summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_D_K_Bhattacharya/12-Additional_solved_examples.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_D_K_Bhattacharya/12-Additional_solved_examples.ipynb')
-rw-r--r--Engineering_Physics_by_D_K_Bhattacharya/12-Additional_solved_examples.ipynb988
1 files changed, 988 insertions, 0 deletions
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/12-Additional_solved_examples.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/12-Additional_solved_examples.ipynb
new file mode 100644
index 0000000..85af94c
--- /dev/null
+++ b/Engineering_Physics_by_D_K_Bhattacharya/12-Additional_solved_examples.ipynb
@@ -0,0 +1,988 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12: Additional solved examples"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.10: calculate_minimum_and_maximum_number_of_total_internal_reflections_per_metre.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 10 , pg 335\n",
+"n1=1.5//core refractive index\n",
+"n2=1.45//cladding refractive index\n",
+"n0=1//refractive index of air\n",
+"NA=sqrt(n1^2-n2^2)//numerical aperture\n",
+"alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n",
+"a=100*10^-6/2 //radius of core\n",
+"phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)\n",
+"L=a/tan(phi_m) //(in m)\n",
+"printf('Minimum number of reflections per metre=zero\n') //since rays travelling with alpha=0 suffer no internal reflection\n",
+"//for rays travelling with alpha=alpha_m ,1 internal reflection takes place for a transversed distance of 2*L\n",
+"N=1/(2*L) //Maximum number of reflections per metre\n",
+"disp('Maximum number of reflections per metre(in m^-1)=')\n",
+"printf('N=%.0f',N)\n",
+"\n",
+"//Answer varies as L is restricted to 1.86*10^-4 (m) instead of 1.888*10^-4 (m)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.11: calculate_energy_and_momentum_of_photon.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 11 , pg 335\n",
+"c=3*10^8 //speed of light(in m/sec)\n",
+"h=6.625*10^-34//planck's constant(in J s)\n",
+"lam=1.4*10^-10//wavelength(in m)\n",
+"E=(h*c)/(lam*1.6*10^-19) //energy of photon(in eV)\n",
+"p=h/lam //momentum of photon\n",
+"printf('Energy of photo\n')\n",
+"printf('E=%.1f eV\n',E)\n",
+"printf('momentum of photon(in Kg m/sec)\n')\n",
+"disp(p)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.12: calculate_number_of_photons_emitted_per_second.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 12 , pg 336\n",
+"E1=2*10^4 //energy emitted per second(in J)\n",
+"n=1000*10^3 //frequency(in Hz)\n",
+"h=6.625*10^-34 //plancks constant(in J s)\n",
+"E=h*n//energy carried by 1 photon(in J)\n",
+"N=E1/E//number of photons emitted per second\n",
+"printf('number of photons emitted per second\n')\n",
+"disp(N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.13: calculate_de_Broglie_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 13 , pg 336\n",
+"m=0.05//mass(in Kg)\n",
+"v=2000//speed(in m/sec)\n",
+"h=6.625*10^-34//plancks constant(in J s)\n",
+"p=m*v//momentum(in kg m/sec)\n",
+"lam=h/p //wavelength\n",
+"printf('de Broglie wavelength(in m)\n')\n",
+"disp(lam)\n",
+"printf('de Broglie wavelength(in A)\n')\n",
+"disp(lam*10^10)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.14: find_change_in_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 14 , pg 336\n",
+"h=6.625*10^-34//plancksconstant(in J s)\n",
+"c=3*10^8//velocity of x-ray photon(in m/sec)\n",
+"m0=9.11*10^-31//rest mass of electron(in Kg)\n",
+"phi=(85*%pi)/180//angle of scattering (in radian) (converting degree into radian)\n",
+"delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering\n",
+"printf('change in wavelength of x-ray photon(in m)\n')\n",
+"disp(delta_H)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.15: find_miller_indices.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 15 , pg 337\n",
+"//plane has intercepts 2a,2b,3c along the 3 crystal axes\n",
+"//lattice points in 3-d lattice are given by r=p*a+q*b+s*c\n",
+"//as p,q,r are the basic vectors the proportion of intercepts 2:2:3\n",
+"p=2\n",
+"q=2\n",
+"s=3 \n",
+"//therefore reciprocal\n",
+"r1=1/2\n",
+"r2=1/2\n",
+"r3=1/3\n",
+"//taking LCM\n",
+"v=int32([2,2,3])\n",
+"l=double(lcm(v))\n",
+"m1=(l*r1)\n",
+"m2=(l*r2)\n",
+"m3=(l*r3)\n",
+"printf('miler indices=')\n",
+"disp(m3,m2,m1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.16: find_miller_indices.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 16 , pg 337\n",
+"//plane has intercepts 4a,2b,4c along the 3 crystal axes\n",
+"//lattice points in 3-d lattice are given by r=p*a+q*b+s*c\n",
+"//as p,q,r are the basic vectors the proportion of intercepts 2:2:3\n",
+"p=4\n",
+"q=2\n",
+"s=4 \n",
+"//therefore reciprocal\n",
+"r1=1/4\n",
+"r2=1/2\n",
+"r3=1/4\n",
+"//taking LCM\n",
+"v=int32([4,2,4])\n",
+"l=double(lcm(v))\n",
+"m1=(l*r1)\n",
+"m2=(l*r2)\n",
+"m3=(l*r3)\n",
+"printf('miler indices=')\n",
+"disp(m3,m2,m1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.17: find_size_of_unit_cell.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 17 , pg 338\n",
+"d110=1.96//spacing of(1 1 0) planes (in Angstrom)\n",
+"h=1\n",
+"k=1\n",
+"l=0 //(h k l)=(1 1 0)\n",
+"a=d110*sqrt(h^2+k^2+l^2)//size of unit cell\n",
+"printf('size of unit cell=')\n",
+"printf('a=%.2f angstrom',a)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.18: find_volume_of_unit_cell.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 18 , pg 339\n",
+"r=1.575 *10^-10 //radius of atom (in m)\n",
+"a=2*r//lattice constant (for HCP structure) (in m)\n",
+"c=a*sqrt(8/3) //(in m)\n",
+"V=(3*sqrt(3)*a^2*c)/2 //volume of unit cell\n",
+"printf('volume of unit cell(in m^3)\n')\n",
+"disp(V)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.19: calculate_Fermi_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 19 , pg 339\n",
+"Vf=7*10^5 //Fermi velocity (in m/s)\n",
+"m=9.11*10^-31 // mass of electron(in Kg)\n",
+"Ef=(m*Vf^2)/2 //Fermi energy (in J)\n",
+"printf('Fermi energy for the electrons in the metal=')\n",
+"printf('Ef=%.1f eV',(Ef/(1.6*10^-19))) //converting J into eV\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"//Answer is given wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.1: calculate_relative_population.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 1 , pg 330\n",
+"lam=590*10^-9//wavelength(in m)\n",
+"T=270+273 //temperature(in kelvin) (converting celsius into kelvin)\n",
+"k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n",
+"h=6.625*10^-34//plancks constant(in Js)\n",
+"c=3*10^8//speed of light\n",
+"N=exp(-(h*c)/(lam*k*T)) //N=(n2/n1)=relative population of atoms in the 1st excited state and in ground state\n",
+"//n1=number of atoms in ground state\n",
+"//n2=number of atoms in excited state\n",
+"printf('Relative population of Na atoms in the 1st excited state and in ground state\n')\n",
+"disp(N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.20: EX12_20.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 20 , pg 339\n",
+"rho=1.8*10^-8 //resistivity (in ohm*m)\n",
+"Ef=4.8 //Fermi energy (in eV)\n",
+"E=100 //electric field intensity (in V/m)\n",
+"n=6.2*10^28 //concentration of electrons (in atoms/m^3)\n",
+"e=1.6*10^-19 //charge in electron (in C)\n",
+"Me=9.11*10^-31 //mass of electron (in Kg)\n",
+"T=Me/(rho*n*e^2) //relaxation time\n",
+"Un=(e*T)/Me //mobility of electron\n",
+"Vd=(e*T*E)/Me //drift velocity\n",
+"Vf=sqrt((2*Ef*e)/Me) //Fermi velocity\n",
+"lam_m=Vf*T //mean free path\n",
+"\n",
+"printf('Relaxation time of electron (in s)')\n",
+"disp(T)\n",
+"printf('Mobility of electron (in m^2/(V*s))')\n",
+"disp(Un)\n",
+"printf('Drift velocity of electron (in m/s)')\n",
+"disp(Vd)\n",
+"printf('Fermi velocity of electrons (in m/s)')\n",
+"disp(Vf)\n",
+"printf('Mean free path(in m)')\n",
+"disp(lam_m)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.21: evaluate_value_of_F_E.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 21 , pg 341\n",
+"del_E=0.02*1.6*10^-19 // del_E = E-Ef (in J) (converting eV into J)\n",
+"T=220 //temperature (in K)\n",
+"k=1.38*10^-23 //boltzmanns constant (in J/K)\n",
+"F_E=1/(1+exp(del_E/(k*T))) //Fermi Dirac distribution function\n",
+"printf('F_E=%.3f',F_E)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.22: calculate_how_is_Ef_located_relative_to_Ei.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 22 , pg 341\n",
+"ni=1.5*10^10 //intrinsic concentration (in cm^-3)\n",
+"Nd=5*10^15 //donor concentration (in atoms/cm^3)\n",
+"T=300 //temperature (in K)\n",
+"e=1.6*10^-19 //charge of electron (in C)\n",
+"k=1.38*10^-23 //Boltzmann constant (in J/K)\n",
+"n0=Nd //Assuming n0=Nd ( since Nd >> ni)\n",
+"p0=ni^2/n0 //hole concentration\n",
+"E=k*T*log(n0/ni) // E=(Ef-Ei) location of Ef relative to Ei\n",
+"printf('Hole concentration (in cm^-3)')\n",
+"disp(p0)\n",
+"printf('Location of Ef relative to Ei (in eV)')\n",
+"disp(E/e)\n",
+"x = linspace(-5.5,5.5,51);\n",
+"y = 1 ;\n",
+"\n",
+"scf(2);\n",
+"clf(2);\n",
+"plot(x,y+0.1);\n",
+"\n",
+"plot(x,y,'ro-');\n",
+"plot(x,y-0.329,'--');\n",
+"plot(x,y*0,'bs:');\n",
+"xlabel(['x axis';'(independent variable)']);\n",
+"ylabel('Energy level (eV)');\n",
+"title('Band diagram');\n",
+"legend(['Ec';'Ef';'Ei';'Ev']);\n",
+"set(gca(),'data_bounds',matrix([-6,6,-0.1,1.1],2,-1));"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.23: find_magnitude_of_Hall_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 23 , pg 342\n",
+"I=40 //current (in A)\n",
+"B=1.4 //magnetic field (in T)\n",
+"d=2*10^-2 //width of slab (in m)\n",
+"n=8.4*10^28 //concentration of electrons (in m^-3)\n",
+"e=1.6*10^-19 // charge (in C)\n",
+"VH=(B*I)/(n*e*d) //Hall voltage\n",
+"printf('Hall voltage(in V)=')\n",
+"disp(VH)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.24: calculate_Hall_voltage_and_Hall_coefficient.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 24 , pg 342\n",
+"e=1.6*10^-19 //charge in electron (in C)\n",
+"Ix=2*10^-3 //current (in A)\n",
+"d=220*10^-4 //thickness (in cm)\n",
+"Bz=5*10^-5 //magnetic induction (in Wb/cm^2)\n",
+"Un=800 //electron mobility (in cm^2/(V*s))\n",
+"n=9*10^16 //doping concentration (in atoms/cm^3)\n",
+"\n",
+"sigma=n*e*(Un) // electrical conductivity\n",
+"rho=1/sigma //resistivity\n",
+"Rh=-1/(e*n) //Hall coefficient\n",
+"Vh=-(Ix*Bz)/(d*e*n) //Hall voltage\n",
+"printf('Resistivity(in ohm*cm)')\n",
+"disp(rho)\n",
+"printf('Hall coefficient(in cm^3/C)')\n",
+"disp(Rh)\n",
+"printf('Hall voltage (in V)')\n",
+"disp(Vh)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.25: determine_magnitude_and_direction_of_magnetic_moment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 25 , pg 343\n",
+"I=10 // current(in A)\n",
+"A=8*10^-4 //area(in m^2)\n",
+"M=I*A //magnetic moment associated with the loop\n",
+"printf('Magnetic moment associated with the loop(in A m^2)=')\n",
+"disp(M)\n",
+"printf('M is directed away from the observer and is perpendicular to the plane of the loop')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.26: determine_magnitude_and_direction_of_magnetic_moment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 26 , pg 343\n",
+"I=22 // current(in A)\n",
+"A=9*10^-3 //area(in m^2)\n",
+"M=I*A //magnetic moment associated with the loop\n",
+"printf('Magnetic moment associated with the loop(in A m^2)=')\n",
+"disp(M)\n",
+"printf('M is directed towards the observer and is perpendicular to the plane of the loop')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.27: determine_magnetic_moment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 27 , pg 344\n",
+"r=0.62*10^-10 //radius of orbit (in m)\n",
+"e= 1.6*10^-19 //charge on electron (in C)\n",
+"n=10^15 //frequency of revolution of electron (in rps)\n",
+"I=e*n //current (in A)\n",
+"A=%pi *r^2 //area (in m^2)\n",
+"M=I*A //magnetic moment associated with motion of electron \n",
+"printf('Magnetic moment associated with motion of electron (in A m^2)')\n",
+"disp(M)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.28: calculate_permeability.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 28 , pg 344\n",
+"H=2000 //magnetizing field (in A/m)\n",
+"phi=5*10^-5 //magnetic flux (in Wb)\n",
+"A=0.2 *10^-4 //area (in m^2)\n",
+"B=phi/A //magnetic flux density (in Wb/m^2)\n",
+"u=B/H //permeability (in H/m)\n",
+"printf('permeability (in H/m )=')\n",
+"disp(u)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.29: calculate_susceptibility.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 29 , pg 345\n",
+"ur=4000 //relative permeability\n",
+"xm=ur-1 //magnetic susceptibility\n",
+"printf('Magnetic susceptibility=')\n",
+"disp(xm)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.2: determine_relative_population.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 2 , pg 330\n",
+"lam=500*10^-9//wavelength(in m)\n",
+"T=250+273 //temperature(in kelvin) (converting celsius into kelvin)\n",
+"k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n",
+"h=6.625*10^-34//plancks constant(in Js)\n",
+"c=3*10^8//speed of light\n",
+"N=exp(-(h*c)/(lam*k*T)) //N=(n2/n1)=relative population of atoms in the 1st excited state and in ground state\n",
+"//n1=number of atoms in ground state\n",
+"//n2=number of atoms in excited state\n",
+"printf('Relative population of Na atoms in the 1st excited state and in ground state\n')\n",
+"disp(N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.30: determine_critical_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 30 , pg 345\n",
+"H0=6*10^4 //magnetic field intensity at 0K (in A/m)\n",
+"T=4.2 //temperature (in K)\n",
+"Tc=8 //critical temperature (in K)\n",
+"Hc=H0*(1-(T^2/Tc^2)) // critical magnetic field intensity\n",
+"printf('critical magnetic field intensity\n')\n",
+"printf('Hc=%.0f A/m',Hc)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.31: calculate_critical_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 31 , pg 346\n",
+"H0=7*10^4 //magnetic field intensity at 0K (in A/m)\n",
+"T=4.2 //temperature (in K)\n",
+"Tc=8.2 //critical temperature (in K)\n",
+"Hc=H0*(1-(T^2/Tc^2)) // critical magnetic field intensity\n",
+"printf('critical magnetic field intensity\n')\n",
+"printf('Hc=%.0f A/m',Hc)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.32: calculate_isotopic_mass.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 32 , pg 346\n",
+"M1=198.5 //isotopic mass\n",
+"Tc1=4.175 //critical temperature for M1 (in K)\n",
+"Tc2=4.213 //critical temperature for M2 (in K)\n",
+"alpha=0.5\n",
+"\n",
+"//M^alpha * Tc=constant\n",
+"M2=((M1^alpha*Tc1)/Tc2)^(1/alpha)\n",
+"printf('Isotopic mass at critical temperature 4.133K\n')\n",
+"printf('M2=%.3f ',M2)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.33: calculate_isotopic_mass.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 33 , pg 346\n",
+"M1=199 //isotopic mass\n",
+"Tc1=4.18 //critical temperature for M1 (in K)\n",
+"Tc2=4.14 //critical temperature for M2 (in K)\n",
+"alpha=0.5\n",
+"\n",
+"//M^alpha * Tc=constant\n",
+"M2=((M1^alpha*Tc1)/Tc2)^(1/alpha)\n",
+"printf('Isotopic mass at critical temperature 4.133K\n')\n",
+"printf('M2=%.4f ',M2)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.3: calculate_ratio_of_stimulated_emission_to_spontaneous_emission.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 3 , pg 331\n",
+"T=260+273 //temperature(in kelvin) (converting celsius into kelvin)\n",
+"h=6.625*10^-34//plancks constant(in Js)\n",
+"c=3*10^8//speed of light(in m/s)\n",
+"lam=590*10^-9//wavelength(in m)\n",
+"k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n",
+"N=1/(exp((h*c)/(lam*k*T))-1) //N=((n21)'/(n21)) ratio of stimulated emission to spontaneous emission\n",
+"printf('Ratio of stimulated emission to spontaneous emission is')\n",
+"disp(N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.4: calculate_number_of_photons_emitted_per_minute.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 4 , pg 331\n",
+"lam=632.8*10^-9//wavelength(in m)\n",
+"Em=3.16*10^-3*60//energy emitted per minute(in J/min)\n",
+"c=3*10^8//speed of light(in m/s)\n",
+"h=6.625*10^-34//plancks constant(in Js)\n",
+"n=c/lam //frequency of emitted photons(in Hz)\n",
+"E=h*n //energy of each photon(in J)\n",
+"N=Em/E //number of photons emitted per minute\n",
+"printf('Number of photons emitted per minute')\n",
+"disp(N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.5: calculate_number_of_photons_emitted_per_minute.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 5 , pg 332\n",
+"lam=540*10^-9//wavelength(in m)\n",
+"Em=5*10^-3*60//energy emitted per minute(in J/min)\n",
+"c=3*10^8//speed of light(in m/s)\n",
+"h=6.625*10^-34//plancks constant(in Js)\n",
+"n=c/lam //frequency of emitted photons(in Hz)\n",
+"E=h*n //energy of each photon(in J)\n",
+"N=Em/E //number of photons emitted per minute\n",
+"printf('Number of photons emitted per minute')\n",
+"disp(N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.6: find_NA_and_critical_angle_and_alpha_m.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 6 , pg 332\n",
+"n1=1.5//core refractive index\n",
+"n2=1.45//cladding refractive index\n",
+"n0=1//refractive index of air\n",
+"NA=sqrt(n1^2-n2^2)//numerical aperture\n",
+"alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n",
+"phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)\n",
+"phi_c=asin(n2/n1) //critical angle (in radian)\n",
+"printf('NA=%.2f \n',NA)\n",
+"printf('alpha_m=%.2f degree\n',(alpha_m*180)/%pi)\n",
+"printf('phi_m=%.2f degree\n',(phi_m*180)/%pi)\n",
+"printf('phi_c=%.2f degree',(phi_c*180)/%pi)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.7: find_NA_and_critical_angle_and_alpha_m.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 7 , pg 333\n",
+"n1=1.5//core refractive index\n",
+"n2=1.45//cladding refractive index\n",
+"n0=1.1//refractive index of medium\n",
+"NA=sqrt(n1^2-n2^2)//numerical aperture\n",
+"alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n",
+"phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)\n",
+"phi_c=asin(n2/n1) //critical angle (in radian)\n",
+"printf('NA=%.2f \n',NA)\n",
+"printf('alpha_m=%.2f degree\n',(alpha_m*180)/%pi)\n",
+"printf('phi_m=%.2f degree\n',(phi_m*180)/%pi)\n",
+"printf('phi_c=%.2f degree',(phi_c*180)/%pi)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.8: calculate_pulse_broadening_per_unit_length.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 8 , pg 334\n",
+"n1=1.5//core refractive index\n",
+"n2=1.45//cladding refractive index\n",
+"c=3*10^8//speed of light(in m/s)\n",
+"P=(n1*(n1-n2))/(n2*c) //pulse broadening per unit length due to multiple dispersion\n",
+"//P=(del_t/L) where del_t=time interval , L=distance transversed by ray inside core\n",
+"printf('pulse broadening per unit length due to multiple dispersion(in s/m)')\n",
+"disp(P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.9: calculate_pulse_broadening_per_unit_length.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Additional solved examples , Example 9 , pg 334\n",
+"n1=1.55//core refractive index\n",
+"n2=1.48//cladding refractive index\n",
+"c=3*10^8//speed of light(in m/s)\n",
+"P=(n1*(n1-n2))/(n2*c) //pulse broadening per unit length due to multiple dispersion\n",
+"//P=(del_t/L) where del_t=time interval , L=distance transversed by ray inside core\n",
+"printf('pulse broadening per unit length due to multiple dispersion(in s/m)')\n",
+"disp(P)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}