diff options
Diffstat (limited to '3250/CH3/EX3.2/Ex3_2.sce')
-rwxr-xr-x | 3250/CH3/EX3.2/Ex3_2.sce | 50 |
1 files changed, 50 insertions, 0 deletions
diff --git a/3250/CH3/EX3.2/Ex3_2.sce b/3250/CH3/EX3.2/Ex3_2.sce new file mode 100755 index 000000000..7500232e3 --- /dev/null +++ b/3250/CH3/EX3.2/Ex3_2.sce @@ -0,0 +1,50 @@ +clc +// Given that +A = 150*6 // Cross-section of strips in mm^2 +w = 150 // Width of the strip in mm +ti = 6 // Thickness in mm +pA = 0.20 // Reduction in area +d = 400 // Diameter of steel rolls in mm +Ys = 0.35// Shear Yield stress of the material before rolling in KN/mm^2 +Ys_ = 0.4// Shear Yield stress of the material after rolling in KN/mm^2 +mu = 0.1 // Cofficient of friction +v = 30 // Speed of rolling in m/min +// Sample Problem 2 on page no. 113 +printf("\n # PROBLEM 3.2 # \n") +tf =0.8*ti +Ys_a = (Ys + Ys_)/2 +r=d/2 +thetaI = sqrt((ti-tf)/r) +lambdaI=2*sqrt(r/tf)*atan(thetaI *sqrt(r/tf)) +lambdaN = (1/2)*((1/mu)*(log(tf/ti)) + lambdaI) +thetaN =(sqrt(tf/r))*(tan((lambdaN/2)*(sqrt(tf/r)))) +Dtheta_a = thetaN/4 +Dtheta_b = (thetaI- thetaN)/8 +printf("The values of P_after are\n") +i = 0 +for i = 0:4 + theta = i*Dtheta_a + y = (1/2)* (tf+r*theta^2) + lambda = 2*sqrt(r/tf)*atand(theta*(%pi/180) *sqrt(r/tf)) + p_a = 2*Ys_a*(2*y/tf)*(exp(mu*lambda)) + printf("%f \n",p_a) +end +I1 = (Dtheta_a/3) *(0.75+.925+4*(.788+.876)+2*.830)// By Simpson's rule +printf("The values of P_before are\n") +for i = 0:8 + theta1 = i*Dtheta_b + thetaN + y = (1/2)* (tf+r*theta1^2) + lambda = 2*sqrt(r/tf)*atand(theta1*(%pi/180) *sqrt(r/tf)) + p_b = 2*Ys_a*(2*y/ti)*(exp(mu*(lambdaI-lambda))) + printf(" %f \n",p_b) +end +I2 = (Dtheta_b/3)*(0.925+.75+4*(.887+.828+.786+.759) + 2*(.855+.804+.772))//By Simpson's rule +F = r*(I1 + I2) +F_ = F*w +T = (r^2)*mu*(I2-I1) +T_ =T*w +W = v*(1000/60)/r +P = 2*T_*W +printf("\n The roll separating force = %d kN,\n The power required in the rolling process = %f kW",ceil(F_),P/1000) +// Answer in the book for the power required in the rolling process is given as 75.6 kW + |