summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_D_K_Bhattacharya/4-Quantum_physics.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_D_K_Bhattacharya/4-Quantum_physics.ipynb')
-rw-r--r--Engineering_Physics_by_D_K_Bhattacharya/4-Quantum_physics.ipynb292
1 files changed, 292 insertions, 0 deletions
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/4-Quantum_physics.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/4-Quantum_physics.ipynb
new file mode 100644
index 0000000..8252269
--- /dev/null
+++ b/Engineering_Physics_by_D_K_Bhattacharya/4-Quantum_physics.ipynb
@@ -0,0 +1,292 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Quantum physics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: calculate_energy_and_momentum_of_photon.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 4 , Example4 1 , pg 117\n",
+"c=3*10^8 //speed of light(in m/sec)\n",
+"h=6.625*10^-34//planck's constant(in J s)\n",
+"lam=1.2*10^-10//wavelength(in m)\n",
+"E=(h*c)/(lam*1.6*10^-19) //energy of photon(in eV)\n",
+"p=h/lam //momentum of photon\n",
+"printf('Energy of photo\n')\n",
+"printf('E=%.1f eV\n',E)\n",
+"printf('momentum of photon(in Kg m/sec)\n')\n",
+"disp(p)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2: calculate_number_of_photons_emitted_per_second.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 4 , Example 4.2 , pg 117\n",
+"E1=10^4 //energy emitted per second(in J)\n",
+"n=900*10^3 //frequency(in Hz)\n",
+"h=6.625*10^-34 //plancks constant(in J s)\n",
+"E=h*n//energy carried by 1 photon(in J)\n",
+"N=E1/E//number of photons emitted per second\n",
+"printf('number of photons emitted per second\n')\n",
+"disp(N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3: determine_number_of_photons_emitted_per_second.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 4 , Example 4.3 , pg 118\n",
+"c=3*10^8//speed of light(in m/sec)\n",
+"h=6.625*10^-34//plancks constant(in J s)\n",
+"E1=100//energy emitted per second(in J)\n",
+"lam=5893*10^-10//wavelength(in m)\n",
+"E=(h*c)/lam //energy carried by 1 photon\n",
+"N=E1/E//number of photons emitted per second\n",
+"printf('number of photons emitted per second\n')\n",
+"disp(N)\n",
+"\n",
+"\n",
+"//answer mentioned is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4: find_the_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 4 , Example 4.4 , pg 118\n",
+"lam=2.8*10^-10//wavelength (in m)\n",
+"theta=(30*%pi)/180//viewing angle(in radian) (converting degree into radian)\n",
+"c=3*10^8//speed of light(in m/sec)\n",
+"h=6.625*10^-34//plancks constant(in J s)\n",
+"m0=9.11*10^-31//rest mass of electron(in Kg)\n",
+"lam1=lam+((2*h)*sin(theta/2)^2)/(m0*c) //wavelength of scattered radiation\n",
+"printf('wavelength of scattered radiation(in m)\n')\n",
+"disp(lam1)\n",
+"printf('wavelength of scattered radiation(in Angstrom)\n')\n",
+"disp(lam1*10^10)\n",
+"\n",
+"\n",
+"//calculation is done assuming h=6.6*10^-34 Js in book"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5: calculate_de_Broglie_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 4 , Example 4.5 , pg 119\n",
+"m=0.04//mass(in Kg)\n",
+"v=1000//speed(in m/sec)\n",
+"h=6.625*10^-34//plancks constant(in J s)\n",
+"p=m*v//momentum(in kg m/sec)\n",
+"lam=h/p //wavelength\n",
+"printf('de Broglie wavelength(in m)\n')\n",
+"disp(lam)\n",
+"printf('de Broglie wavelength(in A)\n')\n",
+"disp(lam*10^10)\n",
+"\n",
+"\n",
+"\n",
+"//calculation is done assuming h=6.6*10^-34 Js"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6: find_energy_of_particle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 4 , Example 4.6 , pg 119\n",
+"a=0.1 *10^-9 //width (in m)\n",
+"n=1// lowest energy state of particle is obtained at n=1\n",
+"h=6.625*10^-34 //plancks constant(in Js)\n",
+"m=9.11*10^-31//mass of electron (in Kg)\n",
+"E=(h^2)/(8*m*a^2)//energy of an electron\n",
+"printf('Energy of electron in ground state(in J)\n')\n",
+"disp(E)\n",
+"printf('E=%.3f eV',E/(1.6025*10^-19))\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7: calculate_minimum_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 4 , Example 4.7 , pg 120\n",
+"a=4*10^-9 //width (in m)\n",
+"n=1// lowest energy state of particle is obtained at n=1\n",
+"h=6.625*10^-34 //plancks constant(in Js)\n",
+"m=9.11*10^-31//mass of electron (in Kg)\n",
+"E=(h^2)/(8*m*a^2)//energy of an electron\n",
+"printf('Energy of electron in ground state(in J)\n')\n",
+"disp(E)\n",
+"printf('E=%.5f eV',E/(1.6025*10^-19))\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.8: EX4_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 4 , Example 4.8 , pg 120\n",
+"a=0.1 *10^-9 //width (in m)\n",
+"n1=1// lowest energy state of particle is obtained at n=1\n",
+"n=6 //6th excited state hance n=6\n",
+"h=6.625*10^-34 //plancks constant(in Js)\n",
+"m=9.11*10^-31//mass of electron (in Kg)\n",
+"//E=(n^2*h^2)/(8*m*a^2) n=excited state of electron \n",
+"E1=(n1^2*h^2)/(8*m*a^2)//energy of an electron in ground state (in J)\n",
+"E6=(n^2*h^2)/(8*m*a^2)//energy at 6th excuted state(in J)\n",
+"E=E6-E1//energy required to excite the electron from ground state to the 6th excited state\n",
+"printf('energy required to excite the electron from ground state to the 6th excited state(in J)\n')\n",
+"disp(E)\n",
+"printf('E=%.2f eV',(E/(1.6025*10^-19)))"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.9: find_change_in_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 4 , Example 4.9 , pg 121\n",
+"h=6.625*10^-34//plancksconstant(in J s)\n",
+"c=3*10^8//velocity of x-ray photon(in m/sec)\n",
+"m0=9.11*10^-31//rest mass of electron(in Kg)\n",
+"phi=(90*%pi)/180//angle of scattering (in radian) (converting degree into radian)\n",
+"delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering\n",
+"printf('change in wavelength of x-ray photon(in m)\n')\n",
+"disp(delta_H)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}