diff options
Diffstat (limited to 'Engineering_Physics_by_D_K_Bhattacharya/4-Quantum_physics.ipynb')
-rw-r--r-- | Engineering_Physics_by_D_K_Bhattacharya/4-Quantum_physics.ipynb | 292 |
1 files changed, 292 insertions, 0 deletions
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/4-Quantum_physics.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/4-Quantum_physics.ipynb new file mode 100644 index 0000000..8252269 --- /dev/null +++ b/Engineering_Physics_by_D_K_Bhattacharya/4-Quantum_physics.ipynb @@ -0,0 +1,292 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Quantum physics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1: calculate_energy_and_momentum_of_photon.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 4 , Example4 1 , pg 117\n", +"c=3*10^8 //speed of light(in m/sec)\n", +"h=6.625*10^-34//planck's constant(in J s)\n", +"lam=1.2*10^-10//wavelength(in m)\n", +"E=(h*c)/(lam*1.6*10^-19) //energy of photon(in eV)\n", +"p=h/lam //momentum of photon\n", +"printf('Energy of photo\n')\n", +"printf('E=%.1f eV\n',E)\n", +"printf('momentum of photon(in Kg m/sec)\n')\n", +"disp(p)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: calculate_number_of_photons_emitted_per_second.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 4 , Example 4.2 , pg 117\n", +"E1=10^4 //energy emitted per second(in J)\n", +"n=900*10^3 //frequency(in Hz)\n", +"h=6.625*10^-34 //plancks constant(in J s)\n", +"E=h*n//energy carried by 1 photon(in J)\n", +"N=E1/E//number of photons emitted per second\n", +"printf('number of photons emitted per second\n')\n", +"disp(N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: determine_number_of_photons_emitted_per_second.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 4 , Example 4.3 , pg 118\n", +"c=3*10^8//speed of light(in m/sec)\n", +"h=6.625*10^-34//plancks constant(in J s)\n", +"E1=100//energy emitted per second(in J)\n", +"lam=5893*10^-10//wavelength(in m)\n", +"E=(h*c)/lam //energy carried by 1 photon\n", +"N=E1/E//number of photons emitted per second\n", +"printf('number of photons emitted per second\n')\n", +"disp(N)\n", +"\n", +"\n", +"//answer mentioned is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: find_the_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 4 , Example 4.4 , pg 118\n", +"lam=2.8*10^-10//wavelength (in m)\n", +"theta=(30*%pi)/180//viewing angle(in radian) (converting degree into radian)\n", +"c=3*10^8//speed of light(in m/sec)\n", +"h=6.625*10^-34//plancks constant(in J s)\n", +"m0=9.11*10^-31//rest mass of electron(in Kg)\n", +"lam1=lam+((2*h)*sin(theta/2)^2)/(m0*c) //wavelength of scattered radiation\n", +"printf('wavelength of scattered radiation(in m)\n')\n", +"disp(lam1)\n", +"printf('wavelength of scattered radiation(in Angstrom)\n')\n", +"disp(lam1*10^10)\n", +"\n", +"\n", +"//calculation is done assuming h=6.6*10^-34 Js in book" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5: calculate_de_Broglie_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 4 , Example 4.5 , pg 119\n", +"m=0.04//mass(in Kg)\n", +"v=1000//speed(in m/sec)\n", +"h=6.625*10^-34//plancks constant(in J s)\n", +"p=m*v//momentum(in kg m/sec)\n", +"lam=h/p //wavelength\n", +"printf('de Broglie wavelength(in m)\n')\n", +"disp(lam)\n", +"printf('de Broglie wavelength(in A)\n')\n", +"disp(lam*10^10)\n", +"\n", +"\n", +"\n", +"//calculation is done assuming h=6.6*10^-34 Js" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6: find_energy_of_particle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 4 , Example 4.6 , pg 119\n", +"a=0.1 *10^-9 //width (in m)\n", +"n=1// lowest energy state of particle is obtained at n=1\n", +"h=6.625*10^-34 //plancks constant(in Js)\n", +"m=9.11*10^-31//mass of electron (in Kg)\n", +"E=(h^2)/(8*m*a^2)//energy of an electron\n", +"printf('Energy of electron in ground state(in J)\n')\n", +"disp(E)\n", +"printf('E=%.3f eV',E/(1.6025*10^-19))\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.7: calculate_minimum_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 4 , Example 4.7 , pg 120\n", +"a=4*10^-9 //width (in m)\n", +"n=1// lowest energy state of particle is obtained at n=1\n", +"h=6.625*10^-34 //plancks constant(in Js)\n", +"m=9.11*10^-31//mass of electron (in Kg)\n", +"E=(h^2)/(8*m*a^2)//energy of an electron\n", +"printf('Energy of electron in ground state(in J)\n')\n", +"disp(E)\n", +"printf('E=%.5f eV',E/(1.6025*10^-19))\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.8: EX4_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 4 , Example 4.8 , pg 120\n", +"a=0.1 *10^-9 //width (in m)\n", +"n1=1// lowest energy state of particle is obtained at n=1\n", +"n=6 //6th excited state hance n=6\n", +"h=6.625*10^-34 //plancks constant(in Js)\n", +"m=9.11*10^-31//mass of electron (in Kg)\n", +"//E=(n^2*h^2)/(8*m*a^2) n=excited state of electron \n", +"E1=(n1^2*h^2)/(8*m*a^2)//energy of an electron in ground state (in J)\n", +"E6=(n^2*h^2)/(8*m*a^2)//energy at 6th excuted state(in J)\n", +"E=E6-E1//energy required to excite the electron from ground state to the 6th excited state\n", +"printf('energy required to excite the electron from ground state to the 6th excited state(in J)\n')\n", +"disp(E)\n", +"printf('E=%.2f eV',(E/(1.6025*10^-19)))" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.9: find_change_in_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 4 , Example 4.9 , pg 121\n", +"h=6.625*10^-34//plancksconstant(in J s)\n", +"c=3*10^8//velocity of x-ray photon(in m/sec)\n", +"m0=9.11*10^-31//rest mass of electron(in Kg)\n", +"phi=(90*%pi)/180//angle of scattering (in radian) (converting degree into radian)\n", +"delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering\n", +"printf('change in wavelength of x-ray photon(in m)\n')\n", +"disp(delta_H)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |