diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2672/CH5 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2672/CH5')
35 files changed, 722 insertions, 0 deletions
diff --git a/2672/CH5/EX5.1/Ex5_1.sce b/2672/CH5/EX5.1/Ex5_1.sce new file mode 100755 index 000000000..0721113bc --- /dev/null +++ b/2672/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,30 @@ +//Example 5_1
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+rho_p=1.5;//ohm-cm
+rho_n=1;//ohm-cm
+e=1.6*10^-19;//C/electron
+//For Ge diode
+mu_p=1800;//cm^2/V-s//For Ge
+mu_n=3800;//cm^2/V-s//For Si
+VT=0.026;///eV//at room temperature
+ni=2.5*10^13;//cm^-3s
+//rho=1/(NA*e*mu)
+NA=1/(rho_p*e*mu_p);//cm^-3
+ND=1/(rho_n*e*mu_n);//cm^-3
+V0=VT*log(NA*ND/ni^2);//eV
+disp(V0,"(a) Height of potential barrier(eV)");
+//For Si diode
+mu_p=500;//cm^2/V-s//For Ge
+mu_n=1300;//cm^2/V-s//For Si
+VT=0.026;///eV//at room temperature
+ni=1.5*10^10;//cm^-3s
+//rho=1/(NA*e*mu)
+NA=1/(rho_p*e*mu_p);//cm^-3
+ND=1/(rho_n*e*mu_n);//cm^-3
+V0=VT*log(NA*ND/ni^2);//eV
+disp(V0,"(b) Height of potential barrier(eV)");
+///Answer in the texbook is not accurate.
diff --git a/2672/CH5/EX5.10/Ex5_10.sce b/2672/CH5/EX5.10/Ex5_10.sce new file mode 100755 index 000000000..49c1aaf67 --- /dev/null +++ b/2672/CH5/EX5.10/Ex5_10.sce @@ -0,0 +1,21 @@ +//Example 5_10
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+sigma_p=3;//(ohm-cm)^-1
+sigma_n=0.1;//(ohm-cm)^-1
+Ln=0.15;//cm
+Lp=0.15;//cm
+e=1.6*10^-19;//C/electron
+mu_p=1800;//cm^2/V-s//For Ge
+mu_n=3800;//cm^2/V-s//For Si
+VT=0.026;///eV//at T=27 degree C
+A=1.5;//mm^2
+A=A*10^-6;//m^2
+b=mu_n/mu_p;//unitless
+ni=2.5*10^15;//m^-3
+sigma_i=(mu_n+mu_p)*ni*e;//(ohm-m)^-1
+I0=A*VT*b*sigma_i^2/(1+b)^2*(1/Lp/sigma_p+1/Ln/sigma_n)*10^6;//micro A
+disp(I0,"Reverse saturation point of current(micro A)");
diff --git a/2672/CH5/EX5.12/Ex5_12.sce b/2672/CH5/EX5.12/Ex5_12.sce new file mode 100755 index 000000000..19f107f20 --- /dev/null +++ b/2672/CH5/EX5.12/Ex5_12.sce @@ -0,0 +1,21 @@ +//Example 5_12
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+A=5;//mm^2
+A=A*10^-2;//cm^2
+Ln=0.01;//cm
+Lp=0.01;//cm
+sigma_p=0.01;//(ohm-cm)^-1
+sigma_n=0.01;//(ohm-cm)^-1
+mu_p=500;//cm^2/V-s//For Ge
+mu_n=1300;//cm^2/V-s//For Si
+e=1.6*10^-19;//C/electron
+VT=0.026;///eV//at T=27 degree C
+b=mu_n/mu_p;//unitless
+ni=1.5*10^10;//m^-3
+sigma_i=(mu_n+mu_p)*ni*e;//(ohm-m)^-1
+I0=A*VT*b*sigma_i^2/(1+b)^2*(1/Lp/sigma_p+1/Ln/sigma_n)*10^12;//pA
+disp(I0,"Reverse saturation current(pA)");
diff --git a/2672/CH5/EX5.13/Ex5_13.sce b/2672/CH5/EX5.13/Ex5_13.sce new file mode 100755 index 000000000..ff89e60bb --- /dev/null +++ b/2672/CH5/EX5.13/Ex5_13.sce @@ -0,0 +1,30 @@ +//Example 5_13
+clc;
+clear;
+close;
+format('e',9);
+//given data :
+Ln=0.1;//cm
+Lp=0.1;//cm
+e=1.6*10^-19;//C/electron
+//For Si
+ni=1.5*10^10;//m^-3
+sigma_p=0.01;//(ohm-cm)^-1
+sigma_n=0.01;//(ohm-cm)^-1
+mu_n=1300;//cm^2/V-s//For Si
+mu_p=500;//cm^2/V-s//For Ge
+b=mu_n/mu_p;//unitless
+sigma_i=(mu_n+mu_p)*ni*e;//(ohm-m)^-1
+YSi=b*sigma_i^2/(1+b)^2*(1/Lp/sigma_p+1/Ln/sigma_n);//(ohm-cm^2)^-1
+//For Ge
+ni=2.5*10^13;//m^-3
+sigma_p=1;//(ohm-cm)^-1
+sigma_n=1;//(ohm-cm)^-1
+mu_n=3800;//cm^2/V-s//For Si
+mu_p=1800;//cm^2/V-s//For Ge
+b=mu_n/mu_p;//unitless
+sigma_i=(mu_n+mu_p)*ni*e;//(ohm-m)^-1
+YGe=b*sigma_i^2/(1+b)^2*(1/Lp/sigma_p+1/Ln/sigma_n);//(ohm-cm^2)^-1
+ratio=YGe/YSi;
+disp(ratio,"Ratio of reverse saturation current in Ge to that in Si");
+//Answer given in the book is not accurate.
diff --git a/2672/CH5/EX5.14/Ex5_14.sce b/2672/CH5/EX5.14/Ex5_14.sce new file mode 100755 index 000000000..f4d0bd0b2 --- /dev/null +++ b/2672/CH5/EX5.14/Ex5_14.sce @@ -0,0 +1,11 @@ +//Example 5_14
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+I0=9*10^-7;//A
+VF=0.1;//V
+I=I0*(exp(40*VF)-1)*10^6;//micro A
+disp(I,"Current flowing(micro A)");
+//Answer given in the book is not accurate.
diff --git a/2672/CH5/EX5.15/Ex5_15.sce b/2672/CH5/EX5.15/Ex5_15.sce new file mode 100755 index 000000000..2f24e5e3d --- /dev/null +++ b/2672/CH5/EX5.15/Ex5_15.sce @@ -0,0 +1,17 @@ +//Example 5_15
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+e=1.6*10^-19;//C/electron
+J0=500;//mA/m^2
+J0=J0/1000;//A/m^2
+T=350;//K
+Eta=1;//For Ge
+k=1.38*10^-23;//Boltzman constant
+J=10^5;//Am^-2
+//J=J0*(exp(e*V/Eta/kT-1)
+V=(1+log(J/J0))/e*Eta*k*T;//V
+disp(V,"Voltage to be applied at junction(V)");
+//Answer given in the book is not accurate.
diff --git a/2672/CH5/EX5.16/Ex5_16.sce b/2672/CH5/EX5.16/Ex5_16.sce new file mode 100755 index 000000000..83636c289 --- /dev/null +++ b/2672/CH5/EX5.16/Ex5_16.sce @@ -0,0 +1,25 @@ +//Example 5_16
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+e=1.6*10^-19;//C/electron
+kB=1.38*10^-23;//Boltzman constant
+Is=0.15;//pA
+Is=Is*10^-12;//A
+V=0.55;//V(Forward Biased)
+Eta=1;//Assumed
+//At t=20 degee C
+t=20;//degree C
+T=t+273;//K
+VT=kB*T/e;//V
+I=Is*(exp(V/Eta/VT)-1)*1000;//mA
+//At t=100 degee C
+t=100;//degree C
+T=t+273;//K
+VT=kB*T/e;//V
+//Is increased by factor 2^8
+Is=Is*2^8;//A
+I=Is*(exp(V/Eta/VT)-1);//A
+disp(I,"Current in the diode(A)");
diff --git a/2672/CH5/EX5.17/Ex5_17.sce b/2672/CH5/EX5.17/Ex5_17.sce new file mode 100755 index 000000000..6ff3e6d23 --- /dev/null +++ b/2672/CH5/EX5.17/Ex5_17.sce @@ -0,0 +1,36 @@ +//Example 5_17
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+e=1.6*10^-19;//C/electron
+kB=1.38*10^-23;//Boltzman constant
+Eta=2;//For Si diode
+I01=2;//micro A
+I02=4;//micro A
+Vz1=100;//V
+Vz2=100;//V
+VT=0.026;//V//Thermal temperature
+disp("When V=90V : ");
+V=90;//V
+//V<Vz1 & Vz2; Breakdown will not occur
+I1=I01/2;//micro A(For D1)
+disp(I1,"For D1, Current is (micro A)");
+I2=-I01/2;//micro A
+disp(I2,"For D2, Current is (micro A)");
+V2=Eta*VT*log(1-I01/I02);//V
+V1=V+V2;//V
+disp(V1,"Voltage V1(V) : ");
+format('v',5);
+V2=V2*1000;//mV
+disp(V2,"Voltage V2(mV) : ");
+disp("When V=110V : ");
+V=110;//V
+//V>Vz1 //D1 breakdown & D2 reverse biased
+I=I01;//micro A
+disp(I,"Current in the circuit is (micro A)");
+V1=-Vz1;///V
+V2=-(V-Vz2);//V
+disp(V1,"Voltage V1(V) : ");
+disp(V2,"Voltage V1(V) : ");
diff --git a/2672/CH5/EX5.18/Ex5_18.sce b/2672/CH5/EX5.18/Ex5_18.sce new file mode 100755 index 000000000..125b5f256 --- /dev/null +++ b/2672/CH5/EX5.18/Ex5_18.sce @@ -0,0 +1,28 @@ +//Example 5_18
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+e=1.6*10^-19;//C/electron
+VT=0.026;//V//Thermal Voltage
+IBYI0=-90/100;//ratio
+//Part (a)
+//I=I0*(exp(V/VT)-1)
+V=log(IBYI0+1)*VT;//V
+disp(V,"(a) Required Voltage is (V)");
+//Part (b)
+format('v',5);
+V=0.05;//V(Forward bias)
+ratio=(exp(V/VT)-1)/(exp(-V/VT)-1);//ratio
+disp(ratio,"(b) Current ratio");
+//Part (c)
+format('v',6);
+I0=15;//micro A
+V=[0.1 0.2 0.3]*1000;//mV
+VT=VT*1000;//mV
+I1=I0*(exp(V(1)/VT)-1)/1000;//mA
+I2=I0*(exp(V(2)/VT)-1)/1000;//mA
+I3=I0*(exp(V(3)/VT)-1)/10^6;//A
+disp("(c) Current for 0.1 V is "+string(I1)+" mA, for 0.2 V is "+string(I2)+" mA & for 0.3 V is "+string(I3)+" A.");
+//Answer given in the book is not accurate.
diff --git a/2672/CH5/EX5.19/Ex5_19.sce b/2672/CH5/EX5.19/Ex5_19.sce new file mode 100755 index 000000000..9453fc187 --- /dev/null +++ b/2672/CH5/EX5.19/Ex5_19.sce @@ -0,0 +1,20 @@ +//Example 5_19
+clc;
+clear;
+close;
+format('v',4);
+//given data :
+//Part (a)
+t1=25;//degree C
+t2=70;//degree C
+I0t2BYI0t1=2^((t2-t1)/10+1);//anticipated factor
+disp(I0t2BYI0t1,"(a) Anticipated factor");
+disp("I0(70 degree C) = "+string(I0t2BYI0t1)+"*I0(25 degree C)");
+//Part (b)
+format('v',6)
+t1=25;//degree C
+t2=150;//degree C
+I0t2BYI0t1=2^((t2-t1)/10);//anticipated factor
+disp(I0t2BYI0t1,"(b) Anticipated factor");
+disp("I0(150 degree C) = "+string(I0t2BYI0t1)+"*I0(25 degree C)");
+//Answer in the textbook is not accurate.
diff --git a/2672/CH5/EX5.2/Ex5_2.sce b/2672/CH5/EX5.2/Ex5_2.sce new file mode 100755 index 000000000..30973afc2 --- /dev/null +++ b/2672/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,19 @@ +//Example 5_2
+clc;
+clear;
+close;
+format('e',9);
+//given data :
+ND=10^16;//cm^-3
+A=4*10^-4;//cm^2
+NA=5*10^18;//cm^-3
+T=300;//K
+epsilon0=8.85*10^-14;//vaccum permittivity
+epsilonr=11.8;//relative permittivity
+e=1.6*10^-19;//C/electron
+ni=1.5*10^10;//cm^-3
+kBT=0.0259;//eV//at room temperture
+V0=kBT*log(NA*ND/ni^2);//V
+W=sqrt(2*epsilonr*epsilon0*V0/e*(1/NA+1/ND));//cm
+disp(W,"Width of depletion zone(cm)");
+///Answer in the texbook is not accurate.Calculation mistake in W.
diff --git a/2672/CH5/EX5.20/Ex5_20.sce b/2672/CH5/EX5.20/Ex5_20.sce new file mode 100755 index 000000000..225c93264 --- /dev/null +++ b/2672/CH5/EX5.20/Ex5_20.sce @@ -0,0 +1,14 @@ +//Example 5_20
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+I=5;//micro A
+V=10;//V
+//1/I0*dI0/dT=0.15 & 1/I*dI0/dT=0.07
+I0=I/(0.15/0.07);//micro A
+//I=I0+IR
+IR=I-I0;//micro A
+R=V/IR;//Mohm
+disp(R,"Leakage Resistance(Mohm)");
diff --git a/2672/CH5/EX5.21/Ex5_21.sce b/2672/CH5/EX5.21/Ex5_21.sce new file mode 100755 index 000000000..70af8af82 --- /dev/null +++ b/2672/CH5/EX5.21/Ex5_21.sce @@ -0,0 +1,16 @@ +//Example 5_21
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+Rt=0.15;//mW/degree C(Thermal resistance)
+t1=25;//degree C
+I0_t1=5;//micro A(at 25 degree C)
+delt=10;//degree C
+t2=t1+delt;//degree C
+Pout=Rt*(t2-t1);//mW
+//reverse current doubles at evry 10 degree C
+I0_t2=2*I0_t1;//micro A
+V=Pout/(I0_t2/1000);//V
+disp(V,"Maximum reverse bias voltage(V)");
diff --git a/2672/CH5/EX5.22/Ex5_22.sce b/2672/CH5/EX5.22/Ex5_22.sce new file mode 100755 index 000000000..71c2a6a10 --- /dev/null +++ b/2672/CH5/EX5.22/Ex5_22.sce @@ -0,0 +1,23 @@ +//Example 5_22
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V=0.4;//V(Forward voltage)
+t1=25;//degree C
+t=150;//degree C
+T=t+273;//K
+T1=t1+273;//K
+VT=T/11600;//V
+//I0T=I01*2^((T-T1)/10)
+I0TBYI0T1=2^((T-T1)/10);//ratio of current
+Eta=2;//for Si
+I2ByI0T=(exp(V/Eta/VT)-1);//ratio of current
+//At 25 degree C
+VT1=T1/11600;//V
+I1ByI0T1=(exp(V/Eta/VT1)-1);//A///at 25 degree C
+I2ByI1=I2ByI0T/I1ByI0T1*I0TBYI0T1;///ratio of I2 & I1
+disp(I2ByI1,"Current multiplying factor is ");
+//Note : Solution is complete in this code.
+//In the textbook, extra lines are given for which data is not given.
diff --git a/2672/CH5/EX5.24/Ex5_24.sce b/2672/CH5/EX5.24/Ex5_24.sce new file mode 100755 index 000000000..b2baa7fbf --- /dev/null +++ b/2672/CH5/EX5.24/Ex5_24.sce @@ -0,0 +1,13 @@ +//Example 5_24
+clc;
+clear;
+close;
+format('e',10);
+//given data :
+I=1;///mA
+CD=1.5;//micro F
+Eta=2;//for Si
+Dp=13;//for Si
+VT=0.026;//V(Thermal voltage)
+Lp=sqrt(CD/10^6*Dp*Eta*VT/(I*10^-3));//m
+disp(Lp,"Diffusion Length(m)");
diff --git a/2672/CH5/EX5.25/Ex5_25.sce b/2672/CH5/EX5.25/Ex5_25.sce new file mode 100755 index 000000000..660ccd79f --- /dev/null +++ b/2672/CH5/EX5.25/Ex5_25.sce @@ -0,0 +1,17 @@ +//Example 5_25
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+I0=20;///micro A
+VF=0.2;//V
+t=27;//degree C
+T=t+273;//K
+VT=T/11600;//V(Thermal voltage)
+Eta=1;//for Ge
+I=I0*10^-6*[exp(VF/Eta/VT)-1]*1000;//mA
+rdc=VT/(I0*10^-6)*exp(VF/Eta/VT)/10^6;//Mohm
+disp(rdc,"Static Resistance(Mohm) : ");
+//Note : Answer & Solution in the textbook is wrong as they calculated rdc for the values given in next example.
+//I0 taken 80micro A instead 20 micro A & VT taken for 125 degree C instead 25 degree C.
diff --git a/2672/CH5/EX5.26/Ex5_26.sce b/2672/CH5/EX5.26/Ex5_26.sce new file mode 100755 index 000000000..0aef1363f --- /dev/null +++ b/2672/CH5/EX5.26/Ex5_26.sce @@ -0,0 +1,20 @@ +//Example 5_26
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+I0=80;///micro A
+t=125;//degree C
+T=t+273;//K
+Eta=1;//for Ge
+VF=0.2;//V
+VT=T/11600;//V(Volt equivalent of temperature)
+///Part(a) In forward direction
+Rac=VT/(I0*10^-6)*exp(-VF/Eta/VT);//ohm
+disp(Rac,"(a) Dynamic Resistance in forward diection(ohm) : ");
+///Part(b) In reverse direction
+format('v',8);
+Rac=VT/(I0*10^-6)*exp(VF/Eta/VT)/10^6;//Mohm
+disp(Rac,"(b) Dynamic Resistance in reverse diection(Mohm) : ");
+//Answer in the textbook is not accurate.
diff --git a/2672/CH5/EX5.27/Ex5_27.sce b/2672/CH5/EX5.27/Ex5_27.sce new file mode 100755 index 000000000..eee651a4d --- /dev/null +++ b/2672/CH5/EX5.27/Ex5_27.sce @@ -0,0 +1,14 @@ +//Example 5_27
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+I0=1.5;///micro A
+T=300;//K
+VF=150;//mV
+kB=8.62*10^-5;//Boltzman Constant
+VT=T/11600;//V(Volt equivalent of temperature)
+rac=1/(I0*10^-6/kB/T*exp(VF/1000/VT));
+disp(rac,"Ac resistance(ohm)")
+//Answer and unit in the textbok is wrong.
diff --git a/2672/CH5/EX5.28/Ex5_28.sce b/2672/CH5/EX5.28/Ex5_28.sce new file mode 100755 index 000000000..c7e1b9583 --- /dev/null +++ b/2672/CH5/EX5.28/Ex5_28.sce @@ -0,0 +1,14 @@ +//Example 5_28
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+Pmax=2.5;//W
+Vf=900;//mV
+If_max=Pmax/(Vf/1000);//A
+disp(If_max,"(a) Maximum allowable forward current(A) : ");
+Rf=Pmax/If_max^2;//ohm
+format('v',7);
+disp(Rf,"(b) Forward Diode Resistance(ohm)")
+//Answer in the textbok is wrong.
diff --git a/2672/CH5/EX5.29/Ex5_29.sce b/2672/CH5/EX5.29/Ex5_29.sce new file mode 100755 index 000000000..21c849e27 --- /dev/null +++ b/2672/CH5/EX5.29/Ex5_29.sce @@ -0,0 +1,27 @@ +//Example 5_29
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+//for Ge diode
+rho_p=2;//ohm-cm(p-side resistivity)
+rho_n=1;//ohm-cm(n-side resistivity)
+e=1.6*10^-19;//C/electron
+mu_p=1800;//m^2/V-s
+mu_n=3800;//m^2/V-s
+VT=0.026;//V(Thermal Voltage)
+ni=2.5*10^13;//per cm^3(intrinsic concentration)
+NA=1/(rho_p*e*mu_p);//per cm^3
+ND=1/(rho_n*e*mu_n);//per cm^3
+V0=VT*log(ND*NA/ni^2);//eV
+disp(V0,"(a) Height of potential barrier(eV) : ");
+//for Si diode
+format('v',6);
+mu_p=500;//m^2/V-s
+mu_n=1300;//m^2/V-s
+ni=1.5*10^10;//per cm^3(intrinsic concentration)
+NA=1/(rho_p*e*mu_p);//per cm^3
+ND=1/(rho_n*e*mu_n);//per cm^3
+V0=VT*log(ND*NA/ni^2);//eV
+disp(V0,"(b) Height of potential barrier(eV) : ");
diff --git a/2672/CH5/EX5.3/Ex5_3.sce b/2672/CH5/EX5.3/Ex5_3.sce new file mode 100755 index 000000000..834381f1a --- /dev/null +++ b/2672/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,18 @@ +//Example 5_3
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+ND=1.2*10^21;//cm^-3
+NA=10^22;//cm^-3
+T=(273+30);//K
+kB=1.38*10^-23;//Boltzman constant
+e=1.6*10^-19;//C/electron
+VT=kB*T/e*1000;//mV//Thermal Voltage
+disp(VT,"Thermal Voltage(mV)")
+format('v',6);
+ni=1.5*10^16;//cm^-3
+V0=VT/1000*log(NA*ND/ni^2);//V
+disp(V0,"Barrier Voltage(V)");
+///Answer in the texbook is not accurate.
diff --git a/2672/CH5/EX5.30/Ex5_30.sce b/2672/CH5/EX5.30/Ex5_30.sce new file mode 100755 index 000000000..96781ea05 --- /dev/null +++ b/2672/CH5/EX5.30/Ex5_30.sce @@ -0,0 +1,20 @@ +//Example 5_30
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+t=125;//degree C
+T=t+273;//K
+Eta=1;//for Ge
+VF=0.2;//V
+VT=T/11600;//V(Volt equivalent of temperature)
+I0=35;//micro A
+//Part(a) Forward Direction
+r=VT/(I0*10^-6)/exp(VF/VT);//ohm
+disp(r,"(a) Dynamic Resistance in forward direcion(ohm) : ");
+//Part(b) Reverse Direction
+r=VT/(I0*10^-6)/exp(-VF/VT);//ohm
+r=r/10^6;//Mohm
+disp(r,"(b) Dynamic Resistance in reverse direcion(Mohm) : ");
+///Answer in the textbook is not accurate.
diff --git a/2672/CH5/EX5.31/Ex5_31.sce b/2672/CH5/EX5.31/Ex5_31.sce new file mode 100755 index 000000000..845d7a214 --- /dev/null +++ b/2672/CH5/EX5.31/Ex5_31.sce @@ -0,0 +1,16 @@ +//Example 5_31
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+Vz=10;//V
+Rs=1;//kohm
+RL=10;//kohm
+IL=5;//mA(Assumed)
+Vi=25:40;//V
+RLmin=Rs;//kohm
+Iz=(max(Vi)-Vz)/RLmin-IL;//mA
+disp(Iz,"(a) Maximum value of zener current(mA) : ");
+Iz_min=(min(Vi)-Vz)/Rs-IL;//mA
+disp(Iz_min,"(b) Minimum value of zener current(mA) : ");
diff --git a/2672/CH5/EX5.32/Ex5_32.sce b/2672/CH5/EX5.32/Ex5_32.sce new file mode 100755 index 000000000..26aa1ea1f --- /dev/null +++ b/2672/CH5/EX5.32/Ex5_32.sce @@ -0,0 +1,24 @@ +//Example 5_32
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+Vz=5;//V
+Pmax=250;//mW
+Vs=15;//V(Supply voltage)
+PL=50;//W(Load)
+Imax=Pmax/Vz;//mA(Maximum permissible current)
+//Minimum current to maintain constant voltage
+Imin=Imax-Imax*10/100;//mA
+Rmin=Vs/Imax;//kohm
+Rmax=Vs/Imin;//kohm
+disp("For maintainng constant voltage, Range of R is "+string(Rmin)+" kohm to "+string(Rmax)+" kohm.");
+//Diode loaded with 50W load
+Imax=PL/Vz;//mA(Maximum permissible current)
+//Minimum current to maintain constant voltage
+Imin=Imax-Imax*10/100;//mA
+Rmin=Vs/Imax;//kohm
+Rmax=Vs/Imin;//kohm
+disp("New range of R is "+string(Rmin)+" kohm to "+string(Rmax)+" kohm.");
+//Solution is not complete in the textbook.
diff --git a/2672/CH5/EX5.33/Ex5_33.sce b/2672/CH5/EX5.33/Ex5_33.sce new file mode 100755 index 000000000..6945ce635 --- /dev/null +++ b/2672/CH5/EX5.33/Ex5_33.sce @@ -0,0 +1,14 @@ +//Example 5_33
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+ND=2*10^15;//cm^-3
+Ep=1.5*10^5;//V/cm
+epsilon=8.854*10^-14;//Permittivity
+e=1.6*10^-19;//C/electron
+//Width of depletion region
+W=Ep*11.9*epsilon/e/ND;
+VBR=W*Ep/2;//V
+disp(VBR,"Breakdown Voltage(V) : ");
diff --git a/2672/CH5/EX5.35/Ex5_35.sce b/2672/CH5/EX5.35/Ex5_35.sce new file mode 100755 index 000000000..aa1b9cebe --- /dev/null +++ b/2672/CH5/EX5.35/Ex5_35.sce @@ -0,0 +1,28 @@ +//Example 5_35
+clc;
+clear;
+close;
+format('v',4);
+//given data :
+Ez=2*10^7;///V/m
+//Vz=epsilon*Ez^2/(2*e*NA)
+//e*NA=sigp/mu_p; as sigp=NA*e*mu_p
+epsilon=16/(36*%pi*10^9);//F/m
+mu_p=1800;//cm^2/V-s
+sigp=poly(0,'sigp');//Notation : sigp=sigma_p
+Vz=epsilon*Ez^2/2*mu_p*10^-6/sigp;//V
+disp(Vz,"(a) Breakdown Voltage calculated and proved as ");
+format('v',6);
+sigma_i=1/45;//(ohm-cm)^-1
+sigma_p=sigma_i;//(ohm-cm)^-1//as p-material is intrinsic
+Vz=51/sigma_p;//V
+disp(Vz,"(b) Vz(V) : ");
+sigma_p=1/3.9;//(ohm-cm)^-1
+Vz=51/sigma_p;//V
+disp(Vz,"(c) Vz(V) : ");
+//Part (d)
+Vz=1.5;///V
+sigma_p=51/Vz;//V
+disp(sigma_p,"(d) Resistivity(ohm-cm)^-1 : ");
+//Note : Part(b) answer wrong in the book & part(d) not complete.
+//Note : sigp is used instead sigma_p as poly support only less than 5 character.
diff --git a/2672/CH5/EX5.36/Ex5_36.sce b/2672/CH5/EX5.36/Ex5_36.sce new file mode 100755 index 000000000..506956e46 --- /dev/null +++ b/2672/CH5/EX5.36/Ex5_36.sce @@ -0,0 +1,25 @@ +//Example 5_36
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+Eta=1;//for Ge
+T=300;//K
+VT=0.026;//V(Thermal Voltage)
+VF=5;///V
+//I=I0;///given
+IByI0=1;//ratio
+//Using I=I0*(exp(V/VT)-1)
+V=log(IByI0+1)*VT;//V
+V2=VF-V;//V(Voltage across 2nd diode)
+disp(V2,"(a) Voltage across each junction(V) : ");
+//Part (b)
+format('v',6);
+Vz=4.9;//V
+Vrb=Vz;//V(Across reverse biased diode)
+V2=VF-Vrb;//V
+I0=6;//micro A
+I=I0*(exp(V2/VT)-1);//micro A
+disp(I,"(b) Current in the circuit(micro A) : ");
+//Note : Answer in the textbook is not accurate.
diff --git a/2672/CH5/EX5.37/Ex5_37.sce b/2672/CH5/EX5.37/Ex5_37.sce new file mode 100755 index 000000000..9233db7f2 --- /dev/null +++ b/2672/CH5/EX5.37/Ex5_37.sce @@ -0,0 +1,14 @@ +//Example 5_37
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+I1=0.5;//mA
+V1=340;//mV
+I2=15;//mA
+V2=465;//mV
+kBTBye=25;//mV(It is kB*T/e)
+//I=Is*(exp(V/Eta/kBTBye)-1)
+Eta=(V2/kBTBye-V1/kBTBye)/log(I2/I1);//neglecting 1 as exp(V/Eta/kBTBye)>>1
+disp(Eta,"Ideality Factor(Eta) : ");
diff --git a/2672/CH5/EX5.38/Ex5_38.sce b/2672/CH5/EX5.38/Ex5_38.sce new file mode 100755 index 000000000..d98452d64 --- /dev/null +++ b/2672/CH5/EX5.38/Ex5_38.sce @@ -0,0 +1,13 @@ +//Example 5_38
+clc;
+clear;
+close;
+format('v',7);
+//given data :
+Vd=12;//V
+TC1=-1.7;//mV/degree C(Temperatre Coefficient of Si diode)
+//For series combination to have TC=0
+TC2=-TC1;//mV/degree C(Temperatre Coefficient of Avalanche diode)
+//In percentage
+TC2=TC2*10^-3/Vd*100;//%/degree C
+disp(TC2,"Required temperature coefficient(%/degree C) : ");
diff --git a/2672/CH5/EX5.39/Ex5_39.sce b/2672/CH5/EX5.39/Ex5_39.sce new file mode 100755 index 000000000..99c58bb60 --- /dev/null +++ b/2672/CH5/EX5.39/Ex5_39.sce @@ -0,0 +1,27 @@ +//Example 5_39
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+//For IL=0;//A
+V0=60;//V
+V=200;//V(Supply Voltage)
+ID=5:40;//mA
+R=(V-V0)/max(ID);//kohm(R is >= this value)
+//For IL=ILmax;//A
+IT=max(ID);//mA
+ID=min(ID)///mA(ID<=this value)
+Imax=IT-ID;///mA
+disp(Imax,"(a) Imax(mA) : ");
+//Part (b)
+IL=25;//mA
+ID=5:40;//mA
+//Taking minimum current for good regulation
+IT=min(ID)+IL;///mA
+Vmax1=IT*R+V0;//V
+//Taking maximum current for good regulation
+IT=max(ID)+IL;///mA
+Vmax2=IT*R+V0;//V
+disp("(b) Without loss of regulation, V may vary from "+string(Vmax1)+" V to "+string(Vmax2)+" V.");
+
diff --git a/2672/CH5/EX5.4/Ex5_4.sce b/2672/CH5/EX5.4/Ex5_4.sce new file mode 100755 index 000000000..33f86216e --- /dev/null +++ b/2672/CH5/EX5.4/Ex5_4.sce @@ -0,0 +1,19 @@ +//Example 5_4
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+t1=25;//degree C
+t2=70;//degree C
+VB1=0.7;//V
+delV=-0.002*(t2-t1);//V
+VB2=VB1+delV;//V//barrier potential
+disp(VB2,"(a) Barrier potential at 70 degree C is (V)");
+//Part (b)
+t1=25;//degree C
+t2=0;//degree C
+VB1=0.7;//V
+delV=-0.002*(t2-t1);//V
+VB2=VB1+delV;//V//barrier potential
+disp(VB2,"(b) Barrier potential at 0 degree C is (V)");
diff --git a/2672/CH5/EX5.5/Ex5_5.sce b/2672/CH5/EX5.5/Ex5_5.sce new file mode 100755 index 000000000..d2e531011 --- /dev/null +++ b/2672/CH5/EX5.5/Ex5_5.sce @@ -0,0 +1,23 @@ +//Example 5_5
+clc;
+clear;
+close;
+format('v',6);
+//Part(a) Derivation
+//Part(b)
+//given data :
+mu_p=500;//cm^2/V-s
+q=1.6*10^-19;//C/electron
+rho=3;//ohm-cm
+V0=0.4;//V//Barrier Height
+Vd=4.5;//V//Reverse Voltage
+D=40;//mils
+D=D*10^-3;//inch
+D=D*2.54;//cm/in
+A=%pi/4*D^2;//cm^2
+NA=1/rho/mu_p/q;//cm^-3
+W=sqrt((V0+Vd)/(14.13*10^10));//m^2
+Vj=V0+Vd;//V
+CT=2.9*10^-4*sqrt(NA/Vj)*A;///pF
+disp(CT,"CT(pF) : ");
+//Answer given in the textbook is not accurate.
diff --git a/2672/CH5/EX5.6/Ex5_6.sce b/2672/CH5/EX5.6/Ex5_6.sce new file mode 100755 index 000000000..dec2c063f --- /dev/null +++ b/2672/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,15 @@ +//Example 5_6
+clc;
+clear;
+close;
+format('v',5);
+//given data :
+V=5;//V
+CT=20;//pF
+lambda=CT*sqrt(V);//pm
+//increased V=V+1.5;//V
+V=V+1.5;//V
+CTnew=lambda/sqrt(V);//pF
+dCT=CT-CTnew;//pF
+disp(dCT,"Decrese in capacitance(pF)");
+//Answer given in the textbook is not accurate.
diff --git a/2672/CH5/EX5.7/Ex5_7.sce b/2672/CH5/EX5.7/Ex5_7.sce new file mode 100755 index 000000000..588a66c97 --- /dev/null +++ b/2672/CH5/EX5.7/Ex5_7.sce @@ -0,0 +1,12 @@ +//Example 5_7
+clc;
+clear;
+close;
+format('v',6);
+//given data :
+A=1.5*1.5;//mm^2
+A=A/100;//cm^2
+W=2*10^-4;//cm(Space charge thikness)
+epsilon=16/(36*%pi*10^11);//F/cm(For Ge)
+CT=epsilon*A/W*10^12;//pF
+disp(CT,"Barrier capacitance(pF)");
diff --git a/2672/CH5/EX5.8/Ex5_8.sce b/2672/CH5/EX5.8/Ex5_8.sce new file mode 100755 index 000000000..0ac5985c1 --- /dev/null +++ b/2672/CH5/EX5.8/Ex5_8.sce @@ -0,0 +1,38 @@ +//Example 5_8
+clc;
+clear;
+close;
+format('v',4);
+//given data :
+e=1.6*10^-19;//C/electron
+NA=2.5*10^20;//atoms/m^3
+epsilon=16/(36*%pi*10^9);//F/m(For Ge)
+Vd=0.2;//V//Barrier height
+//Part(a)
+V0=10;//V(reverse bias)
+W=sqrt((V0+Vd)*2*epsilon/e/NA)*10^6;//micro m
+disp(W,"(a) Width of depletion layer(micro m)");
+format('v',5);
+//Part(b)
+V0=0.1;//V(reverse bias)
+W=sqrt((V0+Vd)*2*epsilon/e/NA)*10^6;//micro m
+disp(W,"(b) Width of depletion layer(micro m)");
+//Part(c)
+V0=0.1;//V(forward bias)
+W=sqrt((Vd-V0)*2*epsilon/e/NA)*10^6;//micro m
+disp(W,"(c) Width of depletion layer(micro m)");
+//Part(d)
+A=1;//mm^2//Cross section area
+A=A/10^6;//m^2
+format('v',6);
+//For (a)
+V0=10;//V(reverse bias)
+W=sqrt((V0+Vd)*2*epsilon/e/NA)*10^6;//micro m
+CT=epsilon*A/(W*10^-6)*10^12;//pF
+disp(CT,"(d)(a) Space Charge capacitance(pF) ");
+//For (b)
+V0=0.1;//V(reverse bias)
+W=sqrt((V0+Vd)*2*epsilon/e/NA)*10^6;//micro m
+CT=epsilon*A/(W*10^-6)*10^12;//pF
+disp(CT,"(d)(b) Space Charge capacitance(pF) ");
+//Answer given in the textbook is not accurate.
|