diff options
Diffstat (limited to 'Engineering_Physics_by_D_K_Bhattacharya/12-Additional_solved_examples.ipynb')
-rw-r--r-- | Engineering_Physics_by_D_K_Bhattacharya/12-Additional_solved_examples.ipynb | 988 |
1 files changed, 988 insertions, 0 deletions
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/12-Additional_solved_examples.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/12-Additional_solved_examples.ipynb new file mode 100644 index 0000000..85af94c --- /dev/null +++ b/Engineering_Physics_by_D_K_Bhattacharya/12-Additional_solved_examples.ipynb @@ -0,0 +1,988 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: Additional solved examples" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.10: calculate_minimum_and_maximum_number_of_total_internal_reflections_per_metre.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 10 , pg 335\n", +"n1=1.5//core refractive index\n", +"n2=1.45//cladding refractive index\n", +"n0=1//refractive index of air\n", +"NA=sqrt(n1^2-n2^2)//numerical aperture\n", +"alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n", +"a=100*10^-6/2 //radius of core\n", +"phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)\n", +"L=a/tan(phi_m) //(in m)\n", +"printf('Minimum number of reflections per metre=zero\n') //since rays travelling with alpha=0 suffer no internal reflection\n", +"//for rays travelling with alpha=alpha_m ,1 internal reflection takes place for a transversed distance of 2*L\n", +"N=1/(2*L) //Maximum number of reflections per metre\n", +"disp('Maximum number of reflections per metre(in m^-1)=')\n", +"printf('N=%.0f',N)\n", +"\n", +"//Answer varies as L is restricted to 1.86*10^-4 (m) instead of 1.888*10^-4 (m)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.11: calculate_energy_and_momentum_of_photon.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 11 , pg 335\n", +"c=3*10^8 //speed of light(in m/sec)\n", +"h=6.625*10^-34//planck's constant(in J s)\n", +"lam=1.4*10^-10//wavelength(in m)\n", +"E=(h*c)/(lam*1.6*10^-19) //energy of photon(in eV)\n", +"p=h/lam //momentum of photon\n", +"printf('Energy of photo\n')\n", +"printf('E=%.1f eV\n',E)\n", +"printf('momentum of photon(in Kg m/sec)\n')\n", +"disp(p)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.12: calculate_number_of_photons_emitted_per_second.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 12 , pg 336\n", +"E1=2*10^4 //energy emitted per second(in J)\n", +"n=1000*10^3 //frequency(in Hz)\n", +"h=6.625*10^-34 //plancks constant(in J s)\n", +"E=h*n//energy carried by 1 photon(in J)\n", +"N=E1/E//number of photons emitted per second\n", +"printf('number of photons emitted per second\n')\n", +"disp(N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.13: calculate_de_Broglie_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 13 , pg 336\n", +"m=0.05//mass(in Kg)\n", +"v=2000//speed(in m/sec)\n", +"h=6.625*10^-34//plancks constant(in J s)\n", +"p=m*v//momentum(in kg m/sec)\n", +"lam=h/p //wavelength\n", +"printf('de Broglie wavelength(in m)\n')\n", +"disp(lam)\n", +"printf('de Broglie wavelength(in A)\n')\n", +"disp(lam*10^10)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.14: find_change_in_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 14 , pg 336\n", +"h=6.625*10^-34//plancksconstant(in J s)\n", +"c=3*10^8//velocity of x-ray photon(in m/sec)\n", +"m0=9.11*10^-31//rest mass of electron(in Kg)\n", +"phi=(85*%pi)/180//angle of scattering (in radian) (converting degree into radian)\n", +"delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering\n", +"printf('change in wavelength of x-ray photon(in m)\n')\n", +"disp(delta_H)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.15: find_miller_indices.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 15 , pg 337\n", +"//plane has intercepts 2a,2b,3c along the 3 crystal axes\n", +"//lattice points in 3-d lattice are given by r=p*a+q*b+s*c\n", +"//as p,q,r are the basic vectors the proportion of intercepts 2:2:3\n", +"p=2\n", +"q=2\n", +"s=3 \n", +"//therefore reciprocal\n", +"r1=1/2\n", +"r2=1/2\n", +"r3=1/3\n", +"//taking LCM\n", +"v=int32([2,2,3])\n", +"l=double(lcm(v))\n", +"m1=(l*r1)\n", +"m2=(l*r2)\n", +"m3=(l*r3)\n", +"printf('miler indices=')\n", +"disp(m3,m2,m1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.16: find_miller_indices.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 16 , pg 337\n", +"//plane has intercepts 4a,2b,4c along the 3 crystal axes\n", +"//lattice points in 3-d lattice are given by r=p*a+q*b+s*c\n", +"//as p,q,r are the basic vectors the proportion of intercepts 2:2:3\n", +"p=4\n", +"q=2\n", +"s=4 \n", +"//therefore reciprocal\n", +"r1=1/4\n", +"r2=1/2\n", +"r3=1/4\n", +"//taking LCM\n", +"v=int32([4,2,4])\n", +"l=double(lcm(v))\n", +"m1=(l*r1)\n", +"m2=(l*r2)\n", +"m3=(l*r3)\n", +"printf('miler indices=')\n", +"disp(m3,m2,m1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.17: find_size_of_unit_cell.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 17 , pg 338\n", +"d110=1.96//spacing of(1 1 0) planes (in Angstrom)\n", +"h=1\n", +"k=1\n", +"l=0 //(h k l)=(1 1 0)\n", +"a=d110*sqrt(h^2+k^2+l^2)//size of unit cell\n", +"printf('size of unit cell=')\n", +"printf('a=%.2f angstrom',a)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.18: find_volume_of_unit_cell.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 18 , pg 339\n", +"r=1.575 *10^-10 //radius of atom (in m)\n", +"a=2*r//lattice constant (for HCP structure) (in m)\n", +"c=a*sqrt(8/3) //(in m)\n", +"V=(3*sqrt(3)*a^2*c)/2 //volume of unit cell\n", +"printf('volume of unit cell(in m^3)\n')\n", +"disp(V)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.19: calculate_Fermi_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 19 , pg 339\n", +"Vf=7*10^5 //Fermi velocity (in m/s)\n", +"m=9.11*10^-31 // mass of electron(in Kg)\n", +"Ef=(m*Vf^2)/2 //Fermi energy (in J)\n", +"printf('Fermi energy for the electrons in the metal=')\n", +"printf('Ef=%.1f eV',(Ef/(1.6*10^-19))) //converting J into eV\n", +"\n", +"\n", +"\n", +"\n", +"//Answer is given wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.1: calculate_relative_population.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 1 , pg 330\n", +"lam=590*10^-9//wavelength(in m)\n", +"T=270+273 //temperature(in kelvin) (converting celsius into kelvin)\n", +"k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n", +"h=6.625*10^-34//plancks constant(in Js)\n", +"c=3*10^8//speed of light\n", +"N=exp(-(h*c)/(lam*k*T)) //N=(n2/n1)=relative population of atoms in the 1st excited state and in ground state\n", +"//n1=number of atoms in ground state\n", +"//n2=number of atoms in excited state\n", +"printf('Relative population of Na atoms in the 1st excited state and in ground state\n')\n", +"disp(N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.20: EX12_20.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 20 , pg 339\n", +"rho=1.8*10^-8 //resistivity (in ohm*m)\n", +"Ef=4.8 //Fermi energy (in eV)\n", +"E=100 //electric field intensity (in V/m)\n", +"n=6.2*10^28 //concentration of electrons (in atoms/m^3)\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"T=Me/(rho*n*e^2) //relaxation time\n", +"Un=(e*T)/Me //mobility of electron\n", +"Vd=(e*T*E)/Me //drift velocity\n", +"Vf=sqrt((2*Ef*e)/Me) //Fermi velocity\n", +"lam_m=Vf*T //mean free path\n", +"\n", +"printf('Relaxation time of electron (in s)')\n", +"disp(T)\n", +"printf('Mobility of electron (in m^2/(V*s))')\n", +"disp(Un)\n", +"printf('Drift velocity of electron (in m/s)')\n", +"disp(Vd)\n", +"printf('Fermi velocity of electrons (in m/s)')\n", +"disp(Vf)\n", +"printf('Mean free path(in m)')\n", +"disp(lam_m)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.21: evaluate_value_of_F_E.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 21 , pg 341\n", +"del_E=0.02*1.6*10^-19 // del_E = E-Ef (in J) (converting eV into J)\n", +"T=220 //temperature (in K)\n", +"k=1.38*10^-23 //boltzmanns constant (in J/K)\n", +"F_E=1/(1+exp(del_E/(k*T))) //Fermi Dirac distribution function\n", +"printf('F_E=%.3f',F_E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.22: calculate_how_is_Ef_located_relative_to_Ei.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 22 , pg 341\n", +"ni=1.5*10^10 //intrinsic concentration (in cm^-3)\n", +"Nd=5*10^15 //donor concentration (in atoms/cm^3)\n", +"T=300 //temperature (in K)\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"k=1.38*10^-23 //Boltzmann constant (in J/K)\n", +"n0=Nd //Assuming n0=Nd ( since Nd >> ni)\n", +"p0=ni^2/n0 //hole concentration\n", +"E=k*T*log(n0/ni) // E=(Ef-Ei) location of Ef relative to Ei\n", +"printf('Hole concentration (in cm^-3)')\n", +"disp(p0)\n", +"printf('Location of Ef relative to Ei (in eV)')\n", +"disp(E/e)\n", +"x = linspace(-5.5,5.5,51);\n", +"y = 1 ;\n", +"\n", +"scf(2);\n", +"clf(2);\n", +"plot(x,y+0.1);\n", +"\n", +"plot(x,y,'ro-');\n", +"plot(x,y-0.329,'--');\n", +"plot(x,y*0,'bs:');\n", +"xlabel(['x axis';'(independent variable)']);\n", +"ylabel('Energy level (eV)');\n", +"title('Band diagram');\n", +"legend(['Ec';'Ef';'Ei';'Ev']);\n", +"set(gca(),'data_bounds',matrix([-6,6,-0.1,1.1],2,-1));" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.23: find_magnitude_of_Hall_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 23 , pg 342\n", +"I=40 //current (in A)\n", +"B=1.4 //magnetic field (in T)\n", +"d=2*10^-2 //width of slab (in m)\n", +"n=8.4*10^28 //concentration of electrons (in m^-3)\n", +"e=1.6*10^-19 // charge (in C)\n", +"VH=(B*I)/(n*e*d) //Hall voltage\n", +"printf('Hall voltage(in V)=')\n", +"disp(VH)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.24: calculate_Hall_voltage_and_Hall_coefficient.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 24 , pg 342\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"Ix=2*10^-3 //current (in A)\n", +"d=220*10^-4 //thickness (in cm)\n", +"Bz=5*10^-5 //magnetic induction (in Wb/cm^2)\n", +"Un=800 //electron mobility (in cm^2/(V*s))\n", +"n=9*10^16 //doping concentration (in atoms/cm^3)\n", +"\n", +"sigma=n*e*(Un) // electrical conductivity\n", +"rho=1/sigma //resistivity\n", +"Rh=-1/(e*n) //Hall coefficient\n", +"Vh=-(Ix*Bz)/(d*e*n) //Hall voltage\n", +"printf('Resistivity(in ohm*cm)')\n", +"disp(rho)\n", +"printf('Hall coefficient(in cm^3/C)')\n", +"disp(Rh)\n", +"printf('Hall voltage (in V)')\n", +"disp(Vh)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.25: determine_magnitude_and_direction_of_magnetic_moment.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 25 , pg 343\n", +"I=10 // current(in A)\n", +"A=8*10^-4 //area(in m^2)\n", +"M=I*A //magnetic moment associated with the loop\n", +"printf('Magnetic moment associated with the loop(in A m^2)=')\n", +"disp(M)\n", +"printf('M is directed away from the observer and is perpendicular to the plane of the loop')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.26: determine_magnitude_and_direction_of_magnetic_moment.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 26 , pg 343\n", +"I=22 // current(in A)\n", +"A=9*10^-3 //area(in m^2)\n", +"M=I*A //magnetic moment associated with the loop\n", +"printf('Magnetic moment associated with the loop(in A m^2)=')\n", +"disp(M)\n", +"printf('M is directed towards the observer and is perpendicular to the plane of the loop')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.27: determine_magnetic_moment.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 27 , pg 344\n", +"r=0.62*10^-10 //radius of orbit (in m)\n", +"e= 1.6*10^-19 //charge on electron (in C)\n", +"n=10^15 //frequency of revolution of electron (in rps)\n", +"I=e*n //current (in A)\n", +"A=%pi *r^2 //area (in m^2)\n", +"M=I*A //magnetic moment associated with motion of electron \n", +"printf('Magnetic moment associated with motion of electron (in A m^2)')\n", +"disp(M)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.28: calculate_permeability.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 28 , pg 344\n", +"H=2000 //magnetizing field (in A/m)\n", +"phi=5*10^-5 //magnetic flux (in Wb)\n", +"A=0.2 *10^-4 //area (in m^2)\n", +"B=phi/A //magnetic flux density (in Wb/m^2)\n", +"u=B/H //permeability (in H/m)\n", +"printf('permeability (in H/m )=')\n", +"disp(u)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.29: calculate_susceptibility.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 29 , pg 345\n", +"ur=4000 //relative permeability\n", +"xm=ur-1 //magnetic susceptibility\n", +"printf('Magnetic susceptibility=')\n", +"disp(xm)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.2: determine_relative_population.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 2 , pg 330\n", +"lam=500*10^-9//wavelength(in m)\n", +"T=250+273 //temperature(in kelvin) (converting celsius into kelvin)\n", +"k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n", +"h=6.625*10^-34//plancks constant(in Js)\n", +"c=3*10^8//speed of light\n", +"N=exp(-(h*c)/(lam*k*T)) //N=(n2/n1)=relative population of atoms in the 1st excited state and in ground state\n", +"//n1=number of atoms in ground state\n", +"//n2=number of atoms in excited state\n", +"printf('Relative population of Na atoms in the 1st excited state and in ground state\n')\n", +"disp(N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.30: determine_critical_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 30 , pg 345\n", +"H0=6*10^4 //magnetic field intensity at 0K (in A/m)\n", +"T=4.2 //temperature (in K)\n", +"Tc=8 //critical temperature (in K)\n", +"Hc=H0*(1-(T^2/Tc^2)) // critical magnetic field intensity\n", +"printf('critical magnetic field intensity\n')\n", +"printf('Hc=%.0f A/m',Hc)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.31: calculate_critical_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 31 , pg 346\n", +"H0=7*10^4 //magnetic field intensity at 0K (in A/m)\n", +"T=4.2 //temperature (in K)\n", +"Tc=8.2 //critical temperature (in K)\n", +"Hc=H0*(1-(T^2/Tc^2)) // critical magnetic field intensity\n", +"printf('critical magnetic field intensity\n')\n", +"printf('Hc=%.0f A/m',Hc)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.32: calculate_isotopic_mass.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 32 , pg 346\n", +"M1=198.5 //isotopic mass\n", +"Tc1=4.175 //critical temperature for M1 (in K)\n", +"Tc2=4.213 //critical temperature for M2 (in K)\n", +"alpha=0.5\n", +"\n", +"//M^alpha * Tc=constant\n", +"M2=((M1^alpha*Tc1)/Tc2)^(1/alpha)\n", +"printf('Isotopic mass at critical temperature 4.133K\n')\n", +"printf('M2=%.3f ',M2)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.33: calculate_isotopic_mass.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 33 , pg 346\n", +"M1=199 //isotopic mass\n", +"Tc1=4.18 //critical temperature for M1 (in K)\n", +"Tc2=4.14 //critical temperature for M2 (in K)\n", +"alpha=0.5\n", +"\n", +"//M^alpha * Tc=constant\n", +"M2=((M1^alpha*Tc1)/Tc2)^(1/alpha)\n", +"printf('Isotopic mass at critical temperature 4.133K\n')\n", +"printf('M2=%.4f ',M2)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.3: calculate_ratio_of_stimulated_emission_to_spontaneous_emission.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 3 , pg 331\n", +"T=260+273 //temperature(in kelvin) (converting celsius into kelvin)\n", +"h=6.625*10^-34//plancks constant(in Js)\n", +"c=3*10^8//speed of light(in m/s)\n", +"lam=590*10^-9//wavelength(in m)\n", +"k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n", +"N=1/(exp((h*c)/(lam*k*T))-1) //N=((n21)'/(n21)) ratio of stimulated emission to spontaneous emission\n", +"printf('Ratio of stimulated emission to spontaneous emission is')\n", +"disp(N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.4: calculate_number_of_photons_emitted_per_minute.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 4 , pg 331\n", +"lam=632.8*10^-9//wavelength(in m)\n", +"Em=3.16*10^-3*60//energy emitted per minute(in J/min)\n", +"c=3*10^8//speed of light(in m/s)\n", +"h=6.625*10^-34//plancks constant(in Js)\n", +"n=c/lam //frequency of emitted photons(in Hz)\n", +"E=h*n //energy of each photon(in J)\n", +"N=Em/E //number of photons emitted per minute\n", +"printf('Number of photons emitted per minute')\n", +"disp(N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.5: calculate_number_of_photons_emitted_per_minute.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 5 , pg 332\n", +"lam=540*10^-9//wavelength(in m)\n", +"Em=5*10^-3*60//energy emitted per minute(in J/min)\n", +"c=3*10^8//speed of light(in m/s)\n", +"h=6.625*10^-34//plancks constant(in Js)\n", +"n=c/lam //frequency of emitted photons(in Hz)\n", +"E=h*n //energy of each photon(in J)\n", +"N=Em/E //number of photons emitted per minute\n", +"printf('Number of photons emitted per minute')\n", +"disp(N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.6: find_NA_and_critical_angle_and_alpha_m.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 6 , pg 332\n", +"n1=1.5//core refractive index\n", +"n2=1.45//cladding refractive index\n", +"n0=1//refractive index of air\n", +"NA=sqrt(n1^2-n2^2)//numerical aperture\n", +"alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n", +"phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)\n", +"phi_c=asin(n2/n1) //critical angle (in radian)\n", +"printf('NA=%.2f \n',NA)\n", +"printf('alpha_m=%.2f degree\n',(alpha_m*180)/%pi)\n", +"printf('phi_m=%.2f degree\n',(phi_m*180)/%pi)\n", +"printf('phi_c=%.2f degree',(phi_c*180)/%pi)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.7: find_NA_and_critical_angle_and_alpha_m.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 7 , pg 333\n", +"n1=1.5//core refractive index\n", +"n2=1.45//cladding refractive index\n", +"n0=1.1//refractive index of medium\n", +"NA=sqrt(n1^2-n2^2)//numerical aperture\n", +"alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n", +"phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)\n", +"phi_c=asin(n2/n1) //critical angle (in radian)\n", +"printf('NA=%.2f \n',NA)\n", +"printf('alpha_m=%.2f degree\n',(alpha_m*180)/%pi)\n", +"printf('phi_m=%.2f degree\n',(phi_m*180)/%pi)\n", +"printf('phi_c=%.2f degree',(phi_c*180)/%pi)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.8: calculate_pulse_broadening_per_unit_length.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 8 , pg 334\n", +"n1=1.5//core refractive index\n", +"n2=1.45//cladding refractive index\n", +"c=3*10^8//speed of light(in m/s)\n", +"P=(n1*(n1-n2))/(n2*c) //pulse broadening per unit length due to multiple dispersion\n", +"//P=(del_t/L) where del_t=time interval , L=distance transversed by ray inside core\n", +"printf('pulse broadening per unit length due to multiple dispersion(in s/m)')\n", +"disp(P)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.9: calculate_pulse_broadening_per_unit_length.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Additional solved examples , Example 9 , pg 334\n", +"n1=1.55//core refractive index\n", +"n2=1.48//cladding refractive index\n", +"c=3*10^8//speed of light(in m/s)\n", +"P=(n1*(n1-n2))/(n2*c) //pulse broadening per unit length due to multiple dispersion\n", +"//P=(del_t/L) where del_t=time interval , L=distance transversed by ray inside core\n", +"printf('pulse broadening per unit length due to multiple dispersion(in s/m)')\n", +"disp(P)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |