summaryrefslogtreecommitdiff
path: root/3250/CH3/EX3.9/Ex3_9.sce
diff options
context:
space:
mode:
Diffstat (limited to '3250/CH3/EX3.9/Ex3_9.sce')
-rwxr-xr-x3250/CH3/EX3.9/Ex3_9.sce26
1 files changed, 26 insertions, 0 deletions
diff --git a/3250/CH3/EX3.9/Ex3_9.sce b/3250/CH3/EX3.9/Ex3_9.sce
new file mode 100755
index 000000000..7d5657b38
--- /dev/null
+++ b/3250/CH3/EX3.9/Ex3_9.sce
@@ -0,0 +1,26 @@
+clc
+// Given that
+L_ = 20 // Length of the mild steel product in mm
+h = 50 // Height of the mild steel product in mm
+L = 50 // Horizontal length of the mild steel product in mm
+t = 5 // Thickness in mm
+l=25 // Length of the bend in mm
+E = 207 // Modulus of elasticity in kN/mm^2
+n = 517 // Strain hardening rate in N/mm^2
+Y = 345 // Yield stress in N/mm^2
+mu = 0.1// Cofficient of friction
+e = 0.2 // Fracture strain
+theta = 20 // Bend angle in degree
+// Sample Problem 9 on page no. 135
+printf("\n # PROBLEM 3.9 # \n")
+Rp = ((1 /((exp(e) - 1)))-0.82)*t/1.82
+Y_1 = Y+n*e
+Y_2 = Y + n*(log(1+(1/(2.22*(Rp/t)+1))))
+M = ((0.55*t)^2)*((Y/6)+(Y_1/3)) + ((0.45*t)^2)*((Y/6)+(Y_2/3))
+Fmax = (M/l)*(1+(cosd((atand(mu))+mu*sind(atand(mu)))))
+Fmax_ = L_*Fmax
+alpha = 90 /((12*(Rp+0.45*t)*M/(E*(10^3)*(t^3)))+1)
+Ls = 2*(((Rp+0.45*t)*%pi/4) + 50-(Rp+t))
+printf("\n Maximum bending force = %d N, \n The required puch angle = %f°,\n The stock length = %f mm",Fmax_,alpha,Ls)
+// Answer in the book for maximum bending force is given as 4144 N
+