diff options
Diffstat (limited to 'Engineering_Physics_by_D_K_Bhattacharya/5-Crystal_physics.ipynb')
-rw-r--r-- | Engineering_Physics_by_D_K_Bhattacharya/5-Crystal_physics.ipynb | 237 |
1 files changed, 237 insertions, 0 deletions
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/5-Crystal_physics.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/5-Crystal_physics.ipynb new file mode 100644 index 0000000..d5e28dc --- /dev/null +++ b/Engineering_Physics_by_D_K_Bhattacharya/5-Crystal_physics.ipynb @@ -0,0 +1,237 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Crystal physics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: determine_miller_indices.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 5 , Example5 1 , pg 149\n", +"//plane has intercepts a,2b,3c along the 3 crystal axes\n", +"//lattice points in 3-d lattice are given by r=p*a+q*b+s*c\n", +"//as p,q,r are the basic vectors the proportion of intercepts 1:2:3\n", +"p=1\n", +"q=2\n", +"s=3 \n", +"//therefore reciprocal\n", +"r1=1/1\n", +"r2=1/2\n", +"r3=1/3\n", +"//taking LCM\n", +"v=int32([1,2,3])\n", +"l=double(lcm(v))\n", +"m1=(l*r1)\n", +"m2=(l*r2)\n", +"m3=(l*r3)\n", +"printf('miler indices=')\n", +"disp(m3,m2,m1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.2: calculate_density_of_Si.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 5 , Example5 2 , pg 150\n", +"a=5.43*10^-8//lattice constant(in cm)\n", +"M=28.1 //atomic weight (in g)\n", +"n=8// number of atoms/cell (for Si)\n", +"N=6.02*10^23 //Avogadro number\n", +"C=n/a^3 //atomic concentration =(number of atoms/cell)/cell volume (in atoms/cm^3)\n", +"D=(C*M)/N //Density\n", +"printf('Density of Si=')\n", +"printf('D=%.2f g/cm^3',D)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3: calculate_surface_density_of_atoms.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 5 , Example5 3 , pg 151\n", +"//(1 1 1) plane for a BCC crystal\n", +"a=5*10^-10//lattice constant (in m)\n", +"//height of equilaterl triangle (shaded area) =a*sqrt(3/2)\n", +"//hence area of shaded triangular portion is a*sqrt(2)*a*sqrt(3/2)/2 = a^2*sqrt(3)/2\n", +"//every corner atom contributes 1/6to the area\n", +"n111=(3/6)/(a^2*sqrt(3)/2) //planar concentration\n", +"printf('surface density of atoms in (1 1 1)plane of BCC structure (in atoms/m^2)')\n", +"disp(n111)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.4: calculate_spacing_of_planes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 5 , Example5 2 , pg 150\n", +"a=4.049 //lattice constant(in Angstrom)\n", +"h=2\n", +"k=2\n", +"l=0 //since (h k l)=(2 2 0) miller indices\n", +"d=a/sqrt(h^2+k^2+l^2) //spacing\n", +"printf('spacing of (2 2 0) planes=')\n", +"printf('d=%.3f Angstrom',d)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.5: determine_size_of_unit_cell.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 5 , Example5 5 , pg 152\n", +"d110=2.03//spacing of(1 1 0) planes (in Angstrom)\n", +"h=1\n", +"k=1\n", +"l=0 //(h k l)=(1 1 0)\n", +"a=d110*sqrt(h^2+k^2+l^2)//size of unit cell\n", +"printf('size of unit cell=')\n", +"printf('a=%.2f angstrom',a)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.6: determine_spacing_between_planes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 5 , Example5 6 , pg 152\n", +"a=5.64//lattice constant (in Angstrom)\n", +"h1=1\n", +"k1=0\n", +"l1=0 //(h1 k1 l1)=(1 0 0)\n", +"h2=1\n", +"k2=1\n", +"l2=0 //(h2 k2 l2)=(1 1 0)\n", +"h3=1\n", +"k3=1\n", +"l3=1//(h3 k3 l3)=(1 1 1)\n", +"d100=a/sqrt(h1^2+k1^2+l1^2) //spacing of (1 0 0)planes\n", +"d110=a/sqrt(h2^2+k2^2+l2^2) //spacing of (1 1 0)planes\n", +"d111=a/sqrt(h3^2+k3^2+l3^2) //spacing of (1 1 1)planes\n", +"printf('spacing of (1 0 0) planes=')\n", +"printf('d100=%.2f Angstrom\n',d100)\n", +"printf('spacing of (1 1 0) planes=')\n", +"printf('d110=%.2f Angstrom\n',d110)\n", +"printf('spacing of (1 1 1) planes=')\n", +"printf('d111=%.2f Angstrom',d111)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.7: find_volume_of_unit_cell.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 5 , Example5 7 , pg 153\n", +"r=1.605 *10^-10 //radius of atom (in m)\n", +"a=2*r//lattice constant (for HCP structure) (in m)\n", +"c=a*sqrt(8/3) //(in m)\n", +"V=(3*sqrt(3)*a^2*c)/2 //volume of unit cell\n", +"printf('volume of unit cell(in m^3)\n')\n", +"disp(V)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |