diff options
Diffstat (limited to 'Engineering_Physics_by_D_K_Bhattacharya/6-Conducting_materials.ipynb')
-rw-r--r-- | Engineering_Physics_by_D_K_Bhattacharya/6-Conducting_materials.ipynb | 486 |
1 files changed, 486 insertions, 0 deletions
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/6-Conducting_materials.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/6-Conducting_materials.ipynb new file mode 100644 index 0000000..b48b626 --- /dev/null +++ b/Engineering_Physics_by_D_K_Bhattacharya/6-Conducting_materials.ipynb @@ -0,0 +1,486 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Conducting materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.10: calculate_electrical_conductivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6.10 , pg 175\n", +"lam=4*10^-8 //maen free path of electrons (in m)\n", +"n=8.4*10^28 //electron density (in m^-3)\n", +"Vth=1.6*10^6 //average thermal velocity of electrons (in m/s)\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"sigma=(n*e^2*lam)/(Vth*Me) //conductivity\n", +"printf('Electrical conductivity (in /(ohm*m))')\n", +"disp(sigma)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.11: calculate_electrical_and_thermal_conductivities.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6.11 , pg 176\n", +"Tr=10^-14 //relaxation time (in s)\n", +"T=300 //temperature (in K)\n", +"n=6*10^28 //electron concentration (in /m^3)\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"k=1.38*10^-23 //Boltzmann constant (in J/K)\n", +"sigma=(n*e^2*Tr)/(Me) //Electrical conductivity \n", +"K=(3*n*k^2*Tr*T)/(2*Me) //Thermal conductivity \n", +"L=K/(sigma*T) //Lorentz number\n", +"printf('Electrical conductivity (in /(ohm*m))')\n", +"disp(sigma)\n", +"printf('Thermal conductivity (in W/(m*K))')\n", +"disp(K)\n", +"printf('Lorentz number (in(W*ohm)/K^2)')\n", +"disp(L)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.12: find_relaxation_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6.12 , pg 177\n", +"n=5.8*10^28 // electron concentration (in /m^3)\n", +"e=1.6*10^-19 // charge of electron (in C)\n", +"rho=1.54*10^-8 //resistivity of metal (in ohm*m)\n", +"M=9.11*10^-31 //mass of electron (in Kg)\n", +"T=M/(n*e^2*rho) //relaxation time\n", +"printf('Relaxation time(in s)')\n", +"disp(T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.13: calculate_drift_velocity_and_mobility_and_relaxation_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6.13 , pg 177\n", +"rho=1.54*10^-8 //resistivity (in ohm*m)\n", +"E=100 //electric field intensity (in V/m)\n", +"n=5.8*10^28 //electron concentration (in /m^3)\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"T=Me/(rho*n*e^2) //relaxation time\n", +"Vd=(e*E*T)/Me //drift velocity\n", +"U=Vd/E //mobility\n", +"printf('Relaxation time (in s)')\n", +"disp(T)\n", +"printf('Drift veloity (in m/s)')\n", +"disp(Vd)\n", +"printf('Mobility(in m^2/(V*s))')\n", +"disp(U)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.14: calculate_drift_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 14 , pg 178\n", +"T=300 //temperature (in K)\n", +"l=2 //length (in m)\n", +"R=0.02 //Resistance (in ohm)\n", +"u=4.3*10^-3 // (in m^2/(V*s))\n", +"I=15 //current (in A)\n", +"V=I*R //voltage drop across wire (in V )\n", +"E=V/l //electric field across wire (in V/m)\n", +"Vd=u*E //drift velocity (in m/s)\n", +"printf('Drift velocity (in m/s)')\n", +"disp(Vd)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.15: calculate_Fermi_energy_and_Fermi_temperature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 15 , pg 179\n", +"m=9.11*10^-31 //mass of electron (in Kg)\n", +"k=1.38*10^-23 //boltzmann constant (in J/K)\n", +"e=1.6*10^-19 //electronic charge(in C )\n", +"Vf=0.86*10^6 //Fermi velocity of electron (in m/s)\n", +"Ef=(m*Vf^2)/(2*e) //Fermi energy (in eV)\n", +"Tf=(Ef*e)/k //Fermi temperature\n", +"printf('Fermi energy=')\n", +"printf('Ef=%.1f eV \n',Ef)\n", +"printf('Fermi temperature =')\n", +"printf('Tf=%.0f K',Tf)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.16: calculate_Fermi_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 16 , pg 179\n", +"Tf=2460 //Fermi temperature (in K)\n", +"m=9.11*10^-31 //mass of electron (in Kg)\n", +"k=1.38*10^-23 //boltzmann constant (in J/K)\n", +"Vf=sqrt((2*k*Tf)/m) //Fermi velocity\n", +"printf('Fermi velocity (in m/s)=')\n", +"disp(Vf)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: calculate_Fermi_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 1 , pg 170\n", +"Vf=10^6 //Fermi velocity (in m/s)\n", +"m=9.11*10^-31 // mass of electron(in Kg)\n", +"Ef=(m*Vf^2)/2 //Fermi energy (in J)\n", +"printf('Fermi energy for the electrons in the metal=')\n", +"printf('Ef=%.1f eV',(Ef/(1.6*10^-19))) //converting J into eV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: calculate_Fermi_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 2 , pg 170\n", +"Ef0=7.04*1.6*10^-19 // Fermi energy at 0 K (converting eV into J)\n", +"T=300 //temperature (in K)\n", +"k=1.38*10^-23 //boltzmann constant (in (m^2*Kg)/(s^2*K^-1))\n", +"Ef=Ef0*(1-(%pi^2*(k*T)^2)/(12*Ef0^2)) //Fermi energy at 300 K (in J)\n", +"printf('Fermi energy at 300 K =')\n", +"printf('Ef=%.4f eV',(Ef/(1.6*10^-19))) //converting J into eV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: calculate_conductivity_and_relaxation_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6.3 , pg 171\n", +"d=2.7*10^3 //density (in Kg/m^3)\n", +"Ma=27 //atomic weight\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"T=10^-14 //relaxation time (in s)\n", +"Na=6.022*10^23 //Avogadro constant\n", +"N=3*10^3 //number of free electrons per atom\n", +"n=(d*Na*N)/Ma //(in /m^3)\n", +"sigma=(n*e^2*T)/Me //conductivity\n", +"printf('Conductivity of Al (in /(ohm*m))')\n", +"disp(sigma)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4: calculate_Lorentz_number.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 4 , pg 171\n", +"sigma=5.87*10^7 // electrical conductivity (in /(ohm m))\n", +"K=390 //thermal conductivity (in W/(m K))\n", +"T=293 //temperature (in K)\n", +"L=K/(sigma*T) //Lorentz number by wiedemann-Franz law\n", +"printf('Lorentz number (in W*ohm /K^2)')\n", +"disp(L)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5: calculate_electrical_conductivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 5 , pg 172\n", +"d=8900 //density (in Kg/m^3)\n", +"M=63.5 //atomic weight \n", +"T=10^-14 //relaxation time(in s)\n", +"N=6.022*10^23 //Avogadros constant\n", +"N1=10^3 //number of free electrons per atom\n", +"e=1.6*10^-19 //electronic charge (in C)\n", +"me=9.11*10^-31 //mass of electron (in Kg)\n", +"\n", +"n=(N*d*N1)/M \n", +"sigma =(n*e^2*T)/me //electrical conductivity\n", +"printf('Electrical conductivity(in ohm m)=')\n", +"disp(sigma)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.6: EX6_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 6 , pg 172\n", +"rho=1.54*10^-8 //resistivity (in ohm*m)\n", +"Ef=5.5 //Fermi energy (in eV)\n", +"E=100 //electric field intensity (in V/m)\n", +"n=5.8*10^28 //concentration of electrons (in atoms/m^3)\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"T=Me/(rho*n*e^2) //relaxation time\n", +"Un=(e*T)/Me //mobility of electron\n", +"Vd=(e*T*E)/Me //drift velocity\n", +"Vf=sqrt((2*Ef*e)/Me) //Fermi velocity\n", +"lam_m=Vf*T //mean free path\n", +"\n", +"printf('Relaxation time of electron (in s)')\n", +"disp(T)\n", +"printf('Mobility of electron (in m^2/(V*s))')\n", +"disp(Un)\n", +"printf('Drift velocity of electron (in m/s)')\n", +"disp(Vd)\n", +"printf('Fermi velocity of electrons (in m/s)')\n", +"disp(Vf)\n", +"printf('Mean free path(in m)')\n", +"disp(lam_m)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.7: calculate_thermal_conductivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 6 , pg 174\n", +"L= 2.26*10^-8 //Lorentz number (in W*m /K^2)\n", +"T=27+273 //temperature (in K) (converting celsius into kelvin)\n", +"rho=1.72*10^-8 //electrical resistivity (in ohm *m)\n", +"\n", +"//according to Wiedemann-Franz law\n", +"K=(L*T)/rho //thermal conductivity\n", +"printf('Thermal conductivity =')\n", +"printf('K=%.0f W/(m*K)',K)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.8: calculate_Lorentz_number.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 8 , pg 174\n", +"sigma=5.87*10^7 // electrical conductivity (in /(ohm m))\n", +"K=390 //thermal conductivity (in W/(m K))\n", +"T=293 //temperature (in K)\n", +"L=K/(sigma*T) //Lorentz number by wiedemann-Franz law\n", +"printf('Lorentz number (in W*ohm /K^2)')\n", +"disp(L)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.9: find_F_E.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 6 , Example6 9 , pg 174\n", +"del_E=0.01*1.6*10^-19 // del_E = E-Ef (in J) (converting eV into J)\n", +"T=200 //temperature (in K)\n", +"k=1.38*10^-23 //boltzmanns constant (in J/K)\n", +"F_E=1/(1+exp(del_E/(k*T))) //Fermi Dirac distribution function\n", +"printf('F_E=%.2f',F_E)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |