summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_D_K_Bhattacharya/5-Crystal_physics.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_D_K_Bhattacharya/5-Crystal_physics.ipynb')
-rw-r--r--Engineering_Physics_by_D_K_Bhattacharya/5-Crystal_physics.ipynb237
1 files changed, 237 insertions, 0 deletions
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/5-Crystal_physics.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/5-Crystal_physics.ipynb
new file mode 100644
index 0000000..d5e28dc
--- /dev/null
+++ b/Engineering_Physics_by_D_K_Bhattacharya/5-Crystal_physics.ipynb
@@ -0,0 +1,237 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Crystal physics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: determine_miller_indices.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 5 , Example5 1 , pg 149\n",
+"//plane has intercepts a,2b,3c along the 3 crystal axes\n",
+"//lattice points in 3-d lattice are given by r=p*a+q*b+s*c\n",
+"//as p,q,r are the basic vectors the proportion of intercepts 1:2:3\n",
+"p=1\n",
+"q=2\n",
+"s=3 \n",
+"//therefore reciprocal\n",
+"r1=1/1\n",
+"r2=1/2\n",
+"r3=1/3\n",
+"//taking LCM\n",
+"v=int32([1,2,3])\n",
+"l=double(lcm(v))\n",
+"m1=(l*r1)\n",
+"m2=(l*r2)\n",
+"m3=(l*r3)\n",
+"printf('miler indices=')\n",
+"disp(m3,m2,m1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: calculate_density_of_Si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 5 , Example5 2 , pg 150\n",
+"a=5.43*10^-8//lattice constant(in cm)\n",
+"M=28.1 //atomic weight (in g)\n",
+"n=8// number of atoms/cell (for Si)\n",
+"N=6.02*10^23 //Avogadro number\n",
+"C=n/a^3 //atomic concentration =(number of atoms/cell)/cell volume (in atoms/cm^3)\n",
+"D=(C*M)/N //Density\n",
+"printf('Density of Si=')\n",
+"printf('D=%.2f g/cm^3',D)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: calculate_surface_density_of_atoms.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 5 , Example5 3 , pg 151\n",
+"//(1 1 1) plane for a BCC crystal\n",
+"a=5*10^-10//lattice constant (in m)\n",
+"//height of equilaterl triangle (shaded area) =a*sqrt(3/2)\n",
+"//hence area of shaded triangular portion is a*sqrt(2)*a*sqrt(3/2)/2 = a^2*sqrt(3)/2\n",
+"//every corner atom contributes 1/6to the area\n",
+"n111=(3/6)/(a^2*sqrt(3)/2) //planar concentration\n",
+"printf('surface density of atoms in (1 1 1)plane of BCC structure (in atoms/m^2)')\n",
+"disp(n111)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: calculate_spacing_of_planes.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 5 , Example5 2 , pg 150\n",
+"a=4.049 //lattice constant(in Angstrom)\n",
+"h=2\n",
+"k=2\n",
+"l=0 //since (h k l)=(2 2 0) miller indices\n",
+"d=a/sqrt(h^2+k^2+l^2) //spacing\n",
+"printf('spacing of (2 2 0) planes=')\n",
+"printf('d=%.3f Angstrom',d)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: determine_size_of_unit_cell.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 5 , Example5 5 , pg 152\n",
+"d110=2.03//spacing of(1 1 0) planes (in Angstrom)\n",
+"h=1\n",
+"k=1\n",
+"l=0 //(h k l)=(1 1 0)\n",
+"a=d110*sqrt(h^2+k^2+l^2)//size of unit cell\n",
+"printf('size of unit cell=')\n",
+"printf('a=%.2f angstrom',a)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6: determine_spacing_between_planes.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 5 , Example5 6 , pg 152\n",
+"a=5.64//lattice constant (in Angstrom)\n",
+"h1=1\n",
+"k1=0\n",
+"l1=0 //(h1 k1 l1)=(1 0 0)\n",
+"h2=1\n",
+"k2=1\n",
+"l2=0 //(h2 k2 l2)=(1 1 0)\n",
+"h3=1\n",
+"k3=1\n",
+"l3=1//(h3 k3 l3)=(1 1 1)\n",
+"d100=a/sqrt(h1^2+k1^2+l1^2) //spacing of (1 0 0)planes\n",
+"d110=a/sqrt(h2^2+k2^2+l2^2) //spacing of (1 1 0)planes\n",
+"d111=a/sqrt(h3^2+k3^2+l3^2) //spacing of (1 1 1)planes\n",
+"printf('spacing of (1 0 0) planes=')\n",
+"printf('d100=%.2f Angstrom\n',d100)\n",
+"printf('spacing of (1 1 0) planes=')\n",
+"printf('d110=%.2f Angstrom\n',d110)\n",
+"printf('spacing of (1 1 1) planes=')\n",
+"printf('d111=%.2f Angstrom',d111)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.7: find_volume_of_unit_cell.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 5 , Example5 7 , pg 153\n",
+"r=1.605 *10^-10 //radius of atom (in m)\n",
+"a=2*r//lattice constant (for HCP structure) (in m)\n",
+"c=a*sqrt(8/3) //(in m)\n",
+"V=(3*sqrt(3)*a^2*c)/2 //volume of unit cell\n",
+"printf('volume of unit cell(in m^3)\n')\n",
+"disp(V)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}