From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 2672/CH5/EX5.1/Ex5_1.sce | 30 ++++++++++++++++++++++++++++++ 2672/CH5/EX5.10/Ex5_10.sce | 21 +++++++++++++++++++++ 2672/CH5/EX5.12/Ex5_12.sce | 21 +++++++++++++++++++++ 2672/CH5/EX5.13/Ex5_13.sce | 30 ++++++++++++++++++++++++++++++ 2672/CH5/EX5.14/Ex5_14.sce | 11 +++++++++++ 2672/CH5/EX5.15/Ex5_15.sce | 17 +++++++++++++++++ 2672/CH5/EX5.16/Ex5_16.sce | 25 +++++++++++++++++++++++++ 2672/CH5/EX5.17/Ex5_17.sce | 36 ++++++++++++++++++++++++++++++++++++ 2672/CH5/EX5.18/Ex5_18.sce | 28 ++++++++++++++++++++++++++++ 2672/CH5/EX5.19/Ex5_19.sce | 20 ++++++++++++++++++++ 2672/CH5/EX5.2/Ex5_2.sce | 19 +++++++++++++++++++ 2672/CH5/EX5.20/Ex5_20.sce | 14 ++++++++++++++ 2672/CH5/EX5.21/Ex5_21.sce | 16 ++++++++++++++++ 2672/CH5/EX5.22/Ex5_22.sce | 23 +++++++++++++++++++++++ 2672/CH5/EX5.24/Ex5_24.sce | 13 +++++++++++++ 2672/CH5/EX5.25/Ex5_25.sce | 17 +++++++++++++++++ 2672/CH5/EX5.26/Ex5_26.sce | 20 ++++++++++++++++++++ 2672/CH5/EX5.27/Ex5_27.sce | 14 ++++++++++++++ 2672/CH5/EX5.28/Ex5_28.sce | 14 ++++++++++++++ 2672/CH5/EX5.29/Ex5_29.sce | 27 +++++++++++++++++++++++++++ 2672/CH5/EX5.3/Ex5_3.sce | 18 ++++++++++++++++++ 2672/CH5/EX5.30/Ex5_30.sce | 20 ++++++++++++++++++++ 2672/CH5/EX5.31/Ex5_31.sce | 16 ++++++++++++++++ 2672/CH5/EX5.32/Ex5_32.sce | 24 ++++++++++++++++++++++++ 2672/CH5/EX5.33/Ex5_33.sce | 14 ++++++++++++++ 2672/CH5/EX5.35/Ex5_35.sce | 28 ++++++++++++++++++++++++++++ 2672/CH5/EX5.36/Ex5_36.sce | 25 +++++++++++++++++++++++++ 2672/CH5/EX5.37/Ex5_37.sce | 14 ++++++++++++++ 2672/CH5/EX5.38/Ex5_38.sce | 13 +++++++++++++ 2672/CH5/EX5.39/Ex5_39.sce | 27 +++++++++++++++++++++++++++ 2672/CH5/EX5.4/Ex5_4.sce | 19 +++++++++++++++++++ 2672/CH5/EX5.5/Ex5_5.sce | 23 +++++++++++++++++++++++ 2672/CH5/EX5.6/Ex5_6.sce | 15 +++++++++++++++ 2672/CH5/EX5.7/Ex5_7.sce | 12 ++++++++++++ 2672/CH5/EX5.8/Ex5_8.sce | 38 ++++++++++++++++++++++++++++++++++++++ 35 files changed, 722 insertions(+) create mode 100755 2672/CH5/EX5.1/Ex5_1.sce create mode 100755 2672/CH5/EX5.10/Ex5_10.sce create mode 100755 2672/CH5/EX5.12/Ex5_12.sce create mode 100755 2672/CH5/EX5.13/Ex5_13.sce create mode 100755 2672/CH5/EX5.14/Ex5_14.sce create mode 100755 2672/CH5/EX5.15/Ex5_15.sce create mode 100755 2672/CH5/EX5.16/Ex5_16.sce create mode 100755 2672/CH5/EX5.17/Ex5_17.sce create mode 100755 2672/CH5/EX5.18/Ex5_18.sce create mode 100755 2672/CH5/EX5.19/Ex5_19.sce create mode 100755 2672/CH5/EX5.2/Ex5_2.sce create mode 100755 2672/CH5/EX5.20/Ex5_20.sce create mode 100755 2672/CH5/EX5.21/Ex5_21.sce create mode 100755 2672/CH5/EX5.22/Ex5_22.sce create mode 100755 2672/CH5/EX5.24/Ex5_24.sce create mode 100755 2672/CH5/EX5.25/Ex5_25.sce create mode 100755 2672/CH5/EX5.26/Ex5_26.sce create mode 100755 2672/CH5/EX5.27/Ex5_27.sce create mode 100755 2672/CH5/EX5.28/Ex5_28.sce create mode 100755 2672/CH5/EX5.29/Ex5_29.sce create mode 100755 2672/CH5/EX5.3/Ex5_3.sce create mode 100755 2672/CH5/EX5.30/Ex5_30.sce create mode 100755 2672/CH5/EX5.31/Ex5_31.sce create mode 100755 2672/CH5/EX5.32/Ex5_32.sce create mode 100755 2672/CH5/EX5.33/Ex5_33.sce create mode 100755 2672/CH5/EX5.35/Ex5_35.sce create mode 100755 2672/CH5/EX5.36/Ex5_36.sce create mode 100755 2672/CH5/EX5.37/Ex5_37.sce create mode 100755 2672/CH5/EX5.38/Ex5_38.sce create mode 100755 2672/CH5/EX5.39/Ex5_39.sce create mode 100755 2672/CH5/EX5.4/Ex5_4.sce create mode 100755 2672/CH5/EX5.5/Ex5_5.sce create mode 100755 2672/CH5/EX5.6/Ex5_6.sce create mode 100755 2672/CH5/EX5.7/Ex5_7.sce create mode 100755 2672/CH5/EX5.8/Ex5_8.sce (limited to '2672/CH5') diff --git a/2672/CH5/EX5.1/Ex5_1.sce b/2672/CH5/EX5.1/Ex5_1.sce new file mode 100755 index 000000000..0721113bc --- /dev/null +++ b/2672/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,30 @@ +//Example 5_1 +clc; +clear; +close; +format('v',6); +//given data : +rho_p=1.5;//ohm-cm +rho_n=1;//ohm-cm +e=1.6*10^-19;//C/electron +//For Ge diode +mu_p=1800;//cm^2/V-s//For Ge +mu_n=3800;//cm^2/V-s//For Si +VT=0.026;///eV//at room temperature +ni=2.5*10^13;//cm^-3s +//rho=1/(NA*e*mu) +NA=1/(rho_p*e*mu_p);//cm^-3 +ND=1/(rho_n*e*mu_n);//cm^-3 +V0=VT*log(NA*ND/ni^2);//eV +disp(V0,"(a) Height of potential barrier(eV)"); +//For Si diode +mu_p=500;//cm^2/V-s//For Ge +mu_n=1300;//cm^2/V-s//For Si +VT=0.026;///eV//at room temperature +ni=1.5*10^10;//cm^-3s +//rho=1/(NA*e*mu) +NA=1/(rho_p*e*mu_p);//cm^-3 +ND=1/(rho_n*e*mu_n);//cm^-3 +V0=VT*log(NA*ND/ni^2);//eV +disp(V0,"(b) Height of potential barrier(eV)"); +///Answer in the texbook is not accurate. diff --git a/2672/CH5/EX5.10/Ex5_10.sce b/2672/CH5/EX5.10/Ex5_10.sce new file mode 100755 index 000000000..49c1aaf67 --- /dev/null +++ b/2672/CH5/EX5.10/Ex5_10.sce @@ -0,0 +1,21 @@ +//Example 5_10 +clc; +clear; +close; +format('v',6); +//given data : +sigma_p=3;//(ohm-cm)^-1 +sigma_n=0.1;//(ohm-cm)^-1 +Ln=0.15;//cm +Lp=0.15;//cm +e=1.6*10^-19;//C/electron +mu_p=1800;//cm^2/V-s//For Ge +mu_n=3800;//cm^2/V-s//For Si +VT=0.026;///eV//at T=27 degree C +A=1.5;//mm^2 +A=A*10^-6;//m^2 +b=mu_n/mu_p;//unitless +ni=2.5*10^15;//m^-3 +sigma_i=(mu_n+mu_p)*ni*e;//(ohm-m)^-1 +I0=A*VT*b*sigma_i^2/(1+b)^2*(1/Lp/sigma_p+1/Ln/sigma_n)*10^6;//micro A +disp(I0,"Reverse saturation point of current(micro A)"); diff --git a/2672/CH5/EX5.12/Ex5_12.sce b/2672/CH5/EX5.12/Ex5_12.sce new file mode 100755 index 000000000..19f107f20 --- /dev/null +++ b/2672/CH5/EX5.12/Ex5_12.sce @@ -0,0 +1,21 @@ +//Example 5_12 +clc; +clear; +close; +format('v',6); +//given data : +A=5;//mm^2 +A=A*10^-2;//cm^2 +Ln=0.01;//cm +Lp=0.01;//cm +sigma_p=0.01;//(ohm-cm)^-1 +sigma_n=0.01;//(ohm-cm)^-1 +mu_p=500;//cm^2/V-s//For Ge +mu_n=1300;//cm^2/V-s//For Si +e=1.6*10^-19;//C/electron +VT=0.026;///eV//at T=27 degree C +b=mu_n/mu_p;//unitless +ni=1.5*10^10;//m^-3 +sigma_i=(mu_n+mu_p)*ni*e;//(ohm-m)^-1 +I0=A*VT*b*sigma_i^2/(1+b)^2*(1/Lp/sigma_p+1/Ln/sigma_n)*10^12;//pA +disp(I0,"Reverse saturation current(pA)"); diff --git a/2672/CH5/EX5.13/Ex5_13.sce b/2672/CH5/EX5.13/Ex5_13.sce new file mode 100755 index 000000000..ff89e60bb --- /dev/null +++ b/2672/CH5/EX5.13/Ex5_13.sce @@ -0,0 +1,30 @@ +//Example 5_13 +clc; +clear; +close; +format('e',9); +//given data : +Ln=0.1;//cm +Lp=0.1;//cm +e=1.6*10^-19;//C/electron +//For Si +ni=1.5*10^10;//m^-3 +sigma_p=0.01;//(ohm-cm)^-1 +sigma_n=0.01;//(ohm-cm)^-1 +mu_n=1300;//cm^2/V-s//For Si +mu_p=500;//cm^2/V-s//For Ge +b=mu_n/mu_p;//unitless +sigma_i=(mu_n+mu_p)*ni*e;//(ohm-m)^-1 +YSi=b*sigma_i^2/(1+b)^2*(1/Lp/sigma_p+1/Ln/sigma_n);//(ohm-cm^2)^-1 +//For Ge +ni=2.5*10^13;//m^-3 +sigma_p=1;//(ohm-cm)^-1 +sigma_n=1;//(ohm-cm)^-1 +mu_n=3800;//cm^2/V-s//For Si +mu_p=1800;//cm^2/V-s//For Ge +b=mu_n/mu_p;//unitless +sigma_i=(mu_n+mu_p)*ni*e;//(ohm-m)^-1 +YGe=b*sigma_i^2/(1+b)^2*(1/Lp/sigma_p+1/Ln/sigma_n);//(ohm-cm^2)^-1 +ratio=YGe/YSi; +disp(ratio,"Ratio of reverse saturation current in Ge to that in Si"); +//Answer given in the book is not accurate. diff --git a/2672/CH5/EX5.14/Ex5_14.sce b/2672/CH5/EX5.14/Ex5_14.sce new file mode 100755 index 000000000..f4d0bd0b2 --- /dev/null +++ b/2672/CH5/EX5.14/Ex5_14.sce @@ -0,0 +1,11 @@ +//Example 5_14 +clc; +clear; +close; +format('v',6); +//given data : +I0=9*10^-7;//A +VF=0.1;//V +I=I0*(exp(40*VF)-1)*10^6;//micro A +disp(I,"Current flowing(micro A)"); +//Answer given in the book is not accurate. diff --git a/2672/CH5/EX5.15/Ex5_15.sce b/2672/CH5/EX5.15/Ex5_15.sce new file mode 100755 index 000000000..2f24e5e3d --- /dev/null +++ b/2672/CH5/EX5.15/Ex5_15.sce @@ -0,0 +1,17 @@ +//Example 5_15 +clc; +clear; +close; +format('v',7); +//given data : +e=1.6*10^-19;//C/electron +J0=500;//mA/m^2 +J0=J0/1000;//A/m^2 +T=350;//K +Eta=1;//For Ge +k=1.38*10^-23;//Boltzman constant +J=10^5;//Am^-2 +//J=J0*(exp(e*V/Eta/kT-1) +V=(1+log(J/J0))/e*Eta*k*T;//V +disp(V,"Voltage to be applied at junction(V)"); +//Answer given in the book is not accurate. diff --git a/2672/CH5/EX5.16/Ex5_16.sce b/2672/CH5/EX5.16/Ex5_16.sce new file mode 100755 index 000000000..83636c289 --- /dev/null +++ b/2672/CH5/EX5.16/Ex5_16.sce @@ -0,0 +1,25 @@ +//Example 5_16 +clc; +clear; +close; +format('v',7); +//given data : +e=1.6*10^-19;//C/electron +kB=1.38*10^-23;//Boltzman constant +Is=0.15;//pA +Is=Is*10^-12;//A +V=0.55;//V(Forward Biased) +Eta=1;//Assumed +//At t=20 degee C +t=20;//degree C +T=t+273;//K +VT=kB*T/e;//V +I=Is*(exp(V/Eta/VT)-1)*1000;//mA +//At t=100 degee C +t=100;//degree C +T=t+273;//K +VT=kB*T/e;//V +//Is increased by factor 2^8 +Is=Is*2^8;//A +I=Is*(exp(V/Eta/VT)-1);//A +disp(I,"Current in the diode(A)"); diff --git a/2672/CH5/EX5.17/Ex5_17.sce b/2672/CH5/EX5.17/Ex5_17.sce new file mode 100755 index 000000000..6ff3e6d23 --- /dev/null +++ b/2672/CH5/EX5.17/Ex5_17.sce @@ -0,0 +1,36 @@ +//Example 5_17 +clc; +clear; +close; +format('v',7); +//given data : +e=1.6*10^-19;//C/electron +kB=1.38*10^-23;//Boltzman constant +Eta=2;//For Si diode +I01=2;//micro A +I02=4;//micro A +Vz1=100;//V +Vz2=100;//V +VT=0.026;//V//Thermal temperature +disp("When V=90V : "); +V=90;//V +//VVz1 //D1 breakdown & D2 reverse biased +I=I01;//micro A +disp(I,"Current in the circuit is (micro A)"); +V1=-Vz1;///V +V2=-(V-Vz2);//V +disp(V1,"Voltage V1(V) : "); +disp(V2,"Voltage V1(V) : "); diff --git a/2672/CH5/EX5.18/Ex5_18.sce b/2672/CH5/EX5.18/Ex5_18.sce new file mode 100755 index 000000000..125b5f256 --- /dev/null +++ b/2672/CH5/EX5.18/Ex5_18.sce @@ -0,0 +1,28 @@ +//Example 5_18 +clc; +clear; +close; +format('v',6); +//given data : +e=1.6*10^-19;//C/electron +VT=0.026;//V//Thermal Voltage +IBYI0=-90/100;//ratio +//Part (a) +//I=I0*(exp(V/VT)-1) +V=log(IBYI0+1)*VT;//V +disp(V,"(a) Required Voltage is (V)"); +//Part (b) +format('v',5); +V=0.05;//V(Forward bias) +ratio=(exp(V/VT)-1)/(exp(-V/VT)-1);//ratio +disp(ratio,"(b) Current ratio"); +//Part (c) +format('v',6); +I0=15;//micro A +V=[0.1 0.2 0.3]*1000;//mV +VT=VT*1000;//mV +I1=I0*(exp(V(1)/VT)-1)/1000;//mA +I2=I0*(exp(V(2)/VT)-1)/1000;//mA +I3=I0*(exp(V(3)/VT)-1)/10^6;//A +disp("(c) Current for 0.1 V is "+string(I1)+" mA, for 0.2 V is "+string(I2)+" mA & for 0.3 V is "+string(I3)+" A."); +//Answer given in the book is not accurate. diff --git a/2672/CH5/EX5.19/Ex5_19.sce b/2672/CH5/EX5.19/Ex5_19.sce new file mode 100755 index 000000000..9453fc187 --- /dev/null +++ b/2672/CH5/EX5.19/Ex5_19.sce @@ -0,0 +1,20 @@ +//Example 5_19 +clc; +clear; +close; +format('v',4); +//given data : +//Part (a) +t1=25;//degree C +t2=70;//degree C +I0t2BYI0t1=2^((t2-t1)/10+1);//anticipated factor +disp(I0t2BYI0t1,"(a) Anticipated factor"); +disp("I0(70 degree C) = "+string(I0t2BYI0t1)+"*I0(25 degree C)"); +//Part (b) +format('v',6) +t1=25;//degree C +t2=150;//degree C +I0t2BYI0t1=2^((t2-t1)/10);//anticipated factor +disp(I0t2BYI0t1,"(b) Anticipated factor"); +disp("I0(150 degree C) = "+string(I0t2BYI0t1)+"*I0(25 degree C)"); +//Answer in the textbook is not accurate. diff --git a/2672/CH5/EX5.2/Ex5_2.sce b/2672/CH5/EX5.2/Ex5_2.sce new file mode 100755 index 000000000..30973afc2 --- /dev/null +++ b/2672/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,19 @@ +//Example 5_2 +clc; +clear; +close; +format('e',9); +//given data : +ND=10^16;//cm^-3 +A=4*10^-4;//cm^2 +NA=5*10^18;//cm^-3 +T=300;//K +epsilon0=8.85*10^-14;//vaccum permittivity +epsilonr=11.8;//relative permittivity +e=1.6*10^-19;//C/electron +ni=1.5*10^10;//cm^-3 +kBT=0.0259;//eV//at room temperture +V0=kBT*log(NA*ND/ni^2);//V +W=sqrt(2*epsilonr*epsilon0*V0/e*(1/NA+1/ND));//cm +disp(W,"Width of depletion zone(cm)"); +///Answer in the texbook is not accurate.Calculation mistake in W. diff --git a/2672/CH5/EX5.20/Ex5_20.sce b/2672/CH5/EX5.20/Ex5_20.sce new file mode 100755 index 000000000..225c93264 --- /dev/null +++ b/2672/CH5/EX5.20/Ex5_20.sce @@ -0,0 +1,14 @@ +//Example 5_20 +clc; +clear; +close; +format('v',5); +//given data : +I=5;//micro A +V=10;//V +//1/I0*dI0/dT=0.15 & 1/I*dI0/dT=0.07 +I0=I/(0.15/0.07);//micro A +//I=I0+IR +IR=I-I0;//micro A +R=V/IR;//Mohm +disp(R,"Leakage Resistance(Mohm)"); diff --git a/2672/CH5/EX5.21/Ex5_21.sce b/2672/CH5/EX5.21/Ex5_21.sce new file mode 100755 index 000000000..70af8af82 --- /dev/null +++ b/2672/CH5/EX5.21/Ex5_21.sce @@ -0,0 +1,16 @@ +//Example 5_21 +clc; +clear; +close; +format('v',5); +//given data : +Rt=0.15;//mW/degree C(Thermal resistance) +t1=25;//degree C +I0_t1=5;//micro A(at 25 degree C) +delt=10;//degree C +t2=t1+delt;//degree C +Pout=Rt*(t2-t1);//mW +//reverse current doubles at evry 10 degree C +I0_t2=2*I0_t1;//micro A +V=Pout/(I0_t2/1000);//V +disp(V,"Maximum reverse bias voltage(V)"); diff --git a/2672/CH5/EX5.22/Ex5_22.sce b/2672/CH5/EX5.22/Ex5_22.sce new file mode 100755 index 000000000..71c2a6a10 --- /dev/null +++ b/2672/CH5/EX5.22/Ex5_22.sce @@ -0,0 +1,23 @@ +//Example 5_22 +clc; +clear; +close; +format('v',5); +//given data : +V=0.4;//V(Forward voltage) +t1=25;//degree C +t=150;//degree C +T=t+273;//K +T1=t1+273;//K +VT=T/11600;//V +//I0T=I01*2^((T-T1)/10) +I0TBYI0T1=2^((T-T1)/10);//ratio of current +Eta=2;//for Si +I2ByI0T=(exp(V/Eta/VT)-1);//ratio of current +//At 25 degree C +VT1=T1/11600;//V +I1ByI0T1=(exp(V/Eta/VT1)-1);//A///at 25 degree C +I2ByI1=I2ByI0T/I1ByI0T1*I0TBYI0T1;///ratio of I2 & I1 +disp(I2ByI1,"Current multiplying factor is "); +//Note : Solution is complete in this code. +//In the textbook, extra lines are given for which data is not given. diff --git a/2672/CH5/EX5.24/Ex5_24.sce b/2672/CH5/EX5.24/Ex5_24.sce new file mode 100755 index 000000000..b2baa7fbf --- /dev/null +++ b/2672/CH5/EX5.24/Ex5_24.sce @@ -0,0 +1,13 @@ +//Example 5_24 +clc; +clear; +close; +format('e',10); +//given data : +I=1;///mA +CD=1.5;//micro F +Eta=2;//for Si +Dp=13;//for Si +VT=0.026;//V(Thermal voltage) +Lp=sqrt(CD/10^6*Dp*Eta*VT/(I*10^-3));//m +disp(Lp,"Diffusion Length(m)"); diff --git a/2672/CH5/EX5.25/Ex5_25.sce b/2672/CH5/EX5.25/Ex5_25.sce new file mode 100755 index 000000000..660ccd79f --- /dev/null +++ b/2672/CH5/EX5.25/Ex5_25.sce @@ -0,0 +1,17 @@ +//Example 5_25 +clc; +clear; +close; +format('v',7); +//given data : +I0=20;///micro A +VF=0.2;//V +t=27;//degree C +T=t+273;//K +VT=T/11600;//V(Thermal voltage) +Eta=1;//for Ge +I=I0*10^-6*[exp(VF/Eta/VT)-1]*1000;//mA +rdc=VT/(I0*10^-6)*exp(VF/Eta/VT)/10^6;//Mohm +disp(rdc,"Static Resistance(Mohm) : "); +//Note : Answer & Solution in the textbook is wrong as they calculated rdc for the values given in next example. +//I0 taken 80micro A instead 20 micro A & VT taken for 125 degree C instead 25 degree C. diff --git a/2672/CH5/EX5.26/Ex5_26.sce b/2672/CH5/EX5.26/Ex5_26.sce new file mode 100755 index 000000000..0aef1363f --- /dev/null +++ b/2672/CH5/EX5.26/Ex5_26.sce @@ -0,0 +1,20 @@ +//Example 5_26 +clc; +clear; +close; +format('v',6); +//given data : +I0=80;///micro A +t=125;//degree C +T=t+273;//K +Eta=1;//for Ge +VF=0.2;//V +VT=T/11600;//V(Volt equivalent of temperature) +///Part(a) In forward direction +Rac=VT/(I0*10^-6)*exp(-VF/Eta/VT);//ohm +disp(Rac,"(a) Dynamic Resistance in forward diection(ohm) : "); +///Part(b) In reverse direction +format('v',8); +Rac=VT/(I0*10^-6)*exp(VF/Eta/VT)/10^6;//Mohm +disp(Rac,"(b) Dynamic Resistance in reverse diection(Mohm) : "); +//Answer in the textbook is not accurate. diff --git a/2672/CH5/EX5.27/Ex5_27.sce b/2672/CH5/EX5.27/Ex5_27.sce new file mode 100755 index 000000000..eee651a4d --- /dev/null +++ b/2672/CH5/EX5.27/Ex5_27.sce @@ -0,0 +1,14 @@ +//Example 5_27 +clc; +clear; +close; +format('v',7); +//given data : +I0=1.5;///micro A +T=300;//K +VF=150;//mV +kB=8.62*10^-5;//Boltzman Constant +VT=T/11600;//V(Volt equivalent of temperature) +rac=1/(I0*10^-6/kB/T*exp(VF/1000/VT)); +disp(rac,"Ac resistance(ohm)") +//Answer and unit in the textbok is wrong. diff --git a/2672/CH5/EX5.28/Ex5_28.sce b/2672/CH5/EX5.28/Ex5_28.sce new file mode 100755 index 000000000..c7e1b9583 --- /dev/null +++ b/2672/CH5/EX5.28/Ex5_28.sce @@ -0,0 +1,14 @@ +//Example 5_28 +clc; +clear; +close; +format('v',5); +//given data : +Pmax=2.5;//W +Vf=900;//mV +If_max=Pmax/(Vf/1000);//A +disp(If_max,"(a) Maximum allowable forward current(A) : "); +Rf=Pmax/If_max^2;//ohm +format('v',7); +disp(Rf,"(b) Forward Diode Resistance(ohm)") +//Answer in the textbok is wrong. diff --git a/2672/CH5/EX5.29/Ex5_29.sce b/2672/CH5/EX5.29/Ex5_29.sce new file mode 100755 index 000000000..21c849e27 --- /dev/null +++ b/2672/CH5/EX5.29/Ex5_29.sce @@ -0,0 +1,27 @@ +//Example 5_29 +clc; +clear; +close; +format('v',5); +//given data : +//for Ge diode +rho_p=2;//ohm-cm(p-side resistivity) +rho_n=1;//ohm-cm(n-side resistivity) +e=1.6*10^-19;//C/electron +mu_p=1800;//m^2/V-s +mu_n=3800;//m^2/V-s +VT=0.026;//V(Thermal Voltage) +ni=2.5*10^13;//per cm^3(intrinsic concentration) +NA=1/(rho_p*e*mu_p);//per cm^3 +ND=1/(rho_n*e*mu_n);//per cm^3 +V0=VT*log(ND*NA/ni^2);//eV +disp(V0,"(a) Height of potential barrier(eV) : "); +//for Si diode +format('v',6); +mu_p=500;//m^2/V-s +mu_n=1300;//m^2/V-s +ni=1.5*10^10;//per cm^3(intrinsic concentration) +NA=1/(rho_p*e*mu_p);//per cm^3 +ND=1/(rho_n*e*mu_n);//per cm^3 +V0=VT*log(ND*NA/ni^2);//eV +disp(V0,"(b) Height of potential barrier(eV) : "); diff --git a/2672/CH5/EX5.3/Ex5_3.sce b/2672/CH5/EX5.3/Ex5_3.sce new file mode 100755 index 000000000..834381f1a --- /dev/null +++ b/2672/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,18 @@ +//Example 5_3 +clc; +clear; +close; +format('v',5); +//given data : +ND=1.2*10^21;//cm^-3 +NA=10^22;//cm^-3 +T=(273+30);//K +kB=1.38*10^-23;//Boltzman constant +e=1.6*10^-19;//C/electron +VT=kB*T/e*1000;//mV//Thermal Voltage +disp(VT,"Thermal Voltage(mV)") +format('v',6); +ni=1.5*10^16;//cm^-3 +V0=VT/1000*log(NA*ND/ni^2);//V +disp(V0,"Barrier Voltage(V)"); +///Answer in the texbook is not accurate. diff --git a/2672/CH5/EX5.30/Ex5_30.sce b/2672/CH5/EX5.30/Ex5_30.sce new file mode 100755 index 000000000..96781ea05 --- /dev/null +++ b/2672/CH5/EX5.30/Ex5_30.sce @@ -0,0 +1,20 @@ +//Example 5_30 +clc; +clear; +close; +format('v',6); +//given data : +t=125;//degree C +T=t+273;//K +Eta=1;//for Ge +VF=0.2;//V +VT=T/11600;//V(Volt equivalent of temperature) +I0=35;//micro A +//Part(a) Forward Direction +r=VT/(I0*10^-6)/exp(VF/VT);//ohm +disp(r,"(a) Dynamic Resistance in forward direcion(ohm) : "); +//Part(b) Reverse Direction +r=VT/(I0*10^-6)/exp(-VF/VT);//ohm +r=r/10^6;//Mohm +disp(r,"(b) Dynamic Resistance in reverse direcion(Mohm) : "); +///Answer in the textbook is not accurate. diff --git a/2672/CH5/EX5.31/Ex5_31.sce b/2672/CH5/EX5.31/Ex5_31.sce new file mode 100755 index 000000000..845d7a214 --- /dev/null +++ b/2672/CH5/EX5.31/Ex5_31.sce @@ -0,0 +1,16 @@ +//Example 5_31 +clc; +clear; +close; +format('v',6); +//given data : +Vz=10;//V +Rs=1;//kohm +RL=10;//kohm +IL=5;//mA(Assumed) +Vi=25:40;//V +RLmin=Rs;//kohm +Iz=(max(Vi)-Vz)/RLmin-IL;//mA +disp(Iz,"(a) Maximum value of zener current(mA) : "); +Iz_min=(min(Vi)-Vz)/Rs-IL;//mA +disp(Iz_min,"(b) Minimum value of zener current(mA) : "); diff --git a/2672/CH5/EX5.32/Ex5_32.sce b/2672/CH5/EX5.32/Ex5_32.sce new file mode 100755 index 000000000..26aa1ea1f --- /dev/null +++ b/2672/CH5/EX5.32/Ex5_32.sce @@ -0,0 +1,24 @@ +//Example 5_32 +clc; +clear; +close; +format('v',6); +//given data : +Vz=5;//V +Pmax=250;//mW +Vs=15;//V(Supply voltage) +PL=50;//W(Load) +Imax=Pmax/Vz;//mA(Maximum permissible current) +//Minimum current to maintain constant voltage +Imin=Imax-Imax*10/100;//mA +Rmin=Vs/Imax;//kohm +Rmax=Vs/Imin;//kohm +disp("For maintainng constant voltage, Range of R is "+string(Rmin)+" kohm to "+string(Rmax)+" kohm."); +//Diode loaded with 50W load +Imax=PL/Vz;//mA(Maximum permissible current) +//Minimum current to maintain constant voltage +Imin=Imax-Imax*10/100;//mA +Rmin=Vs/Imax;//kohm +Rmax=Vs/Imin;//kohm +disp("New range of R is "+string(Rmin)+" kohm to "+string(Rmax)+" kohm."); +//Solution is not complete in the textbook. diff --git a/2672/CH5/EX5.33/Ex5_33.sce b/2672/CH5/EX5.33/Ex5_33.sce new file mode 100755 index 000000000..6945ce635 --- /dev/null +++ b/2672/CH5/EX5.33/Ex5_33.sce @@ -0,0 +1,14 @@ +//Example 5_33 +clc; +clear; +close; +format('v',6); +//given data : +ND=2*10^15;//cm^-3 +Ep=1.5*10^5;//V/cm +epsilon=8.854*10^-14;//Permittivity +e=1.6*10^-19;//C/electron +//Width of depletion region +W=Ep*11.9*epsilon/e/ND; +VBR=W*Ep/2;//V +disp(VBR,"Breakdown Voltage(V) : "); diff --git a/2672/CH5/EX5.35/Ex5_35.sce b/2672/CH5/EX5.35/Ex5_35.sce new file mode 100755 index 000000000..aa1b9cebe --- /dev/null +++ b/2672/CH5/EX5.35/Ex5_35.sce @@ -0,0 +1,28 @@ +//Example 5_35 +clc; +clear; +close; +format('v',4); +//given data : +Ez=2*10^7;///V/m +//Vz=epsilon*Ez^2/(2*e*NA) +//e*NA=sigp/mu_p; as sigp=NA*e*mu_p +epsilon=16/(36*%pi*10^9);//F/m +mu_p=1800;//cm^2/V-s +sigp=poly(0,'sigp');//Notation : sigp=sigma_p +Vz=epsilon*Ez^2/2*mu_p*10^-6/sigp;//V +disp(Vz,"(a) Breakdown Voltage calculated and proved as "); +format('v',6); +sigma_i=1/45;//(ohm-cm)^-1 +sigma_p=sigma_i;//(ohm-cm)^-1//as p-material is intrinsic +Vz=51/sigma_p;//V +disp(Vz,"(b) Vz(V) : "); +sigma_p=1/3.9;//(ohm-cm)^-1 +Vz=51/sigma_p;//V +disp(Vz,"(c) Vz(V) : "); +//Part (d) +Vz=1.5;///V +sigma_p=51/Vz;//V +disp(sigma_p,"(d) Resistivity(ohm-cm)^-1 : "); +//Note : Part(b) answer wrong in the book & part(d) not complete. +//Note : sigp is used instead sigma_p as poly support only less than 5 character. diff --git a/2672/CH5/EX5.36/Ex5_36.sce b/2672/CH5/EX5.36/Ex5_36.sce new file mode 100755 index 000000000..506956e46 --- /dev/null +++ b/2672/CH5/EX5.36/Ex5_36.sce @@ -0,0 +1,25 @@ +//Example 5_36 +clc; +clear; +close; +format('v',5); +//given data : +Eta=1;//for Ge +T=300;//K +VT=0.026;//V(Thermal Voltage) +VF=5;///V +//I=I0;///given +IByI0=1;//ratio +//Using I=I0*(exp(V/VT)-1) +V=log(IByI0+1)*VT;//V +V2=VF-V;//V(Voltage across 2nd diode) +disp(V2,"(a) Voltage across each junction(V) : "); +//Part (b) +format('v',6); +Vz=4.9;//V +Vrb=Vz;//V(Across reverse biased diode) +V2=VF-Vrb;//V +I0=6;//micro A +I=I0*(exp(V2/VT)-1);//micro A +disp(I,"(b) Current in the circuit(micro A) : "); +//Note : Answer in the textbook is not accurate. diff --git a/2672/CH5/EX5.37/Ex5_37.sce b/2672/CH5/EX5.37/Ex5_37.sce new file mode 100755 index 000000000..9233db7f2 --- /dev/null +++ b/2672/CH5/EX5.37/Ex5_37.sce @@ -0,0 +1,14 @@ +//Example 5_37 +clc; +clear; +close; +format('v',5); +//given data : +I1=0.5;//mA +V1=340;//mV +I2=15;//mA +V2=465;//mV +kBTBye=25;//mV(It is kB*T/e) +//I=Is*(exp(V/Eta/kBTBye)-1) +Eta=(V2/kBTBye-V1/kBTBye)/log(I2/I1);//neglecting 1 as exp(V/Eta/kBTBye)>>1 +disp(Eta,"Ideality Factor(Eta) : "); diff --git a/2672/CH5/EX5.38/Ex5_38.sce b/2672/CH5/EX5.38/Ex5_38.sce new file mode 100755 index 000000000..d98452d64 --- /dev/null +++ b/2672/CH5/EX5.38/Ex5_38.sce @@ -0,0 +1,13 @@ +//Example 5_38 +clc; +clear; +close; +format('v',7); +//given data : +Vd=12;//V +TC1=-1.7;//mV/degree C(Temperatre Coefficient of Si diode) +//For series combination to have TC=0 +TC2=-TC1;//mV/degree C(Temperatre Coefficient of Avalanche diode) +//In percentage +TC2=TC2*10^-3/Vd*100;//%/degree C +disp(TC2,"Required temperature coefficient(%/degree C) : "); diff --git a/2672/CH5/EX5.39/Ex5_39.sce b/2672/CH5/EX5.39/Ex5_39.sce new file mode 100755 index 000000000..99c58bb60 --- /dev/null +++ b/2672/CH5/EX5.39/Ex5_39.sce @@ -0,0 +1,27 @@ +//Example 5_39 +clc; +clear; +close; +format('v',6); +//given data : +//For IL=0;//A +V0=60;//V +V=200;//V(Supply Voltage) +ID=5:40;//mA +R=(V-V0)/max(ID);//kohm(R is >= this value) +//For IL=ILmax;//A +IT=max(ID);//mA +ID=min(ID)///mA(ID<=this value) +Imax=IT-ID;///mA +disp(Imax,"(a) Imax(mA) : "); +//Part (b) +IL=25;//mA +ID=5:40;//mA +//Taking minimum current for good regulation +IT=min(ID)+IL;///mA +Vmax1=IT*R+V0;//V +//Taking maximum current for good regulation +IT=max(ID)+IL;///mA +Vmax2=IT*R+V0;//V +disp("(b) Without loss of regulation, V may vary from "+string(Vmax1)+" V to "+string(Vmax2)+" V."); + diff --git a/2672/CH5/EX5.4/Ex5_4.sce b/2672/CH5/EX5.4/Ex5_4.sce new file mode 100755 index 000000000..33f86216e --- /dev/null +++ b/2672/CH5/EX5.4/Ex5_4.sce @@ -0,0 +1,19 @@ +//Example 5_4 +clc; +clear; +close; +format('v',5); +//given data : +t1=25;//degree C +t2=70;//degree C +VB1=0.7;//V +delV=-0.002*(t2-t1);//V +VB2=VB1+delV;//V//barrier potential +disp(VB2,"(a) Barrier potential at 70 degree C is (V)"); +//Part (b) +t1=25;//degree C +t2=0;//degree C +VB1=0.7;//V +delV=-0.002*(t2-t1);//V +VB2=VB1+delV;//V//barrier potential +disp(VB2,"(b) Barrier potential at 0 degree C is (V)"); diff --git a/2672/CH5/EX5.5/Ex5_5.sce b/2672/CH5/EX5.5/Ex5_5.sce new file mode 100755 index 000000000..d2e531011 --- /dev/null +++ b/2672/CH5/EX5.5/Ex5_5.sce @@ -0,0 +1,23 @@ +//Example 5_5 +clc; +clear; +close; +format('v',6); +//Part(a) Derivation +//Part(b) +//given data : +mu_p=500;//cm^2/V-s +q=1.6*10^-19;//C/electron +rho=3;//ohm-cm +V0=0.4;//V//Barrier Height +Vd=4.5;//V//Reverse Voltage +D=40;//mils +D=D*10^-3;//inch +D=D*2.54;//cm/in +A=%pi/4*D^2;//cm^2 +NA=1/rho/mu_p/q;//cm^-3 +W=sqrt((V0+Vd)/(14.13*10^10));//m^2 +Vj=V0+Vd;//V +CT=2.9*10^-4*sqrt(NA/Vj)*A;///pF +disp(CT,"CT(pF) : "); +//Answer given in the textbook is not accurate. diff --git a/2672/CH5/EX5.6/Ex5_6.sce b/2672/CH5/EX5.6/Ex5_6.sce new file mode 100755 index 000000000..dec2c063f --- /dev/null +++ b/2672/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,15 @@ +//Example 5_6 +clc; +clear; +close; +format('v',5); +//given data : +V=5;//V +CT=20;//pF +lambda=CT*sqrt(V);//pm +//increased V=V+1.5;//V +V=V+1.5;//V +CTnew=lambda/sqrt(V);//pF +dCT=CT-CTnew;//pF +disp(dCT,"Decrese in capacitance(pF)"); +//Answer given in the textbook is not accurate. diff --git a/2672/CH5/EX5.7/Ex5_7.sce b/2672/CH5/EX5.7/Ex5_7.sce new file mode 100755 index 000000000..588a66c97 --- /dev/null +++ b/2672/CH5/EX5.7/Ex5_7.sce @@ -0,0 +1,12 @@ +//Example 5_7 +clc; +clear; +close; +format('v',6); +//given data : +A=1.5*1.5;//mm^2 +A=A/100;//cm^2 +W=2*10^-4;//cm(Space charge thikness) +epsilon=16/(36*%pi*10^11);//F/cm(For Ge) +CT=epsilon*A/W*10^12;//pF +disp(CT,"Barrier capacitance(pF)"); diff --git a/2672/CH5/EX5.8/Ex5_8.sce b/2672/CH5/EX5.8/Ex5_8.sce new file mode 100755 index 000000000..0ac5985c1 --- /dev/null +++ b/2672/CH5/EX5.8/Ex5_8.sce @@ -0,0 +1,38 @@ +//Example 5_8 +clc; +clear; +close; +format('v',4); +//given data : +e=1.6*10^-19;//C/electron +NA=2.5*10^20;//atoms/m^3 +epsilon=16/(36*%pi*10^9);//F/m(For Ge) +Vd=0.2;//V//Barrier height +//Part(a) +V0=10;//V(reverse bias) +W=sqrt((V0+Vd)*2*epsilon/e/NA)*10^6;//micro m +disp(W,"(a) Width of depletion layer(micro m)"); +format('v',5); +//Part(b) +V0=0.1;//V(reverse bias) +W=sqrt((V0+Vd)*2*epsilon/e/NA)*10^6;//micro m +disp(W,"(b) Width of depletion layer(micro m)"); +//Part(c) +V0=0.1;//V(forward bias) +W=sqrt((Vd-V0)*2*epsilon/e/NA)*10^6;//micro m +disp(W,"(c) Width of depletion layer(micro m)"); +//Part(d) +A=1;//mm^2//Cross section area +A=A/10^6;//m^2 +format('v',6); +//For (a) +V0=10;//V(reverse bias) +W=sqrt((V0+Vd)*2*epsilon/e/NA)*10^6;//micro m +CT=epsilon*A/(W*10^-6)*10^12;//pF +disp(CT,"(d)(a) Space Charge capacitance(pF) "); +//For (b) +V0=0.1;//V(reverse bias) +W=sqrt((V0+Vd)*2*epsilon/e/NA)*10^6;//micro m +CT=epsilon*A/(W*10^-6)*10^12;//pF +disp(CT,"(d)(b) Space Charge capacitance(pF) "); +//Answer given in the textbook is not accurate. -- cgit