diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /3250/CH3 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '3250/CH3')
-rwxr-xr-x | 3250/CH3/EX3.1/Ex3_1.sce | 19 | ||||
-rwxr-xr-x | 3250/CH3/EX3.1/Ex3_1.txt | 6 | ||||
-rwxr-xr-x | 3250/CH3/EX3.10/Ex3_10.sce | 30 | ||||
-rwxr-xr-x | 3250/CH3/EX3.10/Ex3_10.txt | 5 | ||||
-rwxr-xr-x | 3250/CH3/EX3.11/Ex3_11.sce | 25 | ||||
-rwxr-xr-x | 3250/CH3/EX3.11/Ex3_11.txt | 4 | ||||
-rwxr-xr-x | 3250/CH3/EX3.12/Ex3_12.sce | 15 | ||||
-rwxr-xr-x | 3250/CH3/EX3.12/Ex3_12.txt | 5 | ||||
-rwxr-xr-x | 3250/CH3/EX3.2/Ex3_2.sce | 50 | ||||
-rwxr-xr-x | 3250/CH3/EX3.2/Ex3_2.txt | 21 | ||||
-rwxr-xr-x | 3250/CH3/EX3.3/Ex3_3.sce | 50 | ||||
-rwxr-xr-x | 3250/CH3/EX3.3/Ex3_3.txt | 3 | ||||
-rwxr-xr-x | 3250/CH3/EX3.4/Ex3_4.sce | 28 | ||||
-rwxr-xr-x | 3250/CH3/EX3.4/Ex3_4.txt | 3 | ||||
-rwxr-xr-x | 3250/CH3/EX3.5/Ex3_5.sce | 23 | ||||
-rwxr-xr-x | 3250/CH3/EX3.5/Ex3_5.txt | 4 | ||||
-rwxr-xr-x | 3250/CH3/EX3.6/Ex3_6.sce | 23 | ||||
-rwxr-xr-x | 3250/CH3/EX3.6/Ex3_6.txt | 4 | ||||
-rwxr-xr-x | 3250/CH3/EX3.7/Ex3_7.sce | 23 | ||||
-rwxr-xr-x | 3250/CH3/EX3.7/Ex3_7.txt | 5 | ||||
-rwxr-xr-x | 3250/CH3/EX3.8/Ex3_8.sce | 20 | ||||
-rwxr-xr-x | 3250/CH3/EX3.8/Ex3_8.txt | 4 | ||||
-rwxr-xr-x | 3250/CH3/EX3.9/Ex3_9.sce | 26 | ||||
-rwxr-xr-x | 3250/CH3/EX3.9/Ex3_9.txt | 5 |
24 files changed, 401 insertions, 0 deletions
diff --git a/3250/CH3/EX3.1/Ex3_1.sce b/3250/CH3/EX3.1/Ex3_1.sce new file mode 100755 index 000000000..eadcb5ec9 --- /dev/null +++ b/3250/CH3/EX3.1/Ex3_1.sce @@ -0,0 +1,19 @@ +clc
+// Given that
+A = 150*6 // Cross-section of strips in mm^2
+ti = 6 // Thickness in mm
+pA = 0.20 // Reduction in area
+d = 400 // Diameter of steel rolls in mm
+Ys = 0.35// Shear Yield stress of the material before rolling in KN/mm^2
+Ys_ = 0.4// Shear Yield stress of the material after rolling in KN/mm^2
+mu = 0.1 // Cofficient of friction
+// Sample Problem 1 on page no. 112
+printf("\n # PROBLEM 3.1 # \n")
+tf =0.8*ti
+Ys_a = (Ys + Ys_)/2
+r=d/2
+thetaI = sqrt((ti-tf)/r)
+lambdaI=2*sqrt(r/tf)*atan(thetaI *sqrt(r/tf))
+lambdaN = (1/2)*((1/mu)*(log(tf/ti)) + lambdaI)
+thetaN =(sqrt(tf/r))*(tan((lambdaN/2)*(sqrt(tf/r))))
+printf("\n The final srip thickness is %f mm, \n The avg shear yield stress during the process is %f KN/mm^2, \n The angle subtended by the deformation zone at the roll centre is %f rad, \n The location of neutral point is %f rad.",tf,Ys_a,thetaI,thetaN)
diff --git a/3250/CH3/EX3.1/Ex3_1.txt b/3250/CH3/EX3.1/Ex3_1.txt new file mode 100755 index 000000000..ac4331849 --- /dev/null +++ b/3250/CH3/EX3.1/Ex3_1.txt @@ -0,0 +1,6 @@ + # PROBLEM 3.1 #
+
+ The final srip thickness is 4.800000 mm,
+ The avg shear yield stress during the process is 0.375000 KN/mm^2,
+ The angle subtended by the deformation zone at the roll centre is 0.077460 rad,
+ The location of neutral point is 0.022685 rad.
\ No newline at end of file diff --git a/3250/CH3/EX3.10/Ex3_10.sce b/3250/CH3/EX3.10/Ex3_10.sce new file mode 100755 index 000000000..a66d7c1de --- /dev/null +++ b/3250/CH3/EX3.10/Ex3_10.sce @@ -0,0 +1,30 @@ +clc +// Given that +L_ = 20 // Length of the mild steel product in mm +h = 50 // Height of the mild steel product in mm +L = 50 // Horizontal length of the mild steel product in mm +t = 5 // Thickness in mm +l=25 // Length of the bend in mm +E = 207 // Modulus of elasticity in kN/mm^2 +n = 517 // Strain hardening rate in N/mm^2 +Y = 345 // Yield stress in N/mm^2 +mu = 0.1// Cofficient of friction +e = 0.2 // Fracture strain +theta = 20 // Bend angle in degree +F = 3000 // Maximum available force in N +// Sample Problem 10 on page no. 136 +printf("\n # PROBLEM 3.10 # \n") +Rp = ((1 /((exp(e) - 1)))-0.82)*t/1.82 +Y_1 = Y+n*e +Y_2 = Y + n*(log(1+(1/(2.22*(Rp/t)+1)))) +M = ((0.55*t)^2)*((Y/6)+(Y_1/3)) + ((0.45*t)^2)*((Y/6)+(Y_2/3)) +Fmax = (M/l)*(1+(cosd((atand(mu))+mu*sind(atand(mu))))) +Fmax_ = L_*Fmax +lmin = Fmax_*l/F +Ls = 2*(((Rp+0.45*t)*%pi/4) + 50-(Rp+t)) +lmax = Ls / 2 +Fmax_min = Fmax_*l/lmax +printf("\n Minimum value of die length = %f mm, \n Minimum required capacity of the machine = %d N",lmin,ceil(Fmax_min)) +// Answer in the book is give as 2323 N for Minimum required capacity of the machine + + diff --git a/3250/CH3/EX3.10/Ex3_10.txt b/3250/CH3/EX3.10/Ex3_10.txt new file mode 100755 index 000000000..0aa9e6ee5 --- /dev/null +++ b/3250/CH3/EX3.10/Ex3_10.txt @@ -0,0 +1,5 @@ +
+ # PROBLEM 3.10 #
+
+ Minimum value of die length = 34.367396 mm,
+ Minimum required capacity of the machine = 2313 N
\ No newline at end of file diff --git a/3250/CH3/EX3.11/Ex3_11.sce b/3250/CH3/EX3.11/Ex3_11.sce new file mode 100755 index 000000000..9b18113b1 --- /dev/null +++ b/3250/CH3/EX3.11/Ex3_11.sce @@ -0,0 +1,25 @@ +clc +// Given that +d = 50 // Diameter of the billet in mm +L =75 // Length of the billet in mm +D = 10 // Final diameter of billet in mm +Y = 170 // Avg tensile yield stress for aluminium in N/mm^2 +mu = 0.15 // Cofficient of the friction +// Sample Problem 11 on page no. 141 +printf("\n # PROBLEM 3.11 # \n") +l = L - ((d-D)/2)*cotd(45) +phi = 1+mu +Y_x = Y*(phi/(phi-1))*(((d/D)^(2*(phi-1)))-1) +F = (%pi/4)*(d^2)*Y_x + (%pi/sqrt(3))*(d*l*Y) +Pf = %pi*Y*(d^2)*((phi/(2*mu))*(((d/D)^(2*mu))-1)-log(d/D)) + (%pi/sqrt(3))*Y*d*l +Loss_f = (Pf/F)*100 +Y_X = Y*4.31*log(d/D) +F_ = (%pi/4)*(d^2)*Y_X + (%pi/sqrt(3))*(d*l*Y) +Pf_1 = (%pi/sqrt(3))*Y*(d^2)*(log(d/D)) +Pf_2 = (%pi/sqrt(3))*(d*l*Y) +Pf_ = Pf_1+Pf_2 +Loss_f_ = (Pf_/F_)*100 +printf("\n Maximum force required for extruding the cylindrical aluminium billet = %d N, \n Percent of the total power input will be lost in friction at the start of the operation = %f percent. ",F,Loss_f_) +// Answer in the book given as 2436444 N for max force required for extruding the cylindrical aluminium billet + + diff --git a/3250/CH3/EX3.11/Ex3_11.txt b/3250/CH3/EX3.11/Ex3_11.txt new file mode 100755 index 000000000..18883bd67 --- /dev/null +++ b/3250/CH3/EX3.11/Ex3_11.txt @@ -0,0 +1,4 @@ + # PROBLEM 3.11 #
+
+ Maximum force required for extruding the cylindrical aluminium billet = 2436266 N,
+ Percent of the total power input will be lost in friction at the start of the operation = 66.024761 percent.
\ No newline at end of file diff --git a/3250/CH3/EX3.12/Ex3_12.sce b/3250/CH3/EX3.12/Ex3_12.sce new file mode 100755 index 000000000..9d8acf773 --- /dev/null +++ b/3250/CH3/EX3.12/Ex3_12.sce @@ -0,0 +1,15 @@ +clc +// Given that +d = 50 // Diameter of the steel sheet in mm +t = 3 // Thickness of the steel sheet in mm +e = 1.75 // True fracture strain +Y = 2.1e3 // True fracture stress for the material in N/mm^2 +// Sample Problem 12 on page no. 149 +printf("\n # PROBLEM 3.12 # \n") +C_0 = (t/(1.36*exp(e)))*((2*exp(e))-1)/((2.3*exp(e))-1) +p = t*(1/2.45)*((1.9*exp(e))-1)/((2.56*exp(e))-1) +F = Y*C_0*%pi*d +W = (1/2)*(F)*(p)*(10^-3) +printf("\n The proper clearance between die and punch = %f mm, \n Maximum punching force = %f N, \n Energy required to punch the hole = %f J",C_0,F/1000,W) +// Answer in the book given as 45.74 J for energy required to punch the hole + diff --git a/3250/CH3/EX3.12/Ex3_12.txt b/3250/CH3/EX3.12/Ex3_12.txt new file mode 100755 index 000000000..43b4179b3 --- /dev/null +++ b/3250/CH3/EX3.12/Ex3_12.txt @@ -0,0 +1,5 @@ + # PROBLEM 3.12 #
+
+ The proper clearance between die and punch = 0.329240 mm,
+ Maximum punching force = 108.605364 N,
+ Energy required to punch the hole = 48.101933 J
\ No newline at end of file diff --git a/3250/CH3/EX3.2/Ex3_2.sce b/3250/CH3/EX3.2/Ex3_2.sce new file mode 100755 index 000000000..7500232e3 --- /dev/null +++ b/3250/CH3/EX3.2/Ex3_2.sce @@ -0,0 +1,50 @@ +clc +// Given that +A = 150*6 // Cross-section of strips in mm^2 +w = 150 // Width of the strip in mm +ti = 6 // Thickness in mm +pA = 0.20 // Reduction in area +d = 400 // Diameter of steel rolls in mm +Ys = 0.35// Shear Yield stress of the material before rolling in KN/mm^2 +Ys_ = 0.4// Shear Yield stress of the material after rolling in KN/mm^2 +mu = 0.1 // Cofficient of friction +v = 30 // Speed of rolling in m/min +// Sample Problem 2 on page no. 113 +printf("\n # PROBLEM 3.2 # \n") +tf =0.8*ti +Ys_a = (Ys + Ys_)/2 +r=d/2 +thetaI = sqrt((ti-tf)/r) +lambdaI=2*sqrt(r/tf)*atan(thetaI *sqrt(r/tf)) +lambdaN = (1/2)*((1/mu)*(log(tf/ti)) + lambdaI) +thetaN =(sqrt(tf/r))*(tan((lambdaN/2)*(sqrt(tf/r)))) +Dtheta_a = thetaN/4 +Dtheta_b = (thetaI- thetaN)/8 +printf("The values of P_after are\n") +i = 0 +for i = 0:4 + theta = i*Dtheta_a + y = (1/2)* (tf+r*theta^2) + lambda = 2*sqrt(r/tf)*atand(theta*(%pi/180) *sqrt(r/tf)) + p_a = 2*Ys_a*(2*y/tf)*(exp(mu*lambda)) + printf("%f \n",p_a) +end +I1 = (Dtheta_a/3) *(0.75+.925+4*(.788+.876)+2*.830)// By Simpson's rule +printf("The values of P_before are\n") +for i = 0:8 + theta1 = i*Dtheta_b + thetaN + y = (1/2)* (tf+r*theta1^2) + lambda = 2*sqrt(r/tf)*atand(theta1*(%pi/180) *sqrt(r/tf)) + p_b = 2*Ys_a*(2*y/ti)*(exp(mu*(lambdaI-lambda))) + printf(" %f \n",p_b) +end +I2 = (Dtheta_b/3)*(0.925+.75+4*(.887+.828+.786+.759) + 2*(.855+.804+.772))//By Simpson's rule +F = r*(I1 + I2) +F_ = F*w +T = (r^2)*mu*(I2-I1) +T_ =T*w +W = v*(1000/60)/r +P = 2*T_*W +printf("\n The roll separating force = %d kN,\n The power required in the rolling process = %f kW",ceil(F_),P/1000) +// Answer in the book for the power required in the rolling process is given as 75.6 kW + diff --git a/3250/CH3/EX3.2/Ex3_2.txt b/3250/CH3/EX3.2/Ex3_2.txt new file mode 100755 index 000000000..dc85fe62b --- /dev/null +++ b/3250/CH3/EX3.2/Ex3_2.txt @@ -0,0 +1,21 @@ +
+ # PROBLEM 3.2 #
+The values of P_after are
+0.750000
+0.787351
+0.828770
+0.874670
+0.925500
+The values of P_before are
+ 0.923035
+ 0.884560
+ 0.850663
+ 0.820780
+ 0.794406
+ 0.771086
+ 0.750418
+ 0.732039
+ 0.715627
+
+ The roll separating force = 1908 kN,
+ The power required in the rolling process = 77.376678 kW
\ No newline at end of file diff --git a/3250/CH3/EX3.3/Ex3_3.sce b/3250/CH3/EX3.3/Ex3_3.sce new file mode 100755 index 000000000..fbb8cb052 --- /dev/null +++ b/3250/CH3/EX3.3/Ex3_3.sce @@ -0,0 +1,50 @@ +clc +// Given that +A = 150*6 // Cross-section of strips in mm^2 +w = 150 // Width of the strip in mm +ti = 6 // Thickness in mm +pA = 0.20 // Reduction in area +d = 400 // Diameter of steel rolls in mm +Ys = 0.35// Shear Yield stress of the material before rolling in KN/mm^2 +Ys_ = 0.4// Shear Yield stress of the material after rolling in KN/mm^2 +mu = 0.1 // Cofficient of friction +mu_ = 0.005 // Cofficient of friction in bearing +D = 150 // The diameter of bearing in mm +v = 30 // Speed of rolling in m/min +// Sample Problem 3 on page no. 115 +printf("\n # PROBLEM 3.3 # \n") +tf =0.8*ti +Ys_a = (Ys + Ys_)/2 +r=d/2 +thetaI = sqrt((ti-tf)/r) +lambdaI=2*sqrt(r/tf)*atan(thetaI *sqrt(r/tf)) +lambdaN = (1/2)*((1/mu)*(log(tf/ti)) + lambdaI) +thetaN =(sqrt(tf/r))*(tan((lambdaN/2)*(sqrt(tf/r)))) +Dtheta_a = thetaN/4 +Dtheta_b = (thetaI- thetaN)/8 +i = 0 +for i = 0:4 + theta = i*Dtheta_a + y = (1/2)* (tf+r*theta^2) + lambda = 2*sqrt(r/tf)*atand(theta*(%pi/180) *sqrt(r/tf)) + p_a = 2*Ys_a*(2*y/tf)*(exp(mu*lambda)) +end +I1 = (Dtheta_a/3) *(0.75+.925+4*(.788+.876)+2*.830) +for i = 0:8 + theta1 = i*Dtheta_b + thetaN + y = (1/2)* (tf+r*theta1^2) + lambda = 2*sqrt(r/tf)*atand(theta1*(%pi/180) *sqrt(r/tf)) + p_b = 2*Ys_a*(2*y/ti)*(exp(mu*(lambdaI-lambda))) +end +I2 = (Dtheta_b/3)*(0.925+.75+4*(.887+.828+.786+.759) + 2*(.855+.804+.772)) +F = r*(I1 + I2) +F_ = F*w +T = (r^2)*mu*(I2-I1) +T_ =T*w +W = v*(1000/60)/r +P_ = 2*T_*W +Pl = mu_*F_*D*W +P = Pl+P_ +printf("\n The mill power = %f kW",P/1000) +// Answer in the book is given as 79.18 kW + diff --git a/3250/CH3/EX3.3/Ex3_3.txt b/3250/CH3/EX3.3/Ex3_3.txt new file mode 100755 index 000000000..48ecc32cc --- /dev/null +++ b/3250/CH3/EX3.3/Ex3_3.txt @@ -0,0 +1,3 @@ + # PROBLEM 3.3 #
+
+ The mill power = 80.952339 kW
\ No newline at end of file diff --git a/3250/CH3/EX3.4/Ex3_4.sce b/3250/CH3/EX3.4/Ex3_4.sce new file mode 100755 index 000000000..d41dfae48 --- /dev/null +++ b/3250/CH3/EX3.4/Ex3_4.sce @@ -0,0 +1,28 @@ +clc +// Given that +mu = 0.25 // Cofficient of friction between the job and the dies +Y = 7 // Avg yield stress of the lead in N/mm^2 +h = 6 // Height of die in mm +L = 150 // Length of the strip in mm +V1 = 24*24*150 // Volume of the strip in mm^3 +V2 = 6*96*150 // Volume of the die in mm^3 +w= 96 // Weidth of the die in mm +// Sample Problem 4 on page no. 118 +printf("\n # PROBLEM 3.4 # \n") +K = Y/sqrt(3) +x_ = (h/(2*mu))*(log(1/(2*mu))) +l = w/2 +funcprot(0) +function p1 = f(x), p1 = (2*K)*exp((2*mu/h)*x), +endfunction +funcprot(0) +I1 = intg(0,x_,f) +function p2 = f(y), p2=(2*K)*((1/2*mu)*(log(1/(2*mu))) + (y/h)), +endfunction +I2 = intg(x_,l,f) +F = 2*(I1+I2) +F_ = F*L +printf("\n The maximum forging force = %e N",F_) +// Answer in the book is given as 0.54*10^6 N + + diff --git a/3250/CH3/EX3.4/Ex3_4.txt b/3250/CH3/EX3.4/Ex3_4.txt new file mode 100755 index 000000000..860a80a1d --- /dev/null +++ b/3250/CH3/EX3.4/Ex3_4.txt @@ -0,0 +1,3 @@ + # PROBLEM 3.4 #
+
+ The maximum forging force = 4.890305e+05 N
\ No newline at end of file diff --git a/3250/CH3/EX3.5/Ex3_5.sce b/3250/CH3/EX3.5/Ex3_5.sce new file mode 100755 index 000000000..9bce6c835 --- /dev/null +++ b/3250/CH3/EX3.5/Ex3_5.sce @@ -0,0 +1,23 @@ +clc +// Given that +mu = 0.08// Cofficient of friction between the job and the dies +Y = 7 // Avg yield stress of the lead in N/mm^2 +h = 6 // Height of die in mm +L = 150 // Length of the strip in mm +V1 = 24*24*150 // Volume of the strip in mm^3 +V2 = 6*96*150 // Volume of the die in mm^3 +w= 96 // Weidth of the die in mm +// Sample Problem 5 on page no. 119 +printf("\n # PROBLEM 3.5 # \n") +K = Y/sqrt(3) +x_ = (h/(2*mu))*(log(1/(2*mu))) +l = w/2 +funcprot(0) +function p1 = f(x), p1 = (2*K)*exp((2*mu/h)*x), +endfunction +I = intg(0,l,f) +F = 2*(I) +F_ = F*L +printf("\n The maximum forging force = %e N",F_) + + diff --git a/3250/CH3/EX3.5/Ex3_5.txt b/3250/CH3/EX3.5/Ex3_5.txt new file mode 100755 index 000000000..2c4178dc6 --- /dev/null +++ b/3250/CH3/EX3.5/Ex3_5.txt @@ -0,0 +1,4 @@ +
+ # PROBLEM 3.5 #
+
+ The maximum forging force = 2.361194e+05 N
\ No newline at end of file diff --git a/3250/CH3/EX3.6/Ex3_6.sce b/3250/CH3/EX3.6/Ex3_6.sce new file mode 100755 index 000000000..7469536ab --- /dev/null +++ b/3250/CH3/EX3.6/Ex3_6.sce @@ -0,0 +1,23 @@ +clc +// Given that +r = 150 // Radius of the circular disc of lead in mm +Ti = 50 // Initial thickness of the disc in mm +Tf = 25 // Reduced thickness of the disc in mm +mu = 0.25// Cofficient of friction between the job and the dies +K = 4 // Avg shear yield stress of the lead in N/mm^2 +// Sample Problem 6 on page no. 122 +printf("\n # PROBLEM 3.6 # \n") +R = r*sqrt(2) +rs = (R - ((Tf/(2*mu)) * log(1/(mu*sqrt(3))))) +funcprot(0) +function p1 = f(x), p1 = (((sqrt(3))*K)*exp((2*mu/Tf)*(R-x)))*x, +endfunction +I = intg(rs,R,f) +funcprot(0) +function p2 = f(y), p2 = ((2*K/Tf)*(R-y) + ((K/mu)*(1+log(mu*sqrt(3)))))*y, +endfunction +I_ = intg(0,rs,f) +F = 2*%pi*(I+I_) +printf("\n The maximum forging force = %e N",F) + + diff --git a/3250/CH3/EX3.6/Ex3_6.txt b/3250/CH3/EX3.6/Ex3_6.txt new file mode 100755 index 000000000..9ddcad016 --- /dev/null +++ b/3250/CH3/EX3.6/Ex3_6.txt @@ -0,0 +1,4 @@ +
+ # PROBLEM 3.6 #
+
+ The maximum forging force = 3.648809e+06 N
\ No newline at end of file diff --git a/3250/CH3/EX3.7/Ex3_7.sce b/3250/CH3/EX3.7/Ex3_7.sce new file mode 100755 index 000000000..82270e06f --- /dev/null +++ b/3250/CH3/EX3.7/Ex3_7.sce @@ -0,0 +1,23 @@ +clc +// Given that +Di = 12.7 // Intial diameter in mm +Df = 10.2 // Final diameter in mm +v = 90 // Drawn speed in m/min +alpha=6 // Half angle of dia in degree +mu = 0.1// Cofficient of friction between the job and the dies +Y = 207 // Tensile yield stress of the steel specimen in N/mm^2 +Y_ = 414 // Tensile yield stress of the similar specimen at strain 0.5 in N/mm^2 +e = 0.5 // Strain +// Sample Problem 7 on page no. 126 +printf("\n # PROBLEM 3.7 # \n") +e_ =2* log(Di/Df) +Y_e = Y + (Y_ - Y)*e_/e +Y__ = (Y+Y_e)/2 +phi = 1 + (mu/tand(alpha)) +Y_f = Y__ * ((phi/(phi-1)) *(1-((Df/Di)^(2*(phi-1))))) +p = Y_f * (%pi/4)*(Df^2)*v/60 +Dmax = 1- (1/(phi^(1/(phi-1)))) +printf("\n Drawing power = %f kW, \n The maximum passible reduction with same die = %f mm",p/1000,Dmax) + + + diff --git a/3250/CH3/EX3.7/Ex3_7.txt b/3250/CH3/EX3.7/Ex3_7.txt new file mode 100755 index 000000000..da97d764e --- /dev/null +++ b/3250/CH3/EX3.7/Ex3_7.txt @@ -0,0 +1,5 @@ +
+ # PROBLEM 3.7 #
+
+ Drawing power = 25.530385 kW,
+ The maximum passible reduction with same die = 0.504749 mm
\ No newline at end of file diff --git a/3250/CH3/EX3.8/Ex3_8.sce b/3250/CH3/EX3.8/Ex3_8.sce new file mode 100755 index 000000000..16904a775 --- /dev/null +++ b/3250/CH3/EX3.8/Ex3_8.sce @@ -0,0 +1,20 @@ +clc +// Given that +Ri = 30 // Inside radius of cup in mm +t = 3 // Thickness in mm +Rb = 40 // Radius of the blank in mm +K = 210 // Shear yield stress of the material in N/mm^2 +Y = 600 // Maximum allowable stress in N/mm^2 +Beta = 0.05 +mu = 0.1// Cofficient of friction between the job and the dies +// Sample Problem 8 on page no. 130 +printf("\n # PROBLEM 3.8 # \n") +Fh = Beta*%pi*(Rb^2)*K +Y_r = (mu*Fh/(%pi*Rb*t))+(2*K*log(Rb/Ri)) +Y_z = Y_r*exp(mu*%pi/2) +F = 2*%pi*Ri*t*Y_z +Y_r_ = Y/exp(mu*%pi/2) +Rp = (Rb/exp((Y_r_/(2*K)) - ((mu*Fh)/(2*%pi*K*Rb*t))))-t +printf("\n Drawing force = %d N, \n Minimum passible radius of the cup which can drawn from the given blank without causing a fracture = %f mm",F,Rp) +// Answer in the book given as 62680 N + diff --git a/3250/CH3/EX3.8/Ex3_8.txt b/3250/CH3/EX3.8/Ex3_8.txt new file mode 100755 index 000000000..18bb5f855 --- /dev/null +++ b/3250/CH3/EX3.8/Ex3_8.txt @@ -0,0 +1,4 @@ + # PROBLEM 3.8 #
+
+ Drawing force = 89210 N,
+ Minimum passible radius of the cup which can drawn from the given blank without causing a fracture = 9.198393 mm
\ No newline at end of file diff --git a/3250/CH3/EX3.9/Ex3_9.sce b/3250/CH3/EX3.9/Ex3_9.sce new file mode 100755 index 000000000..7d5657b38 --- /dev/null +++ b/3250/CH3/EX3.9/Ex3_9.sce @@ -0,0 +1,26 @@ +clc +// Given that +L_ = 20 // Length of the mild steel product in mm +h = 50 // Height of the mild steel product in mm +L = 50 // Horizontal length of the mild steel product in mm +t = 5 // Thickness in mm +l=25 // Length of the bend in mm +E = 207 // Modulus of elasticity in kN/mm^2 +n = 517 // Strain hardening rate in N/mm^2 +Y = 345 // Yield stress in N/mm^2 +mu = 0.1// Cofficient of friction +e = 0.2 // Fracture strain +theta = 20 // Bend angle in degree +// Sample Problem 9 on page no. 135 +printf("\n # PROBLEM 3.9 # \n") +Rp = ((1 /((exp(e) - 1)))-0.82)*t/1.82 +Y_1 = Y+n*e +Y_2 = Y + n*(log(1+(1/(2.22*(Rp/t)+1)))) +M = ((0.55*t)^2)*((Y/6)+(Y_1/3)) + ((0.45*t)^2)*((Y/6)+(Y_2/3)) +Fmax = (M/l)*(1+(cosd((atand(mu))+mu*sind(atand(mu))))) +Fmax_ = L_*Fmax +alpha = 90 /((12*(Rp+0.45*t)*M/(E*(10^3)*(t^3)))+1) +Ls = 2*(((Rp+0.45*t)*%pi/4) + 50-(Rp+t)) +printf("\n Maximum bending force = %d N, \n The required puch angle = %f°,\n The stock length = %f mm",Fmax_,alpha,Ls) +// Answer in the book for maximum bending force is given as 4144 N + diff --git a/3250/CH3/EX3.9/Ex3_9.txt b/3250/CH3/EX3.9/Ex3_9.txt new file mode 100755 index 000000000..4e5f2a73e --- /dev/null +++ b/3250/CH3/EX3.9/Ex3_9.txt @@ -0,0 +1,5 @@ + # PROBLEM 3.9 #
+
+ Maximum bending force = 4124 N,
+ The required puch angle = 88.681608°,
+ The stock length = 89.175451 mm
\ No newline at end of file |