"(a) Value of VB(V) & VE(V) are : ");
+//Part (b)
+R1=5;///kohm
+R2=5;///kohm
+VCC=10;///V
+VEE=-15;///V
+VE=VBE;////V
+VC=VEE+R1/R2*(VCC-VBE);//V
+disp(VC,VE,"(b) Value of VE(V) & VC(V) are : ");
+
diff --git a/2672/CH7/EX7.9/Ex7_9.sce b/2672/CH7/EX7.9/Ex7_9.sce
new file mode 100755
index 000000000..4dd7f54eb
--- /dev/null
+++ b/2672/CH7/EX7.9/Ex7_9.sce
@@ -0,0 +1,27 @@
+//Ex_7_9
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+VEE=5;////V
+VCC=-5;////V
+VE=1;////V
+RB=20;//kohm
+RE=5;//kohm
+RC=5;//kohm
+VBE=0.7;////V
+VB=VE-VBE;///V
+IB=VB/RB;///mA
+IE=(VEE-VE)/RE;//mA
+IC=IE-IB;//mA
+VC=VCC+IC*RC;//V
+Beta=IC/IB;//Current gain
+Alfa=IC/IE;//Current gain
+disp(VB,"VB(V) : ");
+disp(IB,"IB(mA) : ");
+disp(IE,"IE(mA) : ");
+disp(IC,"IC(mA) : ");
+format('v',5);
+disp(Beta,"Beta : ");
+disp(Alfa,"Alfa : ");
diff --git a/2672/CH8/EX8.1/Ex8_1.sce b/2672/CH8/EX8.1/Ex8_1.sce
new file mode 100755
index 000000000..7af91a71b
--- /dev/null
+++ b/2672/CH8/EX8.1/Ex8_1.sce
@@ -0,0 +1,28 @@
+//Ex_8_1
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+Beta=100;//unitless
+Rc=2;//kohm
+Rb=100;//kohm
+Vcc=10;//V
+VBE=0.7;//V
+//Part (a)
+IB=(Vcc-VBE)/(Beta*Rc+Rc+Rb);//mA
+disp(IB,"IB(mA)");
+format('v',4);
+IC=Beta*IB;//mA
+disp(IC,"IC(mA)");
+format('v',5);
+VCE=Vcc-(IB+IC)*Rc;//V
+disp(VCE,"VCE(V)");
+//Part (b)
+format('v',8);
+VCE=7;//V
+ICB=(Vcc-VCE)/Rc;//mA(ICB=IC+IB)
+IB=ICB/(1+Beta);//mA
+IC=ICB*Beta;//mA
+Rb=(Vcc-VBE-Rc*ICB)/IB;//kohm
+disp(Rb,"Value of Rb(kohm)");
diff --git a/2672/CH8/EX8.4/Ex8_4.sce b/2672/CH8/EX8.4/Ex8_4.sce
new file mode 100755
index 000000000..77870e696
--- /dev/null
+++ b/2672/CH8/EX8.4/Ex8_4.sce
@@ -0,0 +1,25 @@
+//Ex_8_4
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+Beta=50;//unitless
+VBE=0.7;//V
+VCC=22.5;//V
+Rc=5.6;//kohm
+VCE=12;//V
+IC=1.5;//mA
+S=3;//Stability factor(S<=3)
+Rec=(VCC-VCE)/IC;//kohm(Rec=Re+Rc)
+Re=Rec-Rc;//kohm
+RbBYRe=(S-1)/(1-S/(1+Beta))
+Rb=RbBYRe*Re;//kohm
+IB=IC/Beta;//mA
+V=IB*Rb+VBE+(IB/1000+IC)*Re;//V
+R1=Rb*VCC/V;//kohm
+R2=R1*V/(VCC-V);//kohm
+disp(Re,"Value of Re(kohm)");
+disp(R1,"Value of R1(kohm)");
+disp(R2,"Value of R2(kohm)");
+//Answer in the book is wrong for R1.
diff --git a/2672/CH8/EX8.5/Ex8_5.sce b/2672/CH8/EX8.5/Ex8_5.sce
new file mode 100755
index 000000000..86451e0f3
--- /dev/null
+++ b/2672/CH8/EX8.5/Ex8_5.sce
@@ -0,0 +1,47 @@
+//Ex_8_5
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+VCC=20;//V
+Rc=1.5;//kohm
+VCE=8;//V
+IC=4;//mA
+Beta=50;//unitless\
+VBE=0.2;//V
+disp("Part (a)");
+S=12;//Stability factor
+IB=IC/Beta;//mA
+Re=(VCC-VCE-IC*Rc)/(IB+IC);//kohm
+RbBYRe=(S-1)/(1-S/(1+Beta))
+Rb=RbBYRe*Re;//kohm
+IE=IB+IC;//mA
+VBN=VBE+IE*Re;//V
+V=VBN+IB*Rb;//V
+R1=Rb*VCC/V;//kohm
+IR1=(VCC-VBN)/R1;//mA
+IR2=IR1-IB;//mA
+R2=VBN/IR2;//kohm
+disp(R1,"Value of R1(kohm)");
+disp(R2,"Value of R2(kohm)");
+disp(Re,"Value of Re(kohm)");
+disp("Part (b)");
+S=3;//Stability factor
+IB=IC/Beta;//mA
+Re=(VCC-VCE-IC*Rc)/(IB+IC);//kohm
+RbBYRe=(S-1)/(1-S/(1+Beta))
+Rb=RbBYRe*Re;//kohm
+IE=IB+IC;//mA
+VBN=VBE+IE*Re;//V
+V=VBN+IB*Rb;//V
+R1=Rb*VCC/V;//kohm
+IR1=(VCC-VBN)/R1;//mA
+IR2=IR1-IB;//mA
+R2=VBN/IR2;//kohm
+disp(R1,"Value of R1(kohm)");
+disp(R2,"Value of R2(kohm)");
+format('v',5);
+disp(Re,"Value of Re(kohm)");
+disp(Rb,"Value of Rb(kohm)");
+//Answer in the book is wrong.
diff --git a/2672/CH8/EX8.6/Ex8_6.sce b/2672/CH8/EX8.6/Ex8_6.sce
new file mode 100755
index 000000000..9b7750798
--- /dev/null
+++ b/2672/CH8/EX8.6/Ex8_6.sce
@@ -0,0 +1,26 @@
+//Ex_8_6
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+VBE=0.7;//V
+Beta=50;//unitless
+VCE=4;//V
+VCC=12;//V
+Rc=4.3;//kohm
+VEE=-6;//V
+IC=1.5;//mA
+S=3;//Stability factor(S<=3)
+Rec=(VCC-VCE)/IC;//kohm(Rec=Re+Rc)
+Re=Rec-Rc;//kohm
+RbBYRe=(S-1)/(1-S/(1+Beta))
+Rb=RbBYRe*Re;//kohm
+IB=IC/Beta;//mA
+V=IB*Rb+VBE+(IB/1000+IC)*Re;//V
+R1=Rb*VCC/V;//kohm
+R2=R1*V/(VCC-V);//kohm
+disp(Re,"Value of Re(kohm)");
+disp(R1,"Value of R1(kohm)");
+disp(R2,"Value of R2(kohm)");
+//Answer in the book is wrong for R1.