diff options
Diffstat (limited to 'Engineering_Physics_by_D_K_Bhattacharya')
12 files changed, 4155 insertions, 0 deletions
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/1-ultrasonics.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/1-ultrasonics.ipynb new file mode 100644 index 0000000..52f947f --- /dev/null +++ b/Engineering_Physics_by_D_K_Bhattacharya/1-ultrasonics.ipynb @@ -0,0 +1,441 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: ultrasonics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.10: To_find_depth_of_sea.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 10 , pg 24\n", +"v=1440 //velocity of ultrasonic waves(in m/s)\n", +"t=0.83 //time lapsed(in sec)\n", +"d=(v*t) //distance travelled by sound\n", +"d1=d/2 //depth of submarine\n", +"disp (d, ' the velocity of ultrasonic waves ( in m) is ' )\n", +"disp (d1, ' the depth of submarine ( in m) is ' )\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.11: To_calculate_reverberation_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 11 , pg 24\n", +"aS=1050//total absorption inside hall(in Sabine)\n", +"//a=average absorption coefficient , S=area of interior surface\n", +"V=9000//volume of hall(in m^3)\n", +"T=(0.165*V)/aS//reverberation time\n", +"printf('Reverberation time of hall\n')\n", +"printf('T=%.4f sec',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.12: To_find_area_of_interior_surface.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 12 , pg 25\n", +"V=13500//volume(in m^3)\n", +"T=1.2//reverberation time(in sec)\n", +"a=0.65//average absorption coefficient(in Sabine/m^2)\n", +"S=(0.165*V)/(a*T)//area of interior surface\n", +"printf('Area of interior surface\n')\n", +"printf('S=%.1f m^2',S)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.13: To_find_reverberation_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 13 , pg 25\n", +"V=15000//volume(in m^3)\n", +"T1=1.3//initial reverberation time(in sec)\n", +"aS=(0.165*V)/T1 //total absorption of hall (in Sabine)\n", +"T2=(0.165*V)/(aS+300)//revrberation time of hall after adding 300 chairs each having absorption of 1 Sabine\n", +"printf('Reverberation time of hall after adding 300 chairs\n')\n", +"printf('T2=%.3f sec',T2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.14: To_find_depth_of_submarine.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 14 , pg 26\n", +"v=1440 //velocity of ultrasonic waves(in m/s)\n", +"t=0.5 //time lapsed(in sec)\n", +"d=(v*t) //distance travelled by ultrasonic waves\n", +"d1=d/2 //depth of submarine\n", +"disp (d, ' the velocity of ultrasonic waves ( in m) is ' )\n", +"disp (d1, ' the depth of submarine ( in m) is ' )\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.15: To_find_frequency_of_waves.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 15 , pg 26\n", +"lam=2*0.4*10^-3 //distance between 2 antinodes is lam/2 (in m)\n", +"n=1.5*10^6 //frequency of crystal(in Hz)\n", +"v=n*lam //velocity\n", +"printf('velocity of waves in sea water\n')\n", +"printf('v=%.1f m/s',v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.16: To_evaluate_natural_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 16 , pg 26\n", +"l=40*10^-3//length(in m)\n", +"E=11.5*10^10//youngs modulus(in N/m^2)\n", +"d=7250//density(in kg/m^3)\n", +"p=1//fundamental mode\n", +"n= p*sqrt(E/d)/(2*l) //natural frequency\n", +"printf('Fundamental frequency of quartz crystal\n')\n", +"printf('n=%.2f KHz',n*10^-3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1: To_find_depth_of_submerged_submarine.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 1 , pg 20\n", +"v=1440 //velocity of ultrasonic waves(in m/s)\n", +"t=0.33 //time lapsed(in sec)\n", +"d=(v*t) //distance travelled by ultrasonic waves\n", +"d1=d/2 //depth of submarine\n", +"disp (d, ' the velocity of ultrasonic waves ( in m) is ' )\n", +"disp (d1, ' the depth of submarine ( in m) is ' )\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: To_calculate_the_natural_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 2 , pg 21\n", +"d=7.25*10^3 //density(in kg/m^3)\n", +"E=115*10^9 //youngs modulus(in N/m^2)\n", +"l=40*10^-3 //length of rod(in m)\n", +"n=sqrt(E/d)/(2*l) //natural frequency of rod\n", +"disp (n*10^-3, 'the natural frequency of rod (in kHz) is ')\n", +"printf('yes,the rod can be used for producing ultrasonic waves because its frequency lies in the ultrasonic range')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3: To_calculate_the_natural_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 3 , pg 21\n", +"l=10^-3//length(in m)\n", +"E=7.9*10^10//youngs modulus(in N/m^2)\n", +"d=2650//density(in kg/m^3)\n", +"p=1//fundamental mode\n", +"n= p*sqrt(E/d)/(2*l) //natural frequency\n", +"printf('Fundamental frequency of quartz crystal\n')\n", +"printf('n=%.2f Hz',n)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4: compute_the_velocity_of_waves.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 4 , pg 22\n", +"lam=2*0.55*10^-3 //distance between 2 antinodes is lam/2 (in m)\n", +"n=1.45*10^6 //frequency of crystal(in Hz) (given) they have taken n=1.5 Hz in calculation\n", +"v=n*lam //velocity\n", +"printf('velocity of waves in sea water\n')\n", +"printf('v=%.1f m/s',v)\n", +"\n", +"\n", +"//sum is solved using n=1.5 Hz while the frequency given is n=1.45 Hz " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5: To_calculate_the_natural_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 5 , pg 22\n", +"l=50*10^-3//length of rod(in m)\n", +"d=7250//density(in kg/m^3)\n", +"E=11.5*10^10//youngs modulus(in N/m^2)\n", +"n=sqrt(E/d)/(2*l)//natural frequency\n", +"printf('Natural frequency of rod\n')\n", +"printf('n=%.2f KHz',n*10^-3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.6: To_calculate_the_natural_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 6 , pg 23\n", +"l=2*10^-3//length(in m)\n", +"d=2650//density(in kg/m^3)\n", +"E=7.9*10^10//youngs modulus(in N/m^2)\n", +"p=1\n", +"n=(p*sqrt(E/d))/(2*l)//natural frequency\n", +"printf('frequency of crystal\n')\n", +"printf('n=%.3f MHz',n*10^-6)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.7: To_calculate_the_natural_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 7 , pg 23\n", +"l=3*10^-3//length(in m)\n", +"d=2500//density(in kg/m^3)\n", +"E=8*10^10//youngs modulus(in N/m^2)\n", +"p=1\n", +"n=(p*sqrt(E/d))/(2*l)//natural frequency\n", +"printf('frequency of ultrasound\n')\n", +"printf('n=%.3f KHz',n*10^-3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8: To_calculate_the_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 8 , pg 23\n", +"l=1.5*10^-3//length(in m)\n", +"d=2650//density(in kg/m^3)\n", +"E=7.9*10^10//youngs modulus(in N/m^2)\n", +"p=1\n", +"n=(p*sqrt(E/d))/(2*l)//natural frequency\n", +"printf('frequency of crystal\n')\n", +"printf('n=%.3f MHz',n*10^-6)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.9: To_find_depth_of_sea.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 1 , Example1 9 , pg 24\n", +"v=1440 //velocity of ultrasonic waves(in m/s)\n", +"t=0.95 //time lapsed(in sec)\n", +"d=(v*t) //distance travelled by ultrasonic waves\n", +"d1=d/2 //depth of sea\n", +"disp (d1, ' the depth of sea ( in m) is ' )\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_D_K_Bhattacharya/10-Dielectric_materials.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/10-Dielectric_materials.ipynb new file mode 100644 index 0000000..9159b20 --- /dev/null +++ b/Engineering_Physics_by_D_K_Bhattacharya/10-Dielectric_materials.ipynb @@ -0,0 +1,81 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: Dielectric materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.1: calculate_electronic_polarizability.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 10 , Example10 1 , pg 289\n", +"Er=1.0000684 //Dielectric constant\n", +"N=2.7*10^25 //(in atoms/m^3)\n", +"E0=8.85*10^-12 //permittivity of free space (in F/m)\n", +"Alpha_e=(E0*(Er-1))/N //electronic polarization\n", +"printf('Electronic polarization (in F*m^2)\n')\n", +"disp(Alpha_e)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.2: calculate_electronic_polarizability.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 10 , Example10 2 , pg 290\n", +"Er=1.0024 //Dielectric constant\n", +"N=2.7*10^25 //(in atoms/m^3)\n", +"E0=8.85*10^-12 //permittivity of free space (in F/m)\n", +"Alpha_e=(E0*(Er-1))/N //electronic polarization\n", +"printf('Electronic polarization (in F*m^2)\n')\n", +"disp(Alpha_e)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_D_K_Bhattacharya/12-Additional_solved_examples.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/12-Additional_solved_examples.ipynb new file mode 100644 index 0000000..85af94c --- /dev/null +++ b/Engineering_Physics_by_D_K_Bhattacharya/12-Additional_solved_examples.ipynb @@ -0,0 +1,988 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: Additional solved examples" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.10: calculate_minimum_and_maximum_number_of_total_internal_reflections_per_metre.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 10 , pg 335\n", +"n1=1.5//core refractive index\n", +"n2=1.45//cladding refractive index\n", +"n0=1//refractive index of air\n", +"NA=sqrt(n1^2-n2^2)//numerical aperture\n", +"alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n", +"a=100*10^-6/2 //radius of core\n", +"phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)\n", +"L=a/tan(phi_m) //(in m)\n", +"printf('Minimum number of reflections per metre=zero\n') //since rays travelling with alpha=0 suffer no internal reflection\n", +"//for rays travelling with alpha=alpha_m ,1 internal reflection takes place for a transversed distance of 2*L\n", +"N=1/(2*L) //Maximum number of reflections per metre\n", +"disp('Maximum number of reflections per metre(in m^-1)=')\n", +"printf('N=%.0f',N)\n", +"\n", +"//Answer varies as L is restricted to 1.86*10^-4 (m) instead of 1.888*10^-4 (m)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.11: calculate_energy_and_momentum_of_photon.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 11 , pg 335\n", +"c=3*10^8 //speed of light(in m/sec)\n", +"h=6.625*10^-34//planck's constant(in J s)\n", +"lam=1.4*10^-10//wavelength(in m)\n", +"E=(h*c)/(lam*1.6*10^-19) //energy of photon(in eV)\n", +"p=h/lam //momentum of photon\n", +"printf('Energy of photo\n')\n", +"printf('E=%.1f eV\n',E)\n", +"printf('momentum of photon(in Kg m/sec)\n')\n", +"disp(p)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.12: calculate_number_of_photons_emitted_per_second.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 12 , pg 336\n", +"E1=2*10^4 //energy emitted per second(in J)\n", +"n=1000*10^3 //frequency(in Hz)\n", +"h=6.625*10^-34 //plancks constant(in J s)\n", +"E=h*n//energy carried by 1 photon(in J)\n", +"N=E1/E//number of photons emitted per second\n", +"printf('number of photons emitted per second\n')\n", +"disp(N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.13: calculate_de_Broglie_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 13 , pg 336\n", +"m=0.05//mass(in Kg)\n", +"v=2000//speed(in m/sec)\n", +"h=6.625*10^-34//plancks constant(in J s)\n", +"p=m*v//momentum(in kg m/sec)\n", +"lam=h/p //wavelength\n", +"printf('de Broglie wavelength(in m)\n')\n", +"disp(lam)\n", +"printf('de Broglie wavelength(in A)\n')\n", +"disp(lam*10^10)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.14: find_change_in_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 14 , pg 336\n", +"h=6.625*10^-34//plancksconstant(in J s)\n", +"c=3*10^8//velocity of x-ray photon(in m/sec)\n", +"m0=9.11*10^-31//rest mass of electron(in Kg)\n", +"phi=(85*%pi)/180//angle of scattering (in radian) (converting degree into radian)\n", +"delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering\n", +"printf('change in wavelength of x-ray photon(in m)\n')\n", +"disp(delta_H)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.15: find_miller_indices.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 15 , pg 337\n", +"//plane has intercepts 2a,2b,3c along the 3 crystal axes\n", +"//lattice points in 3-d lattice are given by r=p*a+q*b+s*c\n", +"//as p,q,r are the basic vectors the proportion of intercepts 2:2:3\n", +"p=2\n", +"q=2\n", +"s=3 \n", +"//therefore reciprocal\n", +"r1=1/2\n", +"r2=1/2\n", +"r3=1/3\n", +"//taking LCM\n", +"v=int32([2,2,3])\n", +"l=double(lcm(v))\n", +"m1=(l*r1)\n", +"m2=(l*r2)\n", +"m3=(l*r3)\n", +"printf('miler indices=')\n", +"disp(m3,m2,m1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.16: find_miller_indices.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 16 , pg 337\n", +"//plane has intercepts 4a,2b,4c along the 3 crystal axes\n", +"//lattice points in 3-d lattice are given by r=p*a+q*b+s*c\n", +"//as p,q,r are the basic vectors the proportion of intercepts 2:2:3\n", +"p=4\n", +"q=2\n", +"s=4 \n", +"//therefore reciprocal\n", +"r1=1/4\n", +"r2=1/2\n", +"r3=1/4\n", +"//taking LCM\n", +"v=int32([4,2,4])\n", +"l=double(lcm(v))\n", +"m1=(l*r1)\n", +"m2=(l*r2)\n", +"m3=(l*r3)\n", +"printf('miler indices=')\n", +"disp(m3,m2,m1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.17: find_size_of_unit_cell.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 17 , pg 338\n", +"d110=1.96//spacing of(1 1 0) planes (in Angstrom)\n", +"h=1\n", +"k=1\n", +"l=0 //(h k l)=(1 1 0)\n", +"a=d110*sqrt(h^2+k^2+l^2)//size of unit cell\n", +"printf('size of unit cell=')\n", +"printf('a=%.2f angstrom',a)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.18: find_volume_of_unit_cell.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 18 , pg 339\n", +"r=1.575 *10^-10 //radius of atom (in m)\n", +"a=2*r//lattice constant (for HCP structure) (in m)\n", +"c=a*sqrt(8/3) //(in m)\n", +"V=(3*sqrt(3)*a^2*c)/2 //volume of unit cell\n", +"printf('volume of unit cell(in m^3)\n')\n", +"disp(V)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.19: calculate_Fermi_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 19 , pg 339\n", +"Vf=7*10^5 //Fermi velocity (in m/s)\n", +"m=9.11*10^-31 // mass of electron(in Kg)\n", +"Ef=(m*Vf^2)/2 //Fermi energy (in J)\n", +"printf('Fermi energy for the electrons in the metal=')\n", +"printf('Ef=%.1f eV',(Ef/(1.6*10^-19))) //converting J into eV\n", +"\n", +"\n", +"\n", +"\n", +"//Answer is given wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.1: calculate_relative_population.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 1 , pg 330\n", +"lam=590*10^-9//wavelength(in m)\n", +"T=270+273 //temperature(in kelvin) (converting celsius into kelvin)\n", +"k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n", +"h=6.625*10^-34//plancks constant(in Js)\n", +"c=3*10^8//speed of light\n", +"N=exp(-(h*c)/(lam*k*T)) //N=(n2/n1)=relative population of atoms in the 1st excited state and in ground state\n", +"//n1=number of atoms in ground state\n", +"//n2=number of atoms in excited state\n", +"printf('Relative population of Na atoms in the 1st excited state and in ground state\n')\n", +"disp(N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.20: EX12_20.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 20 , pg 339\n", +"rho=1.8*10^-8 //resistivity (in ohm*m)\n", +"Ef=4.8 //Fermi energy (in eV)\n", +"E=100 //electric field intensity (in V/m)\n", +"n=6.2*10^28 //concentration of electrons (in atoms/m^3)\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"T=Me/(rho*n*e^2) //relaxation time\n", +"Un=(e*T)/Me //mobility of electron\n", +"Vd=(e*T*E)/Me //drift velocity\n", +"Vf=sqrt((2*Ef*e)/Me) //Fermi velocity\n", +"lam_m=Vf*T //mean free path\n", +"\n", +"printf('Relaxation time of electron (in s)')\n", +"disp(T)\n", +"printf('Mobility of electron (in m^2/(V*s))')\n", +"disp(Un)\n", +"printf('Drift velocity of electron (in m/s)')\n", +"disp(Vd)\n", +"printf('Fermi velocity of electrons (in m/s)')\n", +"disp(Vf)\n", +"printf('Mean free path(in m)')\n", +"disp(lam_m)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.21: evaluate_value_of_F_E.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 21 , pg 341\n", +"del_E=0.02*1.6*10^-19 // del_E = E-Ef (in J) (converting eV into J)\n", +"T=220 //temperature (in K)\n", +"k=1.38*10^-23 //boltzmanns constant (in J/K)\n", +"F_E=1/(1+exp(del_E/(k*T))) //Fermi Dirac distribution function\n", +"printf('F_E=%.3f',F_E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.22: calculate_how_is_Ef_located_relative_to_Ei.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 22 , pg 341\n", +"ni=1.5*10^10 //intrinsic concentration (in cm^-3)\n", +"Nd=5*10^15 //donor concentration (in atoms/cm^3)\n", +"T=300 //temperature (in K)\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"k=1.38*10^-23 //Boltzmann constant (in J/K)\n", +"n0=Nd //Assuming n0=Nd ( since Nd >> ni)\n", +"p0=ni^2/n0 //hole concentration\n", +"E=k*T*log(n0/ni) // E=(Ef-Ei) location of Ef relative to Ei\n", +"printf('Hole concentration (in cm^-3)')\n", +"disp(p0)\n", +"printf('Location of Ef relative to Ei (in eV)')\n", +"disp(E/e)\n", +"x = linspace(-5.5,5.5,51);\n", +"y = 1 ;\n", +"\n", +"scf(2);\n", +"clf(2);\n", +"plot(x,y+0.1);\n", +"\n", +"plot(x,y,'ro-');\n", +"plot(x,y-0.329,'--');\n", +"plot(x,y*0,'bs:');\n", +"xlabel(['x axis';'(independent variable)']);\n", +"ylabel('Energy level (eV)');\n", +"title('Band diagram');\n", +"legend(['Ec';'Ef';'Ei';'Ev']);\n", +"set(gca(),'data_bounds',matrix([-6,6,-0.1,1.1],2,-1));" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.23: find_magnitude_of_Hall_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 23 , pg 342\n", +"I=40 //current (in A)\n", +"B=1.4 //magnetic field (in T)\n", +"d=2*10^-2 //width of slab (in m)\n", +"n=8.4*10^28 //concentration of electrons (in m^-3)\n", +"e=1.6*10^-19 // charge (in C)\n", +"VH=(B*I)/(n*e*d) //Hall voltage\n", +"printf('Hall voltage(in V)=')\n", +"disp(VH)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.24: calculate_Hall_voltage_and_Hall_coefficient.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 24 , pg 342\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"Ix=2*10^-3 //current (in A)\n", +"d=220*10^-4 //thickness (in cm)\n", +"Bz=5*10^-5 //magnetic induction (in Wb/cm^2)\n", +"Un=800 //electron mobility (in cm^2/(V*s))\n", +"n=9*10^16 //doping concentration (in atoms/cm^3)\n", +"\n", +"sigma=n*e*(Un) // electrical conductivity\n", +"rho=1/sigma //resistivity\n", +"Rh=-1/(e*n) //Hall coefficient\n", +"Vh=-(Ix*Bz)/(d*e*n) //Hall voltage\n", +"printf('Resistivity(in ohm*cm)')\n", +"disp(rho)\n", +"printf('Hall coefficient(in cm^3/C)')\n", +"disp(Rh)\n", +"printf('Hall voltage (in V)')\n", +"disp(Vh)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.25: determine_magnitude_and_direction_of_magnetic_moment.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 25 , pg 343\n", +"I=10 // current(in A)\n", +"A=8*10^-4 //area(in m^2)\n", +"M=I*A //magnetic moment associated with the loop\n", +"printf('Magnetic moment associated with the loop(in A m^2)=')\n", +"disp(M)\n", +"printf('M is directed away from the observer and is perpendicular to the plane of the loop')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.26: determine_magnitude_and_direction_of_magnetic_moment.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 26 , pg 343\n", +"I=22 // current(in A)\n", +"A=9*10^-3 //area(in m^2)\n", +"M=I*A //magnetic moment associated with the loop\n", +"printf('Magnetic moment associated with the loop(in A m^2)=')\n", +"disp(M)\n", +"printf('M is directed towards the observer and is perpendicular to the plane of the loop')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.27: determine_magnetic_moment.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 27 , pg 344\n", +"r=0.62*10^-10 //radius of orbit (in m)\n", +"e= 1.6*10^-19 //charge on electron (in C)\n", +"n=10^15 //frequency of revolution of electron (in rps)\n", +"I=e*n //current (in A)\n", +"A=%pi *r^2 //area (in m^2)\n", +"M=I*A //magnetic moment associated with motion of electron \n", +"printf('Magnetic moment associated with motion of electron (in A m^2)')\n", +"disp(M)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.28: calculate_permeability.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 28 , pg 344\n", +"H=2000 //magnetizing field (in A/m)\n", +"phi=5*10^-5 //magnetic flux (in Wb)\n", +"A=0.2 *10^-4 //area (in m^2)\n", +"B=phi/A //magnetic flux density (in Wb/m^2)\n", +"u=B/H //permeability (in H/m)\n", +"printf('permeability (in H/m )=')\n", +"disp(u)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.29: calculate_susceptibility.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 29 , pg 345\n", +"ur=4000 //relative permeability\n", +"xm=ur-1 //magnetic susceptibility\n", +"printf('Magnetic susceptibility=')\n", +"disp(xm)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.2: determine_relative_population.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 2 , pg 330\n", +"lam=500*10^-9//wavelength(in m)\n", +"T=250+273 //temperature(in kelvin) (converting celsius into kelvin)\n", +"k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n", +"h=6.625*10^-34//plancks constant(in Js)\n", +"c=3*10^8//speed of light\n", +"N=exp(-(h*c)/(lam*k*T)) //N=(n2/n1)=relative population of atoms in the 1st excited state and in ground state\n", +"//n1=number of atoms in ground state\n", +"//n2=number of atoms in excited state\n", +"printf('Relative population of Na atoms in the 1st excited state and in ground state\n')\n", +"disp(N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.30: determine_critical_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 30 , pg 345\n", +"H0=6*10^4 //magnetic field intensity at 0K (in A/m)\n", +"T=4.2 //temperature (in K)\n", +"Tc=8 //critical temperature (in K)\n", +"Hc=H0*(1-(T^2/Tc^2)) // critical magnetic field intensity\n", +"printf('critical magnetic field intensity\n')\n", +"printf('Hc=%.0f A/m',Hc)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.31: calculate_critical_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 31 , pg 346\n", +"H0=7*10^4 //magnetic field intensity at 0K (in A/m)\n", +"T=4.2 //temperature (in K)\n", +"Tc=8.2 //critical temperature (in K)\n", +"Hc=H0*(1-(T^2/Tc^2)) // critical magnetic field intensity\n", +"printf('critical magnetic field intensity\n')\n", +"printf('Hc=%.0f A/m',Hc)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.32: calculate_isotopic_mass.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 32 , pg 346\n", +"M1=198.5 //isotopic mass\n", +"Tc1=4.175 //critical temperature for M1 (in K)\n", +"Tc2=4.213 //critical temperature for M2 (in K)\n", +"alpha=0.5\n", +"\n", +"//M^alpha * Tc=constant\n", +"M2=((M1^alpha*Tc1)/Tc2)^(1/alpha)\n", +"printf('Isotopic mass at critical temperature 4.133K\n')\n", +"printf('M2=%.3f ',M2)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.33: calculate_isotopic_mass.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 33 , pg 346\n", +"M1=199 //isotopic mass\n", +"Tc1=4.18 //critical temperature for M1 (in K)\n", +"Tc2=4.14 //critical temperature for M2 (in K)\n", +"alpha=0.5\n", +"\n", +"//M^alpha * Tc=constant\n", +"M2=((M1^alpha*Tc1)/Tc2)^(1/alpha)\n", +"printf('Isotopic mass at critical temperature 4.133K\n')\n", +"printf('M2=%.4f ',M2)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.3: calculate_ratio_of_stimulated_emission_to_spontaneous_emission.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 3 , pg 331\n", +"T=260+273 //temperature(in kelvin) (converting celsius into kelvin)\n", +"h=6.625*10^-34//plancks constant(in Js)\n", +"c=3*10^8//speed of light(in m/s)\n", +"lam=590*10^-9//wavelength(in m)\n", +"k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n", +"N=1/(exp((h*c)/(lam*k*T))-1) //N=((n21)'/(n21)) ratio of stimulated emission to spontaneous emission\n", +"printf('Ratio of stimulated emission to spontaneous emission is')\n", +"disp(N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.4: calculate_number_of_photons_emitted_per_minute.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 4 , pg 331\n", +"lam=632.8*10^-9//wavelength(in m)\n", +"Em=3.16*10^-3*60//energy emitted per minute(in J/min)\n", +"c=3*10^8//speed of light(in m/s)\n", +"h=6.625*10^-34//plancks constant(in Js)\n", +"n=c/lam //frequency of emitted photons(in Hz)\n", +"E=h*n //energy of each photon(in J)\n", +"N=Em/E //number of photons emitted per minute\n", +"printf('Number of photons emitted per minute')\n", +"disp(N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.5: calculate_number_of_photons_emitted_per_minute.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 5 , pg 332\n", +"lam=540*10^-9//wavelength(in m)\n", +"Em=5*10^-3*60//energy emitted per minute(in J/min)\n", +"c=3*10^8//speed of light(in m/s)\n", +"h=6.625*10^-34//plancks constant(in Js)\n", +"n=c/lam //frequency of emitted photons(in Hz)\n", +"E=h*n //energy of each photon(in J)\n", +"N=Em/E //number of photons emitted per minute\n", +"printf('Number of photons emitted per minute')\n", +"disp(N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.6: find_NA_and_critical_angle_and_alpha_m.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 6 , pg 332\n", +"n1=1.5//core refractive index\n", +"n2=1.45//cladding refractive index\n", +"n0=1//refractive index of air\n", +"NA=sqrt(n1^2-n2^2)//numerical aperture\n", +"alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n", +"phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)\n", +"phi_c=asin(n2/n1) //critical angle (in radian)\n", +"printf('NA=%.2f \n',NA)\n", +"printf('alpha_m=%.2f degree\n',(alpha_m*180)/%pi)\n", +"printf('phi_m=%.2f degree\n',(phi_m*180)/%pi)\n", +"printf('phi_c=%.2f degree',(phi_c*180)/%pi)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.7: find_NA_and_critical_angle_and_alpha_m.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 7 , pg 333\n", +"n1=1.5//core refractive index\n", +"n2=1.45//cladding refractive index\n", +"n0=1.1//refractive index of medium\n", +"NA=sqrt(n1^2-n2^2)//numerical aperture\n", +"alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n", +"phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)\n", +"phi_c=asin(n2/n1) //critical angle (in radian)\n", +"printf('NA=%.2f \n',NA)\n", +"printf('alpha_m=%.2f degree\n',(alpha_m*180)/%pi)\n", +"printf('phi_m=%.2f degree\n',(phi_m*180)/%pi)\n", +"printf('phi_c=%.2f degree',(phi_c*180)/%pi)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.8: calculate_pulse_broadening_per_unit_length.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 8 , pg 334\n", +"n1=1.5//core refractive index\n", +"n2=1.45//cladding refractive index\n", +"c=3*10^8//speed of light(in m/s)\n", +"P=(n1*(n1-n2))/(n2*c) //pulse broadening per unit length due to multiple dispersion\n", +"//P=(del_t/L) where del_t=time interval , L=distance transversed by ray inside core\n", +"printf('pulse broadening per unit length due to multiple dispersion(in s/m)')\n", +"disp(P)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.9: calculate_pulse_broadening_per_unit_length.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 9 , pg 334\n", +"n1=1.55//core refractive index\n", +"n2=1.48//cladding refractive index\n", +"c=3*10^8//speed of light(in m/s)\n", +"P=(n1*(n1-n2))/(n2*c) //pulse broadening per unit length due to multiple dispersion\n", +"//P=(del_t/L) where del_t=time interval , L=distance transversed by ray inside core\n", +"printf('pulse broadening per unit length due to multiple dispersion(in s/m)')\n", +"disp(P)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_D_K_Bhattacharya/13-Additional_solved_short_answers.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/13-Additional_solved_short_answers.ipynb new file mode 100644 index 0000000..9300a88 --- /dev/null +++ b/Engineering_Physics_by_D_K_Bhattacharya/13-Additional_solved_short_answers.ipynb @@ -0,0 +1,418 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: Additional solved short answers" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1_10: calculate_interplanar_spacing.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 1) 10 , pg 349\n", +"a=4.938 //lattice constant(in Angstrom)\n", +"h=2\n", +"k=2\n", +"l=0 //since (h k l)=(2 2 0) miller indices\n", +"d=a/sqrt(h^2+k^2+l^2) //spacing\n", +"printf('spacing of (2 2 0) planes=')\n", +"printf('d=%.3f Angstrom',d)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1_12: find_the_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 1) 12_b_3 , pg 349\n", +"Eg=0.8*1.6*10^-19 //bandgap (in J) (converting eV into J)\n", +"h=6.625*10^-34 //plancks constant (in J s)\n", +"c=3*10^8 //speed of light (in m/s)\n", +"lam=(h*c)/Eg //wavelength\n", +"printf('wavelength of light emitted (in m)is=')\n", +"disp(lam)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1_14: calculate_energy_of_scattered_photon.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 1) 14_a_3 , pg 350\n", +"lam=1.24*10^-13 //wavelength (in m)\n", +"h=6.625*10^-34//plancksconstant(in J s)\n", +"c=3*10^8//velocity of x-ray photon(in m/sec)\n", +"m0=9.11*10^-31//rest mass of electron(in Kg)\n", +"phi=(90*%pi)/180//angle of scattering (in radian) (converting degree into radian)\n", +"delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering (in m)\n", +"LAM=lam+delta_H //wavelength (in m)\n", +"E=(h*c)/LAM //energy of scattered photon (in J)\n", +"printf('Energy of scattered photon (in J)=')\n", +"disp(E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1_15: calculate_number_of_unit_cells.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 1) 15_b_3 , pg 352\n", +"a=2.88*10^-8 //lattice constant (in cm)\n", +"d=7200 //density (in Kg/m^3)\n", +"C=8/a^3 // atomic concentration\n", +"n=8 //number of atoms/cell\n", +"n1=C/n //unit cell concentration\n", +"\n", +"//since density =7200 Kg/m^3\n", +"//7200 Kg = 10^6 cc\n", +"//hence 1Kg = (10^6)/7200 cc\n", +"N=(n1*10^6)/7200 //number of unit cells present in 1 Kg of metal\n", +"printf('Number of unit cells present in 1 Kg of metal=')\n", +"disp(N)\n", +"printf('unit cells')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1_2: find_fundamental_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 1) 2 , pg 348\n", +"l=0.7*10^-3//length(in m)\n", +"E=8.8*10^10//youngs modulus(in N/m^2)\n", +"d=2800//density(in kg/m^3)\n", +"p=1//fundamental mode\n", +"n= p*sqrt(E/d)/(2*l) //natural frequency\n", +"printf('Fundamental frequency of quartz crystal)\n')\n", +"printf('n=%.2f Hz',n)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1_6: calculate_critical_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 1) 6 , pg 348\n", +"n1=1.5 //refractive index of core\n", +"n2= 1.47 // cladding refractive index\n", +"theta_c=asin(n2/n1) //critical angle (in radian)\n", +"printf('critical angle=\n')\n", +"printf('theta_c=%.2f degree',(theta_c*180)/%pi)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.2_13: calculate_Na_and_acceptance_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 2) 13_b , pg 354\n", +"n1=1.5//core refractive index\n", +"n2=1.447//cladding refractive index\n", +"n0=1//refractive index of air\n", +"NA=sqrt(n1^2-n2^2)//numerical aperture\n", +"alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n", +"printf('NA=%.1f \n',NA)\n", +"printf('alpha_m=%.2f degree\n',(alpha_m*180)/%pi)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.2_1: calculate_the_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 2) 1 , pg 352\n", +"l=4*10^-2 //length(in m)\n", +"E=207 *10^6 //youngs modulus(in N/m^2)\n", +"d=8900 //density(in kg/m^3)\n", +"p=1//fundamental mode\n", +"n= p*sqrt(E/d)/(2*l) //natural frequency\n", +"printf('Fundamental frequency of quartz crystal)\n')\n", +"printf('n=%.2f Hz',n)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.2_7: calculate_wavelength_of_scattered_radiation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 2) 7 , pg 353\n", +"lam=0.5*10^-9 //wavelength (in m)\n", +"h=6.625*10^-34//plancksconstant(in J s)\n", +"c=3*10^8//velocity of x-ray photon(in m/sec)\n", +"m0=9.11*10^-31//rest mass of electron(in Kg)\n", +"phi=(45*%pi)/180//angle of scattering (in radian) (converting degree into radian)\n", +"delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering (in m)\n", +"LAM=lam+delta_H //wavelength (in m)\n", +"printf('wavelength of scattered radiation (im m)=')\n", +"disp(LAM)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3_11: calculate_mean_free_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 3) 11_a , pg 355\n", +"Un=3*10^-3 //electron mobility (in m^2/(V*s))\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"T=(Me*Un)/e //mean free time\n", +"printf('Mean free time(in S)')\n", +"disp(T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3_12: calculate_the_resistivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 3) 12_b , pg 356\n", +"ni=1.5*10^16 //intrinsic carrier density(in m^-3)\n", +"Un=1.35 //electron mobility (in m^2/(V*s))\n", +"up=0.48 //hole mobility (in m^2/(V*s))\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"\n", +"Ix=10^-3 //current (in A)\n", +"d=100*10^-6 //thickness (in m)\n", +"Bz=0.1 //magnetic induction (in T)\n", +"Un1=0.07 //electron mobility (in m^2/(V*s))\n", +"n=10^23 //doping concentration (in atoms/m^3)\n", +"\n", +"sigma=ni*e*(Un+up) // electrical conductivity\n", +"rho=1/sigma //resistivity\n", +"Vh=-(Ix*Bz)/(d*e*n) //Hall voltage\n", +"printf('Resistivity(in ohm*m)')\n", +"disp(rho)\n", +"printf('Hall voltage (in V)')\n", +"disp(Vh)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3_13: calculate_energy_loss_per_hour_and_intensity_of_magnetization_and_flux_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 3) 13_b , pg 357\n", +"A=250 //area of B-H loop\n", +"f=50 //frequency (in Hz)\n", +"d=7.5*10^3 //density (in Kg/m^3)\n", +"M=10 //mass of core (in Kg)\n", +"\n", +"H=2000 //magnetic field intensity (in A/m)\n", +"Xm=1000 //susceptibility\n", +"U0=4*%pi*10^-7 // relative permeability\n", +"\n", +"V=M/d //volume of sample (in m^3)\n", +"N=60*60*f //number of cycles per hour\n", +"EL=A*V*N //energy loss per hour \n", +"I=H*Xm //intensity of magnetization\n", +"Ur=1+Xm\n", +"B=Ur*U0*H //magnetic flux density\n", +"printf('Energy loss per hour (in J)')\n", +"disp(EL)\n", +"printf('Intensity of magnetization (in Wb/m^3)')\n", +"disp(I)\n", +"printf('Magnetic flux density(in T)')\n", +"disp(B)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3_14: find_capacitance_and_electric_flux_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved numerical questions , Example(set 3) 14 , pg 358\n", +"Er1=1.0000684 //Dielectric constant (for sum 14_a_2)\n", +"N=2.7*10^25 //(in atoms/m^3)\n", +"E0=8.85*10^-12 //permittivity of free space (in F/m)\n", +"Er2=6 //dielectric constant (for sum 14_a_3)\n", +"E=100 //electric field intensity (in V/m) (for sum 14_a_3)\n", +"A=200*10^-4 //area (in m^2)\n", +"Er3=3.7 //dielectric constant (for sum 14_b_2)\n", +"d=10^-3 //thickness (in m)\n", +"V=300 //electric potential (in V)\n", +"Alpha_e=(E0*(Er1-1))/N //electronic polarization\n", +"R=(Alpha_e/(4*%pi*E0))^(1/3) //radius of atom\n", +"P=E0*(Er2-1)*E //polarization\n", +"C=(E0*Er3*A)/d //capacitance\n", +"E1=V/d //electric flux density\n", +"printf('Electronic polarization (in F*m^2)')\n", +"disp(Alpha_e)\n", +"printf('Radius of He atom(in m)')\n", +"disp(R)\n", +"printf('polarization(in C/m^2)')\n", +"disp(P)\n", +"printf('capacitance(in F)')\n", +"disp(C)\n", +"printf('Electric flux density (in V/m)')\n", +"disp(E1)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_D_K_Bhattacharya/2-Lasers.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/2-Lasers.ipynb new file mode 100644 index 0000000..3dc2a8b --- /dev/null +++ b/Engineering_Physics_by_D_K_Bhattacharya/2-Lasers.ipynb @@ -0,0 +1,118 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Lasers" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: To_calculate_relative_populatio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 2 , Example2 1 , pg 52\n", +"lam=590*10^-9//wavelength(in m)\n", +"T=250+273 //temperature(in kelvin) (converting celsius into kelvin)\n", +"k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n", +"h=6.625*10^-34//plancks constant(in Js)\n", +"c=3*10^8//speed of light\n", +"N=exp(-(h*c)/(lam*k*T)) //N=(n2/n1)=relative population of atoms in the 1st excited state and in ground state\n", +"//n1=number of atoms in ground state\n", +"//n2=number of atoms in excited state\n", +"printf('Relative population of Na atoms in the 1st excited state and in ground state\n')\n", +"disp(N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: To_calculate_ratio_of_stimulated_emission_to_spontaneous_emission.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 2 , Example2 2 , pg 53\n", +"T=250+273 //temperature(in kelvin) (converting celsius into kelvin)\n", +"h=6.625*10^-34//plancks constant(in Js)\n", +"c=3*10^8//speed of light(in m/s)\n", +"lam=590*10^-9//wavelength(in m)\n", +"k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n", +"N=1/(exp((h*c)/(lam*k*T))-1) //N=((n21)'/(n21)) ratio of stimulated emission to spontaneous emission\n", +"printf('Ratio of stimulated emission to spontaneous emission is')\n", +"disp(N)\n", +"\n", +"\n", +"//answer given is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: calculate_number_of_photons_emitted_per_minute.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 2 , Example2 3 , pg 53\n", +"lam=632.8*10^-9//wavelength(in m)\n", +"Em=3.147*10^-3*60//energy emitted per minute(in J/min)\n", +"c=3*10^8//speed of light(in m/s)\n", +"h=6.625*10^-34//plancks constant(in Js)\n", +"n=c/lam //frequency of emitted photons(in Hz)\n", +"E=h*n //energy of each photon(in J)\n", +"N=Em/E //number of photons emitted per minute\n", +"printf('Number of photons emitted per minute')\n", +"disp(N)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_D_K_Bhattacharya/3-Fibre_optics_and_its_applications.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/3-Fibre_optics_and_its_applications.ipynb new file mode 100644 index 0000000..8478af5 --- /dev/null +++ b/Engineering_Physics_by_D_K_Bhattacharya/3-Fibre_optics_and_its_applications.ipynb @@ -0,0 +1,125 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Fibre optics and its applications" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: To_find_NAand_phi_m_and_critical_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 3 , Example 3.1 , pg 84\n", +"n1=1.5//core refractive index\n", +"n2=1.47//cladding refractive index\n", +"n0=1//refractive index of air\n", +"NA=sqrt(n1^2-n2^2)//numerical aperture\n", +"alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n", +"phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)\n", +"phi_c=asin(n2/n1) //critical angle (in radian)\n", +"printf('NA=%.1f \n',NA)\n", +"printf('alpha_m=%.2f degree\n',(alpha_m*180)/%pi)\n", +"printf('phi_m=%.2f degree\n',(phi_m*180)/%pi)\n", +"printf('phi_c=%.2f degree',(phi_c*180)/%pi)\n", +"\n", +"\n", +"//data given is n2=1.97 which is not possible since refractive index of cladding should always be less than refractive index of core\n", +"//in calculation n2=1.47" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: calculate_pulse_broadening_per_unit_length.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 3 , Example 3.2 , pg 85\n", +"n1=1.5//core refractive index\n", +"n2=1.47//cladding refractive index\n", +"c=3*10^8//speed of light(in m/s)\n", +"P=(n1*(n1-n2))/(n2*c) //pulse broadening per unit length due to multiple dispersion\n", +"//P=(del_t/L) where del_t=time interval , L=distance transversed by ray inside core\n", +"printf('pulse broadening per unit length due to multiple dispersion(in s/m)')\n", +"disp(P)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: To_calculate_minimum_and_maximum_number_of_total_internal_reflections_per_metre.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 3 , Example 3.3 , pg 85\n", +"n1=1.5//core refractive index\n", +"n2=1.47//cladding refractive index\n", +"n0=1//refractive index of air\n", +"a=100*10^-6/2 //radius of core\n", +"NA=sqrt(n1^2-n2^2)//numerical aperture\n", +"alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n", +"phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)\n", +"L=a/tan(phi_m) //(in m)\n", +"printf('Minimum number of reflections per metre=zero\n') //since rays travelling with alpha=0 suffer no internal reflection\n", +"//for rays travelling with alpha=alpha_m ,1 internal reflection takes place for a transversed distance of 2*L\n", +"N=1/(2*L) //Maximum number of reflections per metre\n", +"disp('Maximum number of reflections per metre(in m^-1)=')\n", +"printf('N=%.0f',N)\n", +"\n", +"//Answer varies as L is restricted to 2.45*10^-4 (m) instead of 2.462*10^-4 (m)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_D_K_Bhattacharya/4-Quantum_physics.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/4-Quantum_physics.ipynb new file mode 100644 index 0000000..8252269 --- /dev/null +++ b/Engineering_Physics_by_D_K_Bhattacharya/4-Quantum_physics.ipynb @@ -0,0 +1,292 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Quantum physics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1: calculate_energy_and_momentum_of_photon.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 4 , Example4 1 , pg 117\n", +"c=3*10^8 //speed of light(in m/sec)\n", +"h=6.625*10^-34//planck's constant(in J s)\n", +"lam=1.2*10^-10//wavelength(in m)\n", +"E=(h*c)/(lam*1.6*10^-19) //energy of photon(in eV)\n", +"p=h/lam //momentum of photon\n", +"printf('Energy of photo\n')\n", +"printf('E=%.1f eV\n',E)\n", +"printf('momentum of photon(in Kg m/sec)\n')\n", +"disp(p)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: calculate_number_of_photons_emitted_per_second.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 4 , Example 4.2 , pg 117\n", +"E1=10^4 //energy emitted per second(in J)\n", +"n=900*10^3 //frequency(in Hz)\n", +"h=6.625*10^-34 //plancks constant(in J s)\n", +"E=h*n//energy carried by 1 photon(in J)\n", +"N=E1/E//number of photons emitted per second\n", +"printf('number of photons emitted per second\n')\n", +"disp(N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: determine_number_of_photons_emitted_per_second.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 4 , Example 4.3 , pg 118\n", +"c=3*10^8//speed of light(in m/sec)\n", +"h=6.625*10^-34//plancks constant(in J s)\n", +"E1=100//energy emitted per second(in J)\n", +"lam=5893*10^-10//wavelength(in m)\n", +"E=(h*c)/lam //energy carried by 1 photon\n", +"N=E1/E//number of photons emitted per second\n", +"printf('number of photons emitted per second\n')\n", +"disp(N)\n", +"\n", +"\n", +"//answer mentioned is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: find_the_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 4 , Example 4.4 , pg 118\n", +"lam=2.8*10^-10//wavelength (in m)\n", +"theta=(30*%pi)/180//viewing angle(in radian) (converting degree into radian)\n", +"c=3*10^8//speed of light(in m/sec)\n", +"h=6.625*10^-34//plancks constant(in J s)\n", +"m0=9.11*10^-31//rest mass of electron(in Kg)\n", +"lam1=lam+((2*h)*sin(theta/2)^2)/(m0*c) //wavelength of scattered radiation\n", +"printf('wavelength of scattered radiation(in m)\n')\n", +"disp(lam1)\n", +"printf('wavelength of scattered radiation(in Angstrom)\n')\n", +"disp(lam1*10^10)\n", +"\n", +"\n", +"//calculation is done assuming h=6.6*10^-34 Js in book" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5: calculate_de_Broglie_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 4 , Example 4.5 , pg 119\n", +"m=0.04//mass(in Kg)\n", +"v=1000//speed(in m/sec)\n", +"h=6.625*10^-34//plancks constant(in J s)\n", +"p=m*v//momentum(in kg m/sec)\n", +"lam=h/p //wavelength\n", +"printf('de Broglie wavelength(in m)\n')\n", +"disp(lam)\n", +"printf('de Broglie wavelength(in A)\n')\n", +"disp(lam*10^10)\n", +"\n", +"\n", +"\n", +"//calculation is done assuming h=6.6*10^-34 Js" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6: find_energy_of_particle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 4 , Example 4.6 , pg 119\n", +"a=0.1 *10^-9 //width (in m)\n", +"n=1// lowest energy state of particle is obtained at n=1\n", +"h=6.625*10^-34 //plancks constant(in Js)\n", +"m=9.11*10^-31//mass of electron (in Kg)\n", +"E=(h^2)/(8*m*a^2)//energy of an electron\n", +"printf('Energy of electron in ground state(in J)\n')\n", +"disp(E)\n", +"printf('E=%.3f eV',E/(1.6025*10^-19))\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.7: calculate_minimum_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 4 , Example 4.7 , pg 120\n", +"a=4*10^-9 //width (in m)\n", +"n=1// lowest energy state of particle is obtained at n=1\n", +"h=6.625*10^-34 //plancks constant(in Js)\n", +"m=9.11*10^-31//mass of electron (in Kg)\n", +"E=(h^2)/(8*m*a^2)//energy of an electron\n", +"printf('Energy of electron in ground state(in J)\n')\n", +"disp(E)\n", +"printf('E=%.5f eV',E/(1.6025*10^-19))\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.8: EX4_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 4 , Example 4.8 , pg 120\n", +"a=0.1 *10^-9 //width (in m)\n", +"n1=1// lowest energy state of particle is obtained at n=1\n", +"n=6 //6th excited state hance n=6\n", +"h=6.625*10^-34 //plancks constant(in Js)\n", +"m=9.11*10^-31//mass of electron (in Kg)\n", +"//E=(n^2*h^2)/(8*m*a^2) n=excited state of electron \n", +"E1=(n1^2*h^2)/(8*m*a^2)//energy of an electron in ground state (in J)\n", +"E6=(n^2*h^2)/(8*m*a^2)//energy at 6th excuted state(in J)\n", +"E=E6-E1//energy required to excite the electron from ground state to the 6th excited state\n", +"printf('energy required to excite the electron from ground state to the 6th excited state(in J)\n')\n", +"disp(E)\n", +"printf('E=%.2f eV',(E/(1.6025*10^-19)))" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.9: find_change_in_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 4 , Example 4.9 , pg 121\n", +"h=6.625*10^-34//plancksconstant(in J s)\n", +"c=3*10^8//velocity of x-ray photon(in m/sec)\n", +"m0=9.11*10^-31//rest mass of electron(in Kg)\n", +"phi=(90*%pi)/180//angle of scattering (in radian) (converting degree into radian)\n", +"delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering\n", +"printf('change in wavelength of x-ray photon(in m)\n')\n", +"disp(delta_H)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_D_K_Bhattacharya/5-Crystal_physics.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/5-Crystal_physics.ipynb new file mode 100644 index 0000000..d5e28dc --- /dev/null +++ b/Engineering_Physics_by_D_K_Bhattacharya/5-Crystal_physics.ipynb @@ -0,0 +1,237 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Crystal physics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: determine_miller_indices.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 5 , Example5 1 , pg 149\n", +"//plane has intercepts a,2b,3c along the 3 crystal axes\n", +"//lattice points in 3-d lattice are given by r=p*a+q*b+s*c\n", +"//as p,q,r are the basic vectors the proportion of intercepts 1:2:3\n", +"p=1\n", +"q=2\n", +"s=3 \n", +"//therefore reciprocal\n", +"r1=1/1\n", +"r2=1/2\n", +"r3=1/3\n", +"//taking LCM\n", +"v=int32([1,2,3])\n", +"l=double(lcm(v))\n", +"m1=(l*r1)\n", +"m2=(l*r2)\n", +"m3=(l*r3)\n", +"printf('miler indices=')\n", +"disp(m3,m2,m1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.2: calculate_density_of_Si.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 5 , Example5 2 , pg 150\n", +"a=5.43*10^-8//lattice constant(in cm)\n", +"M=28.1 //atomic weight (in g)\n", +"n=8// number of atoms/cell (for Si)\n", +"N=6.02*10^23 //Avogadro number\n", +"C=n/a^3 //atomic concentration =(number of atoms/cell)/cell volume (in atoms/cm^3)\n", +"D=(C*M)/N //Density\n", +"printf('Density of Si=')\n", +"printf('D=%.2f g/cm^3',D)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3: calculate_surface_density_of_atoms.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 5 , Example5 3 , pg 151\n", +"//(1 1 1) plane for a BCC crystal\n", +"a=5*10^-10//lattice constant (in m)\n", +"//height of equilaterl triangle (shaded area) =a*sqrt(3/2)\n", +"//hence area of shaded triangular portion is a*sqrt(2)*a*sqrt(3/2)/2 = a^2*sqrt(3)/2\n", +"//every corner atom contributes 1/6to the area\n", +"n111=(3/6)/(a^2*sqrt(3)/2) //planar concentration\n", +"printf('surface density of atoms in (1 1 1)plane of BCC structure (in atoms/m^2)')\n", +"disp(n111)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.4: calculate_spacing_of_planes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 5 , Example5 2 , pg 150\n", +"a=4.049 //lattice constant(in Angstrom)\n", +"h=2\n", +"k=2\n", +"l=0 //since (h k l)=(2 2 0) miller indices\n", +"d=a/sqrt(h^2+k^2+l^2) //spacing\n", +"printf('spacing of (2 2 0) planes=')\n", +"printf('d=%.3f Angstrom',d)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.5: determine_size_of_unit_cell.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 5 , Example5 5 , pg 152\n", +"d110=2.03//spacing of(1 1 0) planes (in Angstrom)\n", +"h=1\n", +"k=1\n", +"l=0 //(h k l)=(1 1 0)\n", +"a=d110*sqrt(h^2+k^2+l^2)//size of unit cell\n", +"printf('size of unit cell=')\n", +"printf('a=%.2f angstrom',a)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.6: determine_spacing_between_planes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 5 , Example5 6 , pg 152\n", +"a=5.64//lattice constant (in Angstrom)\n", +"h1=1\n", +"k1=0\n", +"l1=0 //(h1 k1 l1)=(1 0 0)\n", +"h2=1\n", +"k2=1\n", +"l2=0 //(h2 k2 l2)=(1 1 0)\n", +"h3=1\n", +"k3=1\n", +"l3=1//(h3 k3 l3)=(1 1 1)\n", +"d100=a/sqrt(h1^2+k1^2+l1^2) //spacing of (1 0 0)planes\n", +"d110=a/sqrt(h2^2+k2^2+l2^2) //spacing of (1 1 0)planes\n", +"d111=a/sqrt(h3^2+k3^2+l3^2) //spacing of (1 1 1)planes\n", +"printf('spacing of (1 0 0) planes=')\n", +"printf('d100=%.2f Angstrom\n',d100)\n", +"printf('spacing of (1 1 0) planes=')\n", +"printf('d110=%.2f Angstrom\n',d110)\n", +"printf('spacing of (1 1 1) planes=')\n", +"printf('d111=%.2f Angstrom',d111)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.7: find_volume_of_unit_cell.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 5 , Example5 7 , pg 153\n", +"r=1.605 *10^-10 //radius of atom (in m)\n", +"a=2*r//lattice constant (for HCP structure) (in m)\n", +"c=a*sqrt(8/3) //(in m)\n", +"V=(3*sqrt(3)*a^2*c)/2 //volume of unit cell\n", +"printf('volume of unit cell(in m^3)\n')\n", +"disp(V)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_D_K_Bhattacharya/6-Conducting_materials.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/6-Conducting_materials.ipynb new file mode 100644 index 0000000..b48b626 --- /dev/null +++ b/Engineering_Physics_by_D_K_Bhattacharya/6-Conducting_materials.ipynb @@ -0,0 +1,486 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Conducting materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.10: calculate_electrical_conductivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6.10 , pg 175\n", +"lam=4*10^-8 //maen free path of electrons (in m)\n", +"n=8.4*10^28 //electron density (in m^-3)\n", +"Vth=1.6*10^6 //average thermal velocity of electrons (in m/s)\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"sigma=(n*e^2*lam)/(Vth*Me) //conductivity\n", +"printf('Electrical conductivity (in /(ohm*m))')\n", +"disp(sigma)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.11: calculate_electrical_and_thermal_conductivities.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6.11 , pg 176\n", +"Tr=10^-14 //relaxation time (in s)\n", +"T=300 //temperature (in K)\n", +"n=6*10^28 //electron concentration (in /m^3)\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"k=1.38*10^-23 //Boltzmann constant (in J/K)\n", +"sigma=(n*e^2*Tr)/(Me) //Electrical conductivity \n", +"K=(3*n*k^2*Tr*T)/(2*Me) //Thermal conductivity \n", +"L=K/(sigma*T) //Lorentz number\n", +"printf('Electrical conductivity (in /(ohm*m))')\n", +"disp(sigma)\n", +"printf('Thermal conductivity (in W/(m*K))')\n", +"disp(K)\n", +"printf('Lorentz number (in(W*ohm)/K^2)')\n", +"disp(L)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.12: find_relaxation_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6.12 , pg 177\n", +"n=5.8*10^28 // electron concentration (in /m^3)\n", +"e=1.6*10^-19 // charge of electron (in C)\n", +"rho=1.54*10^-8 //resistivity of metal (in ohm*m)\n", +"M=9.11*10^-31 //mass of electron (in Kg)\n", +"T=M/(n*e^2*rho) //relaxation time\n", +"printf('Relaxation time(in s)')\n", +"disp(T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.13: calculate_drift_velocity_and_mobility_and_relaxation_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6.13 , pg 177\n", +"rho=1.54*10^-8 //resistivity (in ohm*m)\n", +"E=100 //electric field intensity (in V/m)\n", +"n=5.8*10^28 //electron concentration (in /m^3)\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"T=Me/(rho*n*e^2) //relaxation time\n", +"Vd=(e*E*T)/Me //drift velocity\n", +"U=Vd/E //mobility\n", +"printf('Relaxation time (in s)')\n", +"disp(T)\n", +"printf('Drift veloity (in m/s)')\n", +"disp(Vd)\n", +"printf('Mobility(in m^2/(V*s))')\n", +"disp(U)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.14: calculate_drift_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 14 , pg 178\n", +"T=300 //temperature (in K)\n", +"l=2 //length (in m)\n", +"R=0.02 //Resistance (in ohm)\n", +"u=4.3*10^-3 // (in m^2/(V*s))\n", +"I=15 //current (in A)\n", +"V=I*R //voltage drop across wire (in V )\n", +"E=V/l //electric field across wire (in V/m)\n", +"Vd=u*E //drift velocity (in m/s)\n", +"printf('Drift velocity (in m/s)')\n", +"disp(Vd)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.15: calculate_Fermi_energy_and_Fermi_temperature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 15 , pg 179\n", +"m=9.11*10^-31 //mass of electron (in Kg)\n", +"k=1.38*10^-23 //boltzmann constant (in J/K)\n", +"e=1.6*10^-19 //electronic charge(in C )\n", +"Vf=0.86*10^6 //Fermi velocity of electron (in m/s)\n", +"Ef=(m*Vf^2)/(2*e) //Fermi energy (in eV)\n", +"Tf=(Ef*e)/k //Fermi temperature\n", +"printf('Fermi energy=')\n", +"printf('Ef=%.1f eV \n',Ef)\n", +"printf('Fermi temperature =')\n", +"printf('Tf=%.0f K',Tf)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.16: calculate_Fermi_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 16 , pg 179\n", +"Tf=2460 //Fermi temperature (in K)\n", +"m=9.11*10^-31 //mass of electron (in Kg)\n", +"k=1.38*10^-23 //boltzmann constant (in J/K)\n", +"Vf=sqrt((2*k*Tf)/m) //Fermi velocity\n", +"printf('Fermi velocity (in m/s)=')\n", +"disp(Vf)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: calculate_Fermi_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 1 , pg 170\n", +"Vf=10^6 //Fermi velocity (in m/s)\n", +"m=9.11*10^-31 // mass of electron(in Kg)\n", +"Ef=(m*Vf^2)/2 //Fermi energy (in J)\n", +"printf('Fermi energy for the electrons in the metal=')\n", +"printf('Ef=%.1f eV',(Ef/(1.6*10^-19))) //converting J into eV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: calculate_Fermi_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 2 , pg 170\n", +"Ef0=7.04*1.6*10^-19 // Fermi energy at 0 K (converting eV into J)\n", +"T=300 //temperature (in K)\n", +"k=1.38*10^-23 //boltzmann constant (in (m^2*Kg)/(s^2*K^-1))\n", +"Ef=Ef0*(1-(%pi^2*(k*T)^2)/(12*Ef0^2)) //Fermi energy at 300 K (in J)\n", +"printf('Fermi energy at 300 K =')\n", +"printf('Ef=%.4f eV',(Ef/(1.6*10^-19))) //converting J into eV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: calculate_conductivity_and_relaxation_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6.3 , pg 171\n", +"d=2.7*10^3 //density (in Kg/m^3)\n", +"Ma=27 //atomic weight\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"T=10^-14 //relaxation time (in s)\n", +"Na=6.022*10^23 //Avogadro constant\n", +"N=3*10^3 //number of free electrons per atom\n", +"n=(d*Na*N)/Ma //(in /m^3)\n", +"sigma=(n*e^2*T)/Me //conductivity\n", +"printf('Conductivity of Al (in /(ohm*m))')\n", +"disp(sigma)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4: calculate_Lorentz_number.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 4 , pg 171\n", +"sigma=5.87*10^7 // electrical conductivity (in /(ohm m))\n", +"K=390 //thermal conductivity (in W/(m K))\n", +"T=293 //temperature (in K)\n", +"L=K/(sigma*T) //Lorentz number by wiedemann-Franz law\n", +"printf('Lorentz number (in W*ohm /K^2)')\n", +"disp(L)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5: calculate_electrical_conductivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 5 , pg 172\n", +"d=8900 //density (in Kg/m^3)\n", +"M=63.5 //atomic weight \n", +"T=10^-14 //relaxation time(in s)\n", +"N=6.022*10^23 //Avogadros constant\n", +"N1=10^3 //number of free electrons per atom\n", +"e=1.6*10^-19 //electronic charge (in C)\n", +"me=9.11*10^-31 //mass of electron (in Kg)\n", +"\n", +"n=(N*d*N1)/M \n", +"sigma =(n*e^2*T)/me //electrical conductivity\n", +"printf('Electrical conductivity(in ohm m)=')\n", +"disp(sigma)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.6: EX6_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 6 , pg 172\n", +"rho=1.54*10^-8 //resistivity (in ohm*m)\n", +"Ef=5.5 //Fermi energy (in eV)\n", +"E=100 //electric field intensity (in V/m)\n", +"n=5.8*10^28 //concentration of electrons (in atoms/m^3)\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"T=Me/(rho*n*e^2) //relaxation time\n", +"Un=(e*T)/Me //mobility of electron\n", +"Vd=(e*T*E)/Me //drift velocity\n", +"Vf=sqrt((2*Ef*e)/Me) //Fermi velocity\n", +"lam_m=Vf*T //mean free path\n", +"\n", +"printf('Relaxation time of electron (in s)')\n", +"disp(T)\n", +"printf('Mobility of electron (in m^2/(V*s))')\n", +"disp(Un)\n", +"printf('Drift velocity of electron (in m/s)')\n", +"disp(Vd)\n", +"printf('Fermi velocity of electrons (in m/s)')\n", +"disp(Vf)\n", +"printf('Mean free path(in m)')\n", +"disp(lam_m)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.7: calculate_thermal_conductivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 6 , pg 174\n", +"L= 2.26*10^-8 //Lorentz number (in W*m /K^2)\n", +"T=27+273 //temperature (in K) (converting celsius into kelvin)\n", +"rho=1.72*10^-8 //electrical resistivity (in ohm *m)\n", +"\n", +"//according to Wiedemann-Franz law\n", +"K=(L*T)/rho //thermal conductivity\n", +"printf('Thermal conductivity =')\n", +"printf('K=%.0f W/(m*K)',K)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.8: calculate_Lorentz_number.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 8 , pg 174\n", +"sigma=5.87*10^7 // electrical conductivity (in /(ohm m))\n", +"K=390 //thermal conductivity (in W/(m K))\n", +"T=293 //temperature (in K)\n", +"L=K/(sigma*T) //Lorentz number by wiedemann-Franz law\n", +"printf('Lorentz number (in W*ohm /K^2)')\n", +"disp(L)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.9: find_F_E.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 9 , pg 174\n", +"del_E=0.01*1.6*10^-19 // del_E = E-Ef (in J) (converting eV into J)\n", +"T=200 //temperature (in K)\n", +"k=1.38*10^-23 //boltzmanns constant (in J/K)\n", +"F_E=1/(1+exp(del_E/(k*T))) //Fermi Dirac distribution function\n", +"printf('F_E=%.2f',F_E)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_D_K_Bhattacharya/7-Semiconducting_materials.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/7-Semiconducting_materials.ipynb new file mode 100644 index 0000000..2e9bd9c --- /dev/null +++ b/Engineering_Physics_by_D_K_Bhattacharya/7-Semiconducting_materials.ipynb @@ -0,0 +1,720 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Semiconducting materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.10: find_the_new_position_of_Fermi_level.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example 7.10 , pg 214\n", +"T1=300 //temperature (in K)\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"k=1.38*10^-23 //Boltzmann constant (in J/K)\n", +"T2=330 //temperature (in K)\n", +"E1=0.3 // E1=(Ec-Ef_300) (in eV)\n", +"E2=(E1*T2)/T1 //E2=(Ec-Ef_330) (in eV)\n", +"printf('At 330 K the Fermi energy kevel lies ')\n", +"disp(E2)\n", +"printf('(in eV) below conduction band')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.11: calculate_concentration_in_conduction_band.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example 7.11 , pg 214\n", +"T=300 //temperature (in K)\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"h=6.625*10^-34 //plancks constant (in m^2*Kg*S^-1)\n", +"Eg=1.1 //bandgap (in eV)\n", +"k=1.38*10^-23 //Boltzmann constant (in J/K)\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"Mn=0.31*Me //electron effective mass\n", +"ni=2*((2*%pi*k*T*Mn)/h^2)^(3/2)*exp(-(Eg*e)/(2*k*T)) //intrinsic concentration\n", +"printf('Intrinsic concentration (in m^-3)')\n", +"disp(ni)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.12: calculate_drift_mobility_of_electro.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.12 , pg 214\n", +"T=300 //temperature (in K)\n", +"Rh=0.55*10^-10 //Hall coefficient (in m^3/(A*s))\n", +"sigma=5.9*10^7 //conductivity (in ohm^-1 * m^-1)\n", +"DM= Rh*sigma //drift mobility\n", +"printf('Drift mobility (in m^2/(V *s))=')\n", +"disp(DM)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.13: calculate_concentration_of_conduction_electrons_in_Cu.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example 7.13 , pg 215\n", +"Ud=3.2*10^-3 //electron drift mobility (in m^2/(V*s))\n", +"sigma=5.9*10^7 //conductivity (in /(ohm*m))\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"Na=6.022*10^23 //Avogadro constant (in mol^-1)\n", +"ni=sigma/(Ud*e) //intrinsic concentration (in m^-3)\n", +"Aw=63.5 //atomic weight\n", +"d=8960 //density (in Kg/m^3)\n", +"n=10^3 //number of free electrons per atom\n", +"N=(Na*d*n)/Aw //concentration of free electrons in pure Cu\n", +"Avg_N=ni/N //Average number of electrons contributed per Cu atom\n", +"printf('concentration of free electrons in pure Cu (in m^-3)')\n", +"disp(N)\n", +"printf('Average number of electrons contributed per Cu atom\n')\n", +"printf('Avg_N=%.2f ',Avg_N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.14: calculate_charge_carrier_density_and_electron_mobility.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.14 , pg 215\n", +"RH=3.66*10^-11 //Hall coefficient (in m^3/(A*s))\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"sigma=112*10^7 //conductivity (in (oh*m)^-1)\n", +"n=1/(RH*e) //charge carrier density\n", +"Un=sigma/(n*e) //electron mobility\n", +"printf('charge carrier density(in m^-3)=')\n", +"disp(n)\n", +"printf('Electron mobility=')\n", +"printf('Un=%.3f m^2/(A*s)',Un)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.15: calculate_magnitude_of_Hall_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.15 , pg 216\n", +"I=50 //current (in A)\n", +"B=1.5 //magnetic field (in T)\n", +"d=0.2*10^-2 //width of slab (in m)\n", +"n=8.4*10^28 //concentration of electrons (in m^-3)\n", +"e=1.6*10^-19 // charge (in C)\n", +"VH=(B*I)/(n*e*d) //Hall voltage\n", +"printf('Hall voltage(in V)=')\n", +"disp(VH)\n", +"\n", +"\n", +"\n", +"\n", +"//Answer given is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.16: find_resistance_of_intrinsic_Ge.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.16 , pg 216\n", +"ni=2.5*10^19 //intrinsic carrier density(in m^-3)\n", +"Un=0.39 //electron mobility (in m^2/(V*s))\n", +"up=0.19 //hole mobility (in m^2/(V*s))\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"l=10^-2 //length (in m)\n", +"A=10^-3*10^-3 //area (in m^2)\n", +"sigma=ni*e*(Un+up) // electrical conductivity (in (ohm*m)^-1)\n", +"R=l/(sigma*A) //Resistance\n", +"printf('Resistance of intrinsic Ge rod\n')\n", +"printf('R=%.0f ohm',R)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.17: determine_the_position_of_Fermi_level.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.17 , pg 216\n", +"Eg=1.12 //bandgap (in eV)\n", +"T=300 //temperature (in K)\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"Mn=0.12*Me\n", +"Mp=0.28*Me\n", +"k=1.38*10^-23 //Boltzmann constant (in (m^2*Kg)/(s^2*K))\n", +"Ef=(Eg/2)+((log(Mp/Mn)*3*k*T)/(4*1.6*10^-19))\n", +"printf('position of Fermi level')\n", +"printf('Ef=%.3f eV',Ef)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.18: calculate_electrical_conductivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.18 , pg 217\n", +"ni=1.5*10^16 //intrinsic carrier density(in m^-3)\n", +"Un=0.13 //electron mobility (in m^2/(V*s))\n", +"up=0.05 //hole mobility (in m^2/(V*s))\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"sigma=ni*e*(Un+up) // electrical conductivity\n", +"printf('Electrical conductivity\n')\n", +"printf('sigma=%.6f (ohm*m)^-1',sigma)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.19: find_intrinsic_resistivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.19 , pg 217\n", +"ni=2.15*10^13 //intrinsic carrier density(in cm^-3)\n", +"Un=3900 //electron mobility (in cm^2/(V*s))\n", +"up=1900 //hole mobility (in cm^2/(V*s))\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"sigma_I=ni*e*(Un+up) // electrical conductivity (in (ohm*cm)^-1)\n", +"rho_I=1/sigma_I //intrinsic resistivity\n", +"printf('Intrinsic resistivity\n')\n", +"printf('rho_I=%.0f ohm*cm',rho_I)\n", +"\n", +"\n", +"\n", +"\n", +"//Intrisic carrier density is given as 2.15*10^-13 instead of 2.15*10^13" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1: Evaluate_approximate_donor_binding_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.1 , pg 208\n", +"Er=13.2 // relative permittivity\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"Mnc=0.067*Me\n", +"h=6.625*10^-34 //plancks constant (in Js)\n", +"Eo=8.85*10^-12\n", +"e=1.6*10^-19 //electronic charge of electron (in C)\n", +"E=(Mnc*e^4)/(8*(Er*Eo)^2*h^2) //Donor binding energy (in J)\n", +"printf('Donor binding energy (in J)=')\n", +"disp(E)\n", +"printf('E=%.4f eV',(E/e))" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.20: find_electrical_conductivity_before_and_after_addition_of_B_atoms.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.20 , pg 217\n", +"ni=2.1*10^19 //intrinsic carrier density(in m^-3)\n", +"Un=0.4 //electron mobility (in m^2/(V*s))\n", +"up=0.2 //hole mobility (in m^2/(V*s))\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"sigma=ni*e*(Un+up) // electrical conductivity\n", +"printf('Electrical conductivity\n')\n", +"printf('sigma=%.3f (ohm*m)^-1',sigma)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.21: find_Hall_coefficient_and_electron_mobility.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example 7.21 , pg 218\n", +"e=1.6*10^-19 // charge of electron (in C)\n", +"I=5*10^-3 // current (in mA)\n", +"V=1.35 // voltage (in V)\n", +"Vh=20*10^-3 //Hall voltage (in V)\n", +"B=0.45 //magnetic induction (in T)\n", +"l=10^-2 //length (in m)\n", +"b=5*10^-3 //breadth (in m)\n", +"d=10^-3 //thickness (in m)\n", +"R=V/I //resistance (in ohm)\n", +"A=b*d //area (in m^2)\n", +"rho= (R*A)/l //resistivity (in ohm*m)\n", +"E=Vh/d //Hall electric field (in V/m)\n", +"J=I/A //current density (in A/m^2)\n", +"Rh=E/(B*J) //Hall coefficient \n", +"Un=Rh/rho //electron mobility (in m^2/(V*S))\n", +"printf('Hall coefficient =')\n", +"printf('Rh=%.3f m^3/C \n',Rh)\n", +"printf('Electron mobility=')\n", +"printf('Un=%.2f m^2/(V*S)',Un)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.22: find_Hall_potential_difference.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.22 , pg 218\n", +"Ix=200 //current (in A)\n", +"Bz=1.5 //magnetic field (in T)\n", +"d=10^-3 //width of slab (in m)\n", +"p=8.4*10^28 //concentration of electrons (in m^-3)\n", +"e=1.6*10^-19 // charge (in C)\n", +"VH=(Bz*Ix)/(p*e*d) //Hall voltage\n", +"printf('Hall voltage(in V)=')\n", +"disp(VH)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: calculate_equilibrium_hole_concentration_and_how_is_Ef_located_relative_to_Ei.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example 7.2 , pg 208\n", +"ni=1.5*10^10 //intrinsic concentration (in cm^-3)\n", +"Nd=10^16 //donor concentration (in atoms/cm^3)\n", +"T=300 //temperature (in K)\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"k=1.38*10^-23 //Boltzmann constant (in J/K)\n", +"n0=Nd //Assuming n0=Nd ( since Nd >> ni)\n", +"p0=ni^2/n0 //hole concentration\n", +"E=k*T*log(n0/ni) // E=(Ef-Ei) location of Ef relative to Ei\n", +"printf('Hole concentration (in cm^-3)')\n", +"disp(p0)\n", +"printf('Location of Ef relative to Ei (in eV)')\n", +"disp(E/e)\n", +"x = linspace(-5.5,5.5,51);\n", +"y = 1 ;\n", +"\n", +"scf(2);\n", +"clf(2);\n", +"plot(x,y+0.1);\n", +"\n", +"plot(x,y,'ro-');\n", +"plot(x,y-0.347,'--');\n", +"plot(x,y*0,'bs:');\n", +"xlabel(['x axis';'(independent variable)']);\n", +"ylabel('Energy level (eV)');\n", +"title('Band diagram');\n", +"legend(['Ec';'Ef';'Ei';'Ev']);\n", +"set(gca(),'data_bounds',matrix([-6,6,-0.1,1.1],2,-1));" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3: calculate_resistivity_of_sample.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.3 , pg 208\n", +"Nd=10^14 //Donor density (in atoms/cm^3)\n", +"e=1.6*10^-19 //electronic charge of electron (in C)\n", +"Un=3900 // electron mobility (in cm^2/(V*s)) for Ge at 300 K\n", +"sigma=Nd*e*Un //conductivity\n", +"rho=1/sigma //resistivity\n", +"printf('Resistivity=\n')\n", +"printf('rho=%.2f ohm*cm',rho)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.4: calculate_resistivity_and_Hall_coefficient_and_Hall_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7 4 , pg 209\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"Ix=2*10^-3 //current (in A)\n", +"d=200*10^-4 //thickness (in cm)\n", +"Bz=5*10^-5 //magnetic induction (in Wb/cm^2)\n", +"Un=800 //electron mobility (in cm^2/(V*s))\n", +"n=5*10^16 //doping concentration (in atoms/cm^3)\n", +"\n", +"sigma=n*e*(Un) // electrical conductivity\n", +"rho=1/sigma //resistivity\n", +"Rh=-1/(e*n) //Hall coefficient\n", +"Vh=-(Ix*Bz)/(d*e*n) //Hall voltage\n", +"printf('Resistivity(in ohm*cm)')\n", +"disp(rho)\n", +"printf('Hall coefficient(in cm^3/C)')\n", +"disp(Rh)\n", +"printf('Hall voltage (in V)')\n", +"disp(Vh)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.5: EX7_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example 7.5 , pg 210\n", +"T=300 //temperature (in K)\n", +"Un=0.4 //electron mobility (in m^2/(V*s))\n", +"Up=0.2 //hole mobility (in m^2/(V*s))\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"h=6.625*10^-34 //plancks constant (in m^2*Kg*S^-1)\n", +"Eg=0.7 //bandgap (in eV)\n", +"k=1.38*10^-23 //Boltzmann constant (in J/K)\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"Mn=0.55*Me //electron effective mass\n", +"Mp=0.37*Me //hole effective mass\n", +"ni=2*((2*%pi*k*T)/h^2)^(3/2)*(Mn*Mp)^(3/4)*exp(-(Eg*e)/(2*k*T)) //intrinsic concentration\n", +"sigma=ni*e*(Un+Up) //intrinsic conductivity\n", +"rho=1/sigma //intrinsic resistivity\n", +"printf('Intrinsic concentration (in m^-3)')\n", +"disp(ni)\n", +"printf('Intrinsic conductivity (in /(ohm*m)')\n", +"disp(sigma)\n", +"printf('Intrinsic resistivity (in ohm*m)')\n", +"disp(rho)\n", +"\n", +"\n", +"//answer given is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.6: calculate_Fermi_energy_with_respect_to_Fermi_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example 7.6 , pg 211\n", +"Nd=10^16 //donor concentration (in cm^-3)\n", +"ni=1.45*10^10 //intrinsic concentration (in cm^-3)\n", +"T=300 //temperature (in K)\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"k=1.38*10^-23 //Boltzmann constant (in J/K)\n", +"E=k*T*log(Nd/ni) //E=(Efd-Ei) Fermi energy with respect to Fermi energy in intrinsic Si\n", +"printf('Fermi energy with respect to Fermi energy in intrinsic Si(in eV)')\n", +"disp(E/e)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.7: find_resistance_of_pure_and_doped_Si_crystal.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example 7.7 , pg 211\n", +"rho=2300 //resistivity (in ohm*m) for Si (value given in book is wrong)\n", +"ni=1.6*10^16 //intrinsic concentration (in m^-3)\n", +"Ue=0.15 //electron mobility (in m^2/(V*s))\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"// assuming 1*1*1 (in cm) dimension of Si crystal\n", +"l=10^-2 //length (in m)\n", +"b=10^-2 //breadth (in m)\n", +"w=10^-2 //width (in m)\n", +"Nsi=5*10^28 // (in atoms/m^3)\n", +"x=1/10^9 //doping concentration\n", +"A=l*b //area (in m^2)\n", +"R1=(rho*l)/A //resistance of pure Si crystal (in ohm)\n", +"Nd=Nsi*x //donor concentration (in m^-3)\n", +"p=ni^2/Nd //concentration of hole (in m^-3)\n", +"sigma=Nd*Ue*e //coductivity of doped Si (in ohm^-1*m^-1)\n", +"R=l/(sigma*A) //resistance of doped Si crystal (in ohm)\n", +"printf('Resistance of pure Si crystal (in ohm)')\n", +"disp(R1)\n", +"printf('Resistance of doped Si crystal (in ohm)')\n", +"disp(R)\n", +"\n", +"\n", +"//answer given is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.8: compute_forbidden_energy_gap.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example 7.8 , pg 212\n", +"rho=2.12 //resistivity (in ohm*m)\n", +"T=300 //temperature (in K)\n", +"Un=0.36 //electron mobility (in m^2/(V*s))\n", +"Up=0.17 //hole mobility (in m^2/(V*s))\n", +"h=6.625*10^-34 //plancks constant (in m^2*Kg*S^-1)\n", +"k=1.38*10^-23 //Boltzmann constant (in J/K)\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"Mn=0.5*Me //electron effective mass\n", +"Mp=0.37*Me //hole effective mass\n", +"ni=1/(rho*e*(Un+Up)) //intrinsic concentration (in m^-3)\n", +"Nc=2*((2*%pi*k*T)/h^2)^(3/2)*(Mn)^(3/2) //effective density of states in conduction band (in m^-3)\n", +"Nv=2*((2*%pi*k*T)/h^2)^(3/2)*(Mp)^(3/2) //effective density of states in valence band (in m^-3)\n", +"Eg=2*k*T*log(sqrt(Nc*Nv)/ni) //Forbidden energy gap\n", +"printf('Forbidden energy gap=')\n", +"printf('Eg=%.3f eV',Eg/e)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.9: calculate_conductivity_of_sample.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.9 , pg 213\n", +"ni=2.4*10^19 //intrinsic carrier density(in m^-3)\n", +"Un=0.39 //electron mobility (in m^2/(V*s))\n", +"up=0.19 //hole mobility (in m^2/(V*s))\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"sigma=ni*e*(Un+up) // electrical conductivity\n", +"printf('Electrical conductivity\n')\n", +"printf('sigma=%.3f (ohm*m)^-1',sigma)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_D_K_Bhattacharya/8-Magnetic_materials.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/8-Magnetic_materials.ipynb new file mode 100644 index 0000000..16f0273 --- /dev/null +++ b/Engineering_Physics_by_D_K_Bhattacharya/8-Magnetic_materials.ipynb @@ -0,0 +1,165 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Magnetic materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1: Determine_magnitude_and_direction_of_magnetic_moment.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 8 , Example 8.1 , pg 238\n", +"I=12 // current(in A)\n", +"A=7.5*10^-4 //area(in m^2)\n", +"M=I*A //magnetic moment associated with the loop\n", +"printf('Magnetic moment associated with the loop(in A m^2)=')\n", +"disp(M)\n", +"printf('M is directed away from the observer and is perpendicular to the plane of the loop')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2: Determine_magnetic_moment.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 8 , Example 8.2 , pg 238\n", +"r=0.5*10^-10 //radius of orbit (in m)\n", +"e= 1.6*10^-19 //charge on electron (in C)\n", +"n=10^16 //frequency of revolution of electron (in rps)\n", +"I=e*n //current (in A)\n", +"A=%pi *r^2 //area (in m^2)\n", +"M=I*A //magnetic moment associated with motion of electron \n", +"printf('Magnetic moment associated with motion of electron (in A m^2)')\n", +"disp(M)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: calculate_magnetic_susceptibility.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 8 , Example 8.3 , pg 239\n", +"ur=5000 //relative permeability\n", +"xm=ur-1 //magnetic susceptibility\n", +"printf('Magnetic susceptibility=')\n", +"disp(xm)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: calculate_permeability.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 8 , Example 8.4 , pg 239\n", +"H=1800 //magnetizing field (in A/m)\n", +"phi=3*10^-5 //magnetic flux (in Wb)\n", +"A=0.2 *10^-4 //area (in m^2)\n", +"B=phi/A //magnetic flux density (in Wb/m^2)\n", +"u=B/H //permeability (in H/m)\n", +"printf('permeability (in H/m )=')\n", +"disp(u)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5: calculate_magnetic_moment.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 8 , Example 8.5 , pg 239\n", +"B=0.65 //magnetic induction (in T)\n", +"d=8906 //density (in Kg/m^3)\n", +"M=58.7 //atomic weight\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"h=6.625*10^-34 //plancks constant (in m^2*Kg*S^-1)\n", +"m=9.11*10^-31 //mass of electron (in Kg)\n", +"Uo=4*%pi*10^-7 //vacuum permeability\n", +"Na=6.023*10^26 //Avogadro constant\n", +"Ub=(e*h)/(4*%pi*m) //Bhor magneton (in A*m^2)\n", +"N=(d*Na)/M //number of atoms per unit volume\n", +"Ur=B/(N*Uo) //relative permeability (in A/m^2)\n", +"M=Ur/(Ub) //magnetic moment\n", +"printf('Magnetic moment')\n", +"printf('M=%.2f A*m^2',M)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_D_K_Bhattacharya/9-Superconducting_materials.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/9-Superconducting_materials.ipynb new file mode 100644 index 0000000..4708f61 --- /dev/null +++ b/Engineering_Physics_by_D_K_Bhattacharya/9-Superconducting_materials.ipynb @@ -0,0 +1,84 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: Superconducting materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1: calculate_critical_magnetic_field_intensity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 9 , Example9.1 , pg 255\n", +"H0=6.5*10^4 //magnetic field intensity at 0K (in A/m)\n", +"T=4.2 //temperature (in K)\n", +"Tc=7.18 //critical temperature (in K)\n", +"Hc=H0*(1-(T^2/Tc^2)) // critical magnetic field intensity\n", +"printf('critical magnetic field intensity\n')\n", +"printf('Hc=%.0f A/m',Hc)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.2: calculate_isotopic_mass.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 9 , Example9.2 , pg 255\n", +"M1=199.5 //isotopic mass\n", +"Tc1=4.185 //critical temperature for M1 (in K)\n", +"Tc2=4.133 //critical temperature for M2 (in K)\n", +"alpha=0.5\n", +"\n", +"//M^alpha * Tc=constant\n", +"M2=((M1^alpha*Tc1)/Tc2)^(1/alpha)\n", +"printf('Isotopic mass at critical temperature 4.133K\n')\n", +"printf('M2=%.3f ',M2)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |