summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_D_K_Bhattacharya
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_D_K_Bhattacharya')
-rw-r--r--Engineering_Physics_by_D_K_Bhattacharya/1-ultrasonics.ipynb441
-rw-r--r--Engineering_Physics_by_D_K_Bhattacharya/10-Dielectric_materials.ipynb81
-rw-r--r--Engineering_Physics_by_D_K_Bhattacharya/12-Additional_solved_examples.ipynb988
-rw-r--r--Engineering_Physics_by_D_K_Bhattacharya/13-Additional_solved_short_answers.ipynb418
-rw-r--r--Engineering_Physics_by_D_K_Bhattacharya/2-Lasers.ipynb118
-rw-r--r--Engineering_Physics_by_D_K_Bhattacharya/3-Fibre_optics_and_its_applications.ipynb125
-rw-r--r--Engineering_Physics_by_D_K_Bhattacharya/4-Quantum_physics.ipynb292
-rw-r--r--Engineering_Physics_by_D_K_Bhattacharya/5-Crystal_physics.ipynb237
-rw-r--r--Engineering_Physics_by_D_K_Bhattacharya/6-Conducting_materials.ipynb486
-rw-r--r--Engineering_Physics_by_D_K_Bhattacharya/7-Semiconducting_materials.ipynb720
-rw-r--r--Engineering_Physics_by_D_K_Bhattacharya/8-Magnetic_materials.ipynb165
-rw-r--r--Engineering_Physics_by_D_K_Bhattacharya/9-Superconducting_materials.ipynb84
12 files changed, 4155 insertions, 0 deletions
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/1-ultrasonics.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/1-ultrasonics.ipynb
new file mode 100644
index 0000000..52f947f
--- /dev/null
+++ b/Engineering_Physics_by_D_K_Bhattacharya/1-ultrasonics.ipynb
@@ -0,0 +1,441 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: ultrasonics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.10: To_find_depth_of_sea.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 10 , pg 24\n",
+"v=1440 //velocity of ultrasonic waves(in m/s)\n",
+"t=0.83 //time lapsed(in sec)\n",
+"d=(v*t) //distance travelled by sound\n",
+"d1=d/2 //depth of submarine\n",
+"disp (d, ' the velocity of ultrasonic waves ( in m) is ' )\n",
+"disp (d1, ' the depth of submarine ( in m) is ' )\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.11: To_calculate_reverberation_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 11 , pg 24\n",
+"aS=1050//total absorption inside hall(in Sabine)\n",
+"//a=average absorption coefficient , S=area of interior surface\n",
+"V=9000//volume of hall(in m^3)\n",
+"T=(0.165*V)/aS//reverberation time\n",
+"printf('Reverberation time of hall\n')\n",
+"printf('T=%.4f sec',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.12: To_find_area_of_interior_surface.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 12 , pg 25\n",
+"V=13500//volume(in m^3)\n",
+"T=1.2//reverberation time(in sec)\n",
+"a=0.65//average absorption coefficient(in Sabine/m^2)\n",
+"S=(0.165*V)/(a*T)//area of interior surface\n",
+"printf('Area of interior surface\n')\n",
+"printf('S=%.1f m^2',S)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.13: To_find_reverberation_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 13 , pg 25\n",
+"V=15000//volume(in m^3)\n",
+"T1=1.3//initial reverberation time(in sec)\n",
+"aS=(0.165*V)/T1 //total absorption of hall (in Sabine)\n",
+"T2=(0.165*V)/(aS+300)//revrberation time of hall after adding 300 chairs each having absorption of 1 Sabine\n",
+"printf('Reverberation time of hall after adding 300 chairs\n')\n",
+"printf('T2=%.3f sec',T2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14: To_find_depth_of_submarine.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 14 , pg 26\n",
+"v=1440 //velocity of ultrasonic waves(in m/s)\n",
+"t=0.5 //time lapsed(in sec)\n",
+"d=(v*t) //distance travelled by ultrasonic waves\n",
+"d1=d/2 //depth of submarine\n",
+"disp (d, ' the velocity of ultrasonic waves ( in m) is ' )\n",
+"disp (d1, ' the depth of submarine ( in m) is ' )\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.15: To_find_frequency_of_waves.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 15 , pg 26\n",
+"lam=2*0.4*10^-3 //distance between 2 antinodes is lam/2 (in m)\n",
+"n=1.5*10^6 //frequency of crystal(in Hz)\n",
+"v=n*lam //velocity\n",
+"printf('velocity of waves in sea water\n')\n",
+"printf('v=%.1f m/s',v)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.16: To_evaluate_natural_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 16 , pg 26\n",
+"l=40*10^-3//length(in m)\n",
+"E=11.5*10^10//youngs modulus(in N/m^2)\n",
+"d=7250//density(in kg/m^3)\n",
+"p=1//fundamental mode\n",
+"n= p*sqrt(E/d)/(2*l) //natural frequency\n",
+"printf('Fundamental frequency of quartz crystal\n')\n",
+"printf('n=%.2f KHz',n*10^-3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: To_find_depth_of_submerged_submarine.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 1 , pg 20\n",
+"v=1440 //velocity of ultrasonic waves(in m/s)\n",
+"t=0.33 //time lapsed(in sec)\n",
+"d=(v*t) //distance travelled by ultrasonic waves\n",
+"d1=d/2 //depth of submarine\n",
+"disp (d, ' the velocity of ultrasonic waves ( in m) is ' )\n",
+"disp (d1, ' the depth of submarine ( in m) is ' )\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: To_calculate_the_natural_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 2 , pg 21\n",
+"d=7.25*10^3 //density(in kg/m^3)\n",
+"E=115*10^9 //youngs modulus(in N/m^2)\n",
+"l=40*10^-3 //length of rod(in m)\n",
+"n=sqrt(E/d)/(2*l) //natural frequency of rod\n",
+"disp (n*10^-3, 'the natural frequency of rod (in kHz) is ')\n",
+"printf('yes,the rod can be used for producing ultrasonic waves because its frequency lies in the ultrasonic range')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: To_calculate_the_natural_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 3 , pg 21\n",
+"l=10^-3//length(in m)\n",
+"E=7.9*10^10//youngs modulus(in N/m^2)\n",
+"d=2650//density(in kg/m^3)\n",
+"p=1//fundamental mode\n",
+"n= p*sqrt(E/d)/(2*l) //natural frequency\n",
+"printf('Fundamental frequency of quartz crystal\n')\n",
+"printf('n=%.2f Hz',n)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: compute_the_velocity_of_waves.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 4 , pg 22\n",
+"lam=2*0.55*10^-3 //distance between 2 antinodes is lam/2 (in m)\n",
+"n=1.45*10^6 //frequency of crystal(in Hz) (given) they have taken n=1.5 Hz in calculation\n",
+"v=n*lam //velocity\n",
+"printf('velocity of waves in sea water\n')\n",
+"printf('v=%.1f m/s',v)\n",
+"\n",
+"\n",
+"//sum is solved using n=1.5 Hz while the frequency given is n=1.45 Hz "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: To_calculate_the_natural_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 5 , pg 22\n",
+"l=50*10^-3//length of rod(in m)\n",
+"d=7250//density(in kg/m^3)\n",
+"E=11.5*10^10//youngs modulus(in N/m^2)\n",
+"n=sqrt(E/d)/(2*l)//natural frequency\n",
+"printf('Natural frequency of rod\n')\n",
+"printf('n=%.2f KHz',n*10^-3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: To_calculate_the_natural_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 6 , pg 23\n",
+"l=2*10^-3//length(in m)\n",
+"d=2650//density(in kg/m^3)\n",
+"E=7.9*10^10//youngs modulus(in N/m^2)\n",
+"p=1\n",
+"n=(p*sqrt(E/d))/(2*l)//natural frequency\n",
+"printf('frequency of crystal\n')\n",
+"printf('n=%.3f MHz',n*10^-6)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: To_calculate_the_natural_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 7 , pg 23\n",
+"l=3*10^-3//length(in m)\n",
+"d=2500//density(in kg/m^3)\n",
+"E=8*10^10//youngs modulus(in N/m^2)\n",
+"p=1\n",
+"n=(p*sqrt(E/d))/(2*l)//natural frequency\n",
+"printf('frequency of ultrasound\n')\n",
+"printf('n=%.3f KHz',n*10^-3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8: To_calculate_the_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 8 , pg 23\n",
+"l=1.5*10^-3//length(in m)\n",
+"d=2650//density(in kg/m^3)\n",
+"E=7.9*10^10//youngs modulus(in N/m^2)\n",
+"p=1\n",
+"n=(p*sqrt(E/d))/(2*l)//natural frequency\n",
+"printf('frequency of crystal\n')\n",
+"printf('n=%.3f MHz',n*10^-6)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.9: To_find_depth_of_sea.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 9 , pg 24\n",
+"v=1440 //velocity of ultrasonic waves(in m/s)\n",
+"t=0.95 //time lapsed(in sec)\n",
+"d=(v*t) //distance travelled by ultrasonic waves\n",
+"d1=d/2 //depth of sea\n",
+"disp (d1, ' the depth of sea ( in m) is ' )\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/10-Dielectric_materials.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/10-Dielectric_materials.ipynb
new file mode 100644
index 0000000..9159b20
--- /dev/null
+++ b/Engineering_Physics_by_D_K_Bhattacharya/10-Dielectric_materials.ipynb
@@ -0,0 +1,81 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: Dielectric materials"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1: calculate_electronic_polarizability.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 10 , Example10 1 , pg 289\n",
+"Er=1.0000684 //Dielectric constant\n",
+"N=2.7*10^25 //(in atoms/m^3)\n",
+"E0=8.85*10^-12 //permittivity of free space (in F/m)\n",
+"Alpha_e=(E0*(Er-1))/N //electronic polarization\n",
+"printf('Electronic polarization (in F*m^2)\n')\n",
+"disp(Alpha_e)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2: calculate_electronic_polarizability.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 10 , Example10 2 , pg 290\n",
+"Er=1.0024 //Dielectric constant\n",
+"N=2.7*10^25 //(in atoms/m^3)\n",
+"E0=8.85*10^-12 //permittivity of free space (in F/m)\n",
+"Alpha_e=(E0*(Er-1))/N //electronic polarization\n",
+"printf('Electronic polarization (in F*m^2)\n')\n",
+"disp(Alpha_e)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/12-Additional_solved_examples.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/12-Additional_solved_examples.ipynb
new file mode 100644
index 0000000..85af94c
--- /dev/null
+++ b/Engineering_Physics_by_D_K_Bhattacharya/12-Additional_solved_examples.ipynb
@@ -0,0 +1,988 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12: Additional solved examples"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.10: calculate_minimum_and_maximum_number_of_total_internal_reflections_per_metre.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 10 , pg 335\n",
+"n1=1.5//core refractive index\n",
+"n2=1.45//cladding refractive index\n",
+"n0=1//refractive index of air\n",
+"NA=sqrt(n1^2-n2^2)//numerical aperture\n",
+"alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n",
+"a=100*10^-6/2 //radius of core\n",
+"phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)\n",
+"L=a/tan(phi_m) //(in m)\n",
+"printf('Minimum number of reflections per metre=zero\n') //since rays travelling with alpha=0 suffer no internal reflection\n",
+"//for rays travelling with alpha=alpha_m ,1 internal reflection takes place for a transversed distance of 2*L\n",
+"N=1/(2*L) //Maximum number of reflections per metre\n",
+"disp('Maximum number of reflections per metre(in m^-1)=')\n",
+"printf('N=%.0f',N)\n",
+"\n",
+"//Answer varies as L is restricted to 1.86*10^-4 (m) instead of 1.888*10^-4 (m)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.11: calculate_energy_and_momentum_of_photon.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 11 , pg 335\n",
+"c=3*10^8 //speed of light(in m/sec)\n",
+"h=6.625*10^-34//planck's constant(in J s)\n",
+"lam=1.4*10^-10//wavelength(in m)\n",
+"E=(h*c)/(lam*1.6*10^-19) //energy of photon(in eV)\n",
+"p=h/lam //momentum of photon\n",
+"printf('Energy of photo\n')\n",
+"printf('E=%.1f eV\n',E)\n",
+"printf('momentum of photon(in Kg m/sec)\n')\n",
+"disp(p)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.12: calculate_number_of_photons_emitted_per_second.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 12 , pg 336\n",
+"E1=2*10^4 //energy emitted per second(in J)\n",
+"n=1000*10^3 //frequency(in Hz)\n",
+"h=6.625*10^-34 //plancks constant(in J s)\n",
+"E=h*n//energy carried by 1 photon(in J)\n",
+"N=E1/E//number of photons emitted per second\n",
+"printf('number of photons emitted per second\n')\n",
+"disp(N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.13: calculate_de_Broglie_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 13 , pg 336\n",
+"m=0.05//mass(in Kg)\n",
+"v=2000//speed(in m/sec)\n",
+"h=6.625*10^-34//plancks constant(in J s)\n",
+"p=m*v//momentum(in kg m/sec)\n",
+"lam=h/p //wavelength\n",
+"printf('de Broglie wavelength(in m)\n')\n",
+"disp(lam)\n",
+"printf('de Broglie wavelength(in A)\n')\n",
+"disp(lam*10^10)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.14: find_change_in_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 14 , pg 336\n",
+"h=6.625*10^-34//plancksconstant(in J s)\n",
+"c=3*10^8//velocity of x-ray photon(in m/sec)\n",
+"m0=9.11*10^-31//rest mass of electron(in Kg)\n",
+"phi=(85*%pi)/180//angle of scattering (in radian) (converting degree into radian)\n",
+"delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering\n",
+"printf('change in wavelength of x-ray photon(in m)\n')\n",
+"disp(delta_H)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.15: find_miller_indices.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 15 , pg 337\n",
+"//plane has intercepts 2a,2b,3c along the 3 crystal axes\n",
+"//lattice points in 3-d lattice are given by r=p*a+q*b+s*c\n",
+"//as p,q,r are the basic vectors the proportion of intercepts 2:2:3\n",
+"p=2\n",
+"q=2\n",
+"s=3 \n",
+"//therefore reciprocal\n",
+"r1=1/2\n",
+"r2=1/2\n",
+"r3=1/3\n",
+"//taking LCM\n",
+"v=int32([2,2,3])\n",
+"l=double(lcm(v))\n",
+"m1=(l*r1)\n",
+"m2=(l*r2)\n",
+"m3=(l*r3)\n",
+"printf('miler indices=')\n",
+"disp(m3,m2,m1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.16: find_miller_indices.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 16 , pg 337\n",
+"//plane has intercepts 4a,2b,4c along the 3 crystal axes\n",
+"//lattice points in 3-d lattice are given by r=p*a+q*b+s*c\n",
+"//as p,q,r are the basic vectors the proportion of intercepts 2:2:3\n",
+"p=4\n",
+"q=2\n",
+"s=4 \n",
+"//therefore reciprocal\n",
+"r1=1/4\n",
+"r2=1/2\n",
+"r3=1/4\n",
+"//taking LCM\n",
+"v=int32([4,2,4])\n",
+"l=double(lcm(v))\n",
+"m1=(l*r1)\n",
+"m2=(l*r2)\n",
+"m3=(l*r3)\n",
+"printf('miler indices=')\n",
+"disp(m3,m2,m1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.17: find_size_of_unit_cell.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 17 , pg 338\n",
+"d110=1.96//spacing of(1 1 0) planes (in Angstrom)\n",
+"h=1\n",
+"k=1\n",
+"l=0 //(h k l)=(1 1 0)\n",
+"a=d110*sqrt(h^2+k^2+l^2)//size of unit cell\n",
+"printf('size of unit cell=')\n",
+"printf('a=%.2f angstrom',a)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.18: find_volume_of_unit_cell.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 18 , pg 339\n",
+"r=1.575 *10^-10 //radius of atom (in m)\n",
+"a=2*r//lattice constant (for HCP structure) (in m)\n",
+"c=a*sqrt(8/3) //(in m)\n",
+"V=(3*sqrt(3)*a^2*c)/2 //volume of unit cell\n",
+"printf('volume of unit cell(in m^3)\n')\n",
+"disp(V)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.19: calculate_Fermi_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 19 , pg 339\n",
+"Vf=7*10^5 //Fermi velocity (in m/s)\n",
+"m=9.11*10^-31 // mass of electron(in Kg)\n",
+"Ef=(m*Vf^2)/2 //Fermi energy (in J)\n",
+"printf('Fermi energy for the electrons in the metal=')\n",
+"printf('Ef=%.1f eV',(Ef/(1.6*10^-19))) //converting J into eV\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"//Answer is given wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.1: calculate_relative_population.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 1 , pg 330\n",
+"lam=590*10^-9//wavelength(in m)\n",
+"T=270+273 //temperature(in kelvin) (converting celsius into kelvin)\n",
+"k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n",
+"h=6.625*10^-34//plancks constant(in Js)\n",
+"c=3*10^8//speed of light\n",
+"N=exp(-(h*c)/(lam*k*T)) //N=(n2/n1)=relative population of atoms in the 1st excited state and in ground state\n",
+"//n1=number of atoms in ground state\n",
+"//n2=number of atoms in excited state\n",
+"printf('Relative population of Na atoms in the 1st excited state and in ground state\n')\n",
+"disp(N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.20: EX12_20.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 20 , pg 339\n",
+"rho=1.8*10^-8 //resistivity (in ohm*m)\n",
+"Ef=4.8 //Fermi energy (in eV)\n",
+"E=100 //electric field intensity (in V/m)\n",
+"n=6.2*10^28 //concentration of electrons (in atoms/m^3)\n",
+"e=1.6*10^-19 //charge in electron (in C)\n",
+"Me=9.11*10^-31 //mass of electron (in Kg)\n",
+"T=Me/(rho*n*e^2) //relaxation time\n",
+"Un=(e*T)/Me //mobility of electron\n",
+"Vd=(e*T*E)/Me //drift velocity\n",
+"Vf=sqrt((2*Ef*e)/Me) //Fermi velocity\n",
+"lam_m=Vf*T //mean free path\n",
+"\n",
+"printf('Relaxation time of electron (in s)')\n",
+"disp(T)\n",
+"printf('Mobility of electron (in m^2/(V*s))')\n",
+"disp(Un)\n",
+"printf('Drift velocity of electron (in m/s)')\n",
+"disp(Vd)\n",
+"printf('Fermi velocity of electrons (in m/s)')\n",
+"disp(Vf)\n",
+"printf('Mean free path(in m)')\n",
+"disp(lam_m)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.21: evaluate_value_of_F_E.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 21 , pg 341\n",
+"del_E=0.02*1.6*10^-19 // del_E = E-Ef (in J) (converting eV into J)\n",
+"T=220 //temperature (in K)\n",
+"k=1.38*10^-23 //boltzmanns constant (in J/K)\n",
+"F_E=1/(1+exp(del_E/(k*T))) //Fermi Dirac distribution function\n",
+"printf('F_E=%.3f',F_E)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.22: calculate_how_is_Ef_located_relative_to_Ei.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 22 , pg 341\n",
+"ni=1.5*10^10 //intrinsic concentration (in cm^-3)\n",
+"Nd=5*10^15 //donor concentration (in atoms/cm^3)\n",
+"T=300 //temperature (in K)\n",
+"e=1.6*10^-19 //charge of electron (in C)\n",
+"k=1.38*10^-23 //Boltzmann constant (in J/K)\n",
+"n0=Nd //Assuming n0=Nd ( since Nd >> ni)\n",
+"p0=ni^2/n0 //hole concentration\n",
+"E=k*T*log(n0/ni) // E=(Ef-Ei) location of Ef relative to Ei\n",
+"printf('Hole concentration (in cm^-3)')\n",
+"disp(p0)\n",
+"printf('Location of Ef relative to Ei (in eV)')\n",
+"disp(E/e)\n",
+"x = linspace(-5.5,5.5,51);\n",
+"y = 1 ;\n",
+"\n",
+"scf(2);\n",
+"clf(2);\n",
+"plot(x,y+0.1);\n",
+"\n",
+"plot(x,y,'ro-');\n",
+"plot(x,y-0.329,'--');\n",
+"plot(x,y*0,'bs:');\n",
+"xlabel(['x axis';'(independent variable)']);\n",
+"ylabel('Energy level (eV)');\n",
+"title('Band diagram');\n",
+"legend(['Ec';'Ef';'Ei';'Ev']);\n",
+"set(gca(),'data_bounds',matrix([-6,6,-0.1,1.1],2,-1));"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.23: find_magnitude_of_Hall_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 23 , pg 342\n",
+"I=40 //current (in A)\n",
+"B=1.4 //magnetic field (in T)\n",
+"d=2*10^-2 //width of slab (in m)\n",
+"n=8.4*10^28 //concentration of electrons (in m^-3)\n",
+"e=1.6*10^-19 // charge (in C)\n",
+"VH=(B*I)/(n*e*d) //Hall voltage\n",
+"printf('Hall voltage(in V)=')\n",
+"disp(VH)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.24: calculate_Hall_voltage_and_Hall_coefficient.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 24 , pg 342\n",
+"e=1.6*10^-19 //charge in electron (in C)\n",
+"Ix=2*10^-3 //current (in A)\n",
+"d=220*10^-4 //thickness (in cm)\n",
+"Bz=5*10^-5 //magnetic induction (in Wb/cm^2)\n",
+"Un=800 //electron mobility (in cm^2/(V*s))\n",
+"n=9*10^16 //doping concentration (in atoms/cm^3)\n",
+"\n",
+"sigma=n*e*(Un) // electrical conductivity\n",
+"rho=1/sigma //resistivity\n",
+"Rh=-1/(e*n) //Hall coefficient\n",
+"Vh=-(Ix*Bz)/(d*e*n) //Hall voltage\n",
+"printf('Resistivity(in ohm*cm)')\n",
+"disp(rho)\n",
+"printf('Hall coefficient(in cm^3/C)')\n",
+"disp(Rh)\n",
+"printf('Hall voltage (in V)')\n",
+"disp(Vh)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.25: determine_magnitude_and_direction_of_magnetic_moment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 25 , pg 343\n",
+"I=10 // current(in A)\n",
+"A=8*10^-4 //area(in m^2)\n",
+"M=I*A //magnetic moment associated with the loop\n",
+"printf('Magnetic moment associated with the loop(in A m^2)=')\n",
+"disp(M)\n",
+"printf('M is directed away from the observer and is perpendicular to the plane of the loop')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.26: determine_magnitude_and_direction_of_magnetic_moment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 26 , pg 343\n",
+"I=22 // current(in A)\n",
+"A=9*10^-3 //area(in m^2)\n",
+"M=I*A //magnetic moment associated with the loop\n",
+"printf('Magnetic moment associated with the loop(in A m^2)=')\n",
+"disp(M)\n",
+"printf('M is directed towards the observer and is perpendicular to the plane of the loop')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.27: determine_magnetic_moment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 27 , pg 344\n",
+"r=0.62*10^-10 //radius of orbit (in m)\n",
+"e= 1.6*10^-19 //charge on electron (in C)\n",
+"n=10^15 //frequency of revolution of electron (in rps)\n",
+"I=e*n //current (in A)\n",
+"A=%pi *r^2 //area (in m^2)\n",
+"M=I*A //magnetic moment associated with motion of electron \n",
+"printf('Magnetic moment associated with motion of electron (in A m^2)')\n",
+"disp(M)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.28: calculate_permeability.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 28 , pg 344\n",
+"H=2000 //magnetizing field (in A/m)\n",
+"phi=5*10^-5 //magnetic flux (in Wb)\n",
+"A=0.2 *10^-4 //area (in m^2)\n",
+"B=phi/A //magnetic flux density (in Wb/m^2)\n",
+"u=B/H //permeability (in H/m)\n",
+"printf('permeability (in H/m )=')\n",
+"disp(u)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.29: calculate_susceptibility.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 29 , pg 345\n",
+"ur=4000 //relative permeability\n",
+"xm=ur-1 //magnetic susceptibility\n",
+"printf('Magnetic susceptibility=')\n",
+"disp(xm)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.2: determine_relative_population.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 2 , pg 330\n",
+"lam=500*10^-9//wavelength(in m)\n",
+"T=250+273 //temperature(in kelvin) (converting celsius into kelvin)\n",
+"k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n",
+"h=6.625*10^-34//plancks constant(in Js)\n",
+"c=3*10^8//speed of light\n",
+"N=exp(-(h*c)/(lam*k*T)) //N=(n2/n1)=relative population of atoms in the 1st excited state and in ground state\n",
+"//n1=number of atoms in ground state\n",
+"//n2=number of atoms in excited state\n",
+"printf('Relative population of Na atoms in the 1st excited state and in ground state\n')\n",
+"disp(N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.30: determine_critical_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 30 , pg 345\n",
+"H0=6*10^4 //magnetic field intensity at 0K (in A/m)\n",
+"T=4.2 //temperature (in K)\n",
+"Tc=8 //critical temperature (in K)\n",
+"Hc=H0*(1-(T^2/Tc^2)) // critical magnetic field intensity\n",
+"printf('critical magnetic field intensity\n')\n",
+"printf('Hc=%.0f A/m',Hc)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.31: calculate_critical_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 31 , pg 346\n",
+"H0=7*10^4 //magnetic field intensity at 0K (in A/m)\n",
+"T=4.2 //temperature (in K)\n",
+"Tc=8.2 //critical temperature (in K)\n",
+"Hc=H0*(1-(T^2/Tc^2)) // critical magnetic field intensity\n",
+"printf('critical magnetic field intensity\n')\n",
+"printf('Hc=%.0f A/m',Hc)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.32: calculate_isotopic_mass.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 32 , pg 346\n",
+"M1=198.5 //isotopic mass\n",
+"Tc1=4.175 //critical temperature for M1 (in K)\n",
+"Tc2=4.213 //critical temperature for M2 (in K)\n",
+"alpha=0.5\n",
+"\n",
+"//M^alpha * Tc=constant\n",
+"M2=((M1^alpha*Tc1)/Tc2)^(1/alpha)\n",
+"printf('Isotopic mass at critical temperature 4.133K\n')\n",
+"printf('M2=%.3f ',M2)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.33: calculate_isotopic_mass.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 33 , pg 346\n",
+"M1=199 //isotopic mass\n",
+"Tc1=4.18 //critical temperature for M1 (in K)\n",
+"Tc2=4.14 //critical temperature for M2 (in K)\n",
+"alpha=0.5\n",
+"\n",
+"//M^alpha * Tc=constant\n",
+"M2=((M1^alpha*Tc1)/Tc2)^(1/alpha)\n",
+"printf('Isotopic mass at critical temperature 4.133K\n')\n",
+"printf('M2=%.4f ',M2)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.3: calculate_ratio_of_stimulated_emission_to_spontaneous_emission.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 3 , pg 331\n",
+"T=260+273 //temperature(in kelvin) (converting celsius into kelvin)\n",
+"h=6.625*10^-34//plancks constant(in Js)\n",
+"c=3*10^8//speed of light(in m/s)\n",
+"lam=590*10^-9//wavelength(in m)\n",
+"k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n",
+"N=1/(exp((h*c)/(lam*k*T))-1) //N=((n21)'/(n21)) ratio of stimulated emission to spontaneous emission\n",
+"printf('Ratio of stimulated emission to spontaneous emission is')\n",
+"disp(N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.4: calculate_number_of_photons_emitted_per_minute.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 4 , pg 331\n",
+"lam=632.8*10^-9//wavelength(in m)\n",
+"Em=3.16*10^-3*60//energy emitted per minute(in J/min)\n",
+"c=3*10^8//speed of light(in m/s)\n",
+"h=6.625*10^-34//plancks constant(in Js)\n",
+"n=c/lam //frequency of emitted photons(in Hz)\n",
+"E=h*n //energy of each photon(in J)\n",
+"N=Em/E //number of photons emitted per minute\n",
+"printf('Number of photons emitted per minute')\n",
+"disp(N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.5: calculate_number_of_photons_emitted_per_minute.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 5 , pg 332\n",
+"lam=540*10^-9//wavelength(in m)\n",
+"Em=5*10^-3*60//energy emitted per minute(in J/min)\n",
+"c=3*10^8//speed of light(in m/s)\n",
+"h=6.625*10^-34//plancks constant(in Js)\n",
+"n=c/lam //frequency of emitted photons(in Hz)\n",
+"E=h*n //energy of each photon(in J)\n",
+"N=Em/E //number of photons emitted per minute\n",
+"printf('Number of photons emitted per minute')\n",
+"disp(N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.6: find_NA_and_critical_angle_and_alpha_m.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 6 , pg 332\n",
+"n1=1.5//core refractive index\n",
+"n2=1.45//cladding refractive index\n",
+"n0=1//refractive index of air\n",
+"NA=sqrt(n1^2-n2^2)//numerical aperture\n",
+"alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n",
+"phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)\n",
+"phi_c=asin(n2/n1) //critical angle (in radian)\n",
+"printf('NA=%.2f \n',NA)\n",
+"printf('alpha_m=%.2f degree\n',(alpha_m*180)/%pi)\n",
+"printf('phi_m=%.2f degree\n',(phi_m*180)/%pi)\n",
+"printf('phi_c=%.2f degree',(phi_c*180)/%pi)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.7: find_NA_and_critical_angle_and_alpha_m.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 7 , pg 333\n",
+"n1=1.5//core refractive index\n",
+"n2=1.45//cladding refractive index\n",
+"n0=1.1//refractive index of medium\n",
+"NA=sqrt(n1^2-n2^2)//numerical aperture\n",
+"alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n",
+"phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)\n",
+"phi_c=asin(n2/n1) //critical angle (in radian)\n",
+"printf('NA=%.2f \n',NA)\n",
+"printf('alpha_m=%.2f degree\n',(alpha_m*180)/%pi)\n",
+"printf('phi_m=%.2f degree\n',(phi_m*180)/%pi)\n",
+"printf('phi_c=%.2f degree',(phi_c*180)/%pi)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.8: calculate_pulse_broadening_per_unit_length.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 8 , pg 334\n",
+"n1=1.5//core refractive index\n",
+"n2=1.45//cladding refractive index\n",
+"c=3*10^8//speed of light(in m/s)\n",
+"P=(n1*(n1-n2))/(n2*c) //pulse broadening per unit length due to multiple dispersion\n",
+"//P=(del_t/L) where del_t=time interval , L=distance transversed by ray inside core\n",
+"printf('pulse broadening per unit length due to multiple dispersion(in s/m)')\n",
+"disp(P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.9: calculate_pulse_broadening_per_unit_length.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 9 , pg 334\n",
+"n1=1.55//core refractive index\n",
+"n2=1.48//cladding refractive index\n",
+"c=3*10^8//speed of light(in m/s)\n",
+"P=(n1*(n1-n2))/(n2*c) //pulse broadening per unit length due to multiple dispersion\n",
+"//P=(del_t/L) where del_t=time interval , L=distance transversed by ray inside core\n",
+"printf('pulse broadening per unit length due to multiple dispersion(in s/m)')\n",
+"disp(P)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/13-Additional_solved_short_answers.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/13-Additional_solved_short_answers.ipynb
new file mode 100644
index 0000000..9300a88
--- /dev/null
+++ b/Engineering_Physics_by_D_K_Bhattacharya/13-Additional_solved_short_answers.ipynb
@@ -0,0 +1,418 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 13: Additional solved short answers"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.1_10: calculate_interplanar_spacing.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved numerical questions , Example(set 1) 10 , pg 349\n",
+"a=4.938 //lattice constant(in Angstrom)\n",
+"h=2\n",
+"k=2\n",
+"l=0 //since (h k l)=(2 2 0) miller indices\n",
+"d=a/sqrt(h^2+k^2+l^2) //spacing\n",
+"printf('spacing of (2 2 0) planes=')\n",
+"printf('d=%.3f Angstrom',d)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.1_12: find_the_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved numerical questions , Example(set 1) 12_b_3 , pg 349\n",
+"Eg=0.8*1.6*10^-19 //bandgap (in J) (converting eV into J)\n",
+"h=6.625*10^-34 //plancks constant (in J s)\n",
+"c=3*10^8 //speed of light (in m/s)\n",
+"lam=(h*c)/Eg //wavelength\n",
+"printf('wavelength of light emitted (in m)is=')\n",
+"disp(lam)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.1_14: calculate_energy_of_scattered_photon.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved numerical questions , Example(set 1) 14_a_3 , pg 350\n",
+"lam=1.24*10^-13 //wavelength (in m)\n",
+"h=6.625*10^-34//plancksconstant(in J s)\n",
+"c=3*10^8//velocity of x-ray photon(in m/sec)\n",
+"m0=9.11*10^-31//rest mass of electron(in Kg)\n",
+"phi=(90*%pi)/180//angle of scattering (in radian) (converting degree into radian)\n",
+"delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering (in m)\n",
+"LAM=lam+delta_H //wavelength (in m)\n",
+"E=(h*c)/LAM //energy of scattered photon (in J)\n",
+"printf('Energy of scattered photon (in J)=')\n",
+"disp(E)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.1_15: calculate_number_of_unit_cells.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved numerical questions , Example(set 1) 15_b_3 , pg 352\n",
+"a=2.88*10^-8 //lattice constant (in cm)\n",
+"d=7200 //density (in Kg/m^3)\n",
+"C=8/a^3 // atomic concentration\n",
+"n=8 //number of atoms/cell\n",
+"n1=C/n //unit cell concentration\n",
+"\n",
+"//since density =7200 Kg/m^3\n",
+"//7200 Kg = 10^6 cc\n",
+"//hence 1Kg = (10^6)/7200 cc\n",
+"N=(n1*10^6)/7200 //number of unit cells present in 1 Kg of metal\n",
+"printf('Number of unit cells present in 1 Kg of metal=')\n",
+"disp(N)\n",
+"printf('unit cells')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.1_2: find_fundamental_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved numerical questions , Example(set 1) 2 , pg 348\n",
+"l=0.7*10^-3//length(in m)\n",
+"E=8.8*10^10//youngs modulus(in N/m^2)\n",
+"d=2800//density(in kg/m^3)\n",
+"p=1//fundamental mode\n",
+"n= p*sqrt(E/d)/(2*l) //natural frequency\n",
+"printf('Fundamental frequency of quartz crystal)\n')\n",
+"printf('n=%.2f Hz',n)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.1_6: calculate_critical_angle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved numerical questions , Example(set 1) 6 , pg 348\n",
+"n1=1.5 //refractive index of core\n",
+"n2= 1.47 // cladding refractive index\n",
+"theta_c=asin(n2/n1) //critical angle (in radian)\n",
+"printf('critical angle=\n')\n",
+"printf('theta_c=%.2f degree',(theta_c*180)/%pi)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.2_13: calculate_Na_and_acceptance_angle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved numerical questions , Example(set 2) 13_b , pg 354\n",
+"n1=1.5//core refractive index\n",
+"n2=1.447//cladding refractive index\n",
+"n0=1//refractive index of air\n",
+"NA=sqrt(n1^2-n2^2)//numerical aperture\n",
+"alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n",
+"printf('NA=%.1f \n',NA)\n",
+"printf('alpha_m=%.2f degree\n',(alpha_m*180)/%pi)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.2_1: calculate_the_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved numerical questions , Example(set 2) 1 , pg 352\n",
+"l=4*10^-2 //length(in m)\n",
+"E=207 *10^6 //youngs modulus(in N/m^2)\n",
+"d=8900 //density(in kg/m^3)\n",
+"p=1//fundamental mode\n",
+"n= p*sqrt(E/d)/(2*l) //natural frequency\n",
+"printf('Fundamental frequency of quartz crystal)\n')\n",
+"printf('n=%.2f Hz',n)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.2_7: calculate_wavelength_of_scattered_radiation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved numerical questions , Example(set 2) 7 , pg 353\n",
+"lam=0.5*10^-9 //wavelength (in m)\n",
+"h=6.625*10^-34//plancksconstant(in J s)\n",
+"c=3*10^8//velocity of x-ray photon(in m/sec)\n",
+"m0=9.11*10^-31//rest mass of electron(in Kg)\n",
+"phi=(45*%pi)/180//angle of scattering (in radian) (converting degree into radian)\n",
+"delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering (in m)\n",
+"LAM=lam+delta_H //wavelength (in m)\n",
+"printf('wavelength of scattered radiation (im m)=')\n",
+"disp(LAM)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.3_11: calculate_mean_free_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved numerical questions , Example(set 3) 11_a , pg 355\n",
+"Un=3*10^-3 //electron mobility (in m^2/(V*s))\n",
+"e=1.6*10^-19 //charge in electron (in C)\n",
+"Me=9.11*10^-31 //mass of electron (in Kg)\n",
+"T=(Me*Un)/e //mean free time\n",
+"printf('Mean free time(in S)')\n",
+"disp(T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.3_12: calculate_the_resistivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved numerical questions , Example(set 3) 12_b , pg 356\n",
+"ni=1.5*10^16 //intrinsic carrier density(in m^-3)\n",
+"Un=1.35 //electron mobility (in m^2/(V*s))\n",
+"up=0.48 //hole mobility (in m^2/(V*s))\n",
+"e=1.6*10^-19 //charge in electron (in C)\n",
+"\n",
+"Ix=10^-3 //current (in A)\n",
+"d=100*10^-6 //thickness (in m)\n",
+"Bz=0.1 //magnetic induction (in T)\n",
+"Un1=0.07 //electron mobility (in m^2/(V*s))\n",
+"n=10^23 //doping concentration (in atoms/m^3)\n",
+"\n",
+"sigma=ni*e*(Un+up) // electrical conductivity\n",
+"rho=1/sigma //resistivity\n",
+"Vh=-(Ix*Bz)/(d*e*n) //Hall voltage\n",
+"printf('Resistivity(in ohm*m)')\n",
+"disp(rho)\n",
+"printf('Hall voltage (in V)')\n",
+"disp(Vh)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.3_13: calculate_energy_loss_per_hour_and_intensity_of_magnetization_and_flux_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved numerical questions , Example(set 3) 13_b , pg 357\n",
+"A=250 //area of B-H loop\n",
+"f=50 //frequency (in Hz)\n",
+"d=7.5*10^3 //density (in Kg/m^3)\n",
+"M=10 //mass of core (in Kg)\n",
+"\n",
+"H=2000 //magnetic field intensity (in A/m)\n",
+"Xm=1000 //susceptibility\n",
+"U0=4*%pi*10^-7 // relative permeability\n",
+"\n",
+"V=M/d //volume of sample (in m^3)\n",
+"N=60*60*f //number of cycles per hour\n",
+"EL=A*V*N //energy loss per hour \n",
+"I=H*Xm //intensity of magnetization\n",
+"Ur=1+Xm\n",
+"B=Ur*U0*H //magnetic flux density\n",
+"printf('Energy loss per hour (in J)')\n",
+"disp(EL)\n",
+"printf('Intensity of magnetization (in Wb/m^3)')\n",
+"disp(I)\n",
+"printf('Magnetic flux density(in T)')\n",
+"disp(B)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.3_14: find_capacitance_and_electric_flux_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved numerical questions , Example(set 3) 14 , pg 358\n",
+"Er1=1.0000684 //Dielectric constant (for sum 14_a_2)\n",
+"N=2.7*10^25 //(in atoms/m^3)\n",
+"E0=8.85*10^-12 //permittivity of free space (in F/m)\n",
+"Er2=6 //dielectric constant (for sum 14_a_3)\n",
+"E=100 //electric field intensity (in V/m) (for sum 14_a_3)\n",
+"A=200*10^-4 //area (in m^2)\n",
+"Er3=3.7 //dielectric constant (for sum 14_b_2)\n",
+"d=10^-3 //thickness (in m)\n",
+"V=300 //electric potential (in V)\n",
+"Alpha_e=(E0*(Er1-1))/N //electronic polarization\n",
+"R=(Alpha_e/(4*%pi*E0))^(1/3) //radius of atom\n",
+"P=E0*(Er2-1)*E //polarization\n",
+"C=(E0*Er3*A)/d //capacitance\n",
+"E1=V/d //electric flux density\n",
+"printf('Electronic polarization (in F*m^2)')\n",
+"disp(Alpha_e)\n",
+"printf('Radius of He atom(in m)')\n",
+"disp(R)\n",
+"printf('polarization(in C/m^2)')\n",
+"disp(P)\n",
+"printf('capacitance(in F)')\n",
+"disp(C)\n",
+"printf('Electric flux density (in V/m)')\n",
+"disp(E1)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/2-Lasers.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/2-Lasers.ipynb
new file mode 100644
index 0000000..3dc2a8b
--- /dev/null
+++ b/Engineering_Physics_by_D_K_Bhattacharya/2-Lasers.ipynb
@@ -0,0 +1,118 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Lasers"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: To_calculate_relative_populatio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 2 , Example2 1 , pg 52\n",
+"lam=590*10^-9//wavelength(in m)\n",
+"T=250+273 //temperature(in kelvin) (converting celsius into kelvin)\n",
+"k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n",
+"h=6.625*10^-34//plancks constant(in Js)\n",
+"c=3*10^8//speed of light\n",
+"N=exp(-(h*c)/(lam*k*T)) //N=(n2/n1)=relative population of atoms in the 1st excited state and in ground state\n",
+"//n1=number of atoms in ground state\n",
+"//n2=number of atoms in excited state\n",
+"printf('Relative population of Na atoms in the 1st excited state and in ground state\n')\n",
+"disp(N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: To_calculate_ratio_of_stimulated_emission_to_spontaneous_emission.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 2 , Example2 2 , pg 53\n",
+"T=250+273 //temperature(in kelvin) (converting celsius into kelvin)\n",
+"h=6.625*10^-34//plancks constant(in Js)\n",
+"c=3*10^8//speed of light(in m/s)\n",
+"lam=590*10^-9//wavelength(in m)\n",
+"k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n",
+"N=1/(exp((h*c)/(lam*k*T))-1) //N=((n21)'/(n21)) ratio of stimulated emission to spontaneous emission\n",
+"printf('Ratio of stimulated emission to spontaneous emission is')\n",
+"disp(N)\n",
+"\n",
+"\n",
+"//answer given is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: calculate_number_of_photons_emitted_per_minute.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 2 , Example2 3 , pg 53\n",
+"lam=632.8*10^-9//wavelength(in m)\n",
+"Em=3.147*10^-3*60//energy emitted per minute(in J/min)\n",
+"c=3*10^8//speed of light(in m/s)\n",
+"h=6.625*10^-34//plancks constant(in Js)\n",
+"n=c/lam //frequency of emitted photons(in Hz)\n",
+"E=h*n //energy of each photon(in J)\n",
+"N=Em/E //number of photons emitted per minute\n",
+"printf('Number of photons emitted per minute')\n",
+"disp(N)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/3-Fibre_optics_and_its_applications.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/3-Fibre_optics_and_its_applications.ipynb
new file mode 100644
index 0000000..8478af5
--- /dev/null
+++ b/Engineering_Physics_by_D_K_Bhattacharya/3-Fibre_optics_and_its_applications.ipynb
@@ -0,0 +1,125 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Fibre optics and its applications"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: To_find_NAand_phi_m_and_critical_angle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 3 , Example 3.1 , pg 84\n",
+"n1=1.5//core refractive index\n",
+"n2=1.47//cladding refractive index\n",
+"n0=1//refractive index of air\n",
+"NA=sqrt(n1^2-n2^2)//numerical aperture\n",
+"alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n",
+"phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)\n",
+"phi_c=asin(n2/n1) //critical angle (in radian)\n",
+"printf('NA=%.1f \n',NA)\n",
+"printf('alpha_m=%.2f degree\n',(alpha_m*180)/%pi)\n",
+"printf('phi_m=%.2f degree\n',(phi_m*180)/%pi)\n",
+"printf('phi_c=%.2f degree',(phi_c*180)/%pi)\n",
+"\n",
+"\n",
+"//data given is n2=1.97 which is not possible since refractive index of cladding should always be less than refractive index of core\n",
+"//in calculation n2=1.47"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: calculate_pulse_broadening_per_unit_length.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 3 , Example 3.2 , pg 85\n",
+"n1=1.5//core refractive index\n",
+"n2=1.47//cladding refractive index\n",
+"c=3*10^8//speed of light(in m/s)\n",
+"P=(n1*(n1-n2))/(n2*c) //pulse broadening per unit length due to multiple dispersion\n",
+"//P=(del_t/L) where del_t=time interval , L=distance transversed by ray inside core\n",
+"printf('pulse broadening per unit length due to multiple dispersion(in s/m)')\n",
+"disp(P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: To_calculate_minimum_and_maximum_number_of_total_internal_reflections_per_metre.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 3 , Example 3.3 , pg 85\n",
+"n1=1.5//core refractive index\n",
+"n2=1.47//cladding refractive index\n",
+"n0=1//refractive index of air\n",
+"a=100*10^-6/2 //radius of core\n",
+"NA=sqrt(n1^2-n2^2)//numerical aperture\n",
+"alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n",
+"phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)\n",
+"L=a/tan(phi_m) //(in m)\n",
+"printf('Minimum number of reflections per metre=zero\n') //since rays travelling with alpha=0 suffer no internal reflection\n",
+"//for rays travelling with alpha=alpha_m ,1 internal reflection takes place for a transversed distance of 2*L\n",
+"N=1/(2*L) //Maximum number of reflections per metre\n",
+"disp('Maximum number of reflections per metre(in m^-1)=')\n",
+"printf('N=%.0f',N)\n",
+"\n",
+"//Answer varies as L is restricted to 2.45*10^-4 (m) instead of 2.462*10^-4 (m)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/4-Quantum_physics.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/4-Quantum_physics.ipynb
new file mode 100644
index 0000000..8252269
--- /dev/null
+++ b/Engineering_Physics_by_D_K_Bhattacharya/4-Quantum_physics.ipynb
@@ -0,0 +1,292 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Quantum physics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: calculate_energy_and_momentum_of_photon.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 4 , Example4 1 , pg 117\n",
+"c=3*10^8 //speed of light(in m/sec)\n",
+"h=6.625*10^-34//planck's constant(in J s)\n",
+"lam=1.2*10^-10//wavelength(in m)\n",
+"E=(h*c)/(lam*1.6*10^-19) //energy of photon(in eV)\n",
+"p=h/lam //momentum of photon\n",
+"printf('Energy of photo\n')\n",
+"printf('E=%.1f eV\n',E)\n",
+"printf('momentum of photon(in Kg m/sec)\n')\n",
+"disp(p)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2: calculate_number_of_photons_emitted_per_second.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 4 , Example 4.2 , pg 117\n",
+"E1=10^4 //energy emitted per second(in J)\n",
+"n=900*10^3 //frequency(in Hz)\n",
+"h=6.625*10^-34 //plancks constant(in J s)\n",
+"E=h*n//energy carried by 1 photon(in J)\n",
+"N=E1/E//number of photons emitted per second\n",
+"printf('number of photons emitted per second\n')\n",
+"disp(N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3: determine_number_of_photons_emitted_per_second.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 4 , Example 4.3 , pg 118\n",
+"c=3*10^8//speed of light(in m/sec)\n",
+"h=6.625*10^-34//plancks constant(in J s)\n",
+"E1=100//energy emitted per second(in J)\n",
+"lam=5893*10^-10//wavelength(in m)\n",
+"E=(h*c)/lam //energy carried by 1 photon\n",
+"N=E1/E//number of photons emitted per second\n",
+"printf('number of photons emitted per second\n')\n",
+"disp(N)\n",
+"\n",
+"\n",
+"//answer mentioned is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4: find_the_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 4 , Example 4.4 , pg 118\n",
+"lam=2.8*10^-10//wavelength (in m)\n",
+"theta=(30*%pi)/180//viewing angle(in radian) (converting degree into radian)\n",
+"c=3*10^8//speed of light(in m/sec)\n",
+"h=6.625*10^-34//plancks constant(in J s)\n",
+"m0=9.11*10^-31//rest mass of electron(in Kg)\n",
+"lam1=lam+((2*h)*sin(theta/2)^2)/(m0*c) //wavelength of scattered radiation\n",
+"printf('wavelength of scattered radiation(in m)\n')\n",
+"disp(lam1)\n",
+"printf('wavelength of scattered radiation(in Angstrom)\n')\n",
+"disp(lam1*10^10)\n",
+"\n",
+"\n",
+"//calculation is done assuming h=6.6*10^-34 Js in book"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5: calculate_de_Broglie_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 4 , Example 4.5 , pg 119\n",
+"m=0.04//mass(in Kg)\n",
+"v=1000//speed(in m/sec)\n",
+"h=6.625*10^-34//plancks constant(in J s)\n",
+"p=m*v//momentum(in kg m/sec)\n",
+"lam=h/p //wavelength\n",
+"printf('de Broglie wavelength(in m)\n')\n",
+"disp(lam)\n",
+"printf('de Broglie wavelength(in A)\n')\n",
+"disp(lam*10^10)\n",
+"\n",
+"\n",
+"\n",
+"//calculation is done assuming h=6.6*10^-34 Js"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6: find_energy_of_particle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 4 , Example 4.6 , pg 119\n",
+"a=0.1 *10^-9 //width (in m)\n",
+"n=1// lowest energy state of particle is obtained at n=1\n",
+"h=6.625*10^-34 //plancks constant(in Js)\n",
+"m=9.11*10^-31//mass of electron (in Kg)\n",
+"E=(h^2)/(8*m*a^2)//energy of an electron\n",
+"printf('Energy of electron in ground state(in J)\n')\n",
+"disp(E)\n",
+"printf('E=%.3f eV',E/(1.6025*10^-19))\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7: calculate_minimum_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 4 , Example 4.7 , pg 120\n",
+"a=4*10^-9 //width (in m)\n",
+"n=1// lowest energy state of particle is obtained at n=1\n",
+"h=6.625*10^-34 //plancks constant(in Js)\n",
+"m=9.11*10^-31//mass of electron (in Kg)\n",
+"E=(h^2)/(8*m*a^2)//energy of an electron\n",
+"printf('Energy of electron in ground state(in J)\n')\n",
+"disp(E)\n",
+"printf('E=%.5f eV',E/(1.6025*10^-19))\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.8: EX4_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 4 , Example 4.8 , pg 120\n",
+"a=0.1 *10^-9 //width (in m)\n",
+"n1=1// lowest energy state of particle is obtained at n=1\n",
+"n=6 //6th excited state hance n=6\n",
+"h=6.625*10^-34 //plancks constant(in Js)\n",
+"m=9.11*10^-31//mass of electron (in Kg)\n",
+"//E=(n^2*h^2)/(8*m*a^2) n=excited state of electron \n",
+"E1=(n1^2*h^2)/(8*m*a^2)//energy of an electron in ground state (in J)\n",
+"E6=(n^2*h^2)/(8*m*a^2)//energy at 6th excuted state(in J)\n",
+"E=E6-E1//energy required to excite the electron from ground state to the 6th excited state\n",
+"printf('energy required to excite the electron from ground state to the 6th excited state(in J)\n')\n",
+"disp(E)\n",
+"printf('E=%.2f eV',(E/(1.6025*10^-19)))"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.9: find_change_in_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 4 , Example 4.9 , pg 121\n",
+"h=6.625*10^-34//plancksconstant(in J s)\n",
+"c=3*10^8//velocity of x-ray photon(in m/sec)\n",
+"m0=9.11*10^-31//rest mass of electron(in Kg)\n",
+"phi=(90*%pi)/180//angle of scattering (in radian) (converting degree into radian)\n",
+"delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering\n",
+"printf('change in wavelength of x-ray photon(in m)\n')\n",
+"disp(delta_H)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/5-Crystal_physics.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/5-Crystal_physics.ipynb
new file mode 100644
index 0000000..d5e28dc
--- /dev/null
+++ b/Engineering_Physics_by_D_K_Bhattacharya/5-Crystal_physics.ipynb
@@ -0,0 +1,237 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Crystal physics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: determine_miller_indices.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 5 , Example5 1 , pg 149\n",
+"//plane has intercepts a,2b,3c along the 3 crystal axes\n",
+"//lattice points in 3-d lattice are given by r=p*a+q*b+s*c\n",
+"//as p,q,r are the basic vectors the proportion of intercepts 1:2:3\n",
+"p=1\n",
+"q=2\n",
+"s=3 \n",
+"//therefore reciprocal\n",
+"r1=1/1\n",
+"r2=1/2\n",
+"r3=1/3\n",
+"//taking LCM\n",
+"v=int32([1,2,3])\n",
+"l=double(lcm(v))\n",
+"m1=(l*r1)\n",
+"m2=(l*r2)\n",
+"m3=(l*r3)\n",
+"printf('miler indices=')\n",
+"disp(m3,m2,m1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: calculate_density_of_Si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 5 , Example5 2 , pg 150\n",
+"a=5.43*10^-8//lattice constant(in cm)\n",
+"M=28.1 //atomic weight (in g)\n",
+"n=8// number of atoms/cell (for Si)\n",
+"N=6.02*10^23 //Avogadro number\n",
+"C=n/a^3 //atomic concentration =(number of atoms/cell)/cell volume (in atoms/cm^3)\n",
+"D=(C*M)/N //Density\n",
+"printf('Density of Si=')\n",
+"printf('D=%.2f g/cm^3',D)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: calculate_surface_density_of_atoms.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 5 , Example5 3 , pg 151\n",
+"//(1 1 1) plane for a BCC crystal\n",
+"a=5*10^-10//lattice constant (in m)\n",
+"//height of equilaterl triangle (shaded area) =a*sqrt(3/2)\n",
+"//hence area of shaded triangular portion is a*sqrt(2)*a*sqrt(3/2)/2 = a^2*sqrt(3)/2\n",
+"//every corner atom contributes 1/6to the area\n",
+"n111=(3/6)/(a^2*sqrt(3)/2) //planar concentration\n",
+"printf('surface density of atoms in (1 1 1)plane of BCC structure (in atoms/m^2)')\n",
+"disp(n111)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: calculate_spacing_of_planes.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 5 , Example5 2 , pg 150\n",
+"a=4.049 //lattice constant(in Angstrom)\n",
+"h=2\n",
+"k=2\n",
+"l=0 //since (h k l)=(2 2 0) miller indices\n",
+"d=a/sqrt(h^2+k^2+l^2) //spacing\n",
+"printf('spacing of (2 2 0) planes=')\n",
+"printf('d=%.3f Angstrom',d)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: determine_size_of_unit_cell.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 5 , Example5 5 , pg 152\n",
+"d110=2.03//spacing of(1 1 0) planes (in Angstrom)\n",
+"h=1\n",
+"k=1\n",
+"l=0 //(h k l)=(1 1 0)\n",
+"a=d110*sqrt(h^2+k^2+l^2)//size of unit cell\n",
+"printf('size of unit cell=')\n",
+"printf('a=%.2f angstrom',a)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6: determine_spacing_between_planes.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 5 , Example5 6 , pg 152\n",
+"a=5.64//lattice constant (in Angstrom)\n",
+"h1=1\n",
+"k1=0\n",
+"l1=0 //(h1 k1 l1)=(1 0 0)\n",
+"h2=1\n",
+"k2=1\n",
+"l2=0 //(h2 k2 l2)=(1 1 0)\n",
+"h3=1\n",
+"k3=1\n",
+"l3=1//(h3 k3 l3)=(1 1 1)\n",
+"d100=a/sqrt(h1^2+k1^2+l1^2) //spacing of (1 0 0)planes\n",
+"d110=a/sqrt(h2^2+k2^2+l2^2) //spacing of (1 1 0)planes\n",
+"d111=a/sqrt(h3^2+k3^2+l3^2) //spacing of (1 1 1)planes\n",
+"printf('spacing of (1 0 0) planes=')\n",
+"printf('d100=%.2f Angstrom\n',d100)\n",
+"printf('spacing of (1 1 0) planes=')\n",
+"printf('d110=%.2f Angstrom\n',d110)\n",
+"printf('spacing of (1 1 1) planes=')\n",
+"printf('d111=%.2f Angstrom',d111)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.7: find_volume_of_unit_cell.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 5 , Example5 7 , pg 153\n",
+"r=1.605 *10^-10 //radius of atom (in m)\n",
+"a=2*r//lattice constant (for HCP structure) (in m)\n",
+"c=a*sqrt(8/3) //(in m)\n",
+"V=(3*sqrt(3)*a^2*c)/2 //volume of unit cell\n",
+"printf('volume of unit cell(in m^3)\n')\n",
+"disp(V)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/6-Conducting_materials.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/6-Conducting_materials.ipynb
new file mode 100644
index 0000000..b48b626
--- /dev/null
+++ b/Engineering_Physics_by_D_K_Bhattacharya/6-Conducting_materials.ipynb
@@ -0,0 +1,486 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Conducting materials"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.10: calculate_electrical_conductivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 6 , Example6.10 , pg 175\n",
+"lam=4*10^-8 //maen free path of electrons (in m)\n",
+"n=8.4*10^28 //electron density (in m^-3)\n",
+"Vth=1.6*10^6 //average thermal velocity of electrons (in m/s)\n",
+"e=1.6*10^-19 //charge of electron (in C)\n",
+"Me=9.11*10^-31 //mass of electron (in Kg)\n",
+"sigma=(n*e^2*lam)/(Vth*Me) //conductivity\n",
+"printf('Electrical conductivity (in /(ohm*m))')\n",
+"disp(sigma)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.11: calculate_electrical_and_thermal_conductivities.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 6 , Example6.11 , pg 176\n",
+"Tr=10^-14 //relaxation time (in s)\n",
+"T=300 //temperature (in K)\n",
+"n=6*10^28 //electron concentration (in /m^3)\n",
+"Me=9.11*10^-31 //mass of electron (in Kg)\n",
+"e=1.6*10^-19 //charge of electron (in C)\n",
+"k=1.38*10^-23 //Boltzmann constant (in J/K)\n",
+"sigma=(n*e^2*Tr)/(Me) //Electrical conductivity \n",
+"K=(3*n*k^2*Tr*T)/(2*Me) //Thermal conductivity \n",
+"L=K/(sigma*T) //Lorentz number\n",
+"printf('Electrical conductivity (in /(ohm*m))')\n",
+"disp(sigma)\n",
+"printf('Thermal conductivity (in W/(m*K))')\n",
+"disp(K)\n",
+"printf('Lorentz number (in(W*ohm)/K^2)')\n",
+"disp(L)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.12: find_relaxation_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 6 , Example6.12 , pg 177\n",
+"n=5.8*10^28 // electron concentration (in /m^3)\n",
+"e=1.6*10^-19 // charge of electron (in C)\n",
+"rho=1.54*10^-8 //resistivity of metal (in ohm*m)\n",
+"M=9.11*10^-31 //mass of electron (in Kg)\n",
+"T=M/(n*e^2*rho) //relaxation time\n",
+"printf('Relaxation time(in s)')\n",
+"disp(T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.13: calculate_drift_velocity_and_mobility_and_relaxation_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 6 , Example6.13 , pg 177\n",
+"rho=1.54*10^-8 //resistivity (in ohm*m)\n",
+"E=100 //electric field intensity (in V/m)\n",
+"n=5.8*10^28 //electron concentration (in /m^3)\n",
+"e=1.6*10^-19 //charge of electron (in C)\n",
+"Me=9.11*10^-31 //mass of electron (in Kg)\n",
+"T=Me/(rho*n*e^2) //relaxation time\n",
+"Vd=(e*E*T)/Me //drift velocity\n",
+"U=Vd/E //mobility\n",
+"printf('Relaxation time (in s)')\n",
+"disp(T)\n",
+"printf('Drift veloity (in m/s)')\n",
+"disp(Vd)\n",
+"printf('Mobility(in m^2/(V*s))')\n",
+"disp(U)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.14: calculate_drift_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 6 , Example6 14 , pg 178\n",
+"T=300 //temperature (in K)\n",
+"l=2 //length (in m)\n",
+"R=0.02 //Resistance (in ohm)\n",
+"u=4.3*10^-3 // (in m^2/(V*s))\n",
+"I=15 //current (in A)\n",
+"V=I*R //voltage drop across wire (in V )\n",
+"E=V/l //electric field across wire (in V/m)\n",
+"Vd=u*E //drift velocity (in m/s)\n",
+"printf('Drift velocity (in m/s)')\n",
+"disp(Vd)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.15: calculate_Fermi_energy_and_Fermi_temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 6 , Example6 15 , pg 179\n",
+"m=9.11*10^-31 //mass of electron (in Kg)\n",
+"k=1.38*10^-23 //boltzmann constant (in J/K)\n",
+"e=1.6*10^-19 //electronic charge(in C )\n",
+"Vf=0.86*10^6 //Fermi velocity of electron (in m/s)\n",
+"Ef=(m*Vf^2)/(2*e) //Fermi energy (in eV)\n",
+"Tf=(Ef*e)/k //Fermi temperature\n",
+"printf('Fermi energy=')\n",
+"printf('Ef=%.1f eV \n',Ef)\n",
+"printf('Fermi temperature =')\n",
+"printf('Tf=%.0f K',Tf)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.16: calculate_Fermi_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 6 , Example6 16 , pg 179\n",
+"Tf=2460 //Fermi temperature (in K)\n",
+"m=9.11*10^-31 //mass of electron (in Kg)\n",
+"k=1.38*10^-23 //boltzmann constant (in J/K)\n",
+"Vf=sqrt((2*k*Tf)/m) //Fermi velocity\n",
+"printf('Fermi velocity (in m/s)=')\n",
+"disp(Vf)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: calculate_Fermi_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 6 , Example6 1 , pg 170\n",
+"Vf=10^6 //Fermi velocity (in m/s)\n",
+"m=9.11*10^-31 // mass of electron(in Kg)\n",
+"Ef=(m*Vf^2)/2 //Fermi energy (in J)\n",
+"printf('Fermi energy for the electrons in the metal=')\n",
+"printf('Ef=%.1f eV',(Ef/(1.6*10^-19))) //converting J into eV"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: calculate_Fermi_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 6 , Example6 2 , pg 170\n",
+"Ef0=7.04*1.6*10^-19 // Fermi energy at 0 K (converting eV into J)\n",
+"T=300 //temperature (in K)\n",
+"k=1.38*10^-23 //boltzmann constant (in (m^2*Kg)/(s^2*K^-1))\n",
+"Ef=Ef0*(1-(%pi^2*(k*T)^2)/(12*Ef0^2)) //Fermi energy at 300 K (in J)\n",
+"printf('Fermi energy at 300 K =')\n",
+"printf('Ef=%.4f eV',(Ef/(1.6*10^-19))) //converting J into eV"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: calculate_conductivity_and_relaxation_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 6 , Example6.3 , pg 171\n",
+"d=2.7*10^3 //density (in Kg/m^3)\n",
+"Ma=27 //atomic weight\n",
+"Me=9.11*10^-31 //mass of electron (in Kg)\n",
+"e=1.6*10^-19 //charge in electron (in C)\n",
+"T=10^-14 //relaxation time (in s)\n",
+"Na=6.022*10^23 //Avogadro constant\n",
+"N=3*10^3 //number of free electrons per atom\n",
+"n=(d*Na*N)/Ma //(in /m^3)\n",
+"sigma=(n*e^2*T)/Me //conductivity\n",
+"printf('Conductivity of Al (in /(ohm*m))')\n",
+"disp(sigma)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4: calculate_Lorentz_number.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 6 , Example6 4 , pg 171\n",
+"sigma=5.87*10^7 // electrical conductivity (in /(ohm m))\n",
+"K=390 //thermal conductivity (in W/(m K))\n",
+"T=293 //temperature (in K)\n",
+"L=K/(sigma*T) //Lorentz number by wiedemann-Franz law\n",
+"printf('Lorentz number (in W*ohm /K^2)')\n",
+"disp(L)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5: calculate_electrical_conductivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 6 , Example6 5 , pg 172\n",
+"d=8900 //density (in Kg/m^3)\n",
+"M=63.5 //atomic weight \n",
+"T=10^-14 //relaxation time(in s)\n",
+"N=6.022*10^23 //Avogadros constant\n",
+"N1=10^3 //number of free electrons per atom\n",
+"e=1.6*10^-19 //electronic charge (in C)\n",
+"me=9.11*10^-31 //mass of electron (in Kg)\n",
+"\n",
+"n=(N*d*N1)/M \n",
+"sigma =(n*e^2*T)/me //electrical conductivity\n",
+"printf('Electrical conductivity(in ohm m)=')\n",
+"disp(sigma)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.6: EX6_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 6 , Example6 6 , pg 172\n",
+"rho=1.54*10^-8 //resistivity (in ohm*m)\n",
+"Ef=5.5 //Fermi energy (in eV)\n",
+"E=100 //electric field intensity (in V/m)\n",
+"n=5.8*10^28 //concentration of electrons (in atoms/m^3)\n",
+"e=1.6*10^-19 //charge in electron (in C)\n",
+"Me=9.11*10^-31 //mass of electron (in Kg)\n",
+"T=Me/(rho*n*e^2) //relaxation time\n",
+"Un=(e*T)/Me //mobility of electron\n",
+"Vd=(e*T*E)/Me //drift velocity\n",
+"Vf=sqrt((2*Ef*e)/Me) //Fermi velocity\n",
+"lam_m=Vf*T //mean free path\n",
+"\n",
+"printf('Relaxation time of electron (in s)')\n",
+"disp(T)\n",
+"printf('Mobility of electron (in m^2/(V*s))')\n",
+"disp(Un)\n",
+"printf('Drift velocity of electron (in m/s)')\n",
+"disp(Vd)\n",
+"printf('Fermi velocity of electrons (in m/s)')\n",
+"disp(Vf)\n",
+"printf('Mean free path(in m)')\n",
+"disp(lam_m)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.7: calculate_thermal_conductivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 6 , Example6 6 , pg 174\n",
+"L= 2.26*10^-8 //Lorentz number (in W*m /K^2)\n",
+"T=27+273 //temperature (in K) (converting celsius into kelvin)\n",
+"rho=1.72*10^-8 //electrical resistivity (in ohm *m)\n",
+"\n",
+"//according to Wiedemann-Franz law\n",
+"K=(L*T)/rho //thermal conductivity\n",
+"printf('Thermal conductivity =')\n",
+"printf('K=%.0f W/(m*K)',K)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.8: calculate_Lorentz_number.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 6 , Example6 8 , pg 174\n",
+"sigma=5.87*10^7 // electrical conductivity (in /(ohm m))\n",
+"K=390 //thermal conductivity (in W/(m K))\n",
+"T=293 //temperature (in K)\n",
+"L=K/(sigma*T) //Lorentz number by wiedemann-Franz law\n",
+"printf('Lorentz number (in W*ohm /K^2)')\n",
+"disp(L)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.9: find_F_E.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 6 , Example6 9 , pg 174\n",
+"del_E=0.01*1.6*10^-19 // del_E = E-Ef (in J) (converting eV into J)\n",
+"T=200 //temperature (in K)\n",
+"k=1.38*10^-23 //boltzmanns constant (in J/K)\n",
+"F_E=1/(1+exp(del_E/(k*T))) //Fermi Dirac distribution function\n",
+"printf('F_E=%.2f',F_E)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/7-Semiconducting_materials.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/7-Semiconducting_materials.ipynb
new file mode 100644
index 0000000..2e9bd9c
--- /dev/null
+++ b/Engineering_Physics_by_D_K_Bhattacharya/7-Semiconducting_materials.ipynb
@@ -0,0 +1,720 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Semiconducting materials"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.10: find_the_new_position_of_Fermi_level.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example 7.10 , pg 214\n",
+"T1=300 //temperature (in K)\n",
+"e=1.6*10^-19 //charge of electron (in C)\n",
+"k=1.38*10^-23 //Boltzmann constant (in J/K)\n",
+"T2=330 //temperature (in K)\n",
+"E1=0.3 // E1=(Ec-Ef_300) (in eV)\n",
+"E2=(E1*T2)/T1 //E2=(Ec-Ef_330) (in eV)\n",
+"printf('At 330 K the Fermi energy kevel lies ')\n",
+"disp(E2)\n",
+"printf('(in eV) below conduction band')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.11: calculate_concentration_in_conduction_band.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example 7.11 , pg 214\n",
+"T=300 //temperature (in K)\n",
+"e=1.6*10^-19 //charge of electron (in C)\n",
+"h=6.625*10^-34 //plancks constant (in m^2*Kg*S^-1)\n",
+"Eg=1.1 //bandgap (in eV)\n",
+"k=1.38*10^-23 //Boltzmann constant (in J/K)\n",
+"Me=9.11*10^-31 //mass of electron (in Kg)\n",
+"Mn=0.31*Me //electron effective mass\n",
+"ni=2*((2*%pi*k*T*Mn)/h^2)^(3/2)*exp(-(Eg*e)/(2*k*T)) //intrinsic concentration\n",
+"printf('Intrinsic concentration (in m^-3)')\n",
+"disp(ni)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.12: calculate_drift_mobility_of_electro.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example7.12 , pg 214\n",
+"T=300 //temperature (in K)\n",
+"Rh=0.55*10^-10 //Hall coefficient (in m^3/(A*s))\n",
+"sigma=5.9*10^7 //conductivity (in ohm^-1 * m^-1)\n",
+"DM= Rh*sigma //drift mobility\n",
+"printf('Drift mobility (in m^2/(V *s))=')\n",
+"disp(DM)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.13: calculate_concentration_of_conduction_electrons_in_Cu.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example 7.13 , pg 215\n",
+"Ud=3.2*10^-3 //electron drift mobility (in m^2/(V*s))\n",
+"sigma=5.9*10^7 //conductivity (in /(ohm*m))\n",
+"e=1.6*10^-19 //charge of electron (in C)\n",
+"Na=6.022*10^23 //Avogadro constant (in mol^-1)\n",
+"ni=sigma/(Ud*e) //intrinsic concentration (in m^-3)\n",
+"Aw=63.5 //atomic weight\n",
+"d=8960 //density (in Kg/m^3)\n",
+"n=10^3 //number of free electrons per atom\n",
+"N=(Na*d*n)/Aw //concentration of free electrons in pure Cu\n",
+"Avg_N=ni/N //Average number of electrons contributed per Cu atom\n",
+"printf('concentration of free electrons in pure Cu (in m^-3)')\n",
+"disp(N)\n",
+"printf('Average number of electrons contributed per Cu atom\n')\n",
+"printf('Avg_N=%.2f ',Avg_N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.14: calculate_charge_carrier_density_and_electron_mobility.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example7.14 , pg 215\n",
+"RH=3.66*10^-11 //Hall coefficient (in m^3/(A*s))\n",
+"e=1.6*10^-19 //charge in electron (in C)\n",
+"sigma=112*10^7 //conductivity (in (oh*m)^-1)\n",
+"n=1/(RH*e) //charge carrier density\n",
+"Un=sigma/(n*e) //electron mobility\n",
+"printf('charge carrier density(in m^-3)=')\n",
+"disp(n)\n",
+"printf('Electron mobility=')\n",
+"printf('Un=%.3f m^2/(A*s)',Un)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.15: calculate_magnitude_of_Hall_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example7.15 , pg 216\n",
+"I=50 //current (in A)\n",
+"B=1.5 //magnetic field (in T)\n",
+"d=0.2*10^-2 //width of slab (in m)\n",
+"n=8.4*10^28 //concentration of electrons (in m^-3)\n",
+"e=1.6*10^-19 // charge (in C)\n",
+"VH=(B*I)/(n*e*d) //Hall voltage\n",
+"printf('Hall voltage(in V)=')\n",
+"disp(VH)\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"//Answer given is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.16: find_resistance_of_intrinsic_Ge.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example7.16 , pg 216\n",
+"ni=2.5*10^19 //intrinsic carrier density(in m^-3)\n",
+"Un=0.39 //electron mobility (in m^2/(V*s))\n",
+"up=0.19 //hole mobility (in m^2/(V*s))\n",
+"e=1.6*10^-19 //charge in electron (in C)\n",
+"l=10^-2 //length (in m)\n",
+"A=10^-3*10^-3 //area (in m^2)\n",
+"sigma=ni*e*(Un+up) // electrical conductivity (in (ohm*m)^-1)\n",
+"R=l/(sigma*A) //Resistance\n",
+"printf('Resistance of intrinsic Ge rod\n')\n",
+"printf('R=%.0f ohm',R)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.17: determine_the_position_of_Fermi_level.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example7.17 , pg 216\n",
+"Eg=1.12 //bandgap (in eV)\n",
+"T=300 //temperature (in K)\n",
+"Me=9.11*10^-31 //mass of electron (in Kg)\n",
+"Mn=0.12*Me\n",
+"Mp=0.28*Me\n",
+"k=1.38*10^-23 //Boltzmann constant (in (m^2*Kg)/(s^2*K))\n",
+"Ef=(Eg/2)+((log(Mp/Mn)*3*k*T)/(4*1.6*10^-19))\n",
+"printf('position of Fermi level')\n",
+"printf('Ef=%.3f eV',Ef)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.18: calculate_electrical_conductivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example7.18 , pg 217\n",
+"ni=1.5*10^16 //intrinsic carrier density(in m^-3)\n",
+"Un=0.13 //electron mobility (in m^2/(V*s))\n",
+"up=0.05 //hole mobility (in m^2/(V*s))\n",
+"e=1.6*10^-19 //charge in electron (in C)\n",
+"sigma=ni*e*(Un+up) // electrical conductivity\n",
+"printf('Electrical conductivity\n')\n",
+"printf('sigma=%.6f (ohm*m)^-1',sigma)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.19: find_intrinsic_resistivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example7.19 , pg 217\n",
+"ni=2.15*10^13 //intrinsic carrier density(in cm^-3)\n",
+"Un=3900 //electron mobility (in cm^2/(V*s))\n",
+"up=1900 //hole mobility (in cm^2/(V*s))\n",
+"e=1.6*10^-19 //charge in electron (in C)\n",
+"sigma_I=ni*e*(Un+up) // electrical conductivity (in (ohm*cm)^-1)\n",
+"rho_I=1/sigma_I //intrinsic resistivity\n",
+"printf('Intrinsic resistivity\n')\n",
+"printf('rho_I=%.0f ohm*cm',rho_I)\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"//Intrisic carrier density is given as 2.15*10^-13 instead of 2.15*10^13"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: Evaluate_approximate_donor_binding_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example7.1 , pg 208\n",
+"Er=13.2 // relative permittivity\n",
+"Me=9.11*10^-31 //mass of electron (in Kg)\n",
+"Mnc=0.067*Me\n",
+"h=6.625*10^-34 //plancks constant (in Js)\n",
+"Eo=8.85*10^-12\n",
+"e=1.6*10^-19 //electronic charge of electron (in C)\n",
+"E=(Mnc*e^4)/(8*(Er*Eo)^2*h^2) //Donor binding energy (in J)\n",
+"printf('Donor binding energy (in J)=')\n",
+"disp(E)\n",
+"printf('E=%.4f eV',(E/e))"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.20: find_electrical_conductivity_before_and_after_addition_of_B_atoms.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example7.20 , pg 217\n",
+"ni=2.1*10^19 //intrinsic carrier density(in m^-3)\n",
+"Un=0.4 //electron mobility (in m^2/(V*s))\n",
+"up=0.2 //hole mobility (in m^2/(V*s))\n",
+"e=1.6*10^-19 //charge in electron (in C)\n",
+"sigma=ni*e*(Un+up) // electrical conductivity\n",
+"printf('Electrical conductivity\n')\n",
+"printf('sigma=%.3f (ohm*m)^-1',sigma)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.21: find_Hall_coefficient_and_electron_mobility.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example 7.21 , pg 218\n",
+"e=1.6*10^-19 // charge of electron (in C)\n",
+"I=5*10^-3 // current (in mA)\n",
+"V=1.35 // voltage (in V)\n",
+"Vh=20*10^-3 //Hall voltage (in V)\n",
+"B=0.45 //magnetic induction (in T)\n",
+"l=10^-2 //length (in m)\n",
+"b=5*10^-3 //breadth (in m)\n",
+"d=10^-3 //thickness (in m)\n",
+"R=V/I //resistance (in ohm)\n",
+"A=b*d //area (in m^2)\n",
+"rho= (R*A)/l //resistivity (in ohm*m)\n",
+"E=Vh/d //Hall electric field (in V/m)\n",
+"J=I/A //current density (in A/m^2)\n",
+"Rh=E/(B*J) //Hall coefficient \n",
+"Un=Rh/rho //electron mobility (in m^2/(V*S))\n",
+"printf('Hall coefficient =')\n",
+"printf('Rh=%.3f m^3/C \n',Rh)\n",
+"printf('Electron mobility=')\n",
+"printf('Un=%.2f m^2/(V*S)',Un)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.22: find_Hall_potential_difference.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example7.22 , pg 218\n",
+"Ix=200 //current (in A)\n",
+"Bz=1.5 //magnetic field (in T)\n",
+"d=10^-3 //width of slab (in m)\n",
+"p=8.4*10^28 //concentration of electrons (in m^-3)\n",
+"e=1.6*10^-19 // charge (in C)\n",
+"VH=(Bz*Ix)/(p*e*d) //Hall voltage\n",
+"printf('Hall voltage(in V)=')\n",
+"disp(VH)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: calculate_equilibrium_hole_concentration_and_how_is_Ef_located_relative_to_Ei.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example 7.2 , pg 208\n",
+"ni=1.5*10^10 //intrinsic concentration (in cm^-3)\n",
+"Nd=10^16 //donor concentration (in atoms/cm^3)\n",
+"T=300 //temperature (in K)\n",
+"e=1.6*10^-19 //charge of electron (in C)\n",
+"k=1.38*10^-23 //Boltzmann constant (in J/K)\n",
+"n0=Nd //Assuming n0=Nd ( since Nd >> ni)\n",
+"p0=ni^2/n0 //hole concentration\n",
+"E=k*T*log(n0/ni) // E=(Ef-Ei) location of Ef relative to Ei\n",
+"printf('Hole concentration (in cm^-3)')\n",
+"disp(p0)\n",
+"printf('Location of Ef relative to Ei (in eV)')\n",
+"disp(E/e)\n",
+"x = linspace(-5.5,5.5,51);\n",
+"y = 1 ;\n",
+"\n",
+"scf(2);\n",
+"clf(2);\n",
+"plot(x,y+0.1);\n",
+"\n",
+"plot(x,y,'ro-');\n",
+"plot(x,y-0.347,'--');\n",
+"plot(x,y*0,'bs:');\n",
+"xlabel(['x axis';'(independent variable)']);\n",
+"ylabel('Energy level (eV)');\n",
+"title('Band diagram');\n",
+"legend(['Ec';'Ef';'Ei';'Ev']);\n",
+"set(gca(),'data_bounds',matrix([-6,6,-0.1,1.1],2,-1));"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: calculate_resistivity_of_sample.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example7.3 , pg 208\n",
+"Nd=10^14 //Donor density (in atoms/cm^3)\n",
+"e=1.6*10^-19 //electronic charge of electron (in C)\n",
+"Un=3900 // electron mobility (in cm^2/(V*s)) for Ge at 300 K\n",
+"sigma=Nd*e*Un //conductivity\n",
+"rho=1/sigma //resistivity\n",
+"printf('Resistivity=\n')\n",
+"printf('rho=%.2f ohm*cm',rho)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4: calculate_resistivity_and_Hall_coefficient_and_Hall_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example7 4 , pg 209\n",
+"e=1.6*10^-19 //charge in electron (in C)\n",
+"Ix=2*10^-3 //current (in A)\n",
+"d=200*10^-4 //thickness (in cm)\n",
+"Bz=5*10^-5 //magnetic induction (in Wb/cm^2)\n",
+"Un=800 //electron mobility (in cm^2/(V*s))\n",
+"n=5*10^16 //doping concentration (in atoms/cm^3)\n",
+"\n",
+"sigma=n*e*(Un) // electrical conductivity\n",
+"rho=1/sigma //resistivity\n",
+"Rh=-1/(e*n) //Hall coefficient\n",
+"Vh=-(Ix*Bz)/(d*e*n) //Hall voltage\n",
+"printf('Resistivity(in ohm*cm)')\n",
+"disp(rho)\n",
+"printf('Hall coefficient(in cm^3/C)')\n",
+"disp(Rh)\n",
+"printf('Hall voltage (in V)')\n",
+"disp(Vh)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5: EX7_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example 7.5 , pg 210\n",
+"T=300 //temperature (in K)\n",
+"Un=0.4 //electron mobility (in m^2/(V*s))\n",
+"Up=0.2 //hole mobility (in m^2/(V*s))\n",
+"e=1.6*10^-19 //charge of electron (in C)\n",
+"h=6.625*10^-34 //plancks constant (in m^2*Kg*S^-1)\n",
+"Eg=0.7 //bandgap (in eV)\n",
+"k=1.38*10^-23 //Boltzmann constant (in J/K)\n",
+"Me=9.11*10^-31 //mass of electron (in Kg)\n",
+"Mn=0.55*Me //electron effective mass\n",
+"Mp=0.37*Me //hole effective mass\n",
+"ni=2*((2*%pi*k*T)/h^2)^(3/2)*(Mn*Mp)^(3/4)*exp(-(Eg*e)/(2*k*T)) //intrinsic concentration\n",
+"sigma=ni*e*(Un+Up) //intrinsic conductivity\n",
+"rho=1/sigma //intrinsic resistivity\n",
+"printf('Intrinsic concentration (in m^-3)')\n",
+"disp(ni)\n",
+"printf('Intrinsic conductivity (in /(ohm*m)')\n",
+"disp(sigma)\n",
+"printf('Intrinsic resistivity (in ohm*m)')\n",
+"disp(rho)\n",
+"\n",
+"\n",
+"//answer given is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6: calculate_Fermi_energy_with_respect_to_Fermi_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example 7.6 , pg 211\n",
+"Nd=10^16 //donor concentration (in cm^-3)\n",
+"ni=1.45*10^10 //intrinsic concentration (in cm^-3)\n",
+"T=300 //temperature (in K)\n",
+"e=1.6*10^-19 //charge of electron (in C)\n",
+"k=1.38*10^-23 //Boltzmann constant (in J/K)\n",
+"E=k*T*log(Nd/ni) //E=(Efd-Ei) Fermi energy with respect to Fermi energy in intrinsic Si\n",
+"printf('Fermi energy with respect to Fermi energy in intrinsic Si(in eV)')\n",
+"disp(E/e)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7: find_resistance_of_pure_and_doped_Si_crystal.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example 7.7 , pg 211\n",
+"rho=2300 //resistivity (in ohm*m) for Si (value given in book is wrong)\n",
+"ni=1.6*10^16 //intrinsic concentration (in m^-3)\n",
+"Ue=0.15 //electron mobility (in m^2/(V*s))\n",
+"e=1.6*10^-19 //charge of electron (in C)\n",
+"// assuming 1*1*1 (in cm) dimension of Si crystal\n",
+"l=10^-2 //length (in m)\n",
+"b=10^-2 //breadth (in m)\n",
+"w=10^-2 //width (in m)\n",
+"Nsi=5*10^28 // (in atoms/m^3)\n",
+"x=1/10^9 //doping concentration\n",
+"A=l*b //area (in m^2)\n",
+"R1=(rho*l)/A //resistance of pure Si crystal (in ohm)\n",
+"Nd=Nsi*x //donor concentration (in m^-3)\n",
+"p=ni^2/Nd //concentration of hole (in m^-3)\n",
+"sigma=Nd*Ue*e //coductivity of doped Si (in ohm^-1*m^-1)\n",
+"R=l/(sigma*A) //resistance of doped Si crystal (in ohm)\n",
+"printf('Resistance of pure Si crystal (in ohm)')\n",
+"disp(R1)\n",
+"printf('Resistance of doped Si crystal (in ohm)')\n",
+"disp(R)\n",
+"\n",
+"\n",
+"//answer given is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.8: compute_forbidden_energy_gap.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example 7.8 , pg 212\n",
+"rho=2.12 //resistivity (in ohm*m)\n",
+"T=300 //temperature (in K)\n",
+"Un=0.36 //electron mobility (in m^2/(V*s))\n",
+"Up=0.17 //hole mobility (in m^2/(V*s))\n",
+"h=6.625*10^-34 //plancks constant (in m^2*Kg*S^-1)\n",
+"k=1.38*10^-23 //Boltzmann constant (in J/K)\n",
+"e=1.6*10^-19 //charge in electron (in C)\n",
+"Me=9.11*10^-31 //mass of electron (in Kg)\n",
+"Mn=0.5*Me //electron effective mass\n",
+"Mp=0.37*Me //hole effective mass\n",
+"ni=1/(rho*e*(Un+Up)) //intrinsic concentration (in m^-3)\n",
+"Nc=2*((2*%pi*k*T)/h^2)^(3/2)*(Mn)^(3/2) //effective density of states in conduction band (in m^-3)\n",
+"Nv=2*((2*%pi*k*T)/h^2)^(3/2)*(Mp)^(3/2) //effective density of states in valence band (in m^-3)\n",
+"Eg=2*k*T*log(sqrt(Nc*Nv)/ni) //Forbidden energy gap\n",
+"printf('Forbidden energy gap=')\n",
+"printf('Eg=%.3f eV',Eg/e)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.9: calculate_conductivity_of_sample.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 7 , Example7.9 , pg 213\n",
+"ni=2.4*10^19 //intrinsic carrier density(in m^-3)\n",
+"Un=0.39 //electron mobility (in m^2/(V*s))\n",
+"up=0.19 //hole mobility (in m^2/(V*s))\n",
+"e=1.6*10^-19 //charge in electron (in C)\n",
+"sigma=ni*e*(Un+up) // electrical conductivity\n",
+"printf('Electrical conductivity\n')\n",
+"printf('sigma=%.3f (ohm*m)^-1',sigma)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/8-Magnetic_materials.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/8-Magnetic_materials.ipynb
new file mode 100644
index 0000000..16f0273
--- /dev/null
+++ b/Engineering_Physics_by_D_K_Bhattacharya/8-Magnetic_materials.ipynb
@@ -0,0 +1,165 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Magnetic materials"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: Determine_magnitude_and_direction_of_magnetic_moment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 8 , Example 8.1 , pg 238\n",
+"I=12 // current(in A)\n",
+"A=7.5*10^-4 //area(in m^2)\n",
+"M=I*A //magnetic moment associated with the loop\n",
+"printf('Magnetic moment associated with the loop(in A m^2)=')\n",
+"disp(M)\n",
+"printf('M is directed away from the observer and is perpendicular to the plane of the loop')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: Determine_magnetic_moment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 8 , Example 8.2 , pg 238\n",
+"r=0.5*10^-10 //radius of orbit (in m)\n",
+"e= 1.6*10^-19 //charge on electron (in C)\n",
+"n=10^16 //frequency of revolution of electron (in rps)\n",
+"I=e*n //current (in A)\n",
+"A=%pi *r^2 //area (in m^2)\n",
+"M=I*A //magnetic moment associated with motion of electron \n",
+"printf('Magnetic moment associated with motion of electron (in A m^2)')\n",
+"disp(M)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: calculate_magnetic_susceptibility.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 8 , Example 8.3 , pg 239\n",
+"ur=5000 //relative permeability\n",
+"xm=ur-1 //magnetic susceptibility\n",
+"printf('Magnetic susceptibility=')\n",
+"disp(xm)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: calculate_permeability.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 8 , Example 8.4 , pg 239\n",
+"H=1800 //magnetizing field (in A/m)\n",
+"phi=3*10^-5 //magnetic flux (in Wb)\n",
+"A=0.2 *10^-4 //area (in m^2)\n",
+"B=phi/A //magnetic flux density (in Wb/m^2)\n",
+"u=B/H //permeability (in H/m)\n",
+"printf('permeability (in H/m )=')\n",
+"disp(u)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: calculate_magnetic_moment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 8 , Example 8.5 , pg 239\n",
+"B=0.65 //magnetic induction (in T)\n",
+"d=8906 //density (in Kg/m^3)\n",
+"M=58.7 //atomic weight\n",
+"e=1.6*10^-19 //charge of electron (in C)\n",
+"h=6.625*10^-34 //plancks constant (in m^2*Kg*S^-1)\n",
+"m=9.11*10^-31 //mass of electron (in Kg)\n",
+"Uo=4*%pi*10^-7 //vacuum permeability\n",
+"Na=6.023*10^26 //Avogadro constant\n",
+"Ub=(e*h)/(4*%pi*m) //Bhor magneton (in A*m^2)\n",
+"N=(d*Na)/M //number of atoms per unit volume\n",
+"Ur=B/(N*Uo) //relative permeability (in A/m^2)\n",
+"M=Ur/(Ub) //magnetic moment\n",
+"printf('Magnetic moment')\n",
+"printf('M=%.2f A*m^2',M)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/9-Superconducting_materials.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/9-Superconducting_materials.ipynb
new file mode 100644
index 0000000..4708f61
--- /dev/null
+++ b/Engineering_Physics_by_D_K_Bhattacharya/9-Superconducting_materials.ipynb
@@ -0,0 +1,84 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: Superconducting materials"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1: calculate_critical_magnetic_field_intensity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 9 , Example9.1 , pg 255\n",
+"H0=6.5*10^4 //magnetic field intensity at 0K (in A/m)\n",
+"T=4.2 //temperature (in K)\n",
+"Tc=7.18 //critical temperature (in K)\n",
+"Hc=H0*(1-(T^2/Tc^2)) // critical magnetic field intensity\n",
+"printf('critical magnetic field intensity\n')\n",
+"printf('Hc=%.0f A/m',Hc)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2: calculate_isotopic_mass.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 9 , Example9.2 , pg 255\n",
+"M1=199.5 //isotopic mass\n",
+"Tc1=4.185 //critical temperature for M1 (in K)\n",
+"Tc2=4.133 //critical temperature for M2 (in K)\n",
+"alpha=0.5\n",
+"\n",
+"//M^alpha * Tc=constant\n",
+"M2=((M1^alpha*Tc1)/Tc2)^(1/alpha)\n",
+"printf('Isotopic mass at critical temperature 4.133K\n')\n",
+"printf('M2=%.3f ',M2)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}