1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 4: Quantum physics"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.1: calculate_energy_and_momentum_of_photon.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// chapter 4 , Example4 1 , pg 117\n",
"c=3*10^8 //speed of light(in m/sec)\n",
"h=6.625*10^-34//planck's constant(in J s)\n",
"lam=1.2*10^-10//wavelength(in m)\n",
"E=(h*c)/(lam*1.6*10^-19) //energy of photon(in eV)\n",
"p=h/lam //momentum of photon\n",
"printf('Energy of photo\n')\n",
"printf('E=%.1f eV\n',E)\n",
"printf('momentum of photon(in Kg m/sec)\n')\n",
"disp(p)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.2: calculate_number_of_photons_emitted_per_second.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// chapter 4 , Example 4.2 , pg 117\n",
"E1=10^4 //energy emitted per second(in J)\n",
"n=900*10^3 //frequency(in Hz)\n",
"h=6.625*10^-34 //plancks constant(in J s)\n",
"E=h*n//energy carried by 1 photon(in J)\n",
"N=E1/E//number of photons emitted per second\n",
"printf('number of photons emitted per second\n')\n",
"disp(N)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.3: determine_number_of_photons_emitted_per_second.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// chapter 4 , Example 4.3 , pg 118\n",
"c=3*10^8//speed of light(in m/sec)\n",
"h=6.625*10^-34//plancks constant(in J s)\n",
"E1=100//energy emitted per second(in J)\n",
"lam=5893*10^-10//wavelength(in m)\n",
"E=(h*c)/lam //energy carried by 1 photon\n",
"N=E1/E//number of photons emitted per second\n",
"printf('number of photons emitted per second\n')\n",
"disp(N)\n",
"\n",
"\n",
"//answer mentioned is wrong"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.4: find_the_wavelength.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// chapter 4 , Example 4.4 , pg 118\n",
"lam=2.8*10^-10//wavelength (in m)\n",
"theta=(30*%pi)/180//viewing angle(in radian) (converting degree into radian)\n",
"c=3*10^8//speed of light(in m/sec)\n",
"h=6.625*10^-34//plancks constant(in J s)\n",
"m0=9.11*10^-31//rest mass of electron(in Kg)\n",
"lam1=lam+((2*h)*sin(theta/2)^2)/(m0*c) //wavelength of scattered radiation\n",
"printf('wavelength of scattered radiation(in m)\n')\n",
"disp(lam1)\n",
"printf('wavelength of scattered radiation(in Angstrom)\n')\n",
"disp(lam1*10^10)\n",
"\n",
"\n",
"//calculation is done assuming h=6.6*10^-34 Js in book"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.5: calculate_de_Broglie_wavelength.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// chapter 4 , Example 4.5 , pg 119\n",
"m=0.04//mass(in Kg)\n",
"v=1000//speed(in m/sec)\n",
"h=6.625*10^-34//plancks constant(in J s)\n",
"p=m*v//momentum(in kg m/sec)\n",
"lam=h/p //wavelength\n",
"printf('de Broglie wavelength(in m)\n')\n",
"disp(lam)\n",
"printf('de Broglie wavelength(in A)\n')\n",
"disp(lam*10^10)\n",
"\n",
"\n",
"\n",
"//calculation is done assuming h=6.6*10^-34 Js"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.6: find_energy_of_particle.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// chapter 4 , Example 4.6 , pg 119\n",
"a=0.1 *10^-9 //width (in m)\n",
"n=1// lowest energy state of particle is obtained at n=1\n",
"h=6.625*10^-34 //plancks constant(in Js)\n",
"m=9.11*10^-31//mass of electron (in Kg)\n",
"E=(h^2)/(8*m*a^2)//energy of an electron\n",
"printf('Energy of electron in ground state(in J)\n')\n",
"disp(E)\n",
"printf('E=%.3f eV',E/(1.6025*10^-19))\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.7: calculate_minimum_energy.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// chapter 4 , Example 4.7 , pg 120\n",
"a=4*10^-9 //width (in m)\n",
"n=1// lowest energy state of particle is obtained at n=1\n",
"h=6.625*10^-34 //plancks constant(in Js)\n",
"m=9.11*10^-31//mass of electron (in Kg)\n",
"E=(h^2)/(8*m*a^2)//energy of an electron\n",
"printf('Energy of electron in ground state(in J)\n')\n",
"disp(E)\n",
"printf('E=%.5f eV',E/(1.6025*10^-19))\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.8: EX4_8.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// chapter 4 , Example 4.8 , pg 120\n",
"a=0.1 *10^-9 //width (in m)\n",
"n1=1// lowest energy state of particle is obtained at n=1\n",
"n=6 //6th excited state hance n=6\n",
"h=6.625*10^-34 //plancks constant(in Js)\n",
"m=9.11*10^-31//mass of electron (in Kg)\n",
"//E=(n^2*h^2)/(8*m*a^2) n=excited state of electron \n",
"E1=(n1^2*h^2)/(8*m*a^2)//energy of an electron in ground state (in J)\n",
"E6=(n^2*h^2)/(8*m*a^2)//energy at 6th excuted state(in J)\n",
"E=E6-E1//energy required to excite the electron from ground state to the 6th excited state\n",
"printf('energy required to excite the electron from ground state to the 6th excited state(in J)\n')\n",
"disp(E)\n",
"printf('E=%.2f eV',(E/(1.6025*10^-19)))"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.9: find_change_in_wavelength.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// chapter 4 , Example 4.9 , pg 121\n",
"h=6.625*10^-34//plancksconstant(in J s)\n",
"c=3*10^8//velocity of x-ray photon(in m/sec)\n",
"m0=9.11*10^-31//rest mass of electron(in Kg)\n",
"phi=(90*%pi)/180//angle of scattering (in radian) (converting degree into radian)\n",
"delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering\n",
"printf('change in wavelength of x-ray photon(in m)\n')\n",
"disp(delta_H)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|