diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /278 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '278')
319 files changed, 9477 insertions, 0 deletions
diff --git a/278/CH10/EX10.1/ex_10_1.sce b/278/CH10/EX10.1/ex_10_1.sce new file mode 100755 index 000000000..0cae290a7 --- /dev/null +++ b/278/CH10/EX10.1/ex_10_1.sce @@ -0,0 +1,14 @@ +//find the length of weld
+clc
+//soltion
+//given
+b=100//mm//width
+t=10//mm//thickness
+P=80*10^3//N
+T=55//N/mm^2
+//let l and s be length of wled and size of weld
+//s=t
+s=10//mm
+//P=1.414*s*l*T
+l=P/(1.414*s*T)//mm
+printf("the length of weld is,%f mm",l+12.5)
\ No newline at end of file diff --git a/278/CH10/EX10.10/ex_10_10.sce b/278/CH10/EX10.10/ex_10_10.sce new file mode 100755 index 000000000..505bc826a --- /dev/null +++ b/278/CH10/EX10.10/ex_10_10.sce @@ -0,0 +1,20 @@ +//find max noraml and shear stress
+clc
+//solution
+//given
+//ref fig 10.25
+D=50//mm
+s=15//mm
+P=10000//N
+e=200//mm
+//let t is thickness of throat
+//A=t*pi*D
+pi=3.14
+A=0.707*s*pi*D//mm^2
+t=P/A//N/mm^2
+M=P*e//N-mm
+Z=pi*.707*s*D^2/4//mm^3
+fb=M/Z//N/mm^2
+ftmax=(0.5*fb)+(0.5*sqrt(fb^2+4*t^2))//N/mm^2
+Tmax=(0.5*sqrt(fb^2+4*t^2))//N/mm^2
+printf("the max normal stress and shear stress are,%f N/mm^2\n,%f N/mm^2 respectively",ftmax,Tmax)
diff --git a/278/CH10/EX10.11/ex_10_11.sce b/278/CH10/EX10.11/ex_10_11.sce new file mode 100755 index 000000000..8f106c8b3 --- /dev/null +++ b/278/CH10/EX10.11/ex_10_11.sce @@ -0,0 +1,24 @@ +//find size of welds
+clc
+//solution
+//given
+//ref fig 10.26
+P=25*10^3//N
+Tmax=75*10^3//N
+l=100//mm
+b=150//mm
+e=500//mm
+//let t is thickness of throat and s size
+//t=0.707*s
+//A=t*(2*b+2*l)=353.5*s//mm^2
+//t=P/A
+//t=70.72/s//N/mm^2
+M=P*e//N-mm
+//Z=t*[b*l+ b^2/3]=15907.5*s//mm^3
+//fb=M/Z//
+//fb=P*e/Z//
+//fb=785.8/s//N/mm^2
+//Tmax=0.5*[sqrt(fb^2+4*t^2)]
+//75=399.2/s
+s=399.2/75//mm
+printf("the sieze of weld is,%f mm",s)
\ No newline at end of file diff --git a/278/CH10/EX10.12/ex_10_12.sce b/278/CH10/EX10.12/ex_10_12.sce new file mode 100755 index 000000000..c20b99868 --- /dev/null +++ b/278/CH10/EX10.12/ex_10_12.sce @@ -0,0 +1,17 @@ +//cal size of weld at 1 and 2
+clc
+//solution
+//given
+//ref fig 10.27
+P=15*10^3//N
+Tmax=120//N/mm^2
+d=80//mm
+//let s be size of weld
+T=P*240//N-mm//torque
+//t=(2.83*T)/(pi*s*80^2)=506.6/s
+M=P*175//N-mm
+//fb=(5.66*M)/(pi*s*80^2)=(738.8/s)//N/mm^2
+//Tmax=0.5*(sqrt(fb^2+t^2))
+//Tmax=627/s
+s=627/Tmax//mm
+printf("the sieze of weld is,%f mm",s)
\ No newline at end of file diff --git a/278/CH10/EX10.13/ex_10_13.sce b/278/CH10/EX10.13/ex_10_13.sce new file mode 100755 index 000000000..50c4c0a16 --- /dev/null +++ b/278/CH10/EX10.13/ex_10_13.sce @@ -0,0 +1,28 @@ +////find size of weld
+clc
+//solution
+//given
+//ref fig 10.28
+P=15000//N
+T=80//N/mm^2
+b=80//mm
+l=50//mm
+e=125//mm
+//let s be size of weld
+//A=2*t*l//70.7*s//mm^2
+//T1=P/A//N/mm^2//direct stress
+//T1=212/s
+//J=t*l*(3*b^2+l^2)/6//mm^4
+//J=127850*s//mm^4
+ab=40//mm
+bg=25//mm=r1
+r2=(sqrt(ab^2+bg^2))//mm
+printf("the value of r2 is,%f mm\n",r2)
+//T2=P*e*r2/J
+//T2=689.3/s//N/mm^2
+//cos(q)=r1/r2=25/47=0.532
+a=0.532
+//T=sqrt(T1^+T2^2+2*T1*T2*a)
+//80=822/s
+s=822/80//mm
+printf("the sieze of weld is,%f mm",s)
\ No newline at end of file diff --git a/278/CH10/EX10.14/ex_10_13.sce b/278/CH10/EX10.14/ex_10_13.sce new file mode 100755 index 000000000..50c4c0a16 --- /dev/null +++ b/278/CH10/EX10.14/ex_10_13.sce @@ -0,0 +1,28 @@ +////find size of weld
+clc
+//solution
+//given
+//ref fig 10.28
+P=15000//N
+T=80//N/mm^2
+b=80//mm
+l=50//mm
+e=125//mm
+//let s be size of weld
+//A=2*t*l//70.7*s//mm^2
+//T1=P/A//N/mm^2//direct stress
+//T1=212/s
+//J=t*l*(3*b^2+l^2)/6//mm^4
+//J=127850*s//mm^4
+ab=40//mm
+bg=25//mm=r1
+r2=(sqrt(ab^2+bg^2))//mm
+printf("the value of r2 is,%f mm\n",r2)
+//T2=P*e*r2/J
+//T2=689.3/s//N/mm^2
+//cos(q)=r1/r2=25/47=0.532
+a=0.532
+//T=sqrt(T1^+T2^2+2*T1*T2*a)
+//80=822/s
+s=822/80//mm
+printf("the sieze of weld is,%f mm",s)
\ No newline at end of file diff --git a/278/CH10/EX10.15/ex_10_15.sce b/278/CH10/EX10.15/ex_10_15.sce new file mode 100755 index 000000000..088b60494 --- /dev/null +++ b/278/CH10/EX10.15/ex_10_15.sce @@ -0,0 +1,30 @@ +//find max shear stress
+clc
+//solution
+//given
+//ref fig 10.32 and 33
+s=6//mm
+P=20*10^3//N
+l=40//mm
+b=90//mm
+//let t throat thickness
+//let x is distance of Cg from left edge
+x=l^2/(2*l+b)//mm
+//J=t*[(b+2*l)^3/12-(l^2*(b+l)^2/(b*2*l))]
+J=0.707*s*[{(b+2*l)^3/12}-{(l^2*(b+l)^2)/(b+2*l)}]//mm^4
+printf("the value of J is,%f mm^4\n",J)
+Bg=40
+e=200-x//mm
+r1=Bg-x//mm
+Ab=(90/2)//mm
+r2=sqrt(Ab^2+Bg^2)//mm
+//cos(q)=r2/r1=0.5625
+a=0.5625
+A=2*0.707*s*l+(0.707*s*b)//mm^2
+t1=P/A//N/mm^2'
+t2=P*e*r2/J//N/mm^2
+T=sqrt(t1^2 + t2^2 + 2*t1*t2*a)//N/mm^2'
+printf( "the value of x is,%f mm\n",x)
+printf("the value of direct shear stress is,%f N/mm^2\n",t1)
+printf("the value of secondary shear stress is,%f N/mm^2\n",t2)
+printf("the max shera stress is,%f N/mm^2",T)
\ No newline at end of file diff --git a/278/CH10/EX10.16/ex_10_16.sce b/278/CH10/EX10.16/ex_10_16.sce new file mode 100755 index 000000000..65cd4e992 --- /dev/null +++ b/278/CH10/EX10.16/ex_10_16.sce @@ -0,0 +1,25 @@ +//find size of fillet welds at top and bottom
+clc
+//solution
+//given
+//ref fig 10.34
+P=15000//N
+t=150//N/mm^2
+l=25//mm
+//Pva+Pvb=P,Pva=Pvb
+Pva=P/2//N
+Pvb=P/2//N
+//balnce moments abt B
+Pha=(P*50)/75//N
+//let s1 be size at top
+Pa=sqrt(Pva^2+Pha^2)//N
+printf("the value of force at A is,%f N\n",Pa)
+//Pa=thorat area* permissible stress
+//Pa=0.707*s1*l*t=0.707*s1*25*150=2650*s1
+s1=Pa/2650//mm
+printf("the size of weld at top is,%f mm\n",s1)
+//let s2 be size at bottom
+//Pvb=0.707*s2*l*t
+//Pvb=2650*s2
+s2=Pvb/2650//mm
+printf("the size of weld at bottom is,%f mm\n",s2)
\ No newline at end of file diff --git a/278/CH10/EX10.2/ex_10_2.sce b/278/CH10/EX10.2/ex_10_2.sce new file mode 100755 index 000000000..18110e8c9 --- /dev/null +++ b/278/CH10/EX10.2/ex_10_2.sce @@ -0,0 +1,12 @@ +//find the max torque
+clc
+//solution
+//given
+d=50//mm
+s=10//mm
+Imax=80//N/mm^2
+pi=3.14
+//let T be max toque
+//Imax=(2.83*T)/(pi*s*d^2)
+T=Imax*pi*s*d^2/(2.83)//N-mm
+printf("the value of max torque is,%f N-mm",T)
\ No newline at end of file diff --git a/278/CH10/EX10.3/ex_10_3.sce b/278/CH10/EX10.3/ex_10_3.sce new file mode 100755 index 000000000..f2244f767 --- /dev/null +++ b/278/CH10/EX10.3/ex_10_3.sce @@ -0,0 +1,10 @@ +//find max torque
+clc
+//solution
+//given
+l=1000//mm
+Imax=80//N/mm^2
+s=15//mm
+//let T be max toque
+T=Imax*s*l^2/(4.242)//N-mm
+printf("the value of max torque is,%f N-mm",T)
\ No newline at end of file diff --git a/278/CH10/EX10.4/ex_10_4.sce b/278/CH10/EX10.4/ex_10_4.sce new file mode 100755 index 000000000..d0dd21c58 --- /dev/null +++ b/278/CH10/EX10.4/ex_10_4.sce @@ -0,0 +1,18 @@ +//find length of the weld
+clc
+//solution
+//given
+b=100//mm//width
+t=12.5//mm//thickness
+P=50*10^3//N
+T=56//N/mm^2
+//let l and s be length of wled and size of weld
+//s=t
+s=12.5//mm
+//P=1.414*s*l*T
+l=P/(1.414*s*T)//mm
+printf("the value of length of static weld is,%f mm\n",l+12.5)
+T1=T/2.7//N
+//P=1.414*s*l*T1
+l1=P/(1.414*s*T1)//mm
+printf("the value of length of static weld is,%f mm",l1+12.5)
\ No newline at end of file diff --git a/278/CH10/EX10.5/ex_10_5.sce b/278/CH10/EX10.5/ex_10_5.sce new file mode 100755 index 000000000..64bc1198f --- /dev/null +++ b/278/CH10/EX10.5/ex_10_5.sce @@ -0,0 +1,27 @@ +//find length of each parallel fillet weld
+clc
+//solution
+//given
+//ref fig 10.15
+b=75//mm//width
+t=12.5//mm//thickness
+ft=70//N/mm^2
+T=56//N/mm^2
+l1=b-t//mm
+s=12.5//mm
+//let l2 be length of each parallel fillet for static loading
+//P=A*ft
+P=b*t*ft//N//max load
+P1=0.707*s*l1*ft//N
+//P2=1.414*s*l2*T=990*l2//N
+//P=P1+P2
+l2=(P-P1)/990//mm
+printf("the value of length of static weld is,%f mm\n",l2+12.5)
+//length of parallel fillet for fatique loading
+ft1=ft/1.5//N/mm^2
+T1=T/2.7//N/mm^2
+P11=0.707*s*l1*ft1//N
+//P2=1.414*s*l2*T1=366*l22//N
+//P=P1+P2
+l22=(P-P11)/366//mm
+printf("the value of length of static weld is,%f mm\n",l22+12.5)
diff --git a/278/CH10/EX10.6/ex_10_6.sce b/278/CH10/EX10.6/ex_10_6.sce new file mode 100755 index 000000000..7002a0016 --- /dev/null +++ b/278/CH10/EX10.6/ex_10_6.sce @@ -0,0 +1,21 @@ +//determine the length of weld
+clc
+//solution
+//given
+//refer fig 10.16
+b=120//mm//width
+t=15//mm//thickness
+l1=b-12.5//mm
+s=15//mm
+ft1=70//N/mm^2//tensile stress
+ft2=56//N/mm^2//shear stress
+//let l2 be length of weld
+//P=A*ft
+P=120*15*ft1//N
+ft11=ft1/1.5//N/mm^2
+ft22=ft2/2.7//N/mm^2
+P1=0.707*s*l1*ft11//N
+//P2=0.707*s*l2*ft22=440*l2//N
+//P=P1+P2//N
+l2=(P-P1)/440//mm
+printf("the value of length of static weld is,%f mm\n",l2+12.5)
diff --git a/278/CH10/EX10.7/ex_10_6.sce b/278/CH10/EX10.7/ex_10_6.sce new file mode 100755 index 000000000..7002a0016 --- /dev/null +++ b/278/CH10/EX10.7/ex_10_6.sce @@ -0,0 +1,21 @@ +//determine the length of weld
+clc
+//solution
+//given
+//refer fig 10.16
+b=120//mm//width
+t=15//mm//thickness
+l1=b-12.5//mm
+s=15//mm
+ft1=70//N/mm^2//tensile stress
+ft2=56//N/mm^2//shear stress
+//let l2 be length of weld
+//P=A*ft
+P=120*15*ft1//N
+ft11=ft1/1.5//N/mm^2
+ft22=ft2/2.7//N/mm^2
+P1=0.707*s*l1*ft11//N
+//P2=0.707*s*l2*ft22=440*l2//N
+//P=P1+P2//N
+l2=(P-P1)/440//mm
+printf("the value of length of static weld is,%f mm\n",l2+12.5)
diff --git a/278/CH10/EX10.8/ex_10_8.sce b/278/CH10/EX10.8/ex_10_8.sce new file mode 100755 index 000000000..3ef1cf3ec --- /dev/null +++ b/278/CH10/EX10.8/ex_10_8.sce @@ -0,0 +1,19 @@ +//find length of weld at top and bottom
+clc
+//solution
+//given
+//ref fig 10.21
+P=200*10^3//n
+T=75//N/mm^2
+s=10//mm
+//a+b=200//mm
+//let la=length of weld at top
+//lb=length of weld at bottom
+//l=la+lb//total length of belt
+//P=0.707*s*l*T
+l=P/(0.707*s*T)//mm
+b=[(200-10)*10*95+(150*10*5)]/(190*10+1500)//mm
+a=200-b//mm
+la=l*b/(a+b)//mm
+lb=l-la//mm
+printf("the value of length at top and bottom is,%f mm\n,%f mm",la,lb)
diff --git a/278/CH10/EX10.9/ex_10_9.sce b/278/CH10/EX10.9/ex_10_9.sce new file mode 100755 index 000000000..1033792aa --- /dev/null +++ b/278/CH10/EX10.9/ex_10_9.sce @@ -0,0 +1,25 @@ +//find size of weld
+clc
+//solution
+//given
+P=2000//N
+e=120//mm
+l=40//mm
+Tmax=25//N/mm^2
+//let s be size of weld and t be throat thickness
+//ref fig 10.24
+//A=2*t*l
+//A=2*0.707*s*l
+//A=2*0.707*s*40
+//A=56.56*s//mm^2
+//t=P/A
+//t=35.4/s//N/mm^2
+M=P*e//N-mm
+//Z=s*l^2/(4.242)//section modulus//mm^3
+//fb=M/Z//
+//fb=P*e/Z//
+//fb=636.6/s
+//Tmax=0.5*[sqrt(fb^2+4*t^2)]
+//25=320.3/s
+s=320.3/25//mm
+printf("the sieze of weld is,%f mm",s)
\ No newline at end of file diff --git a/278/CH11/EX11.1/ex_11_1.sce b/278/CH11/EX11.1/ex_11_1.sce new file mode 100755 index 000000000..90372fb80 --- /dev/null +++ b/278/CH11/EX11.1/ex_11_1.sce @@ -0,0 +1,10 @@ +//find safe tensile load
+clc
+//soltuion
+//given
+d=30//mm
+ft=42//N/mm^2
+//using table 11.1,area corresponding to d=30mm is A=561//N/mm^2
+A=561//mm^2
+F=A*ft//N
+printf("the value of force is,%f N",F)
\ No newline at end of file diff --git a/278/CH11/EX11.10/ex_11_10.sce b/278/CH11/EX11.10/ex_11_10.sce new file mode 100755 index 000000000..b99cd939c --- /dev/null +++ b/278/CH11/EX11.10/ex_11_10.sce @@ -0,0 +1,17 @@ +//find size mild steel
+clc
+//solution
+//given
+p=0.84//N/mm^2
+ft=56//N/mm^2
+//ref fig 11.29
+//since pince is 350 mm,therfor area ia A
+A=350*350//mm^2
+P=A*p//N
+printf("the value of force acting is,%f N\n",P)
+//let dc be core diameter
+pi=3.14
+//P=(pi/4)*dc^2*ft//N
+dc=sqrt((P*4)/(pi*ft))
+printf("the value of dc is,%f mm\n",dc)
+printf("the standard value of core diametr is 49.177 mm fron T11.1")
\ No newline at end of file diff --git a/278/CH11/EX11.11/ex_11_11.sce b/278/CH11/EX11.11/ex_11_11.sce new file mode 100755 index 000000000..eca8e8e5a --- /dev/null +++ b/278/CH11/EX11.11/ex_11_11.sce @@ -0,0 +1,7 @@ +//determine diameter of hole
+Do=48//mm
+//from table 11.1 ,core dia Do=48//mm,Dc=41.795//mm
+Do=48//mm
+Dc=41.795//mm
+D=sqrt(Do^2-Dc^2)//mm
+printf("the dia of bolt is,%f mm",D)
diff --git a/278/CH11/EX11.12/ex_11_12.sce b/278/CH11/EX11.12/ex_11_12.sce new file mode 100755 index 000000000..b7180140a --- /dev/null +++ b/278/CH11/EX11.12/ex_11_12.sce @@ -0,0 +1,22 @@ +//determine the size of bolts
+clc
+//solution
+//given
+//ref fig 11.31
+W=30000//N
+ft=60//N/mm^2
+L1=80//mm
+L2=250//mm
+L=500//mm
+Wt1=W/4//N
+printf("the value of Wt1 is,%f N\n",Wt1)
+w=(W*L)/(2*(L1^2+L2^2))//N/mm
+printf("the value of w is,%f N/mm\n",w)
+Wt2=w*L2//N
+printf("the value of Wt2 is,%f N\n",Wt2)
+Wt=Wt1+Wt2//N
+printf("the value of Wt is,%f N\n",Wt)
+pi=3.14
+//klet dc be coire dia
+dc=sqrt((Wt*4)/(pi*ft))//mm
+printf("the core diameter of bolt is,%f mm",dc)
\ No newline at end of file diff --git a/278/CH11/EX11.13/ex_11_12.sce b/278/CH11/EX11.13/ex_11_12.sce new file mode 100755 index 000000000..b7180140a --- /dev/null +++ b/278/CH11/EX11.13/ex_11_12.sce @@ -0,0 +1,22 @@ +//determine the size of bolts
+clc
+//solution
+//given
+//ref fig 11.31
+W=30000//N
+ft=60//N/mm^2
+L1=80//mm
+L2=250//mm
+L=500//mm
+Wt1=W/4//N
+printf("the value of Wt1 is,%f N\n",Wt1)
+w=(W*L)/(2*(L1^2+L2^2))//N/mm
+printf("the value of w is,%f N/mm\n",w)
+Wt2=w*L2//N
+printf("the value of Wt2 is,%f N\n",Wt2)
+Wt=Wt1+Wt2//N
+printf("the value of Wt is,%f N\n",Wt)
+pi=3.14
+//klet dc be coire dia
+dc=sqrt((Wt*4)/(pi*ft))//mm
+printf("the core diameter of bolt is,%f mm",dc)
\ No newline at end of file diff --git a/278/CH11/EX11.14/ex_11_14.sce b/278/CH11/EX11.14/ex_11_14.sce new file mode 100755 index 000000000..85a20fa67 --- /dev/null +++ b/278/CH11/EX11.14/ex_11_14.sce @@ -0,0 +1,33 @@ +//find the size of the bolts
+clc
+//solution
+//given
+//ref fig 11.35
+W=12000//N
+L=400//mm
+L1=50//mm
+L2=375//mm
+ft=84//N/mm^2
+n=4
+Ws=W/n//shear load on each bolt
+Wt=0.5*[[W*L*L2]/[L1^2 +L2^2]]//N
+Wte=0.5*[Wt + sqrt(Wt^2 +4*(Ws)^2)]//N//equivalent tensile load
+//let dc be core dia
+pi=3.14
+//A=(pi/4)*dc^2*ft=66*dc^2
+dc=sqrt(Wte/66)//mm
+//let tabd b be thickness and depth of arm
+//Z=(1/6)*t*b^2
+M=W*L//N-mm
+Z=M/84//
+//asume b=250
+b=250//mm
+//Z=b^2*t/6
+t=(M*6)/(ft*b^2)
+printf("the value of core diameteris, %f mm\n",dc)
+printf("the standard value of core diametr is 11.546 mm fron T11.1\n")
+printf("the value of equivalent tensile load is,%f N\n",Wte)
+printf("the value tensile load is,%f N\n",Wt)
+printf("the value of load actiung on each bolt is,%f N\n",Ws)
+printf("the moment acting is,%f N-mm\n",M)
+printf("the value of thickness is,%f mm",t)
\ No newline at end of file diff --git a/278/CH11/EX11.15/ex_11_14.sce b/278/CH11/EX11.15/ex_11_14.sce new file mode 100755 index 000000000..85a20fa67 --- /dev/null +++ b/278/CH11/EX11.15/ex_11_14.sce @@ -0,0 +1,33 @@ +//find the size of the bolts
+clc
+//solution
+//given
+//ref fig 11.35
+W=12000//N
+L=400//mm
+L1=50//mm
+L2=375//mm
+ft=84//N/mm^2
+n=4
+Ws=W/n//shear load on each bolt
+Wt=0.5*[[W*L*L2]/[L1^2 +L2^2]]//N
+Wte=0.5*[Wt + sqrt(Wt^2 +4*(Ws)^2)]//N//equivalent tensile load
+//let dc be core dia
+pi=3.14
+//A=(pi/4)*dc^2*ft=66*dc^2
+dc=sqrt(Wte/66)//mm
+//let tabd b be thickness and depth of arm
+//Z=(1/6)*t*b^2
+M=W*L//N-mm
+Z=M/84//
+//asume b=250
+b=250//mm
+//Z=b^2*t/6
+t=(M*6)/(ft*b^2)
+printf("the value of core diameteris, %f mm\n",dc)
+printf("the standard value of core diametr is 11.546 mm fron T11.1\n")
+printf("the value of equivalent tensile load is,%f N\n",Wte)
+printf("the value tensile load is,%f N\n",Wt)
+printf("the value of load actiung on each bolt is,%f N\n",Ws)
+printf("the moment acting is,%f N-mm\n",M)
+printf("the value of thickness is,%f mm",t)
\ No newline at end of file diff --git a/278/CH11/EX11.16/ex_11_16.sce b/278/CH11/EX11.16/ex_11_16.sce new file mode 100755 index 000000000..f3fd72014 --- /dev/null +++ b/278/CH11/EX11.16/ex_11_16.sce @@ -0,0 +1,64 @@ +//find a.)dia of fixing bolts,b.)dimension of arms
+clc
+//soltuion
+//given
+//refer fig 11.39
+W=10000//N
+q=60//deg
+f1=100//N/mm^2
+t=60//N/mm^2
+Wh=W*sin(%pi/3)//N
+printf("the horizontal component is,%f N\n",Wh)
+Wv=W*cos(pi/3)//N
+printf("the vertical component is,%f N\n",Wv)
+Wt1=Wh/4//force on each bolt//N
+printf("the direct tensile load on each bolt is,%f N\n",Wt1)
+x1=0.05//m//distance of horizontal component from CG
+Th=Wh*x1//N-m//torque due to horizntl compnt
+Ws=Wv/4//N//shear load on each bolt
+printf("shear load on each boltis,%f N\n",Ws)
+x2=0.3//m
+Tv=Wv*x2//N-m
+Tn=Tv-Th//N-m//net moment
+printf("net moment is,%f N-m\n",Tn)
+L1=(250-175)/2000//m//dis btw 1 and 2 bolt
+L3=L1+0.175//m//dis btw 3 and 4 bolt
+printf("the value of L3 is,%f m\n",L3)
+//let w be load on each bolt
+//Te=2*(w*L1)*L1 + 2*(w*L2)*L2=2*w(L1^2 +L2^2)//total moment abt E
+//Te=0.093*w//N-m
+w=Tn/0.093//N/m
+printf("the laod on each per meter distance from E is,%f N/m\n",w)
+L2=180//mm
+Wt2=w*L3//N
+printf("the value of Wt1 is ,%f N\n",Wt1)
+printf("the value of Wt2 is,%f N\n",Wt2)
+Wt=Wt1+Wt2//N
+printf("the value of total force is,%f N\n",Wt)
+Wte=0.5*[Wt + sqrt(Wt^2 + 4*Ws^2)]//N
+printf("the value of equivalent force is,%f N\n",Wte)
+//let dc be core dia
+dc=sqrt((4*Wte)/(pi*f1))//mm
+printf("the value of core dia is,%f mm\n",dc)
+printf("the valuf of core dia from tabl 11.1 instandard condition is 8.18mm\n")
+//let t be thickness and b be the width,b=3*t
+//A=3*b*t=9*t^2//mm^2
+//I={[b*(2*t +b)^3]/12}-{(b-t)*b^3/12}
+//I=321*t^4/12
+//Z=I/(t+0.5*b)=10.7*t^3//mm^3
+//ft1=Wh/A=962/t^2//N/mm^2
+Mh=Wh*0.05//N-m
+//ft2=Mh/Z=40.5*10^3/t^3//N/mm^2
+//Ty=Wv/A=556/t^3//N/mm^2
+Mv=Wv*0.3//N-m
+//ft3=Mv/Z=140.2*10^3/t^3//N/mm^2
+//Ftnet=ft1-ft2+ft3//N/mm^2
+//Ftnet=(962/t^2)-(40.5*10^3/t^3)+(140.210^3/t^3)
+//Ftnet=(962/t^2)+(99.7*10^3/t^3)
+Ftnet=100//N/mm^2
+//by hit and trial
+//'Ftnet=100=(962/t^2)+(99.7*10^3/t^3)
+t=10.4//mm
+b=3*t//mm
+printf("the thickness is,%f mm\n",t)
+printf("the width is,%f mm",b)
diff --git a/278/CH11/EX11.17/ex_11_17.sce b/278/CH11/EX11.17/ex_11_17.sce new file mode 100755 index 000000000..c52597a5a --- /dev/null +++ b/278/CH11/EX11.17/ex_11_17.sce @@ -0,0 +1,21 @@ +//find size of bolts
+clc
+//solution
+//given
+//ref fig 11.42
+n=8
+d=1.6//m
+r=0.8//m
+D=2//m
+R=1//m
+W=100000//N
+e=5//m
+ft=100//N/mm^2
+L=e-R//m
+//let dc be core dia
+pi=3.14
+Wt=(2*W*L*(R+r))/(n*(2*R^2+r^2))//N
+printf("the max load acting is,%f N\n",Wt)
+dc=sqrt((W*4)/(pi*ft))//mm
+printf("the core dia is,%f mm\n",dc)
+printf("the standard value of core dia is 31.093 from table 11.1")
\ No newline at end of file diff --git a/278/CH11/EX11.18/ex_11_18.sce b/278/CH11/EX11.18/ex_11_18.sce new file mode 100755 index 000000000..857030a33 --- /dev/null +++ b/278/CH11/EX11.18/ex_11_18.sce @@ -0,0 +1,16 @@ +//find size of bolts
+clc
+//solution
+//given
+n=4
+d=500//mm
+r=250//mm
+D=650//mm
+R=325//mm
+W=400*10^3//N
+L=350//mm
+ft=60//N/mm^2
+//let dc be core dia
+pi=3.14
+Wt=[(2*W*L)*{R+r*cos(pi/n)}]/{n*(2*R^2 +r^2)}
+printf("the value of load acting is,%f N\n",Wt)
\ No newline at end of file diff --git a/278/CH11/EX11.19/ex_11_18.sce b/278/CH11/EX11.19/ex_11_18.sce new file mode 100755 index 000000000..857030a33 --- /dev/null +++ b/278/CH11/EX11.19/ex_11_18.sce @@ -0,0 +1,16 @@ +//find size of bolts
+clc
+//solution
+//given
+n=4
+d=500//mm
+r=250//mm
+D=650//mm
+R=325//mm
+W=400*10^3//N
+L=350//mm
+ft=60//N/mm^2
+//let dc be core dia
+pi=3.14
+Wt=[(2*W*L)*{R+r*cos(pi/n)}]/{n*(2*R^2 +r^2)}
+printf("the value of load acting is,%f N\n",Wt)
\ No newline at end of file diff --git a/278/CH11/EX11.2/ex_11_2.sce b/278/CH11/EX11.2/ex_11_2.sce new file mode 100755 index 000000000..c86963fd1 --- /dev/null +++ b/278/CH11/EX11.2/ex_11_2.sce @@ -0,0 +1,14 @@ +//find stress
+clc
+//solution
+//given
+d=24//mm
+//using table 11.1,area corresponding to d=24mm ,core diameter dc is=20.32//mm
+dc=20.32//mm
+//let ft is stress
+P=2840*d//N
+pi=3.14
+//P=A*ft
+A=(pi/4)*dc^2
+ft=P/(A)//N/mm^2
+printf("the stress acting is,%f N/mm^2",ft)
\ No newline at end of file diff --git a/278/CH11/EX11.3/ex_11_3.sce b/278/CH11/EX11.3/ex_11_3.sce new file mode 100755 index 000000000..5e8591baf --- /dev/null +++ b/278/CH11/EX11.3/ex_11_3.sce @@ -0,0 +1,14 @@ +//find nominal diameter of bolt
+clc
+//solution
+//given
+//ref fig 11.22
+P=60000//N
+ft=100//N/mm^2
+//let d nominal diameter and dc core dia
+//P=ft/A
+//A=(pi/4)*dc^2
+pi=3.14
+dc=sqrt(P*4/(pi*ft))
+printf("the value of dc is,%f mm\n",dc)
+printf("the nominal value of d is 33 mm fron T11.1")
\ No newline at end of file diff --git a/278/CH11/EX11.4/ex_11_4.sce b/278/CH11/EX11.4/ex_11_4.sce new file mode 100755 index 000000000..92fd8ac43 --- /dev/null +++ b/278/CH11/EX11.4/ex_11_4.sce @@ -0,0 +1,18 @@ +//find size of bolts
+clc
+//solution
+//given
+T=25*10^3//N-mm
+n=4
+Rp=30//mm
+t=30//N/mm^2
+Ps=T/Rp//N//shearing load
+//let dc be core dia
+//P=t*n*A
+//A=(pi/4)*dc^2
+pi=3.14
+//P=t*n*(pi/4)*dc^2=94.26*dc^2
+//P=Ps
+dc=sqrt(Ps/94.26)//mm
+printf("the value of dc is,%f mm\n",dc)
+printf("the standard value of core diametr is 3.141 mm fron T11.1")
\ No newline at end of file diff --git a/278/CH11/EX11.5/ex_11_5.sce b/278/CH11/EX11.5/ex_11_5.sce new file mode 100755 index 000000000..459e6b079 --- /dev/null +++ b/278/CH11/EX11.5/ex_11_5.sce @@ -0,0 +1,20 @@ +//find dia meter of threaded part
+clc
+//solution
+//given
+D=100//mm
+p=1.6//N/mm^2
+ft=50//N/mm^2
+pi=3.14
+A=(pi/4)*D^2
+F=A*p//N
+printf("the value of force is,%f N\n",F)
+//since leverage is 8,therfor
+W=F/8//N
+P=F-W
+//let dc be core dia'
+//P=(pi/4)*dc^2*ft
+dc=sqrt(P*4/(pi*ft))//mm
+printf("the value of core dai is,%f mm\n",dc)
+printf("the standard value of core diametr is 18.376 mm fron T11.1")
+
diff --git a/278/CH11/EX11.6/ex_11_6.sce b/278/CH11/EX11.6/ex_11_6.sce new file mode 100755 index 000000000..f83da2a62 --- /dev/null +++ b/278/CH11/EX11.6/ex_11_6.sce @@ -0,0 +1,28 @@ +//caLCULATE the nmber ans size of studs
+clc
+//soltuion
+//given
+D=350//mm
+p=1.25//N/mm^2
+ft=33//N/mm^2
+//let d be diameter of studs and dc be core daimeter of studs
+pi=3.14
+P=(pi/4)*D^2*p//N
+//assuming nominal dia of studs =24, corrsponding dc=20.32//mm
+d=24//mm
+dc=20.32//mm
+//P1=(pi/4)*dc^2*ft*n
+n=P*4/(pi*dc^2*ft)
+printf("the value of nukmber of studs is,%f \n",n)
+printf("let us assume the value of nukmber of studs is 12\n" )
+d1=25//mm//dia of stid hole
+t=10//mm//assume
+Dp=D+2*t+3*d1//mmm
+printf("the value of pitch dia is,%f mm\n",Dp)
+Pc=(pi*Dp)/(12)//n=12//mm//circumferential pitch
+printf("the value of circumferential pitch is,%f mm\n",Pc)
+x1=20*sqrt(d1)//mm
+x2=30*sqrt(d1)//mm
+printf("the lower and upper limet of circumferential pitch is,%f mm\n and ,%f mm",x1,x2)
+printf("since Pc lies btw x1 and x2,hence design is safe")
+printf("the size of stud is M24")
\ No newline at end of file diff --git a/278/CH11/EX11.7/ex_11_7.sce b/278/CH11/EX11.7/ex_11_7.sce new file mode 100755 index 000000000..edb76a140 --- /dev/null +++ b/278/CH11/EX11.7/ex_11_7.sce @@ -0,0 +1,35 @@ +//desing th cover plate
+clc
+//solution
+//given
+D=120//mm
+r=60//mm
+p=6//N/mm^2
+ft=60//N/mm^2
+ftb=40//N/mm^2
+t=r*[sqrt((ft+p)/(ft-p))-1]//mm
+printf("the value of thicness is,%f mm\n",t)
+printf("let us consider t=10mm\n")
+//let d be nominal dia,dc core dia,nnumber of bolts
+pi=3.14
+P=(pi/4)*D^2*p//N
+//let us assume d=24//mm,corrsponding dc=20.32/
+d=24//mm
+dc=20.32//mm
+//P1=(pi/4)*dc^2*ftb*n//resistance offered by n bolts
+//P1=12973*n//N
+//P=P1
+n=P/12973
+printf("the value of number of studs is,%f \n",n)
+printf("let us assume the value of number of studs is 6\n" )
+d1=25//mm//dia of stid hole
+t=10//mm//assume
+Dp=D+2*t+3*d1//mmm
+printf("the value of pitch dia is,%f mm\n",Dp)
+Pc=(pi*Dp)/(6)//n=12//mm//circumferential pitch
+printf("the value of circumferential pitch is,%f mm\n",Pc)
+x1=20*sqrt(d1)//mm
+x2=30*sqrt(d1)//mm
+printf("the lower and upper limet of circumferential pitch is,%f mm\n and ,%f mm\n",x1,x2)
+printf("since Pc lies btw x1 and x2,hence design is safe\n")
+printf("the size of bolt is M24")
\ No newline at end of file diff --git a/278/CH11/EX11.8/ex_11_8.sce b/278/CH11/EX11.8/ex_11_8.sce new file mode 100755 index 000000000..2ed8b2b16 --- /dev/null +++ b/278/CH11/EX11.8/ex_11_8.sce @@ -0,0 +1,32 @@ +//find size of bolt required
+clc
+//soltuion
+//given
+D=300//mm
+p=1.5//N/mm^2
+n=8
+fy=330//N/mm^2
+fe=240//n/mm^2
+//P1=1.5*P2
+Fs=2
+K=0.5
+pi=3.14
+P2=(pi/4)*D^2*p//N
+P1=1.5*P2//N
+Pmax=P1+K*P2//N
+printf("the max force on head is,%f N\n",Pmax)
+Pmax1=Pmax/n//N//load on each bolt
+Pmin=P1/n//N
+Pm=(Pmin+Pmax1)/2//N//average load
+Pv=(Pmax1-Pmin)/2//N//variable load
+printf("the mean and vaiable load acting are Pm and Pv,%f N\n,%f N\n",Pm,Pv)
+//let dc core diametr of bolt in mm
+//As=(pi/4)*dc^2//mm^2//stress area of bolt
+//fm=Pm/As=29534/dc^2//N/mm^2
+//fv=Pv/As=4220/dc^2//N/mm^2
+//acc to soderberg's formula ,
+//fv=fe[(1/Fs)-(fm/fy)]
+//4420/dc^2=240*[(1/2)-29534/(dc^2*330)]
+dc=sqrt(25700/120)//mm
+printf("the value of core dai is,%f mm\n",dc)
+printf("the standard value of core diametr is 14.933 mm fron T11.1")
diff --git a/278/CH11/EX11.9/ex_11_9.sce b/278/CH11/EX11.9/ex_11_9.sce new file mode 100755 index 000000000..2ed8b2b16 --- /dev/null +++ b/278/CH11/EX11.9/ex_11_9.sce @@ -0,0 +1,32 @@ +//find size of bolt required
+clc
+//soltuion
+//given
+D=300//mm
+p=1.5//N/mm^2
+n=8
+fy=330//N/mm^2
+fe=240//n/mm^2
+//P1=1.5*P2
+Fs=2
+K=0.5
+pi=3.14
+P2=(pi/4)*D^2*p//N
+P1=1.5*P2//N
+Pmax=P1+K*P2//N
+printf("the max force on head is,%f N\n",Pmax)
+Pmax1=Pmax/n//N//load on each bolt
+Pmin=P1/n//N
+Pm=(Pmin+Pmax1)/2//N//average load
+Pv=(Pmax1-Pmin)/2//N//variable load
+printf("the mean and vaiable load acting are Pm and Pv,%f N\n,%f N\n",Pm,Pv)
+//let dc core diametr of bolt in mm
+//As=(pi/4)*dc^2//mm^2//stress area of bolt
+//fm=Pm/As=29534/dc^2//N/mm^2
+//fv=Pv/As=4220/dc^2//N/mm^2
+//acc to soderberg's formula ,
+//fv=fe[(1/Fs)-(fm/fy)]
+//4420/dc^2=240*[(1/2)-29534/(dc^2*330)]
+dc=sqrt(25700/120)//mm
+printf("the value of core dai is,%f mm\n",dc)
+printf("the standard value of core diametr is 14.933 mm fron T11.1")
diff --git a/278/CH12/EX12.1/ex_12_1.sce b/278/CH12/EX12.1/ex_12_1.sce new file mode 100755 index 000000000..b625e7ceb --- /dev/null +++ b/278/CH12/EX12.1/ex_12_1.sce @@ -0,0 +1,62 @@ +//desing cotter joint
+clc
+//solution
+//given
+P=30*10^3//N
+ft=50//N/mm^2
+t=35//N/mm^2
+fc=90//N/mm^2//crushing stress
+//let d be diameter of rods
+pi=3.14
+//P=A*ft
+//P=(p1/4)*d^2*ft
+d=sqrt((P*4)/(pi*ft))
+printf("the dia nof cotter jont is,%f mm\n",d)
+//let d2 be dia of spigot and t11 be thickness
+//t11=d2/4
+//P=[{(pi/4)*d2^2}-(d2*t)]*ft=26.8*d2^2
+d2=sqrt(P/26.8)//mm
+t11=d2/4//mm
+//let fc1 be induced crushing stress
+fc1=P/(d2*t11)//N/mm^2
+printf("the induced crushing stress is,%f N/mm^2\n ",fc1)
+printf("since induced stress is greater then 90 N/mm^2,therefore d2 an t are not safe limits,let us find d2 and t by substituitn fc1=90\n")
+//let d2=d21 and t=t1
+//P=d21*t1*fc
+//P=22.5*d2^2
+d21=sqrt(P/22.5)//mm
+t1=d21/4//mm
+printf("the safe values od d2 and t are ,%f mm\n,%f mm\n",d21,t1)
+//let b be width of cotter
+//P=2*b*t1*t=(2*9.12*35)*b
+b=P/(2*9.12*35)//mm
+printf("the width of cotter is,%f mm\n ",b)
+//let d4 be dia of socket collar
+//P=(d4-d2)*t1*fc
+d4=d21+(P/(t1*fc))//mm
+printf("the diametr of socket collar is,%f mm\n",d4)
+//let c be the thickness of socket collar
+//P=2*(d4-d2)*c*t
+c=P/(2*(d4-d21)*t)//mm
+printf("the thicknes of socket collar is,%f mm\n",c)
+//let a be distance from end of slot to end of the rod
+//P=2*a*d21*t
+a=P/(2*d21*t)//mm
+printf("distance from end of slot to end of the rod is,%f mm\n",a)
+
+//let d3 be dia of spigot collar
+//P=(pi/4)*[d3^2-d21^2]*fc
+//d3^2=d21^2 + (P*4)/(90*pi)
+d3=sqrt(d21^2 + (P*4)/(90*pi))//mm
+printf("dia of spigot collar is,%f mm\n",d3)
+//let T1 be thickness of spigot collar
+//P=pi*d21*T1*t
+T1=P/(pi*d21*t)//
+printf("thickness of spigot collar is,%f mm\n",T1)
+printf("let thickness of spigot collar be T1=8mm=T12")
+//let l be lengt of cotter
+T12=8//mm
+printf("the thicness of spigot colar is,%f mm\n",T12)
+l=4*d//mm
+e=1.2*d//mm
+printf("the length of cotter and e is,%f mm\n,%f mm\n",l,e)
\ No newline at end of file diff --git a/278/CH12/EX12.2/ex_12_2.sce b/278/CH12/EX12.2/ex_12_2.sce new file mode 100755 index 000000000..28bca9996 --- /dev/null +++ b/278/CH12/EX12.2/ex_12_2.sce @@ -0,0 +1,46 @@ +//dsing sleeve and cotter joint
+clc
+//solution
+//given
+P=60*10^3//N
+ft=60//N/mm^2
+t=70//N/mm^2
+fc=125//N/mm^2
+pi=3.14
+//let d be diameter of rods
+//P=A*ft
+//P=(p1/4)*d^2*ft
+printf("the dia of cotter jont is,%f mm\n",sqrt((P*4)/(pi*ft)))
+printf("the standard dia of cotter jont is d=26mm\n")
+d=36//mm
+//let d2 be dia of spigot and t11 be thickness
+//t11=d2/4
+//P=[{(pi/4)*d2^2}-(d2*t)]*ft=32.13*d2^2
+//d2=sqrt(P/32.13)//mm
+//t11=d2/4//mm
+printf("the dia d2 is,%f mm\n",sqrt(P/32.13))//mm)
+printf("the dia d2 is 44mm\n")
+d2=44//mm
+printf("the thickness is ,%f mm\n",d2/4)
+printf("the thckness is,11mm\n")
+t11=11//mm
+//let fc1 be induced crushing stress
+//fc1=P/(d2*t11)//N/mm^2
+printf("the value of d2 is,%f mm\n",d2)
+printf("the induced crushing stress is,%f N/mm^2\n ",P/(d2*t11))
+printf("the induced crushing stress is say 124 N/mm^2 whihc is less then 125,hence d2 and t11 is correct\n")
+//let b be width of cotter
+//P=2*b*t11*t=(2*11*70)*b
+//b=P/(2*11*70)//mm
+printf("the width of cotter is,%f mm\n ",P/(2*11*70))
+printf("the width of cotter is say 40mm\n")
+//let a be distance from end of slot to end of the rod
+//P=2*a*d21*t
+//a=P/(2*d2*t)//mm
+printf("distance from end of slot to end of the rod is,%f mm\n",P/(2*d2*t))
+printf("distance from end of slot to end of the rod is say 10mm")
+//let c be distance of rod end from its end to cottre hole
+//P=2*(d1-d2)*c*t=2240*c
+c=P/(2240)//mm
+printf("istance of rod end from its end to cottre hole is,%f mm",c)
+
diff --git a/278/CH12/EX12.3/ex_12_3.sce b/278/CH12/EX12.3/ex_12_3.sce new file mode 100755 index 000000000..35a9abcf0 --- /dev/null +++ b/278/CH12/EX12.3/ex_12_3.sce @@ -0,0 +1,33 @@ +//desing joint
+clc
+//solution
+//given
+P=50*10^3//N
+d=75//mm
+ft=25//N/mm^2
+t=20//N/mm^2
+//let B1 be the width of strap
+//B1=d
+B1=75//mm
+//t11=B1/4//mm
+printf("the thickness is,%f mm\n",B1/4)
+printf("the thickness can be taken as 20mm\n ")
+t11=20//mm
+//let t1 be thickness of strap at thnner side
+//P=2*B1*t1*ft//N
+//t1=P/(2*B1*ft)//mm
+printf("the thickness of strap at thinner side is,%f mm\n ",P/(2*B1*ft))
+printf("the thickness can be takn as 15 mm\n")
+t1=15//mm
+//let t3 be thickness of strap at cotter
+//2*t3*(B1-t)=2*t1*B1
+//t3=(2*t1*B1)/(2*(B1-t))//mm
+printf("thickness of strap at cotter is,%f mm\n",(2*t1*B1)/(2*(B1-t)))
+printf("thickness of strap at cotter say 21mm\n")
+t3=21//mm
+//let B be total width of gib and cotter
+//P=2*B*t11*t
+//B=P/(2*t11*t)//mm
+printf("the total width of gib and cotter is,%f mm\n ",P/(2*t11*t))
+printf("the total width of gib and cotter is say 65mm")
+
diff --git a/278/CH12/EX12.4/ex_12_4.sce b/278/CH12/EX12.4/ex_12_4.sce new file mode 100755 index 000000000..2e359346b --- /dev/null +++ b/278/CH12/EX12.4/ex_12_4.sce @@ -0,0 +1,50 @@ +//desing gib and cottor joint
+clc
+//solution
+//given
+P=35*10^3//N
+ft=20//N/mm^2
+t=15//N/mm^2
+fc=50//N/mm^2
+//let x be side of square rod
+//P=x^2*ft//N
+//x=sqrt(P/ft)//mm
+printf("the side of square is,%f mm\n",sqrt(P/ft))
+printf("the side of square is,say x=42mm\n")
+//B1=x=42mm
+x=42//mm
+B1=42//mm//width of strap
+//let t1 be thickness
+//t1=B1/4//mm
+printf("the width of strap is ,%f mm\n",B1)
+printf("the thickness of cottar is,%f mm\n",B1/4)
+printf("the thickness of cottar is,say 12mm\n")
+t1=12//mm
+//let B be width of gib and cotter
+//P=2*B*t*t1=360*B
+//B=P/360//mm
+printf("the width of gib and cotter is,%f mm ",P/360)
+printf("The width of gib and cotter is ,say100mm\n")
+B=100//mm
+b1=0.55*B//mm//width of gib
+b=0.45*B//mm//width of cotter
+printf("the width of cotter and gib is,%f mm\n,%f mm\n respctively",b,b1)
+//let t2 be thickness of strap
+//P=2*((x*t2)-(t2*t1))*ft=1200*t2
+//t2=P/1200//mm
+printf("the thickness of strap is,%f mm\n",P/1200)
+printf("the thickness of strap is,Say 30mm\n")
+t2=30//mm
+//P=2*t2*t*fc1=720*fc1
+fc1=P/720//N/mm^2
+printf("the induced crushing stress is,%f N/mm^2\n ",fc1)
+printf("since induced stress is less then safe limits\n")
+//let l1 be length of rod
+//P=2*l1*x*t
+l1=P/(2*x*t)//mm
+printf("the value of be length of rod is,%f mm\n",l1)
+//let l2 be length of rod in double shear
+//P=2*2*l2*t2*t=1800*l2
+l2=P/1800//mm
+printf("the length of rod in double shear is,%f mm\n",l2)
+
diff --git a/278/CH12/EX12.5/ex_12_6.sce b/278/CH12/EX12.5/ex_12_6.sce new file mode 100755 index 000000000..971065b53 --- /dev/null +++ b/278/CH12/EX12.5/ex_12_6.sce @@ -0,0 +1,29 @@ +//design cottered foundation bolts
+clc
+//solution
+//given
+P=50*10^3//N
+ft=80//N/mm^2
+t=50//N/mm^2
+fc=100//N/mm^2
+pi=3.14
+//P=(pi/4)*d^2*ft=62.84*d^2
+//d=sqrt(P/62.84)//mm
+printf("the diameter of bolt is,%f mm\n",sqrt(P/62.84))
+printf("the diameter of bolt is,say 30mm\n")
+d=30//mm
+//let d1 be dia of enlarged end of bolt
+//t1 be thickness of cotter
+//t1=d1/4
+//P=[((pi/4)*d1^2)-(d1*t1)]*ft
+//P=42.84*d1^2
+//d1=sqrt(P/42.84)//mm
+printf("the dia of enlarged end of bolt is,%f mm\n ",sqrt(P/42.84))
+printf("the dia of enlarged end of bolt is,say 36mm\n")
+d1=36//mm
+t1=d1/4//mm
+printf("the thickness is,%f mm\n",t1)
+//let b width of cotter
+//P=2*b*t1*t==900*b
+b=P/(900)//mm
+printf("the width of cotter is,%f mm\n",b)
\ No newline at end of file diff --git a/278/CH12/EX12.6/ex_12_6.sce b/278/CH12/EX12.6/ex_12_6.sce new file mode 100755 index 000000000..0472b9bfc --- /dev/null +++ b/278/CH12/EX12.6/ex_12_6.sce @@ -0,0 +1,52 @@ +//design knuckle joint
+clc
+//solution
+//given
+P=150*10^3//N
+ft=75//N/mm^2
+t=60//N/mm^2
+fc=150//N/mm^2
+pi=3.14
+//let d be dia of rod
+//P=(pi/4)*d^2*ft=59*d^2
+//d=sqrt(P/59)//mm
+printf("the diameter of bolt is,%f mm\n",sqrt(P/59))
+printf("the diameter of bolt is,say 52mm\n")
+d=52//mm
+//d1=d=52//mm//dia of knuckle pin
+d1=52//mm
+d2=2*d//mm//dia of outer eye
+d3=1.5*d//mm//dia of knucle pin head and collar
+T=1.25*d//mm//thickness of single eye
+T1=0.75*d//thickness of fork
+T2=0.5*d//thickness of pin head
+//let t1 be shear stress acting
+//P=(pi/4)*2*d1^2*t1//
+t1=(P*4)/(2*pi*d1^2)//N//mm^2
+printf("the double shear acting is,%f N/mm^2\n",t1)
+printf("since the doblue shear acting is 35.3 which is less then 60,hence desing is safe\n")
+//let ft1 be failur stress
+//P=(d2-d1)*T*ft1
+ft1=P/((d2-d1)*T)//N/mm^2
+printf("the failure stress in tension acting is,%f N/mm^2\n",ft1)
+printf("since the failure stress in tension acting is 44.3 whihc is less then75,hence design is safe\n")
+//let t2 be shear stress in shearing
+//P=(d2-d1)*T*t2
+t2=P/((d2-d1)*T)//N/mm^2
+printf("the shear stress in shearing acting is,%f N/mm^2\n",t2)
+printf("since the shear stress in shearing acting is 44.3 whihc is less then 60,hence design is safe\n")
+//let fc1 be tension in crushing
+//P=d1*T*fc1//N
+fc1=P/(d1*T)//
+printf("the tension in crushing is,%f N/mm^2\n",fc1)
+//let ft2 forked end tension
+//P=(d2-d1)*2*T1*ft2
+ft2=P/((d2-d1)*2*T1)//
+printf("forked end tension si,%f N/mm^2\n",ft2)
+//let t3 be forked end shear
+//P=(d2-d1)*T*t3*2
+t3=P/((d2-d1)*T*2)//N/mm^2
+printf("forked end shear is,%f N/mm^2\n",t3)
+//let fc2 be stress forked end crushing
+fc2=P/(d1*T*2)//N/mm^2
+printf("the stress firked end crushing is,%f N/mm^2",fc2)
\ No newline at end of file diff --git a/278/CH12/EX12.7/ex_12_7.sce b/278/CH12/EX12.7/ex_12_7.sce new file mode 100755 index 000000000..0472b9bfc --- /dev/null +++ b/278/CH12/EX12.7/ex_12_7.sce @@ -0,0 +1,52 @@ +//design knuckle joint
+clc
+//solution
+//given
+P=150*10^3//N
+ft=75//N/mm^2
+t=60//N/mm^2
+fc=150//N/mm^2
+pi=3.14
+//let d be dia of rod
+//P=(pi/4)*d^2*ft=59*d^2
+//d=sqrt(P/59)//mm
+printf("the diameter of bolt is,%f mm\n",sqrt(P/59))
+printf("the diameter of bolt is,say 52mm\n")
+d=52//mm
+//d1=d=52//mm//dia of knuckle pin
+d1=52//mm
+d2=2*d//mm//dia of outer eye
+d3=1.5*d//mm//dia of knucle pin head and collar
+T=1.25*d//mm//thickness of single eye
+T1=0.75*d//thickness of fork
+T2=0.5*d//thickness of pin head
+//let t1 be shear stress acting
+//P=(pi/4)*2*d1^2*t1//
+t1=(P*4)/(2*pi*d1^2)//N//mm^2
+printf("the double shear acting is,%f N/mm^2\n",t1)
+printf("since the doblue shear acting is 35.3 which is less then 60,hence desing is safe\n")
+//let ft1 be failur stress
+//P=(d2-d1)*T*ft1
+ft1=P/((d2-d1)*T)//N/mm^2
+printf("the failure stress in tension acting is,%f N/mm^2\n",ft1)
+printf("since the failure stress in tension acting is 44.3 whihc is less then75,hence design is safe\n")
+//let t2 be shear stress in shearing
+//P=(d2-d1)*T*t2
+t2=P/((d2-d1)*T)//N/mm^2
+printf("the shear stress in shearing acting is,%f N/mm^2\n",t2)
+printf("since the shear stress in shearing acting is 44.3 whihc is less then 60,hence design is safe\n")
+//let fc1 be tension in crushing
+//P=d1*T*fc1//N
+fc1=P/(d1*T)//
+printf("the tension in crushing is,%f N/mm^2\n",fc1)
+//let ft2 forked end tension
+//P=(d2-d1)*2*T1*ft2
+ft2=P/((d2-d1)*2*T1)//
+printf("forked end tension si,%f N/mm^2\n",ft2)
+//let t3 be forked end shear
+//P=(d2-d1)*T*t3*2
+t3=P/((d2-d1)*T*2)//N/mm^2
+printf("forked end shear is,%f N/mm^2\n",t3)
+//let fc2 be stress forked end crushing
+fc2=P/(d1*T*2)//N/mm^2
+printf("the stress firked end crushing is,%f N/mm^2",fc2)
\ No newline at end of file diff --git a/278/CH12/EX12.8/ex_12_8.sce b/278/CH12/EX12.8/ex_12_8.sce new file mode 100755 index 000000000..8f46529d6 --- /dev/null +++ b/278/CH12/EX12.8/ex_12_8.sce @@ -0,0 +1,36 @@ +//design knucle joint
+clc
+//solution
+//given
+P=70*10^3//N
+ftur=420//N/mm^2//for rod//ultimate point stress
+ftup=510//N/mm^2//for pin
+tu=396//N/mm^2
+Fs=6
+ftr=ftur/Fs//N/mm^2//yeild
+t=tu/Fs//N/mm^2
+pi=3.14
+//let d be dia of rod
+//P=(pi/4)*d^2*ftr=55*d^2
+//d=sqrt(P/55)//mm
+printf("the diameter of bolt is,%f mm\n",sqrt(P/55))
+printf("the diameter of bolt is,say 36mm\n")
+d=36//mm
+//d1=d=36//mm//dia of knuckle pin
+d1=36//mm
+d2=2*d//mm//dia of outer eye
+d3=1.5*d//mm//dia of knucle pin head and collar
+T=1.25*d//mm//thickness of single eye
+T1=0.75*d//thickness of fork
+////let t1 be double shear stress acting
+//P=(pi/4)*2*d1^2*t1//
+t1=(P*4)/(2*pi*d1^2)//N//mm^2
+printf("the double shear acting is,%f N/mm^2\n",t1)
+//let ft1 be failur stress
+//P=(d2-d1)*T*ft1
+ft1=P/((d2-d1)*T)//N/mm^2
+printf("the failure stress in tension acting is,%f N/mm^2\n",ft1)
+//let ft2 forked end tension
+//P=(d2-d1)*2*T1*ft2
+ft2=P/((d2-d1)*2*T1)//
+printf("forked end tension si,%f N/mm^2\n",ft2)
\ No newline at end of file diff --git a/278/CH12/EX12.9/ex_12_9.sce b/278/CH12/EX12.9/ex_12_9.sce new file mode 100755 index 000000000..3ab4e8754 --- /dev/null +++ b/278/CH12/EX12.9/ex_12_9.sce @@ -0,0 +1,46 @@ +//design adjustable screwed joint
+clc
+//solution
+//given
+P=50*10^3//N
+ft=75//N/mm^2
+t=37.5//N/mm^2
+pi=3.14
+Pd=1.3*P//N//load for threaded section
+//let d be dia and dc be core dia
+//Pd=(pi/4)*dc^2*ft
+//dc=sqrt((4*Pd)/(pi*ft))//mm
+printf("the core dia is,%f mm\n",sqrt((4*Pd)/(pi*ft)))
+printf("the standard core dai using table 11.1 is 34.093mm\n")
+dc=34.093//mm
+//corrresponding dia d =39
+d=39//mm
+printf("the dia of rod is,%f mm\n",d)
+//let l be length of coupler nut
+//Pd=pi*dc*l*t
+//l=P/(pi*dc*t)//mm
+printf("the length of coupler nut is,%f mm\n",P/(pi*dc*t))
+x1=d//mm
+x2=1.25*d//mm
+printf("the upper and lower limit of lkength are,%f mm\n,%f mm\n",x1,x2)
+printf("taking l=x1=d into calculation\n")
+l=d//mm
+n=1/4//mm
+//Pd=(pi/4)*[d^2-dc^2]*n*l*fc=2750*fc
+fc=(Pd/[(pi/4)*[d^2-dc^2]*n*l])
+printf("the crushing load is,%f N/mm^2\n",fc)
+//let D be outer dia
+//P=(pi/4)*(D^2-d^2)*ft
+D=[{(P*4)/(pi*ft)}+d^2]^0.5//mm
+printf("the outer dai is,%f mm\n",D)
+//let D1 and D2 be outer and inner dia of coupler
+D1=d+6//mm
+D2=[{(P*4)/(pi*ft)}+D1^2]^0.5//mm
+printf("the outer and inner dia are,%f mm\n,%f mm\n",D1,D2)
+//let L be length of coupler
+L=6*d//mm
+printf("the length of coupler is,%f mm\n",L)
+T1=0.75*d//mm
+printf("the thickness of coupler is,%f mm\n ",t1)
+T2=0.5*d//mm
+printf("the thickness of coupler nut is,%f mm\n",T2)
diff --git a/278/CH13/EX13.1/ex_13_1.sce b/278/CH13/EX13.1/ex_13_1.sce new file mode 100755 index 000000000..33f15d658 --- /dev/null +++ b/278/CH13/EX13.1/ex_13_1.sce @@ -0,0 +1,24 @@ +//design rectanglar key
+clc
+//solution
+//given
+d=50//mm
+t=42//N/mm^2
+fc=70//N/mm^2
+//from tab 13.1,using d=50mm
+w=16//mm
+T=10//mm
+//let l be length of key
+//Tq1=l*w*t*d/2=16800*l1//N-mm//torque
+pi=3.14
+Tq=(pi/16)*t*d^3//
+printf("the torsional moment acting is,%f N-mm\n",Tq)
+l1=Tq/16800//mm
+//Tq2=l2*T*fc*d/4=8750*l2
+l2=Tq/8750//mm
+printf("since l2 >l1,taking large value l2=l ,length of key\n")
+//l=l2//mm
+printf("the length of key is,%f mm\n",l2)
+printf("the length oif key is,say 120 mm\n")
+l=120//mm
+
diff --git a/278/CH13/EX13.10/ex_13_10.sce b/278/CH13/EX13.10/ex_13_10.sce new file mode 100755 index 000000000..848e75729 --- /dev/null +++ b/278/CH13/EX13.10/ex_13_10.sce @@ -0,0 +1,46 @@ +// find dia of bolts ,thickness of flanges and key dimensions
+clc
+//solution
+//given
+d=35//mm
+n=6
+D1=125//mm
+T=800*10^3//N-mm
+N=350//rpm
+ts=63//N/mm^2
+tb=56//N/mm^2
+tc=10//N/mm^2
+tk=46//N/mm^2
+//let d1 be nominal dia
+//T=(%pi/4)*d1^2*tb*n*D1/2
+//d1=(T/16495)^(0.5)//mm
+printf("the dia of bolt is,%f mm\n",(T/16495)^(0.5))
+printf("the dia of bolt is say d1=8mm\n")
+d1=8//mm
+D=2*d
+//let tf be flange thickness
+//T=((%pi*D^2)/2)*tc*tf
+//tf=T/[((%pi*D^2)/2)*tc]
+printf("the flange thickness is,%f mm\n",T/[((%pi*D^2)/2)*tc])
+printf("the flange thicknes is say tf=12mm\n")
+tf=12//mm
+//from table 13.1,we find that shaft of dia 70mm diametr
+w=12//width of diametre
+t1=8//mm//thickness of key
+l=1.5*d//mm
+L=1.5*d//mm
+//let tk1 be induced stress
+//T=l*w*tk1*d/2
+tk1=T/11025//N/mm^2
+printf("the induces stress is,%f N/mm^2\n",tk1)
+printf("since induced stress is gerater then safe limits of 46 N/mm^2,therfore,we use limiting case by putting tk1=tk=46\n")
+//l1=T/(12*46*17.5)//mm
+printf("the length of key is,%f mm\n",T/(12*46*17.5))
+printf("the length of key is say 85mm\n")
+//L1=l1
+L1=85//mm
+printf("the legth of hub is,%f mm\n",L1)
+P=2*%pi*N*T/60//W
+printf("the power rtransmitted is,%f W\n",P)
+
+
diff --git a/278/CH13/EX13.11/ex_13_11.sce b/278/CH13/EX13.11/ex_13_11.sce new file mode 100755 index 000000000..3c16ff96c --- /dev/null +++ b/278/CH13/EX13.11/ex_13_11.sce @@ -0,0 +1,27 @@ +//find dia of shaft,dia of bolts,thickness of flange and dia of flange
+clc
+//solution
+//given
+P=3*10^6//W
+N=100//rpm
+tb=60//N/mm^2
+ts=60//N/mm^2
+n=8
+//D1=1.6*d
+//let d be dia of shaft
+T=(P*60*1000)/(2*%pi*N)//N-mm
+//T=(%pi/16)*t*d^3=11.78*d^3
+//d=(T/11.78)^(1/3)//mm
+printf("the dia of shaft is,%f mm\n ",(T/11.78)^(1/3))
+printf("the dia of shaft is ,say 300 mm\n")
+d=300//mm
+//let d1 be nominal dia of bolts
+//T=(%pi/4)*d1^2*tb*n*D1/2
+//d1=(T/90490)^(0.5)//mm
+printf("the dia of bolt is,%f mm\n",(T/16495)^(0.5))
+printf("the dia of bolt is say d1=60 mm\n")
+d1=60//mm
+tf=d/3//mm
+printf("the flange thciness is,%f m\n",tf)
+D2=2.2*d//mm
+printf("the diameter of flange is,%f mm",D2)
\ No newline at end of file diff --git a/278/CH13/EX13.13/ex_13_13.sce b/278/CH13/EX13.13/ex_13_13.sce new file mode 100755 index 000000000..73b2b3114 --- /dev/null +++ b/278/CH13/EX13.13/ex_13_13.sce @@ -0,0 +1,15 @@ +//find dia of shaft and pins
+clc
+//solution
+//given
+T=5000*10^3//N-mm
+t=60//N/mm^2
+t1=28//N/mm^2
+//let d be dia
+//T=(%pi*t*d^3)/16
+d=(T/11.8)^(1/3)//mm
+printf("the dia of shaft is,%f mm\n",d)
+//let dp diA of pin
+//T=2*(%pi/4)*dp^2*t1*d
+dp=[T/(3300)]^0.5//mm
+printf("the dia of pin is,%f mm",dp)
\ No newline at end of file diff --git a/278/CH13/EX13.2/ex_13_2.sce b/278/CH13/EX13.2/ex_13_2.sce new file mode 100755 index 000000000..b757b2369 --- /dev/null +++ b/278/CH13/EX13.2/ex_13_2.sce @@ -0,0 +1,24 @@ +//find length of key
+clc
+//solution
+//given
+d=45//mm
+fyts=400//N/mm^2'//for shaft
+w=14//mm
+t=9//mm
+fytk=340//N/mm^2//for key
+Fs=2
+pi=3.14
+//let l be length of key
+tmaxs=fyts/(2*Fs)//N/mm^2
+tmaxk=fytk/(2*Fs)//N/mm^2
+tmax=(pi/16)*tmaxs*d^3//N-mm
+//tmax=l*w*tmaxk*d/2
+l1=(tmax*2)/(w*tmaxk*d)//
+printf("the length of key(l1) is,%f mm\n",l1)
+//tmax=l2*t*fytk*d/4=17213*l2
+l2=tmax/17213//mm
+printf("te length of key(l2) is,%f mm\n",l2)
+printf("since l2 >l1,taking large value l2=l ,length of key\n")
+l=103.89//mm
+printf("the length of key(l) is,%f mm\n",l)
\ No newline at end of file diff --git a/278/CH13/EX13.3/ex_13_3.sce b/278/CH13/EX13.3/ex_13_3.sce new file mode 100755 index 000000000..5b26dcea4 --- /dev/null +++ b/278/CH13/EX13.3/ex_13_3.sce @@ -0,0 +1,24 @@ +//desing keyway in motr shaft
+clc
+//soltuion
+//given
+P=15*10^3//W
+N=960//rpm
+d=40//mm
+l=75//mm
+t=56//N/mm^2
+fc=112//N/mm^2
+Tq=(P*60)/(2*%pi*N)//N-mm
+//let w be width of key
+//Tq=l*w*t*d/2=84000*w
+//w=Tq/84000//mm
+printf("the width of keywy is,%f mm\n",Tq/84000)
+printf("this width is too small,it should be atleats w=d/4,so taking w=d/4 as min widht we get w=d/4=10//mm\n")
+w=10//mm
+T=10//mm//thickness =width=square key
+h=T/2
+e=1-(0.2*(w/d))-1.1*(h/d)
+P1=(pi/16)*t*d^3*e//N//strength of shaft
+Ps=l*w*t*d/2//N//shear strength of shaft
+x=Ps/P1//
+printf("the check value is,%f",x)
\ No newline at end of file diff --git a/278/CH13/EX13.4/ex_13_4.sce b/278/CH13/EX13.4/ex_13_4.sce new file mode 100755 index 000000000..f9dd5df8d --- /dev/null +++ b/278/CH13/EX13.4/ex_13_4.sce @@ -0,0 +1,31 @@ +//design muff coupling
+clc
+//solution
+//given
+P=40000//W
+N=350//rpm
+ts=40//N/mm^2
+fcs=80//N/mm^2
+tc=15//N/mm^2
+//let d be dia
+Tq=(P*60*1000)/(2*%pi*N)//N-mm
+//Tq=(%pi/16)*ts*d^3=7.86*d^3
+//d=(Tq/7.86)^(1/3)//mm
+printf("the dia of shaft is,%f mm\n ",(Tq/7.86)^(1/3))
+printf("the dia of shaft is ,say 55mm\n")
+d=55//mm
+D=2*d + 13//mm
+printf("the outer dia of muff is,%f mm\n",D)
+L=3.5*d//mm
+printf("the length of muff is,%f mm\n",L)
+//let tc be induced shear stress
+//T=(%pi/16)*tc*[(D^4-d^4)/D] =370*10^3*fc
+fc=Tq/370000//N/mm^2
+printf("the induced shear stress is,%f N/mm^2 \n",fc)
+//from table 13.1,we find that shaft of dia 55mm diametr
+w=18//width of diametre
+t1=w//mm//thicknessof key
+l=L/2//mm//length of key
+printf("the widht of key is,%f mm\n ",w)
+printf("the thickness of key is,%f mm\n",t1)
+printf("the length of key is,%f mm\n",l)
diff --git a/278/CH13/EX13.5/ex_13_5.sce b/278/CH13/EX13.5/ex_13_5.sce new file mode 100755 index 000000000..c04538d8a --- /dev/null +++ b/278/CH13/EX13.5/ex_13_5.sce @@ -0,0 +1,31 @@ +//design a clamp coupling
+clc
+//solution
+//given
+P=30000//W
+N=100//rpm
+t=40//N/mm^2
+n=6
+ft=70//N/mm^2
+u=0.3
+//let d be dia
+Tq=(P*60*1000)/(2*%pi*N)//N-mm
+//Tq=(%pi/16)*t*d^3=7.86*d^3
+//d=(Tq/7.86)^(1/3)//mm
+printf("the dia of shaft is,%f mm\n ",(Tq/7.86)^(1/3))
+printf("the dia of shaft is ,say 75mm\n")
+d=75//mm
+D=2*d + 13//mm
+printf("the outer dia of muff is,%f mm\n",D)
+L=3.5*d//mm
+printf("the length of muff is,%f mm\n",L)
+//from table 13.1,we find that shaft of dia 75mm diametr
+w=22//width of diametre
+t1=14//mm//thickness of key
+//let db be the root dia
+//'Tq=(%pi^2)*u*db^2*n*ft*d
+//Tq=5830*db^2
+db=sqrt(Tq/5830)
+printf("the widht of key is,%f mm\n ",w)
+printf("the thickness of key is,%f mm\n",t1)
+printf("the root dia is,%f mm\n",db)
\ No newline at end of file diff --git a/278/CH13/EX13.6/ex_13_6.sce b/278/CH13/EX13.6/ex_13_6.sce new file mode 100755 index 000000000..d3921993c --- /dev/null +++ b/278/CH13/EX13.6/ex_13_6.sce @@ -0,0 +1,46 @@ +//design cast iron
+clc
+//soltuion
+//given
+P=15000//W
+N=900//rpm
+K=1.35//service factor
+//ts=tb=tk=40//N/mm^2
+ts=40//N/mm^2
+tb=40//N/mm^2
+tk=40//N/mm^2
+//fcb=fck
+fck=80//N/mm^2
+fcb=80//N/mm^2
+tc=8//N/mm^2
+//let d be dia
+Tq=(P*60*1000)/(2*%pi*N)//N-mm
+Tqmax=Tq*1.35//N-mm
+//Tq=(%pi/16)*t*d^3=7.86*d^3
+//d=(Tq/7.86)^(1/3)//mm
+printf("the dia of shaft is,%f mm\n ",(Tqmax/7.86)^(1/3))
+printf("the dia of shaft is ,say 35mm\n")
+d=35//mm
+D=2*d//mm
+printf("the outer dia of muff is,%f mm\n",D)
+L=1.5*d//mm
+printf("the length of muff is,%f mm\n",L)
+//from table 13.1,we find that shaft of dia 75mm diametr
+w=12//width of diametre
+t1=12//mm//thickness of key
+//let tc be induced shear stress
+//Tqmax=(%pi/16)*tc*[(D^4-d^4)/D] =63147*fc
+fc=Tqmax/63147//N/mm^2
+printf("the induced stress acting is,%f N/mm^2\n",fc)
+tf=0.5*d//mm
+printf("the thicknes of flange is,%f mm\n",tf)
+//let d1 be nominal dia of bolts
+n=3
+D=3*d
+//Tqmax=(%pi/4)*d1^2*tb*n*D1/2
+d1=sqrt(Tqmax/4950)//mm
+D2=4*d//mm
+tp=0.25*d
+printf("the nominal dia of bolts is,%f mm\n",d1)
+printf("the outer dia of flange is,%f mm\n",D2)
+printf("the thickness of protective circumferencial flange is,%fmm",tp)
\ No newline at end of file diff --git a/278/CH13/EX13.7/ex_13_7.sce b/278/CH13/EX13.7/ex_13_7.sce new file mode 100755 index 000000000..6c80c1f92 --- /dev/null +++ b/278/CH13/EX13.7/ex_13_7.sce @@ -0,0 +1,45 @@ +//dsign flange
+clc
+//soltuion
+//given
+P=15000//W
+N=200//rpm
+ts=40//N/mm^2
+tb=30//N/mm^2
+//fck=2*tk
+tc=14//N/mm^2
+Tmean=(P*60*1000)/(2*%pi*N)//N-mm
+Tmax=1.25*Tmean//N/mm^2
+//Tmax=(%pi/16)*t*d^3=7.86*d^3
+//d=(Tq/7.86)^(1/3)//mm
+printf("the dia of shaft is,%f mm\n ",(Tmax/7.86)^(1/3))
+printf("the dia of shaft is ,say 50 mm\n")
+d=50//mm
+D=2*d//mm
+printf("the outer dia of muff is,%f mm\n",D)
+L=1.5*d//mm
+printf("the length of muff is,%f mm\n",L)
+//from table 13.1,we find that shaft of dia 75mm diametr
+w=16//width of diametre
+t1=16//mm//thickness of key
+l=75//mm
+//let tc be induced shear stress
+//Tmax=(%pi/16)*tc*[(D^4-d^4)/D] =184100*fc
+fc=Tmax/184100//N/mm^2
+printf("the induced stress acting is,%f N/mm^2\n",fc)
+//let tk be induced stress on key
+//Tmax=l*w*l*d*tk*0.5=30000*tk
+tk=Tmax/30000//N/mm^2
+printf("the induced stress in key is,%f mm\n",tk)
+tf=0.5*d//mm
+printf("the thicknes of flange is,%f mm\n",tf)
+//let d1 be nominal dia of bolts
+n=4
+D1=3*d//mm
+//Tqmax=(%pi/4)*d1^2*tb*n*D1/2
+d1=sqrt(Tmax/7070)//mm
+D2=4*d//mm
+tp=0.25*d
+printf("the nominal dia of bolts is,%f mm\n",d1)
+printf("the outer dia of flange is,%f mm\n",D2)
+printf("the thickness of protective circumferencial flange is,%fmm",tp)
diff --git a/278/CH13/EX13.8/ex_13_8.sce b/278/CH13/EX13.8/ex_13_8.sce new file mode 100755 index 000000000..877d2410c --- /dev/null +++ b/278/CH13/EX13.8/ex_13_8.sce @@ -0,0 +1,48 @@ +//desing flange
+clc
+//soltuion
+//given
+P=90*10^3//W
+N=250//rpm
+ts=40//N/mm^2
+q=0.0175
+tb=30//N/mm^2
+//let d be dia
+T=(P*60*1000)/(2*%pi*N)//N-mm
+//T/J=ts/(d/2)
+//T/(%pi*d^4/32)=ts/(d/2)//considering strength iof shaft
+d1=(35*10^6/80)^(1/3)//mm
+//considering rigidity
+//T/J=(C*q/l)
+//T/(%pi*d^4/32)=84000*0.0175/(20*d)
+d2=(35*10^6/73.5)^(1/3)//mm
+printf("the value of d1 and d2 is,%f mm\n,%f mm\n",d1,d2)
+printf("taking larger value into consideration i,e d2,we take d=d2=80mm\n")
+d=80//mm
+D=2*d//mm
+printf("the outer dia of muff is,%f mm\n",D)
+L=1.5*d//mm
+printf("the length of muff is,%f mm\n",L)
+//from table 13.1,we find that shaft of dia 70mm diametr
+w=25//width of diametre
+t1=14//mm//thickness of key
+l=120//mm
+//let tc be inducesd stress
+//Tmax=(%pi/16)*tc*[(D^4-d^4)/D]
+tc=T/{(%pi/16)*[(D^4-d^4)/D]}
+printf("the induce stres is,%f N/mm^2\n",tc)
+printf("the induced shear stress is less then 14,hence it is safe design\n ")
+tf=0.5*d//mm
+printf("the thicknes of flange is,%f mm\n",tf)
+//let d1 be nominal dia of bolts
+n=4
+D1=3*d//mm
+//Tqmax=(%pi/4)*d1^2*tb*n*D1/2
+d1=sqrt(T/11311)//mm
+D2=4*d//mm
+tp=0.25*d
+printf("the nominal dia of bolts is,%f mm\n",d1)
+printf("the outer dia of flange is,%f mm\n",D2)
+printf("the thickness of protective circumferencial flange is,%fmm",tp)
+
+
diff --git a/278/CH13/EX13.9/ex_13_9.sce b/278/CH13/EX13.9/ex_13_9.sce new file mode 100755 index 000000000..848e75729 --- /dev/null +++ b/278/CH13/EX13.9/ex_13_9.sce @@ -0,0 +1,46 @@ +// find dia of bolts ,thickness of flanges and key dimensions
+clc
+//solution
+//given
+d=35//mm
+n=6
+D1=125//mm
+T=800*10^3//N-mm
+N=350//rpm
+ts=63//N/mm^2
+tb=56//N/mm^2
+tc=10//N/mm^2
+tk=46//N/mm^2
+//let d1 be nominal dia
+//T=(%pi/4)*d1^2*tb*n*D1/2
+//d1=(T/16495)^(0.5)//mm
+printf("the dia of bolt is,%f mm\n",(T/16495)^(0.5))
+printf("the dia of bolt is say d1=8mm\n")
+d1=8//mm
+D=2*d
+//let tf be flange thickness
+//T=((%pi*D^2)/2)*tc*tf
+//tf=T/[((%pi*D^2)/2)*tc]
+printf("the flange thickness is,%f mm\n",T/[((%pi*D^2)/2)*tc])
+printf("the flange thicknes is say tf=12mm\n")
+tf=12//mm
+//from table 13.1,we find that shaft of dia 70mm diametr
+w=12//width of diametre
+t1=8//mm//thickness of key
+l=1.5*d//mm
+L=1.5*d//mm
+//let tk1 be induced stress
+//T=l*w*tk1*d/2
+tk1=T/11025//N/mm^2
+printf("the induces stress is,%f N/mm^2\n",tk1)
+printf("since induced stress is gerater then safe limits of 46 N/mm^2,therfore,we use limiting case by putting tk1=tk=46\n")
+//l1=T/(12*46*17.5)//mm
+printf("the length of key is,%f mm\n",T/(12*46*17.5))
+printf("the length of key is say 85mm\n")
+//L1=l1
+L1=85//mm
+printf("the legth of hub is,%f mm\n",L1)
+P=2*%pi*N*T/60//W
+printf("the power rtransmitted is,%f W\n",P)
+
+
diff --git a/278/CH14/EX14.1/ex_14_1.sce b/278/CH14/EX14.1/ex_14_1.sce new file mode 100755 index 000000000..076a13d5a --- /dev/null +++ b/278/CH14/EX14.1/ex_14_1.sce @@ -0,0 +1,12 @@ +//determine dia of the shaft
+clc
+//solution
+//given
+N=200//rpm
+P=20*10^3//W
+t=42//N/mm^2
+//let d be dia
+T=P*60000/(2*%pi*200)//N-mm
+//T=(%pi/16)*t*d^3=8.25*d^3
+d=(T/8.25)^(1/3)//mm
+printf("the dia of shaft is,%f mm",d)
\ No newline at end of file diff --git a/278/CH14/EX14.10/ex_14_10.sce b/278/CH14/EX14.10/ex_14_10.sce new file mode 100755 index 000000000..f7c33c4d3 --- /dev/null +++ b/278/CH14/EX14.10/ex_14_10.sce @@ -0,0 +1,53 @@ +//determine dia of the shaft
+clc
+//solution
+//given
+//ref fig 14.6
+AB=800//mm
+a=(%pi/180)*20
+Dc=600//mm
+Rc=300//mm
+AC=200//mm
+Dd=700//mm
+Rd=350//mm
+DB=250//mm
+W=2000//N
+T1=3000//N
+T2=T1/3//N
+t=40//n/mm^2
+T=(T1-T2)*Rd//N-mm
+Ftc=(T/Rc)//N//tangential force acting oon gear C
+//Wc=Ftc/cos(a)//N
+Wc=Ftc/0.9397
+//Wcv=Wc*cos(a)//veritcal comp
+Wcv=Wc*0.9397
+//Wch=Wc*sin(a)//hori com
+Wcv=Wc*0.342//N
+//RAv + RBv=2333+2000
+//RAv + RBv=4333//N
+RBv=[2000(800-250)+(2333*200)]/800//N
+RAv=4333-RBv//N
+printf("the value of RAv is,%f N\n",RAv)
+//moment due to veritcal component
+MAv=0
+MBv=0
+MCv=RAv*200//N-mm
+MDv=RBv*250//N-mm
+//RAh + RBh=4849
+RBh=[4000*(800-250)+ (849*200)]/800//N
+RAh=4849-RBh//N
+//moment due to horizontal component
+MAh=0
+MBh=0
+MCh=RAh*200//N-mm
+MDh=RBh*250//N-mm
+Mc=sqrt(MCv^2 + MCh^2)//net moment abt C
+Md=sqrt(MDv^2 + MDh^2)//net moment abt D
+printf("the moment acting abt D is,%f N-mm\n",Md)
+//M=Md//N-mm//max moment
+//printf("the moment acting is,%f N-mm\n",M)
+//let d be dia
+Te=sqrt(Md^2 + T^2)/N-mm
+//Te=(%pi/16)*t*d^3
+d=(Te/7.86)^(1/3)//mm
+printf("the dia of shaft is,%f mm",d)
diff --git a/278/CH14/EX14.11/ex_14_11.sce b/278/CH14/EX14.11/ex_14_11.sce new file mode 100755 index 000000000..d60f20a31 --- /dev/null +++ b/278/CH14/EX14.11/ex_14_11.sce @@ -0,0 +1,50 @@ +//determine dia of the shaft
+clc
+//solution
+//given
+//ref fig 14.6
+AB=800//mm
+a=(%pi/180)*20//rad
+Dc=600//mm
+Rc=300//mm
+AC=200//mm
+Dd=700//mm
+Rd=350//mm
+DB=250//mm
+W=2000//N
+T1=3000//N
+T2=T1/3//N
+t=40//n/mm^2
+T=(T1-T2)*Rd//N-mm
+Ftc=T/Rc//N//tangential force acting oon gear C
+Wc=Ftc/cos(a)//N
+Wcv=Wc*cos(a)//veritcal comp
+Wch=Wc*sin(a)//hori com
+//RAv + RBv=2333+2000
+//RAv + RBv=4333//N
+RBv=[2000(800-250)+(2333*200)]/800//N
+RAv=4333-RBv//N
+printf("the value of RAv is,%f N\n",RAv)
+//moment due to veritcal component
+MAv=0
+MBv=0
+MCv=RAv*200//N-mm
+MDv=RBv*250//N-mm
+//RAh + RBh=4849
+RBh=[4000*(800-250)+ (849*200)]/800//N
+RAh=4849-RBh//N
+//moment due to horizontal component
+MAh=0
+MBh=0
+MCh=RAh*200//N-mm
+MDh=RBh*250//N-mm
+Mc=sqrt(MCv^2 + MCh^2)//net moment abt C
+Md=sqrt(MDv^2 + MDh^2)//net moment abt D
+printf("the moment acting abt D is,%f N-mm\n",Md)
+//M=Md//N-mm
+//printf("the moment acting is,%f N-mm\n",M)
+//let d eb dia
+Te=sqrt(Md^2 + T^2)/N-mm
+//Te=(%pi/16)*t*d^3
+d=(Te/7.86)^(1/3)//mm
+printf("the dia of shaft is,%f mm",d)
diff --git a/278/CH14/EX14.12/ex_14_12.sce b/278/CH14/EX14.12/ex_14_12.sce new file mode 100755 index 000000000..13ffb2c24 --- /dev/null +++ b/278/CH14/EX14.12/ex_14_12.sce @@ -0,0 +1,35 @@ +//determine dia of the shaft
+clc
+//solution
+//given
+P=20000//W
+N=200//rpm
+W=900//N
+L=2500//mm
+t=42//N/mm^2
+fb=56//N/mm^2
+T=P*60000/(2*%pi*200)//N-mm
+M=W*L/4//N-mm//max monet
+Te=sqrt(T^2 + M^2)//N-mm
+//Te=(%pi/16)*t*d^3
+d1=(Te/8.25)^(1/3)//mm
+printf("the dia of shaft is,%f mm",d1)
+Me=0.5[M + sqrt(M^2 + T^2)]//N-mm
+//Me=(%pi/32)*fb*d2^3
+d2=(Me/5.5)^(1/3)//mm
+printf("the dia oif shaft is,%f mm\n",d2)
+printf("taking large value i.e d=d1=55 mm in consideration\n")
+//dia by applying gradually applied load
+//using table 14.2
+Km=1.5
+Kl=1
+Te1=sqrt((Km*M)^2 + (Kl*T)^2)//N-mm
+//Te=(%pi/16)*t*d^3
+d1=(Te1/8.25)^(1/3)//mm
+printf("the dia of shaft is,%f mm",d1)
+Me1=0.5[M*Km + sqrt((Km*M)^2 + (Kl*T)^2)]//N-mm
+//Me1=(%pi/32)*fb*d2^3
+d2=(Me1/5.5)^(1/3)//mm
+printf("the dia oif shaft is,%f mm\n",d2)
+printf("taking large value i.e d=d1=60 mm in consideration\n")
+
diff --git a/278/CH14/EX14.13/ex_14_13.sce b/278/CH14/EX14.13/ex_14_13.sce new file mode 100755 index 000000000..327b5a0b5 --- /dev/null +++ b/278/CH14/EX14.13/ex_14_13.sce @@ -0,0 +1,30 @@ +//determine dia of the shaft
+clc
+//solution
+//given
+//ref fig 14.9
+W=200//N
+L=300//mm
+D=200//mm
+R=100//mm
+P=1000//W
+N=120//rpm
+u=0.3
+Km=1.5
+Kl=2
+T=79.6*1000
+t=35//N/mm^2
+//T=(T1-T2)*R
+//T1-T2=796.....eq 1
+//log(T1/T2)*2.3=u*%pi
+//T1/T2=2.57.....eq 2
+//from 1 and 2
+T1=1303//N
+T2=507//N
+Wt=T1+T2+W//N
+M=Wt*L//N-mm
+Te=sqrt((Km*M)^2 + (Kl*T)^2)//N-mm
+//Te=(%pi/16)*t*d^3
+d=(Te/6.87)^(1/3)//mm
+printf("the dia of shaft is,%f mm",d)
+
diff --git a/278/CH14/EX14.2/ex_14_2.sce b/278/CH14/EX14.2/ex_14_2.sce new file mode 100755 index 000000000..d98fbd30b --- /dev/null +++ b/278/CH14/EX14.2/ex_14_2.sce @@ -0,0 +1,14 @@ +//determine dia of the shaft
+clc
+//solution
+//given
+P=10^6//W
+N=2400//rpm
+//Tmax=1.2*Tmean
+t=60//N/mm^2
+//let d be dia of shaft
+Tmean=(P*60000)/(2*%pi*N)//N-mm
+Tmax=12.*Tmean
+//Tmax=(%pi/16)*t*d^3=8.25*d^3
+d=(Tmax/11.78)^(1/3)//mm
+printf("the dia of shaft is,%f mm",d)
diff --git a/278/CH14/EX14.3/ex_14_3.sce b/278/CH14/EX14.3/ex_14_3.sce new file mode 100755 index 000000000..466c887d1 --- /dev/null +++ b/278/CH14/EX14.3/ex_14_3.sce @@ -0,0 +1,21 @@ +//determine dia of the shaft
+clc
+//solution
+//given
+P=20*1000//W
+N=200//rpm
+tu=360//N/mm^2
+Fs=8
+k=0.5//k=di/do
+t=tu/Fs//N/mm^2
+T=P*60000/(2*%pi*200)//N-mm
+//T=(%pi/16)*t*d^3=8.25*d^3
+d=(T/8.25)^(1/3)//mm
+printf("the dia of solid shaft is,%f mm\n",d)
+//elt di and do be inside and do be outer dia
+//T=(%pi/16)*t*do^3*(1-k^4)
+//T=(%pi/16)*t*do^3[1-0.5^4]
+//T=8.3*do^3
+do=(T/8.3)^(1/3)//mm
+di=0.5*do//mm
+printf("the inner and outer dia is,%f mm\n,%f mm\n",di,do)
\ No newline at end of file diff --git a/278/CH14/EX14.4/ex_14_4.sce b/278/CH14/EX14.4/ex_14_4.sce new file mode 100755 index 000000000..1cec6f9b0 --- /dev/null +++ b/278/CH14/EX14.4/ex_14_4.sce @@ -0,0 +1,14 @@ +//determine dia of the shaft
+clc
+//solution
+//given
+//ref fig 14.1
+W=50*10^3//N
+L=100//mm
+x=1.4//m
+fb=100//N/mm^2
+M=W*L//N-mm
+//let d eb dia
+//M=(%pi/32)*fb*d^3
+d=(M/9.82)^(1/3)//mm
+printf("the dia of axle is,%f mm\n",d)
\ No newline at end of file diff --git a/278/CH14/EX14.5/ex_14_5.sce b/278/CH14/EX14.5/ex_14_5.sce new file mode 100755 index 000000000..58a2bf99f --- /dev/null +++ b/278/CH14/EX14.5/ex_14_5.sce @@ -0,0 +1,21 @@ +//determine dia of the shaft
+clc
+//solution
+//given
+M=3000*1000//N-mm
+T=10000*1000//N-mm
+ftu=700//N/mm^2
+tu=500//N/mm^2
+Fs=6
+ft=ftu/Fs//N/mm^2
+t=tu/Fs//N/mm^2
+//let d eb dia of shaft
+Te=sqrt(T^2 + M^2)//N-mm
+//Te=(%pi/16)*t*d^3
+d1=(Te/16.36)^(1/3)//mm
+printf("the dia of axle is,%f mm\n",d1)
+Me=0.5*[M+ sqrt(M^2 + T^2)]//N-mm
+//Me=(%pi/32)*fb*d2^3
+d2=(Me/11.46)^(1/3)//mm
+printf("the dia oif shaft is,%f mm\n",d2)
+printf("taking large value i.e d=d1=90 mm in consideration")
diff --git a/278/CH14/EX14.6/ex_14_6.sce b/278/CH14/EX14.6/ex_14_6.sce new file mode 100755 index 000000000..f9a6d088b --- /dev/null +++ b/278/CH14/EX14.6/ex_14_6.sce @@ -0,0 +1,20 @@ +//determine dia of the shaft
+clc
+//solution
+//given
+P=7.5*10^3//W
+N=300//rpm
+D=150//mm
+L=200//mm
+t=45//N/mm^2
+a=(%pi/180)*20//rad
+//reff fig 14.2
+T=P*60000/(2*%pi*200)//N-mm
+Ft=2*T/D//N
+W=Ft/(cos(a))//N
+M=W*L/4//N-mm
+//let d be dia
+Te=sqrt(T^2 + M^2)//N-mm
+//Te=(%pi/16)*t*d^3
+d=(Te/8.84)^(1/3)//mm
+printf("the dia of shaft is,%f mm",d)
diff --git a/278/CH14/EX14.7/ex_14_7.sce b/278/CH14/EX14.7/ex_14_7.sce new file mode 100755 index 000000000..a13753355 --- /dev/null +++ b/278/CH14/EX14.7/ex_14_7.sce @@ -0,0 +1,15 @@ +//determine dia of the shaft
+clc
+//solution
+//given
+//ref fig 14.3
+P=100000//W
+N=300//rpm
+L=3000//mm
+W=1500//N
+T=P*60000/(2*%pi*200)//N-mm
+M=1500*1000//N-mm
+Te=sqrt(M^2 + T^2)//N-mm
+//Te=(%pi/16)*t*d^3
+d=(Te/11.8)^(1/3)//mm
+printf("the dia of shaft is,%f mm",d)
diff --git a/278/CH14/EX14.8/ex_14_8.sce b/278/CH14/EX14.8/ex_14_8.sce new file mode 100755 index 000000000..e1b58901c --- /dev/null +++ b/278/CH14/EX14.8/ex_14_8.sce @@ -0,0 +1,19 @@ +//determine dia of the shaft
+clc
+//solution
+//given
+//ref fig 14.4
+D=1500//mm
+R=750//mm
+T1=5400//N
+T2=1800//N
+L=400//mm
+t=42//N/mm^2
+T=(T1-T2)*R//N-mm
+W=T1+T2//N
+M=W*L//N-mm
+//let d be dia of shaft
+Te=sqrt(M^2 + T^2)//N-mm
+//Te=(%pi/16)*t*d^3
+d=(Te/8.25)^(1/3)//mm
+printf("the dia of shaft is,%f mm",d)
diff --git a/278/CH14/EX14.9/ex_14_9.sce b/278/CH14/EX14.9/ex_14_9.sce new file mode 100755 index 000000000..e1b58901c --- /dev/null +++ b/278/CH14/EX14.9/ex_14_9.sce @@ -0,0 +1,19 @@ +//determine dia of the shaft
+clc
+//solution
+//given
+//ref fig 14.4
+D=1500//mm
+R=750//mm
+T1=5400//N
+T2=1800//N
+L=400//mm
+t=42//N/mm^2
+T=(T1-T2)*R//N-mm
+W=T1+T2//N
+M=W*L//N-mm
+//let d be dia of shaft
+Te=sqrt(M^2 + T^2)//N-mm
+//Te=(%pi/16)*t*d^3
+d=(Te/8.25)^(1/3)//mm
+printf("the dia of shaft is,%f mm",d)
diff --git a/278/CH15/EX15.1/ex_15_1.sce b/278/CH15/EX15.1/ex_15_1.sce new file mode 100755 index 000000000..cc8843b7a --- /dev/null +++ b/278/CH15/EX15.1/ex_15_1.sce @@ -0,0 +1,30 @@ +//find dia of pin and handle
+clc
+//soltuion
+//given
+//ref fig 15.5
+L=450//mm
+P=400//N
+ft=100//N/mm^2
+t=55//N/mm^2
+//let d1 be mean dia of pin and d be dia of spindle
+d=50//mm
+T=P*2*L//N-mm
+//T=2*(%pi/4)*d1^2*t*(d/2)
+//T=2160*d1^2
+d1=sqrt(T/2160)//mm
+printf("the dia of pin is ,%f mm\n",d1)
+//let D be dia of handle
+M=P*L//N-mm
+T1=400*100//N-mm
+Te=sqrt(T1^2 + M^2)//N-mm
+//Te=(%pi/16)*t*D^3=10.8^D1^3
+D1=(Te/10.8)^(1/3)//mm
+printf("the dia using twisting moment is,%f mm\n",D1)
+Km=1
+Kl=1
+Me=0.5*[M + sqrt((M)^2 + (T1)^2)]//N-mm
+//Me=(%pi/32)*fb*D^3=9.82*D^3....(fb=ft)
+D2=(Me/9.82)^(1/3)
+printf("the dia using bending moment is,%f mm\n ",D2)
+printf("taking larger value into consideration")
\ No newline at end of file diff --git a/278/CH15/EX15.10/ex_15_10.sce b/278/CH15/EX15.10/ex_15_10.sce new file mode 100755 index 000000000..cbabfa76b --- /dev/null +++ b/278/CH15/EX15.10/ex_15_10.sce @@ -0,0 +1,46 @@ +//find...
+clc
+//soltuion
+//given
+//ref fig 15.25
+Wl=3000//N
+Wn=5000//N
+t=40//N/mm^2
+pb=17.5//N/mm^2
+fb=70//N/mm^2
+//let P be effort applied at Q
+P=[(5000*300)+(3000*300)]/800//N
+Wm=Wn-Wl//N
+Rm=sqrt(P^2 +Wm^2 )//N
+//let P1 be force acitng in worst condition,i.e when one side of pump odesn't work
+P1=5000*300/800//N
+Rm1=sqrt(P^2 + Wn^2)//N
+//let d be dia and l be length at M and N
+//l=1.25*d
+//Rm1=d*l*pb=21.87*d^2
+//d=sqrt(Rm1/21.87)//mm
+printf("the dia of pin is,%f mm\n",sqrt(Rm1/21.87))
+printf("the dia of pin is,say 16mm\n")
+d=16//mm
+l=1.25*d//mm
+printf("th length is,%f mm\n",l)
+ti=(Rm1*4)/(2*d^2*%pi)//N/mm^2
+printf("the induced stress is,%f mm\n",ti)
+printf("sinc induced stress is withi safe limits,then design is safe\n")
+//let t2 be thickness and b2 be width at sextion X-X
+//b2=3*t2//mm
+M3=P*800//N-mm
+//Z=(1/6)*t3*b3^2=1.5*t3^2
+//fb=M/Z
+//t3=[M/(1.5*70)]^(1/3)//mm
+printf("the thickness is ,%f mm\n",[M3/(1.5*70)]^(1/3))
+printf("thickness is t3=30mm\n")
+t3=30//mm
+printf("the width is,%f mm\n",3*t3)
+//let t4 and b4 be thickness and width of lever
+M4=Wn*300//N
+//Z=(1/6)*t2*b4^2
+//Z=6*b4^2
+//fb=M/Z
+b4=(M4/(5*70))^0.5//mm'
+printf("the widht at lever is,%f mm\n",b4)
diff --git a/278/CH15/EX15.11/ex_15_11.sce b/278/CH15/EX15.11/ex_15_11.sce new file mode 100755 index 000000000..71d6fa659 --- /dev/null +++ b/278/CH15/EX15.11/ex_15_11.sce @@ -0,0 +1,41 @@ +//design pins at L,M,N
+clc
+//solution
+//given
+//ref fig 15.27
+As=15//mm^2
+tu=400//N/mm^2
+ft=80//N/mm^2
+pb=20//N/mm^2
+Ps=As*tu//N
+//let P1 be force in link LM
+P1=(Ps*100)/(350)//N
+//taking momnet abt N,we get P
+P=(P1*100)/(900)//N
+N=P1+P//N
+//let d be dia and l be length of pins
+//l=1.25d
+//N=d*l*pb=25*d^2
+//d=sqrt(N/25)//mm
+printf("the dia is,%f mm\n",sqrt(N/25))
+printf("the dia is ,say 10 mm\n")
+d=10//mm
+l=1.25*d//mm
+printf("the length of pin is,%f mm\n",l)
+ti=(N*4)/(2*d^2*%pi)//N/mm^2
+printf("the induced stress is,%f mm\n",ti)
+printf("sinc induced stress is withi safe limits,then design is safe\n")
+printf("the dia of hole is,%f mm\n",d+6)
+printf("the dia of boss is,%f mm\n",2*16)
+//design for link
+//let d1 be dia of link
+//N=(%pi/4)*d1^2*ft=62.84*d1^2
+d1=sqrt(N/62.84)//mm
+printf("the dia of link is,%f mm\n",d1)
+//let t3 be thickness and B be width of lever
+t3=12.5//mm
+M=N*100//N-mm
+//Z=(1/6)*t*B^2=2.1*B^2
+//fb=M/Z=90762/B^2
+B=sqrt(90762/80)//mm
+printf("the width of lever is,%f mm",B)
diff --git a/278/CH15/EX15.2/ex_15_2.sce b/278/CH15/EX15.2/ex_15_2.sce new file mode 100755 index 000000000..32ab0fac7 --- /dev/null +++ b/278/CH15/EX15.2/ex_15_2.sce @@ -0,0 +1,24 @@ +//find rxn at Q and R,tensile stress in 12mm dia of rod at Q,shear stress....
+clc
+//solution
+//given
+t=15//mm
+Fp=900//N
+//let Rq and Rr be rxn at Q and R
+///tkaing monnt abt R
+Rq=900*950/150//N
+Rr=Rq-900//N
+printf("the rxn at Q and R are ,%f N\n,%f N\n",Rq,Rr)
+d1=12//mm//dia of tie rod
+A=(%pi/4)*d1^2//mm^2
+ft=Rq/A//N/mm^2
+printf("the stress acting is,%f N/mm^2\n",ft)
+//dp=dq=dr=12//mm
+dp=12//mm
+Ap=(%pi/4)*dp^2//mm^2
+Aq=Ap
+Ar=Ap
+tp=Fp/Ap
+tq=Rq/(2*Aq)
+tr=Rr/(2*Ar)
+printf("the shear stressa cxting at P,Q,R are ,%f N/mm^2\n, %f N/mm^2\n, %f N/mm^2\n",tp,tq,tr)
\ No newline at end of file diff --git a/278/CH15/EX15.3/ex_15_3.sce b/278/CH15/EX15.3/ex_15_3.sce new file mode 100755 index 000000000..960303715 --- /dev/null +++ b/278/CH15/EX15.3/ex_15_3.sce @@ -0,0 +1,35 @@ +//find dia of shaft,dia of key,dimenson of rect arm
+clc
+//solution
+//given
+L=1000//mm
+P=800//N
+ft=73//N/mm^2
+t=70//N/mm^2
+//ref fig 15.9
+//let d be dia of shaft
+T=P*L//N-mm
+//T=(%pi/6)*t*d^3=58.2*1000*d^3
+//d=[T/(13.75)]^(1/3)
+printf("the dia of shfat is,%f mm\n",[T/(13.75)]^(1/3))
+printf("the dia of shaft is say 40mm\n")
+d=40//mm
+//for boss
+d2=1.6*d//mm
+t2=0.3*d
+l2=1.25*d
+//using table,corrsponding to d=40mm,we get
+w=12//mm
+t1=8//mm
+//let l1 be length of key
+//T=l1*w*t*d/2=16800*l1
+l1=T/16800//mm
+printf("the width ,thickness and length of key are,%f mm\n,%f mm\n,%f mm\n",w,t1,l1)
+//let t2 be thickness and B be width of arm
+//B=3*t2
+M=800*(1000-60)//N-mm
+//Z=(1/6)*t*B^2=1.5*t^3
+//ft=M/Z
+t2=(M/(1.5*73))^(1/3)//mm
+B=3*t2//mm
+printf("the thickness ,width of arm are,%f mm\n,%f mm\n",t2,B)
\ No newline at end of file diff --git a/278/CH15/EX15.4/ex_15_4.sce b/278/CH15/EX15.4/ex_15_4.sce new file mode 100755 index 000000000..b57446f37 --- /dev/null +++ b/278/CH15/EX15.4/ex_15_4.sce @@ -0,0 +1,32 @@ +//find dia o hnalde,xsec,dia of journal
+clc
+//solution
+//given
+l=300//mm
+L=400//mm
+x=100//mm
+P=400//N
+ft=50//N/mm^2
+t=40//N/mm62
+//let d eb dia
+M=(1-1/3)*P*l//N-mm
+//Z=(%pi/32)*d^3=0.0982*d^3
+//M=fb*Z=4.91*d^3
+d=(M/4.91)^(1/3)//N-mm
+printf("the dia of handle is,%f mm\n",d)
+//let t1 be thicnes and B eb width of lvever arm
+M1=1.25*P*L//N-mm
+//B=2t
+//Z1=(1/6)*t*B^2=0.6677*t^3
+//ft=M/Z
+//t1=(M1/(0.667*50))^(1/3)//mm
+printf("the thcikness is,%f mm\n",(M1/(0.667*50))^(1/3))
+//let D be dia of journal
+printf("the thickness of lever arm is say 20 mm\n")
+t1=20//mm
+B=2*t1//mm
+printf("the width of lever arm is,%f mm\n",B)
+Te=P*(sqrt((2*(l/3) + x)^2 + L^2 ))//N-mm
+//Te=(%pi/16)*t*D^3=7.86*D^3
+D=(Te/7.86)^(1/3)//mm
+printf("the dia met of journal is,%f mm\n",D)
diff --git a/278/CH15/EX15.5/ex_15_5.sce b/278/CH15/EX15.5/ex_15_5.sce new file mode 100755 index 000000000..b57446f37 --- /dev/null +++ b/278/CH15/EX15.5/ex_15_5.sce @@ -0,0 +1,32 @@ +//find dia o hnalde,xsec,dia of journal
+clc
+//solution
+//given
+l=300//mm
+L=400//mm
+x=100//mm
+P=400//N
+ft=50//N/mm^2
+t=40//N/mm62
+//let d eb dia
+M=(1-1/3)*P*l//N-mm
+//Z=(%pi/32)*d^3=0.0982*d^3
+//M=fb*Z=4.91*d^3
+d=(M/4.91)^(1/3)//N-mm
+printf("the dia of handle is,%f mm\n",d)
+//let t1 be thicnes and B eb width of lvever arm
+M1=1.25*P*L//N-mm
+//B=2t
+//Z1=(1/6)*t*B^2=0.6677*t^3
+//ft=M/Z
+//t1=(M1/(0.667*50))^(1/3)//mm
+printf("the thcikness is,%f mm\n",(M1/(0.667*50))^(1/3))
+//let D be dia of journal
+printf("the thickness of lever arm is say 20 mm\n")
+t1=20//mm
+B=2*t1//mm
+printf("the width of lever arm is,%f mm\n",B)
+Te=P*(sqrt((2*(l/3) + x)^2 + L^2 ))//N-mm
+//Te=(%pi/16)*t*D^3=7.86*D^3
+D=(Te/7.86)^(1/3)//mm
+printf("the dia met of journal is,%f mm\n",D)
diff --git a/278/CH15/EX15.6/ex_15_6.sce b/278/CH15/EX15.6/ex_15_6.sce new file mode 100755 index 000000000..9c8d70f26 --- /dev/null +++ b/278/CH15/EX15.6/ex_15_6.sce @@ -0,0 +1,52 @@ +//desing right angled bell crank lever
+clc
+//soltuion
+//given
+//ref fig 15.14
+FB=500//mm
+W=4500//N
+FA=150//mm
+ft=75//N/mm^2
+t=60//N/mm^2
+pb=10//N/mm^2
+P=(W*500)/150//N
+Rf=sqrt(P^2 + W^2)//N
+//desing of uflcrum pin
+//let d be dia and l be thickness of fulcrum
+//l=1.25d
+//P=d*l*pb=12.5*d^2
+//d=sqrt(P/12.5)//mm
+printf("the diameter is,%f mm\n",sqrt(P/12.5))
+printf("the dia is say,d=36mm\n")
+d=36//mm
+l=1.25*d//mm
+printf("the length of fulcrum pin is,%f \n",l)
+d1=d+ 2*3
+printf("the dia of hole in leverr is,%f mm\n",d1)
+printf("the dia of boss at fulcrum is,%f mm\n",2*d)
+printf("the bending moment at fulcrum is,%f N-mm\n",W*FB)
+//design of pin at A
+//since force acting at A is not very much different from rxn at fulcrum ,therfore same dimenion of pin and boss may be used as for fulcrum pin
+da=36//mm
+la=45//mm
+dba=72//mm
+printf("diameter,length and dia of boss at A is ,%f mm\n,%f mm\n,%f mm\n",da,la,dba)
+//desig of pin at B
+//let db and lb be dia and length
+//W=db*lb*pb
+//lb=1.25db
+//w=12.5 *db^2
+db=sqrt(W/12.5)
+lb=1.25*db
+printf("the dia and length at B is,%f mm\n,%f mm\n",db,lb)
+printf("the inner dia is,%f mm\n",db+6)
+printf("the outer dia is,%f mm\n",2*db)
+//desig of lever
+//let tl and bl be thioknes and dia at lever
+//bl=3tl
+Ml=4500*(500-50)//N-mm
+//Z=(1/6)*t*b^2=1.5*t^3
+//ft=Ml/Z
+tl=(Ml/(1.5*75))^(1/3)//mm
+printf("the thcikness and width of lever is,%f mm\n,%f mm\n ",tl,3*tl)
+
diff --git a/278/CH15/EX15.7/ex_15_7.sce b/278/CH15/EX15.7/ex_15_7.sce new file mode 100755 index 000000000..5de954e39 --- /dev/null +++ b/278/CH15/EX15.7/ex_15_7.sce @@ -0,0 +1,80 @@ +//find stiffness of spring,design bell crank lever
+clc
+//solution
+//given
+//refer fig 15.17
+x=190//mm
+y=140//mm
+m=2.7//kg
+r2=170//mm=0.17//m
+N2=300//rpm
+h=12//mm
+ft=80//N/nn^2
+pb=8//N/mm^2
+w2=(2*%pi*N2)/60//rad/s
+w1=w2+(0.6/100)*w2//rad/s
+r1=r2+(h*x/y)//mm
+Fc1=m*w1^2*r1/1000
+Fc2=m*w2^2*r2/1000
+//s1 is spring force at max speed w1
+//s2 is spring force at max speed w2
+//ref 15.18
+S1=2*Fc1*x/y//2*m*w1^2*r1*x/y
+printf("the fore on speed w1 is,%f N\n",S1)
+S2=2*Fc2*x/y//N
+printf("the force acting at speed w2 is,%f N\n",S2)
+//S1-S2=h*s1
+s1=(S1-S2)/h//N/mm
+printf("the stiffness is ,%f N/mm\n",s1)
+//design bell crank lever
+//max load at A is
+W=S1/2//N
+//taking mont abt F
+P=W*y/x//N
+Rf=sqrt(W^2 + P^2)//N
+//let d1 and l1 be dia and length of fulcrum pin
+//l=1.25*d
+//Rf=d*l*pb=10*d^2
+//d=sqrt(Rf/10)//mm
+printf("the dia is,%f mm\n",sqrt(Rf/10))
+printf("the dia is say d=10mm\n")
+d1=10//mm
+l=1.25*d1
+printf("the inner dia of bolts is,%f mm\n",d1+6)
+printf("the outer dia of bolts is,%f mm\n",2*d1)
+//design for lever
+M=682*(140-40)//N-mm
+//let t2 and B be thickness and depth
+//B=3t
+//Z=(1/6)*t*B^2=1.5t2^3
+//ft=M/Z
+//t2=(M/(1.5*ft))^(1/3)//mm
+printf("the thickness of lever is,%f mm\n",(M/(1.5*ft))^(1/3))
+printf("the thickness of lever is ,say 10 mm\n")
+t2=10//mm
+B=3*t2//mm
+printf("the depth of levr is,%f mm\n",B)
+//design for ball
+//let r be th rad of ball
+rho=7200//kg/m^3
+//m=vol*rho
+//2.7=(4/3)*%pi*r^3*rho
+r=(2.7/30163)^(1/3)*1000//mm
+printf("the rad of a ball is,%f mm\n",r)
+M1=P*r//N-mm
+//let dc be core dia
+//Z=(%pi/32)*dc^3=0.0982*dc^3
+//dc=(M1/(80*0.0982))^(1/3)
+printf("the core dia is,%f mm\n",(M1/(80*0.0982))^(1/3))
+printf("the nominal dia corresponding to dc is 16 mm\n")
+//design of roller end A
+//let d3 be dia and l3 be length of pin at A
+W=S1/2//N
+//l3=1.25*d3
+//W=d3*l3*pb=10*d3^2
+//d3=(W/10)^0.5//MM
+printf("the dia is,%f mm\n",(W/10)^0.5)
+printf("the dia is ,say 10 mm\n")
+d3=10//mm
+l3=1.25*d3//mm
+printf("the length of pin is,%f mm\n",l3)
\ No newline at end of file diff --git a/278/CH15/EX15.8/ex_15_8.sce b/278/CH15/EX15.8/ex_15_8.sce new file mode 100755 index 000000000..5de954e39 --- /dev/null +++ b/278/CH15/EX15.8/ex_15_8.sce @@ -0,0 +1,80 @@ +//find stiffness of spring,design bell crank lever
+clc
+//solution
+//given
+//refer fig 15.17
+x=190//mm
+y=140//mm
+m=2.7//kg
+r2=170//mm=0.17//m
+N2=300//rpm
+h=12//mm
+ft=80//N/nn^2
+pb=8//N/mm^2
+w2=(2*%pi*N2)/60//rad/s
+w1=w2+(0.6/100)*w2//rad/s
+r1=r2+(h*x/y)//mm
+Fc1=m*w1^2*r1/1000
+Fc2=m*w2^2*r2/1000
+//s1 is spring force at max speed w1
+//s2 is spring force at max speed w2
+//ref 15.18
+S1=2*Fc1*x/y//2*m*w1^2*r1*x/y
+printf("the fore on speed w1 is,%f N\n",S1)
+S2=2*Fc2*x/y//N
+printf("the force acting at speed w2 is,%f N\n",S2)
+//S1-S2=h*s1
+s1=(S1-S2)/h//N/mm
+printf("the stiffness is ,%f N/mm\n",s1)
+//design bell crank lever
+//max load at A is
+W=S1/2//N
+//taking mont abt F
+P=W*y/x//N
+Rf=sqrt(W^2 + P^2)//N
+//let d1 and l1 be dia and length of fulcrum pin
+//l=1.25*d
+//Rf=d*l*pb=10*d^2
+//d=sqrt(Rf/10)//mm
+printf("the dia is,%f mm\n",sqrt(Rf/10))
+printf("the dia is say d=10mm\n")
+d1=10//mm
+l=1.25*d1
+printf("the inner dia of bolts is,%f mm\n",d1+6)
+printf("the outer dia of bolts is,%f mm\n",2*d1)
+//design for lever
+M=682*(140-40)//N-mm
+//let t2 and B be thickness and depth
+//B=3t
+//Z=(1/6)*t*B^2=1.5t2^3
+//ft=M/Z
+//t2=(M/(1.5*ft))^(1/3)//mm
+printf("the thickness of lever is,%f mm\n",(M/(1.5*ft))^(1/3))
+printf("the thickness of lever is ,say 10 mm\n")
+t2=10//mm
+B=3*t2//mm
+printf("the depth of levr is,%f mm\n",B)
+//design for ball
+//let r be th rad of ball
+rho=7200//kg/m^3
+//m=vol*rho
+//2.7=(4/3)*%pi*r^3*rho
+r=(2.7/30163)^(1/3)*1000//mm
+printf("the rad of a ball is,%f mm\n",r)
+M1=P*r//N-mm
+//let dc be core dia
+//Z=(%pi/32)*dc^3=0.0982*dc^3
+//dc=(M1/(80*0.0982))^(1/3)
+printf("the core dia is,%f mm\n",(M1/(80*0.0982))^(1/3))
+printf("the nominal dia corresponding to dc is 16 mm\n")
+//design of roller end A
+//let d3 be dia and l3 be length of pin at A
+W=S1/2//N
+//l3=1.25*d3
+//W=d3*l3*pb=10*d3^2
+//d3=(W/10)^0.5//MM
+printf("the dia is,%f mm\n",(W/10)^0.5)
+printf("the dia is ,say 10 mm\n")
+d3=10//mm
+l3=1.25*d3//mm
+printf("the length of pin is,%f mm\n",l3)
\ No newline at end of file diff --git a/278/CH15/EX15.9/ex_15_9.sce b/278/CH15/EX15.9/ex_15_9.sce new file mode 100755 index 000000000..a424975db --- /dev/null +++ b/278/CH15/EX15.9/ex_15_9.sce @@ -0,0 +1,53 @@ +//find thickness of vessel,dia of screw,xsec of beam at A,dia of pins at C and D,dia at E and f...G and H.....xsec at E and F
+clc
+//soltuion
+//given
+//ref fig 15.24
+p=0.2//N/mm^2
+d=600//mm
+ftc=17.5//N/mm^2
+fts=52.5//N/mm^2
+fcs=52.5//N/mm^2
+ts=42//n/mm^2
+//let t be thickness of vessel
+//t=(p*d)/(2*ftc)//mm
+printf("the thickness of vessel si,%f mm\n",(p*d)/(2*ftc))
+printf("the thickness can not be less then 6mm,therfore we take 6 as thickness\n")
+t=6//mm
+//let dc be core dia
+W=p*(%pi*d^2)/4//N
+//let dc be core dia
+//W=(%pi/4)*dc^2*fts=41.24*dc^2
+dc=(W/41.24)^(0.5)//mm
+printf("we shall use standard size of screw M48 with core dia 41.5mm and outer dia 48mm\n")
+//let t1 be thickness and b1 be width
+//b1=2*t1
+Rc=W/2//N
+Rd=W/2//N
+l=750//mm
+M=W*l/4//N-mm
+//Z=(1/6)*t1*b1^2
+//Z=0.66*t1^3
+//fts=M/Z
+t1=(M/(52.5*0.66))^(1/3)
+b1=2*t1//mm
+printf("thickness and width of beamA is,%f mm\n,%f mm\n",t1,b1)
+//let d1 be dia of pi at C and D
+//Rc=2*(%pi/4)*d1^2*ts
+d1=sqrt(Rc/66)//mm
+printf("the dia of pin at C and D is,%f mm\n",d1)
+printf("since load at E and F IS SAME AS THAT OF C AND D,therefr dia of pins at E and F is 21 mm\n ")
+//let d2 be dia at G and H
+Rg=W/2//N
+//Rg=(%pi/4)*d2^2*fts
+d2=(Rg/41)^(0.5)//mm
+printf("the dia at G and H is,%f mm\n",d2)
+//let t2 be support thickness and b2 be width of support
+x=375-(300+t)
+M2=Rc*x//N-mm
+//b2=2t2
+//Z=(1/6)*t2*b2^2=0.66t2^3
+//ftc=M/Z
+t2=[M2/(0.66*17.5)]^(1/3)//mm
+b2=2*t2
+printf("the thickness and wdth of support at E and F is,%fmm\n,%f mm\n",t2,b2)
\ No newline at end of file diff --git a/278/CH16/EX16.1/ex_16_1.sce b/278/CH16/EX16.1/ex_16_1.sce new file mode 100755 index 000000000..1de835bd0 --- /dev/null +++ b/278/CH16/EX16.1/ex_16_1.sce @@ -0,0 +1,19 @@ +//calculate cripping load
+clc
+//solution
+//given
+//ref fig 16.2
+l=4000//mm
+E=200*10^3//N/mm^3
+a1=150*20//area of flange
+y1=20/2
+a2=(120-20)*20//area of wewb
+y2=20+(100/2)//mm
+yb=(a1*y1 + a2*y2)/(a1+a2)//mm//CG
+Ixx=[(150*20^3/12)+(3000*(34-10)^2)+(20*(100)^3/12)+2000*(70-34)^2]//mm^4
+Iyy=((20*(150)^3/12)) +(100*20^3/12)//mm^4
+///sinve Iyy is less then Ixx,therfore I-Iyy
+I=Iyy//mm^4
+L=l//mm
+Wcr=%pi^2*E*I/L^2//N
+printf("the cripling load acting is,%f N",Wcr)
\ No newline at end of file diff --git a/278/CH16/EX16.2/ex_16_2.sce b/278/CH16/EX16.2/ex_16_2.sce new file mode 100755 index 000000000..21691a299 --- /dev/null +++ b/278/CH16/EX16.2/ex_16_2.sce @@ -0,0 +1,19 @@ +//find euler's crippling load
+clc
+//solution
+//given
+//ref fig 16.3
+D=400//mm
+B=200//mm
+t=10//mm
+b=200-10//mm
+d=400-20
+l=6000//mm
+E=200*1000//N/mm^2
+Ixx=B*D^3/12-b*d^3/12//mm^4
+Iyy=2*[t*B^3/12]+(d*t^3/12)//mm^4
+//since Iyy <Ixx,therefore it will try to b uckle about Y axis
+L=l/2
+I=Iyy
+Wcr=%pi^2*E*I/L^2//N
+printf("the cripling load acting is,%f N",Wcr)
\ No newline at end of file diff --git a/278/CH16/EX16.3/ex_16_3.sce b/278/CH16/EX16.3/ex_16_3.sce new file mode 100755 index 000000000..d50d580eb --- /dev/null +++ b/278/CH16/EX16.3/ex_16_3.sce @@ -0,0 +1,28 @@ +//cal dia of piston
+clc
+//soltuion
+//given
+D=1500//mm
+p=0.2//N/mm^2
+E=200*1000//N/mm^2
+l=3000//mm
+W=(%pi/4)*D^2*p//N
+Fs=8
+Wcr=W*Fs//N
+L=l/2
+//let d be dia and I be moment of inertia
+I=(%pi/64)*d^4
+//acc to euler's formula
+//Wcr=%pi^2*E*I/L^2//N
+//Wcr=0.043*d^4
+d=(Wcr/0.043)^(1/4)//mm
+//acc to rankine's formula
+//Wcr=(fc*A)/(1+a*(L/k)^2)
+fc=320//N/mm^2
+a=1/7500
+//k=sqrt(I/A)=d/4
+//Wcr=(251.4*d1^2)/(d1^2 +4800)
+//on solving d2=14885
+d1=sqrt(14885)//mm
+//taking large rof two values
+printf("the dia od piston is,%f\n",d1)
\ No newline at end of file diff --git a/278/CH16/EX16.4/ex_16_4.sce b/278/CH16/EX16.4/ex_16_4.sce new file mode 100755 index 000000000..e3c112db7 --- /dev/null +++ b/278/CH16/EX16.4/ex_16_4.sce @@ -0,0 +1,16 @@ +//find size of push rod
+clc
+//solution
+//given
+l=300//mm
+W=1400//N
+//D=1.25*d
+E=210*1000//N/mm^2
+m=2.5
+//let d be inner dia nd D be outer dia
+//I=(%pi/64)*[D^4-d^4]=0.07*d^4//mm^4
+Wcr=m*W
+//Wcr=%pi^2*E*I/L^2=1.6*d^4//N
+d=(Wcr/1.6)^(1/4)//mm
+D=1.25*d//mm
+printf("the inner and outer dia is,%f mm\n,%f mm\n",d,D)
\ No newline at end of file diff --git a/278/CH16/EX16.5/ex_16_5.sce b/278/CH16/EX16.5/ex_16_5.sce new file mode 100755 index 000000000..14c65f26a --- /dev/null +++ b/278/CH16/EX16.5/ex_16_5.sce @@ -0,0 +1,13 @@ +//deetrmine ratio of sides of rectgulart xsection
+clc
+//soltuion
+//given
+//ref fig 16.8
+//let b be width and h be depth
+//Ixx=b*h^3/12
+//Iyy=h*b^3/12
+//WcrX=%pi^2*E*Ixx/l^2//N
+//Wcry=%pi^2*E*I/(l/2)^2//N
+//Wcrx=Wcry
+//we get h/b =2
+printf("the ration of sides are h/b=2")
\ No newline at end of file diff --git a/278/CH16/EX16.6/ex_16_6.sce b/278/CH16/EX16.6/ex_16_6.sce new file mode 100755 index 000000000..daceae220 --- /dev/null +++ b/278/CH16/EX16.6/ex_16_6.sce @@ -0,0 +1,34 @@ +//determine dimensions of I section of connecting rod
+clc
+//soltuion
+//given
+D=101//mm
+mr=2//kg
+l=325//mm
+sl=.15//m
+Nmin=1500//rpm
+Nmax=2500//rpm
+r1=4//comp ratio
+p=2.5//N/mm^2
+r=sl/2//radius of crank
+n=l/r
+Fl=(%pi/4)*D^2*p//N
+wmax=(2*%pi*Nmax)/60//rad/s
+Fi=mr*(wmax)^2*r*[1+1/n]//N
+Fc=Fl//N
+//ref fig 16.11
+//Ixx/Iyy=3.2
+//kxx^2/kyy^2=3.2
+Wcr=Fc*6//N
+//A=2*(4*t*t)+ t*3*t=11t^2
+//Ixx=[4t*5t^3/12-3t*3t^3/12]=419*t^4/12
+//kxx=sqrt(Ixx/A)=1.78*t
+L=l//mm
+fc=320//N/mm^2
+a=1/7500
+//Wcr=(fc*A)/(1+a*(L/k)^2)
+//on solving we egt
+//t^2=44.55
+t=sqrt(44.55)//mm
+printf("the heigth and width is,%f mm\n,%f mm\n",5*t,4*t)
+printf("the thickness oflnage is,%f mm\n",t)
diff --git a/278/CH17/EX17.1/ex_17_1.sce b/278/CH17/EX17.1/ex_17_1.sce new file mode 100755 index 000000000..9ac612283 --- /dev/null +++ b/278/CH17/EX17.1/ex_17_1.sce @@ -0,0 +1,24 @@ +//determine dia of the wheel
+clc
+//solution
+//given
+d=50//mm
+p=12.5//mm
+W=10000//N
+D=60//mm
+R=30//mm
+u=0.15//tan(q)=u
+u1=0.18
+P1=100//N
+//tan(a)=p/(%pi/d)=b=0.08
+b=0.08
+//P=W*tan(u+a)
+//P=W*[(tan(a)+tan(q))/(1-tan(a)*tan(q))]
+P=W*[(b+u)/(1-(b*u))]//N
+T=(P*d/2)+(u1*W*R)//N-mm
+//let D1 be dia of wheel
+P1=100
+//T=2*P1*D1/2=100*D1
+D1=T/100//mm
+
+printf("the dia of wheel is,%f mm\n",D1)
diff --git a/278/CH17/EX17.10/ex_17_10.sce b/278/CH17/EX17.10/ex_17_10.sce new file mode 100755 index 000000000..e2352c5b1 --- /dev/null +++ b/278/CH17/EX17.10/ex_17_10.sce @@ -0,0 +1,24 @@ +//find...
+clc
+//soltuion
+//given
+do=48//mm
+p=8//mm
+u=0.15//tan(q)
+T=40000//N-mm
+//let W be weigth
+d=do-p/2//mm
+Lead=3*p
+//tan(a)=Lead/(%pi/d)=b=0.174
+b=0.174
+//u1=u/(cos(B))=u/(cos(15)=0.155
+u1=0.155
+//T1=W*[(b+u)/(1-(b*u))]*d/2//N-mm//torque aacting
+//T=7.436*W
+W=T/7.436//N
+printf("the load acting is,%f N\n",W)
+h=50//mm//heigth of nut
+n=h/p//numbr of thread
+t=p/2//thikness of therrad
+pb=W/(%pi*n*t*d)//N/mm^2
+printf("the bearing pressure is,%f N/mm^2",pb)
diff --git a/278/CH17/EX17.11/ex_17_11.sce b/278/CH17/EX17.11/ex_17_11.sce new file mode 100755 index 000000000..ac6ebf230 --- /dev/null +++ b/278/CH17/EX17.11/ex_17_11.sce @@ -0,0 +1,34 @@ +//find...
+clc
+//soltuion
+//given
+//ref fig 17.10
+do=12//mm
+p=2//mm
+u=0.12//tan(q)
+u2=0.25
+R=6//mm
+P1=80//N
+W=4000//N
+d=do-p/2//mm
+//tan(a)=p/(%pi*d)=0.058
+b=0.058
+//u1=u/(cos(B))=u/(cos(15)=0.124
+u1=0.124
+T1=W*[(b+u)/(1-(b*u))]*d/2//N-mm//torque acting
+T2=u2*W*R//N-mm
+T=T1+T2//N-mn
+l=T/P1//mm
+printf("the length of handle req is,%f mm\n",l)
+dc=do-p//mm
+//T=(%pi/16)*t*dc^2
+t=16*T/(%pi*dc^3)//N/mm^2
+M=P1*150//N-mm
+fb=32*M/(%pi*dc^3)//N/mm^2
+tmax=0.5*sqrt(fb^2 +4*t^2)//N/mm^2
+printf("the max shear stressa cting is,%f N/mm^2\n",tmax)
+h=25//mm
+n=h/p
+t1=p/2
+pb=W/(%pi*n*t1*d)//N/mm^2
+printf("the bearing pressure is,%f N/mm^2",pb)
diff --git a/278/CH17/EX17.12/ex_17_12.sce b/278/CH17/EX17.12/ex_17_12.sce new file mode 100755 index 000000000..cf17c663b --- /dev/null +++ b/278/CH17/EX17.12/ex_17_12.sce @@ -0,0 +1,28 @@ +//find...
+clc
+//soltuion
+//given
+W=100*1000//n
+N=60//rpm
+u=0.12
+fc=100//N/mm^2
+//let Ac be core dia
+Ac=W/fc//mm^2
+//corr to Ac,we get'
+do=50//mm
+dc=41.5//mm
+d=46//mm
+p=8//mm
+printf("the nominal,core ,mean dia and pitch of screw corresponding to Ac are,%f mm\n,%f mm\n,%f mm\n,%f mm\n",do,dc,d,p)
+//tan(a)=p/(%pi*d)=0.055
+b=0.055
+//u1=u/(cos(B))=u/(cos(15)=0.124
+u1=0.124
+P=W*[(b+u)/(1-(b*u))]//N
+T1=P*d/2//N-mm
+T2=0.1*T1//N
+T=T1+T2//N-mm
+To=W*b*d/2//N
+eff=To/T
+Power=T*2*%pi*N/60000//W
+printf("the effi and power tranmitted is,%f \n,%f W\n",eff,Power)
diff --git a/278/CH17/EX17.14/ex_17_14.sce b/278/CH17/EX17.14/ex_17_14.sce new file mode 100755 index 000000000..4cb90bd78 --- /dev/null +++ b/278/CH17/EX17.14/ex_17_14.sce @@ -0,0 +1,38 @@ +//find...
+clc
+//soltuion
+//given
+W=40000//N
+L=400//mm
+do=50//mm
+p=10//mm
+fcu=320//N/mm^2
+fy=200//N/mm^2
+ty=120//N/mm^2
+tc=20//N/mm^2
+pb=12//N/mm^2
+E=210*1000//N/mm^2
+u=0.13///=tan(q)
+dc=do-p//mm
+Ac=(%pi/4)*dc^2
+fc=W/Ac//N/mm^2
+d=(do+dc)/2//mm
+//tan(a)=p/(%pi*d)=0.07
+b=0.07
+T=W*[(b+u)/(1-(b*u))]*d/2//N-mm//torque acting
+//let t be stress
+t=(T*16)/(%pi*dc^3)//N/mm^2
+tmax=0.5*sqrt(fc^2 +4*t^2)//N/mm^2
+printf("the max shear stressa cting is,%f N/mm^2\n",tmax)
+Fs=ty/tmax
+printf("factor of safety is,%f\n",Fs)
+//let n be numbr of therads
+//n=W/(12*%pi/4*(do^2-dc^2))
+printf("the numbr of threads is,%f \n",W/(12*%pi/4*(do^2-dc^2)))
+printf("the numbr of threads is n=5\n")
+n=5
+h=p*n//mm
+printf("the heigth of nut is,%f mm\n",h)
+To=W*b*d/2//N-mm
+eff=To/T
+printf("the eff of arrngement is,%f",eff)
\ No newline at end of file diff --git a/278/CH17/EX17.15/ex_17_15.sce b/278/CH17/EX17.15/ex_17_15.sce new file mode 100755 index 000000000..4458ce1ac --- /dev/null +++ b/278/CH17/EX17.15/ex_17_15.sce @@ -0,0 +1,77 @@ +//find...
+clc
+//soltuion
+//given
+W=80000//N
+H1=400//mm
+fet=200//N/mm^2
+fec=200//N/mm^2
+te=120//N/mm^2
+fetn=100//N/mm^2
+fecn=90//N/mm^2
+te=80//N/mm^2
+pb=18//N/mm^2
+//let dc be core dia
+Fs=2
+//W=(%pi/4)*dc^2*fec/Fs=78.55*dc^2
+//dc=sqrt(W/78.55)
+printf("the core dia is,%f mm\n",sqrt(W/78.55))
+printf("the core dia is,say 38mm selcted from table 17.2\n")
+dc=38//mm
+do=46//mm
+p=8//m
+printf("the nomnal dia and pitch is,%f mm\n,%f mm\n",do,p)
+d=(do+dc)/2//mm
+//tan(a)=p/(%pi*d)=0.0606
+b=0.0606
+u=0.14//=tan(q)
+T1=W*[(b+u)/(1-(b*u))]*d/2//N-mm//torque acting
+fc=W/(%pi*dc^2/4)//N/mm^@
+t=(16*T1)/(%pi*dc^2)//N/mm^2
+fcmax=0.5*[fc+sqrt(fc^2 +4*t^2)]//N/mm^2
+printf("the max pric stress is,%f N/mm^2\n",fcmax)
+tmax=0.5*sqrt(fc^2 +4*t^2)//N/mm^2
+printf("the max shear stress is,%f N/mm^2\n",tmax)
+//let n be numbr of therads
+//n=W/(12*%pi/4*(do^2-dc^2))
+printf("the numbr of threads is,%f \n",W/(12*%pi/4*(do^2-dc^2)))
+printf("the numbr of threads is n=10\n")
+n=10
+h=p*n//mm
+printf("the heigth of nut is,%f mm\n",h)
+//let D1 be outer dia of nut
+//W=(%pi/4)*[D1^2-do^2]*fetn/2=39.3*(D1^2-2116)
+D1=sqrt(W/39.3 +2116)//mm
+printf("the outer dia of nut is,%f mm\n",D1)
+//let D2 be outer dia of nut collar
+//W=(%pi/4)*[D2^2-D1^2]*fetn/2=35.3*(D2^2-4225)
+D2=sqrt(W/35.3 + 4225)//mm
+printf("the oter dia of collar nut is,%f mm\n",D2)
+t1=W/(%pi*D1*40)//mm
+printf("the thickness of nut is,%f mm\n",t1)
+D3=1.75*do//mm
+h3=50//mm
+t3=10//mm
+d3=160//mm
+printf("the heigth ,thickness ,and dia of top of cup is,%f mm\n,%f mm\n,%f mm\n",h3,t3,d3)
+u1=u//assume
+//M=force applied * length of lever
+M=300*2250//N-mm
+//let D4 be dia of handle
+fb=200/2
+D4=(M/(%pi/32*fb))^(1/3)//mm
+printf("the dia of ahndle is,%f mm\n",D4)
+H4=2*D4//mm
+printf("the heigth of head is,%f mm\n",H4)
+//design of body
+D5=1.5*D2//mm
+t5=0.25*do//mm
+D6=2.25*D2//mm
+D7=1.75*D6//mm
+t2=2*t1//mm
+To=W*b*d/2//N-mm
+printf("the dia of body at top is,%fmm\n",D5)
+printf("the thickness of boody is,%f mm\n",t5)
+printf("the inner dia is,%f mm\n",D6)
+printf("the outr dia is,%f mm\n",D7)
+printf("the thickness of base is,%f mm\n",t2)
diff --git a/278/CH17/EX17.16/ex_17_16.sce b/278/CH17/EX17.16/ex_17_16.sce new file mode 100755 index 000000000..965c23ab8 --- /dev/null +++ b/278/CH17/EX17.16/ex_17_16.sce @@ -0,0 +1,69 @@ +//desing
+clc
+//soltuion
+//given
+//ref fig 17.12
+W=4000//N
+l=110//mm
+ft=100//N/mm^2
+t=50//N/mm^2
+pb=20//N/mm^2
+p=6
+u=0.20
+//design of square
+//cos(q)=0.8112
+q=(%pi/180)*35.1//rad
+F=W/(2*tan(q))//N
+W1=2*F//N
+//let dc be core dia
+//dc=sqrt(4*W1/(%pi*ft))
+printf("the core dia is,%f mm\n",sqrt(4*W1/(%pi*ft)))
+printf("the core dia is,say dc=14 mm\n")
+dc=14//mm
+do=dc+p
+printf("the nominal dia is,%f mm\n",do)
+d=do-p/2
+//tan(a)=p/(%pi/d)=b=0.1123
+b=0.1123
+P=W*[(b+u)/(1-(b*u))]//N
+T=(P*d/2)
+t1=(16*T)/(%pi*dc^3)///N/mm^2
+ft1=W1/(%pi/4*dc^2)//N/mm^2
+ftmax=0.5*(ft1+ sqrt(ft1^2 +4*t1^2))//N/mm^2
+tmax=0.5*(sqrt(ft1^2 + 4* t1^2))//N/mm^2
+printf("the max prin stress and max shear stress is,%f N/mm^2\n,%f N/mm^2\n",ftmax,tmax)
+printf("since max stresses are within safe limits,therefore design is safe\n")
+//design of nut
+//let n be numbr of threads
+//n=W1/(%pi/4*20*(do^2-dc^2))
+printf("the numbr of threads are ,%f \n",W1/(%pi/4*20*(do^2-dc^2)))
+printf("since number of threads can not so less,so we take n=4\n")
+n=4
+t2=n*p//mm
+printf("the number of therd and thickness of threads is,%f \n,%f mm\n",n,t2)
+b1=1.5*do
+printf("the width of nut is,%f mm\n",b1)
+length =210+t2+(2*8)
+printf("the length of screwd portion is,%f mm\n",length)
+//desig of pins in nuts
+//let d1 be dia
+d1=sqrt(F/(2*%pi/4*t))
+printf("the dia of pins in nuts is,%f mm\n",d1)
+//design of links
+F1=F/2//load on link
+Wcr=1423*5//Fs=5
+//let t3 be thickness and b3 be width of link
+//Al=t3*3t3=3*t3^2//b3=3*t3
+//I=(1/12)*t3*b3^2=2.25*t3^4
+//k=sqrt(I/Al)=0.866*t3
+L=110
+a=1/7500
+//acc tor ankine fornula
+//Wcr=(ft*Al)/(1+a*(L/k)^2)=300*t3^2/(1+(2.15/t1^2))
+//t3^4-23.7*t3^2-51=0
+//t3=sqrt(25.7)//mm
+printf("the thickness and width is,%f mm\n,%f mm\n",sqrt(25.7),3*sqrt(25.7))
+printf("the thickness is say 6mm\n")
+t3=6//mm
+b3=3*t3//mm
+Al=3*t3^2
\ No newline at end of file diff --git a/278/CH17/EX17.17/ex_17_17.sce b/278/CH17/EX17.17/ex_17_17.sce new file mode 100755 index 000000000..ab27a4fc4 --- /dev/null +++ b/278/CH17/EX17.17/ex_17_17.sce @@ -0,0 +1,29 @@ +//det...
+clc
+//solution
+//given
+do=50//mm
+u=0.15//tan(q)
+p1=16//mm
+p2=12//mm
+tmax=28//N/mm^2
+d1=do-p1/2
+d2=do-p2/2
+//tan(a1)=p/(%pi/d1)=b1=0.1212
+b1=0.1212
+//tan(a2)=p/(%pi/d2)=b2=0.0868
+b2=0.0868
+//let W be load
+//T1=W*[(b1+u)/(1-(b1*u))]*d1/2=5.8*W//N-mm
+//T2=W*[(u-b2)/(1+(b2*u))]*d2/2=-.37*W//N-mm
+//T=T1-T2=7.17*W
+//To=W*(p1-p2)/(2*%pi)=0.636*W
+//eff=To/T
+eff=0.636/7.17
+printf("the eff is,%f \n",eff)
+dc1=do-p1
+//fc=W/Ac1=W/(%pi/4 * dc1^2)=W/908//N/mm^2
+//t1=16T/(%pi*dc1^3)=W/1331//N/mm^2
+//tmax=0.5*sqrt(fc^2 + 4*t1^2)=0.5*1.863*10^-3*W
+W=tmax/(0.5*1.863*10^-3)//N
+printf("the load acting is,%f N",W)
\ No newline at end of file diff --git a/278/CH17/EX17.2/ex_17_2.sce b/278/CH17/EX17.2/ex_17_2.sce new file mode 100755 index 000000000..6c444677a --- /dev/null +++ b/278/CH17/EX17.2/ex_17_2.sce @@ -0,0 +1,20 @@ +//estimate Power
+clc
+//soltuion
+//given
+W=75000//N
+v=300//mm/min
+p=6//mm
+do=40//mm
+u=0.1//=tan(q)
+d=do-(p/2)//mm
+//tan(a)=p/(%pi/d)=b=0.0516
+b=0.0516
+//P=W*tan(u+a)
+//P=W*[(tan(a)+tan(q))/(1-tan(a)*tan(q))]
+P=W*[(b+u)/(1-(b*u))]//N
+T=(P*d/2)/1000//N-m
+N=v/p//rpm
+w=2*%pi*N/60//rad/sec
+P=T*w//W
+printf("the power transmitted is,%f W",P)
\ No newline at end of file diff --git a/278/CH17/EX17.3/ex_17_3.sce b/278/CH17/EX17.3/ex_17_3.sce new file mode 100755 index 000000000..953d8c98f --- /dev/null +++ b/278/CH17/EX17.3/ex_17_3.sce @@ -0,0 +1,29 @@ +//determine power and effi
+clc
+//soluiton
+//given
+do=55//mm
+p=10//mm
+W=400//N
+D2=60//mm
+D1=90//mm
+R1=45//mm
+R2=30//mm
+u=0.15
+u1=0.15//=//tan(q)
+v=6//m/min
+d=do-(p/2)//mm
+//tan(a)=p/(%pi/d)=b=0.0637
+b=0.0637
+//P=W*tan(u+a)
+//P=W*[(tan(a)+tan(q))/(1-tan(a)*tan(q))]
+P=W*[(b+u)/(1-(b*u))]//N
+R=(R1+R2)/2//mm
+T=[(P*d/2)+(u1*W*R)]/1000//N-mm
+N=v/0.01//rpm
+w=2*%pi*N/60//rad/sec
+P=T*w//W
+printf("the power transmitted is,%f W\n",P)
+//eff=To/T
+eff=(W*b*(d/2))/(1000*T)
+printf("the efficuency is,%f",eff)
\ No newline at end of file diff --git a/278/CH17/EX17.4/ex_17_4.sce b/278/CH17/EX17.4/ex_17_4.sce new file mode 100755 index 000000000..20757300a --- /dev/null +++ b/278/CH17/EX17.4/ex_17_4.sce @@ -0,0 +1,32 @@ +//find force reqird at the end of lever
+clc
+//soltuion
+//given
+d=100//mm
+p=20//mm
+W=18000//N
+D1=250//mm
+R1=125//mm
+D2=100//mm
+R2=50//mm
+l=400//mm
+u=0.15//=tan(q)
+u1=0.20
+Lead=2*p
+//tan(a)=Lead/(%pi/d)=b=0.127
+b=0.127
+//P=W*tan(u+a)
+//P=W*[(tan(a)+tan(q))/(1-tan(a)*tan(q))]
+P=W*[(b+u)/(1-(b*u))]//N
+R=(R1+R2)/2//mm
+T=[(P*d/2)+(u1*W*R)]//N-mm
+//let P1 be req force
+P1=T/l//N
+printf("the req force is,%f N\n",P1)
+//P=W*tan(u-a)
+//P=W*[(tan(a)-tan(q))/(1+tan(a)*tan(q))]
+P2=W*[(u-b)/(1+(b*u))]//N
+T2=[(P2*d/2)+(u1*W*R)]//N-mm
+//let P3 be the force req
+P3=T2/l//N
+printf("the force req for lowering load is,%f N",P3)
diff --git a/278/CH17/EX17.5/ex_17_5.sce b/278/CH17/EX17.5/ex_17_5.sce new file mode 100755 index 000000000..dcc7147be --- /dev/null +++ b/278/CH17/EX17.5/ex_17_5.sce @@ -0,0 +1,35 @@ +//find work done
+clc
+//soltuion
+//given
+p=10//mm
+d=50//mm
+W=20000//N
+D1=60//mm
+R1=30//mm
+D2=10//mm
+R2=5//mm
+u=0.08//=tan(q)
+u1=u
+//tan(a)=p/(%pi/d)=b=0.0637
+b=0.0637
+//P=W*tan(u+a)
+//P=W*[(tan(a)+tan(q))/(1-tan(a)*tan(q))]
+P=W*[(b+u)/(1-(b*u))]//N
+T=(P*d/2)/1000//N-m
+N=170/10
+Wd1=T*2*%pi*N//N-m
+//wen load rotates with th screw
+printf("the workdone in lifting is,%f N-m\n",Wd1)
+//eff1=tan(a)/(tan(a+q))
+eff1=b*(1-b*u)/(b+u)
+printf("the eff is,%f \n",eff1)
+//wen load doesn't trotate
+R=(R1+R2)/2//mm
+T2={(P*d/2)+(u1*W*R)}/1000//N-m
+Wd2=T2*2*%pi*N//N-m
+printf("the work done wen scre dosnt rotate is,%f N-m\n",Wd2)
+//To=W*tan(a)*d/2
+To=W*b*d/2/1000//N-m
+eff2=To/T2
+printf("the effi in this cse is,%f ",eff2)
\ No newline at end of file diff --git a/278/CH17/EX17.6/ex_17_6.sce b/278/CH17/EX17.6/ex_17_6.sce new file mode 100755 index 000000000..907660250 --- /dev/null +++ b/278/CH17/EX17.6/ex_17_6.sce @@ -0,0 +1,31 @@ +//find power rquire and eff
+clc
+//soltuion
+//given
+do=50//mm
+p=8//mm
+W=2500//N
+D1=110//mm
+R1=55//mm
+D2=55//mm
+R2=27.5//mm
+N=30//rpm
+u=0.15//=tan(q)
+u2=0.12
+//tan(a)=p/(%pi/d)=b=0.055
+b=0.055
+//u1=u/cos(B)=0.15/cos(14.5)=0.155
+u1=0.155
+//P=W*tan(u+a)
+//P=W*[(tan(a)+tan(q1))/(1-tan(a)*tan(q1))]
+P=W*[(b+u1)/(1-(b*u1))]//N
+T1=(P*d/2)//N-mm
+R=(R1+R2)/2//mm
+T2=u2*W*R//N-mm
+T=(T1+T2)/1000//N-m
+Power=T*2*%pi*N/60//W
+printf("the power req is,%f W\n",Power)
+To=W*b*d/2/1000//N-m
+printf("the torque acting is,%f N-m\n",To)
+eff=To/T
+printf("the eff is,%f ",eff)
\ No newline at end of file diff --git a/278/CH17/EX17.7/ex_17_7.sce b/278/CH17/EX17.7/ex_17_7.sce new file mode 100755 index 000000000..5b2f13f1f --- /dev/null +++ b/278/CH17/EX17.7/ex_17_7.sce @@ -0,0 +1,37 @@ +//find torque req,stress,numbr of threads
+clc
+//soltuion
+//given
+do=25//mm
+p=5//mm
+W=10000//N
+D1=50//mm
+R1=25//mm
+D2=20//mm
+R2=10//mm
+u=0.2//=tan(q)
+u1=0.15
+N=12//rpm
+pb=5.8//N/mm^2
+d=do-(p/2)//mm
+Lead=2*p
+//tan(a)=Lead/(%pi/d)=b=0.1414
+b=0.1414
+//P=W*tan(u+a)
+//P=W*[(tan(a)+tan(q))/(1-tan(a)*tan(q))]
+P=W*[(b+u)/(1-(b*u))]//N
+R=(R1+R2)/2//mm
+T=[(P*d/2)+(u1*W*R)]/1000//N-mm
+printf("the torque acting is,%f N-m\n",T)
+dc=do-p//mm
+Ac=(%pi/4)*dc^2//mm^2
+fc=W/Ac//N/mm^2
+printf("the direct stress acting,%f N/mm^2\n",fc)
+t=(16*T*1000)/(%pi*dc^3)//N/mm^2
+printf("the shear stressa acting is,%f N/mm^2\n",t)
+tmax=0.5*sqrt(fc^2 +4*t^2)//N/mm^2
+printf("the stressa cting is ,%f N/mm^2\n",tmax)
+//let n be number of threads
+t1=p/2//mm//thickness of threads
+n=W/(%pi*d*t1*5.8)
+printf("the number of threads are,%f ",n)
\ No newline at end of file diff --git a/278/CH17/EX17.9/ex_17_9.sce b/278/CH17/EX17.9/ex_17_9.sce new file mode 100755 index 000000000..f79d8294d --- /dev/null +++ b/278/CH17/EX17.9/ex_17_9.sce @@ -0,0 +1,41 @@ +//find...
+clc
+//soltuion
+//given
+W1=18000//N
+F=4000//N
+do=60//mm
+p=10//mm
+D1=150//mm
+R1=75//mm
+D2=50//mm
+R2=25//mm
+u=0.1//=tan(q)
+u1=0.12
+pb=7//N/mm^2
+//let P1 be max force
+dc=do-p//mm
+d=(do+dc)/2//mm
+//tan(a)=p/(%pi*d)=0.058
+b=0.058
+W=W1+F//N
+T1=W*[(b+u)/(1-(b*u))]*d/2//N-mm//torque aacting
+R=(R1+R2)/2//mm
+T2=u1*W*R//N-mm
+T=T1+T2//N-mm
+//T=2*P1*1000
+P1=T/(2*1000)//N
+printf("the force acting at end of lever is,%f N\n",P1)
+W2=W1-F//N
+T3=W2*[(u-b)/(1+(b*u))]*d/2//N-mm
+T4=u1*W2*R//N-mm
+T5=T4+T3//N-mm
+P2=T5/(2000)//N
+printf("the force acting in lowering the agte is,%f N\n",P2)
+To=W*b*d/2//N-mm
+eff=To/T
+printf("the eff is,%f \n",eff)
+//let n be numbr of theads
+t=p/2//mm//thikness
+n=(W)/(7*%pi*d*t)
+printf("the numbr of threads are ,%f",n)
\ No newline at end of file diff --git a/278/CH18/EX18.1/ex_18_1.sce b/278/CH18/EX18.1/ex_18_1.sce new file mode 100755 index 000000000..53b6ef6bc --- /dev/null +++ b/278/CH18/EX18.1/ex_18_1.sce @@ -0,0 +1,17 @@ +//find..
+clc
+//soltuion
+//given
+N1=150//rpm
+d1=750//rpm
+d2=450//mm
+d3=900//mm
+d4=150//mm
+s1=0.02
+s2=0.02
+//ref fig 18.12
+N4={(d1*d3)/(d2*d4)}*N1//rpm
+printf("the value of N4 is,%f rpm\n",N4)
+//wen slip is there
+N4s={(d1*d3)/(d2*d4)}*N1*(1-s1)*(1-s2)//rpm
+printf("the value N4 when slip is there is,%f rpm",N4s)
diff --git a/278/CH18/EX18.10/ex_18_10.sce b/278/CH18/EX18.10/ex_18_10.sce new file mode 100755 index 000000000..92d3fdb57 --- /dev/null +++ b/278/CH18/EX18.10/ex_18_10.sce @@ -0,0 +1,51 @@ +//find..
+clc
+//soltuion
+//given
+N2=600//rpm
+P=15*1000//w
+N1=1750//rpm
+rho=1000//kg/m^3
+f=4*10^6//N/m^2
+u1=0.5
+u2=0.4
+v=20//m/s
+//ref fig 18.21
+d1=v*60/(%pi*N1)//m
+d2=v*60/(%pi*N2)//m
+printf("the dia of mottr and blower pulley are,%f m\n,%f m\n",d1,d2)
+x=2*d2//m
+L=(%pi/2)*(d1+d2)+(2*x)+(d1-d2)^2/(4*x)
+printf("the length of belt is,%f m\n",L)
+//sin(a)=(r1-r2)/x=0.1643
+a=(%pi/180)*9.46//rad
+q=%pi-2*a//rad
+q2=%pi+2*a
+//since u1*q1 >u2*q2,therfore design is blower based
+
+//let T1 and T2 be tneion on tight and slag side
+//P=(T1-T2)*v
+//T1-T2=750//N
+//log(T1/T2)=u*q=0.4*q2=0.6035
+//T2=T1/4//N
+T1=1000//N
+T2=250//N
+//let a be the area
+//m=a*rho=1500*a//mass/length
+//Tc=m*v^2=0.6*10^6*a//N
+//T=T1+Tc=1000+(0.6*10^6*a)...eq1
+//T=f*a=4*10^6*a....eq2
+//eq1=eq2
+a=1000/(3.4*10^6)//m^2
+printf("the area of belt is,%f m^2\n",a)
+Tc=0.6*10^6*a//N
+To=(T1+T2+2*Tc)/2//N
+printf("min initial tension is,%f N\n",To)
+Toi=To+(0.5)*To//N//increased initial tensaion
+//Toi=(T1i+T2i+2*Tc)/2//N
+//T1i+T2i=2051.2...eq3
+//T1i/T2i=4...eq4
+//from eq3 an eq4
+T1i=1640.96//N
+T2i=T1i/4
+printf("the resultant force in plane of blower is,%f N",T1i-T2i)
diff --git a/278/CH18/EX18.11/ex_18_11.sce b/278/CH18/EX18.11/ex_18_11.sce new file mode 100755 index 000000000..f8a93cc35 --- /dev/null +++ b/278/CH18/EX18.11/ex_18_11.sce @@ -0,0 +1,43 @@ +//find..
+clc
+//soltuion
+//given
+d1=0.3//m
+d2=0.45//m
+q1=2.8//rad
+q2=3.66//rad
+N1=200//rpm
+u=0.25
+P=3000//W
+//let T1 and T2 be tneion on tight and slag side
+//since q2>q1,therfore design is smaller pulley based
+v=%pi*N1*d1/60//m/s
+//P=(T1-T2)*v
+//T1-T2=955//N
+//log(T1/T2)=u*q=0.25*q1=0.3043
+//T2=T1/2.015//N
+T1=1896//N
+T2=941//N
+To=(T1+T2)/2
+Toi=To+(0.1)*To//N//incresed initial tension
+//Toi=(T11+T22)/2//N
+//T11+T22=2*Toi//N
+//T11+T22=3120.7//N....eq1
+//T12/T22=2.015...eq2
+//from eq1 and eq2
+T11=2085.7
+T22=1035//N
+P1=(T11-T22)*v
+u1=u+(0.1)*u
+//log(T111/T222)=u1*q1=0.3348
+//T111/T222=2.16
+//Toi=(T111+T222)/2.....eq3
+//T111+T222=2837....eq4
+//from eq3 and eq4
+T111=1939//N
+T222=898//N
+P2=(T111-T222)*v//W
+pi1=((P1-P)/P)*100
+pi2=((P2-P)/P)*100
+printf("the perctage inc in power wen initial tension is inc is,%f \n",pi1)
+printf("the %age perct inc inpower wen coefficient of riction si,%f",pi2)
diff --git a/278/CH18/EX18.2/ex_18_2.sce b/278/CH18/EX18.2/ex_18_2.sce new file mode 100755 index 000000000..bf5cdcde2 --- /dev/null +++ b/278/CH18/EX18.2/ex_18_2.sce @@ -0,0 +1,27 @@ +//find..
+clc
+//soltuion
+//given
+d1=0.450//rpm
+r1=0.225//m
+d2=0.2//m
+r2=0.1//m
+N1=200//rpm
+x=1.95//m
+T1=1000//N
+u=0.25
+//ref fig 18.17
+L=%pi*(r1+r2)+2*x+(r1+r2)^2/x//m
+printf("the length of belt is,%f m\n",L)
+//sin(a)=(r1+r2)/x=0.1667
+//a=9.6//deg
+a=(%pi/180)*9.6//rad
+q=%pi+(2*a)//rad
+printf("te angle of contact is,%f rad\n",q)
+//let T1 and T2 be tneion on tight and slag side
+//T1/T2=y
+//log(T1/T2)=u*q=0.25*3.477=0.8693
+T2=T1/2.387//N
+v=%pi*N1*d1/60//m/s
+P=(T1-T2)*v
+printf("the power transmitted is,%f W\n",P)
\ No newline at end of file diff --git a/278/CH18/EX18.3/ex_18_3.sce b/278/CH18/EX18.3/ex_18_3.sce new file mode 100755 index 000000000..b260d413d --- /dev/null +++ b/278/CH18/EX18.3/ex_18_3.sce @@ -0,0 +1,31 @@ +//find..
+clc
+//soltuion
+//given
+t=0.009//m
+b=0.25//m
+d=0.9//m
+N=336//rpm
+q=2.1//rad
+f=2//N/mm^2
+rho=980//kg/m^3
+u=0.35
+v=%pi*N*d/60//m/s
+a=b*t//area
+Tt1=f*a*1000*1000//N
+T=Tt1
+printf("the value of Tt1 is,%f N\n",Tt1)
+m=a*rho//mass/length
+Tc=m*v^2//N
+printf("the centrifugal tension is,%f N\n",Tc)
+T1=T-Tc//N
+//let T1 and T2 be tneion on tight and slag side
+//T1/T2=y
+//log(T1/T2)=u*q=0.25*3.477=0.735
+T2=T1/2.085//N
+printf("the value of T2 is,%f N\n",T2)
+P=(T1-T2)*v//W
+printf("the poweer capacity is,%f W\n",P)
+Tt2=T2+Tc//N
+P1=(Tt1-Tt2)*v//W
+printf("the power capcity by taking centrifugal force is,%f W\n",P1)
\ No newline at end of file diff --git a/278/CH18/EX18.4/ex_18_4.sce b/278/CH18/EX18.4/ex_18_4.sce new file mode 100755 index 000000000..ace70f5e3 --- /dev/null +++ b/278/CH18/EX18.4/ex_18_4.sce @@ -0,0 +1,28 @@ +//find..
+clc
+//soltuion
+//given
+P=30000//W
+d=1.5//m
+N=300//rpm
+q=2.88//rad
+u=0.3
+t=0.0095//m
+rho=1100//kg/m^3
+f=2.5*10^6//N/m^2
+//let T1 and T2 be tneion on tight and slag side
+v=%pi*N*d/60//m/s
+printf("the vel of belt is,%f m/s\n",v)
+//P=(T1-T2)*v//W
+//T1-T2=P/v=1273//N
+//log(T1/T2)=u*q=0.25*3.477=2.375
+//T2=T1/2.375//N
+T1=2199//N
+T2=926//N
+//let b is width
+//m=A*rho=b*t*rho=10.45*b//kg/m
+//Tc=m*v^2=5805*b
+//T=T1+Tc=f*b*t
+//23750*b=2199+5805*b
+b=2199/(23750-5805)//m
+printf("the widht of belt is,%f m\n",b)
\ No newline at end of file diff --git a/278/CH18/EX18.5/ex_18_5.sce b/278/CH18/EX18.5/ex_18_5.sce new file mode 100755 index 000000000..f3a85c3e6 --- /dev/null +++ b/278/CH18/EX18.5/ex_18_5.sce @@ -0,0 +1,33 @@ +//find..
+clc
+//soltuion
+//given
+d1=400//mm
+r1=200//mm
+d2=1600//mm
+r2=800//mm
+q1=2.5//rad
+q2=3.78//rad
+u1=0.3
+u2=0.25
+N1=700//rpm
+P=22.5*10^3//W
+t=0.005//mm
+f=2.3*10^6//N/m^2
+//ref fig 18.19
+v=%pi*N1*d1/60//m/s
+//let T1 and T2 be tneion on tight and slag side
+printf("the vel of belt is,%f m/s\n",v)
+//P=(T1-T2)*v//W
+//T1-T2=P/v=1530//N
+//log(T1/T2)=u*q=0.25*3.477=0.75
+//T2=T1/2.21//N
+T1=2896//N
+T2=1366//N
+//let b is width
+//m=A*rho=b*t*rho=5*b//kg/m
+//Tc=m*v^2=1080*b
+//T=T1+Tc=f*b*t
+//11500*b=2896+1080*b
+b=2896/(11500-1080)//m
+printf("the widht of belt is,%f m\n",b)
\ No newline at end of file diff --git a/278/CH18/EX18.7/ex_18_7.sce b/278/CH18/EX18.7/ex_18_7.sce new file mode 100755 index 000000000..90635d628 --- /dev/null +++ b/278/CH18/EX18.7/ex_18_7.sce @@ -0,0 +1,44 @@ +//find..
+clc
+//soltuion
+//given
+P=110*1000//W
+d1=0.9//m
+r1=0.45//m
+d2=1.2//m
+r2=0.6//m
+v=20//m/s
+x=3.6//m
+u=0.3
+s1=0.012
+s2=0.012
+rho=100//kg/m^3
+//v=%pi*N1*d1/60*(1-s1)//m/s
+N1=20/0.0466//rpm
+//v*(1-s2)=%pi*N2*d2/60//m/s
+N2=19.76*60/(%pi*1.2)//rpm
+T=P*60/(2*%pi*N2)
+//since there is 5% friction
+Tn=1.05*T//net torque
+//since belt is to designed for 20% overload
+TN=1.2*Tn//N-m
+//let T1 and T2 be tneion on tight and slag side
+//TN=(T1-T2)*r2
+//T1-T2=TN/r2=7000/N
+//sin(a)=(r2-r1)/x=2.4 deg
+a=(%pi/180)*2.4//rad
+q1=%pi-a//rad
+printf("the angle of contact is,%f rad \n",q1)
+//log(T1/T2)=u*q1=0.3*q1=0.918
+//T2=T1/2.51//N
+T1=11636//N
+T2=4636//N
+//let b is width
+//m=A*rho=b*t*rho=15*b//kg/m
+//Tc=m*v^2=6000*b
+//T=T1+Tc=f*b*t
+//37500*b=11636+6000*b
+b=11636/(37500-6000)//m
+printf("the widht of belt is,%f m\n",b)
+L=%pi*(r1+r2)+2*x+(r1+r2)^2/x//m
+printf("the length of belt is,%f m",L)
\ No newline at end of file diff --git a/278/CH18/EX18.8/ex_18_8.sce b/278/CH18/EX18.8/ex_18_8.sce new file mode 100755 index 000000000..18f8210dc --- /dev/null +++ b/278/CH18/EX18.8/ex_18_8.sce @@ -0,0 +1,24 @@ +//find..
+clc
+//soltuion
+//given
+b=0.100//m
+t=0.01//m
+v=16.67//m/s
+//T1-T2=1.8 *T2
+f=1.6//N/mm^2
+rho=1000//kg/m^3
+//let T1 and T2 be tneion on tight and slag side
+T=f*b*t*10^6//N//max tension
+m=0.1*0.01*1000//kg/m
+Tc=m*v^2//N
+T1=T-Tc//N
+T2=T1/2.8//N
+P=(T1-T2)*v
+printf("the power transmitted is,%f W\n",P)
+vm=sqrt(T/(3*m))//m/s
+Tc1=T/3//N
+T11=T-Tc1
+T21=T11/2.8
+P1=(T11-T21)*vm
+printf("the max power tans is,%f W\n",P1)
\ No newline at end of file diff --git a/278/CH18/EX18.9/ex_18_9.sce b/278/CH18/EX18.9/ex_18_9.sce new file mode 100755 index 000000000..2a13c8873 --- /dev/null +++ b/278/CH18/EX18.9/ex_18_9.sce @@ -0,0 +1,26 @@ +//find..
+clc
+//soltuion
+//given
+x=4.8//m
+d1=1.5//m
+d2=1//m
+To=3000//N
+m=1.5//kg/m
+u=0.3
+N2=400//rpm
+v=%pi*N2*d2/60//m/s
+Tc=m*v^2
+//let T1 and T2 be tneion on tight and slag side
+//To=(T1+T2+2*Tc)/2
+//T1+T2=4677
+//sin(a)=(r1-r2)/x=0.0521
+a=(%pi/180)*3//rad
+q=%pi-2*a//rad
+printf("the angle of contact is,% f rad\n",q)
+//log(T1/T2)=u*q=0.3*q=0.3965
+//T2=T1/2.5//N
+T1=3341//N
+T2=1336//N
+P=(T1-T2)*v
+printf("the power transmitted is,%f W\n",P)
diff --git a/278/CH19/EX19.1/ex_19_1.sce b/278/CH19/EX19.1/ex_19_1.sce new file mode 100755 index 000000000..4c00e3ae6 --- /dev/null +++ b/278/CH19/EX19.1/ex_19_1.sce @@ -0,0 +1,19 @@ +// find..
+clc
+//solution
+//given
+P=20*1000//W
+N=300//rpm
+d=550//mm
+n=4
+fb=15//N/mm^2
+//let b1 minor axis,a1 major axis
+T=(P*60)/(2*%pi*N)//N-m
+M=2*T/n*1000//N-mm
+//a1=2b1
+//Z=(%pi/32)*b1*a1^2=(%pi)/8*b1^3
+//fb=M/Z
+b1=(M/(%pi/8*fb))^(1/3)//mm
+printf("the minor and moajor axis is,%f mm\n,%f mm",b1,2*b1)
+
+
diff --git a/278/CH19/EX19.2/ex_19_2.sce b/278/CH19/EX19.2/ex_19_2.sce new file mode 100755 index 000000000..bb8d43393 --- /dev/null +++ b/278/CH19/EX19.2/ex_19_2.sce @@ -0,0 +1,72 @@ +// find..
+clc
+//solution
+//given
+P=35000//W
+N=240//rpm
+L=0.350//mm
+u=0.25
+t=10//mm
+n=6
+q=%pi
+fts=80//N/mm^2
+ftk=80//N/mm^2
+ts=50//N/mm^2
+tk=50//N/mm^2
+f=2.5//N/mm^2
+ft=4.5//N/mm^2
+fb=15//N/mm^2
+rho=7200//kg/m^3
+//fb*10^6=rho*v^2
+v=sqrt(ft*10^6/rho)//m/s
+printf("the speed is,%f m/s\n",v)
+D=(v*60)/(%pi*N)//m
+printf("the dia of pulley is,%f m\n",D)
+//let b e width of belt
+//let T1 and T2 be tension on tight and slag side
+//P=(T1-T2)*v
+//T1-T2=1400//N
+//log(T1/T2)=u*q=0.25*3.14=0.3415
+//T2=T1/2.195//N
+T1=2572//N
+T2=1172//N
+rho1=1000//kg/m^3
+//A=b*t=10*b/10^6//m^2
+//let b is width
+//m=A*rho1=b*t*rho=0.01*b//kg/m
+//Tc=m*v^2=6.25*b
+//T=f*b*t=25*b//N
+//T1=T-Tc
+//T1=25*b-6.25b
+//b=T1/18.75//mm
+printf("the width of belt si,%f mm\n",T1/18.75)
+printf("the standard width of belt is b=140mm\n")
+b=140//mm
+Tc=6.25*b//N
+//let d eb dia of shaft
+T3=(P*60)/(2*%pi*N)//N-mm
+M=(T1+T2+2*Tc)*L
+Te=sqrt(M^2 + T3^2)
+//d=((Te*16*1000)/(%pi*ts))^(1/3)//mm
+printf("the dia of shaft is,%f mm\n",((Te*16*1000)/(%pi*ts))^(1/3))
+printf("the standard dia of shaft is d=65mm\n")
+d=65//mm
+//corres to d=65mm,
+width =20//mm
+thickness =12//mm
+printf("correponding to d=65mm,thickness and width is,%f mm\n,%f mm\n",thickness,width)
+//let l be length of key
+//T3*1000=l*20*tk*d/2
+//l=T3/(32500)//mm
+printf("the length of key is,%f mm\n",T3/(32500))
+printf("length should be atleast l=102 mm\n")
+printf("therfore length is 102 mm\n")
+l=102//mm
+//let b1 minor axis,a1 major axis
+M=2*T3/n*1000//N-mm
+//a1=2b1
+//Z=(%pi/32)*b1*a1^2=(%pi)/8*b1^3=0.2=393*b1^3
+//fb=M/Z
+b1=(M/(0.393*fb))^(1/3)//mm
+printf("the minor and moajor axis is,%f mm\n,%f mm",b1,2*b1)
+
diff --git a/278/CH19/EX19.3/ex_19_3.sce b/278/CH19/EX19.3/ex_19_3.sce new file mode 100755 index 000000000..e44779afe --- /dev/null +++ b/278/CH19/EX19.3/ex_19_3.sce @@ -0,0 +1,40 @@ +// find..
+clc
+//solution
+//given
+D=0.9//m
+N=200//rpm
+P=7500//W
+T=145//n
+//T1=2*T2
+n=6
+fb=15//N/mm^2
+t=63//N/mm^2
+v=%pi*N*D/60//m/s
+//let T1 and T2 be tneion on tight and slag side
+//P=(T1-T2)*v...eq1
+//T1=2T2...eq2
+//from 1 and 2
+T2=796//N
+T1=1592//N
+//b=T1/14.5//mm
+printf("the widht is,%f mm\n",T1/14.5)
+printf("the widht is,say 112mm\n")
+b=112//mm
+T=(P*60)/(2*%pi*N)*1000//N-mm
+//((T*16)/(%pi*t))(1/3)=12.4*d^3
+printf("the dia of shaft is,%f mm\n",(T/12.4)^(1/3))
+printf("the dia of shaft is,say d=35mm\n")
+d=35//mm
+printf("width of pulley is B\n",112+13)
+t1=D*1000/300 + 2//mm
+printf("the thickness of pulley is,%f mm\n",t1)
+//let b1 minor axis,a1 major axis
+//a1=2*b1
+M=2*T1/n*1000//N-mm
+//Z=(%pi/32)*b1*a1^2=(%pi)/8*b1^3=0.393*b1^3
+//fb=M/Z
+b1=(M/(0.393*fb))^(1/3)//mm
+printf("the minor and moajor axis is,%f mm\n,%f mm",b1,2*b1)
+
+
diff --git a/278/CH20/EX20.1/ex_20_1.sce b/278/CH20/EX20.1/ex_20_1.sce new file mode 100755 index 000000000..03e82c0ed --- /dev/null +++ b/278/CH20/EX20.1/ex_20_1.sce @@ -0,0 +1,38 @@ +//find..
+clc
+//soltuion
+//given
+P=90000//W
+N2=250//rpm
+N1=750//rpm
+d2=1//m
+x=1.75//m
+v=26.67//m/s
+A=375*10^(-6)//m^2
+rho=1000//kg/m^3
+f=2.5//N/mm^2
+B=17.5//deg
+u=0.25
+d1=N2*d2/N1//m
+//sin(a)=(r2-r1)/x=0.1914
+a=(%pi/180)*11.04
+q=%pi-2*a//rad
+printf("the angle of contact is,%f rad\n",q)
+m=A*rho//kg/m
+Tc=m*v^2//N
+printf("the centrifugl tension is,%f N\n",Tc)
+T=f*A*10^6//N
+printf("max tension is,%f N\n",T)
+T1=T-Tc//N
+//log(T1/T2)=u*q*cosec(%pi/180*B)=0.9976
+T2=T1/9.95//N
+Ppb=(T1-T2)*v//W
+printf("power tranmited per belt is,%f W\n",Ppb)
+//n=P/Ppb//
+printf("the number of belts are,%f \n",P/Ppb)
+printf("number of belts are say 6\n")
+n=6
+r1=d1/2
+r2=d2/2
+L=%pi*(r2+r1)+2*x+(r2-r1)^2/x
+printf("the length of belt is,%f m",L)
\ No newline at end of file diff --git a/278/CH20/EX20.10/ex_20_10.sce b/278/CH20/EX20.10/ex_20_10.sce new file mode 100755 index 000000000..4553282a6 --- /dev/null +++ b/278/CH20/EX20.10/ex_20_10.sce @@ -0,0 +1,39 @@ +//design wire rope
+clc
+//soltuion
+//given
+W=55000//N
+depth=300//m
+v=500//m/min
+t=10//s
+//ref T20.6,we choose rope type 6*19
+//,tab; 20.11,Fs =7,for depth 300 to 600m,design load is calculated by taking 2 to 2.5 times factor of safety fiven is table
+//ref table 20.11
+Designload=15*55*1000//N
+//ref table 20.6,tesnile strength of 6*19 is=595*d^2
+//595d^2=designload
+//d=sqrt(Desingload/595)//mm
+printf("the dia of rope is,%f mm\n",sqrt(Designload/595))
+printf("the dia of rope is,say 38mm\n")
+d=38//mm
+dw=0.063*d//ref table 20.10,dw=dia of wire
+A=0.38*d^2
+//ref table 20.6
+w=0.0363*d^2*depth//N
+//ref table 20.12
+D=100*d
+fb=84000*dw/D
+printf("bending stress acting is,%f N/mm^2\n",fb)
+Wb=fb*A//N
+printf("the bending load on rope is,%f N\n",Wb)
+a=v/(60*t)//acceleration
+g=9.81//m/s^2
+Wa=(W+w)/g*a//additonal load
+printf("additional load due to acc si,%f N\n",Wa)
+Wst=2*(W+w)
+printf("the starting load acting is,%f N\n",Wst)
+We=W+w+Wb//N
+printf("effctive load during uniform velocity is,%f N\n",We)
+Fsa=Designload/We
+printf("actual factor of safety is,%f \n",Fsa)
+printf("since factor of safety caculated above are safe,therefore wire rope of dia 38mm and 6*19 is chosen")
\ No newline at end of file diff --git a/278/CH20/EX20.11/ex_20_11.sce b/278/CH20/EX20.11/ex_20_11.sce new file mode 100755 index 000000000..b3780f6d7 --- /dev/null +++ b/278/CH20/EX20.11/ex_20_11.sce @@ -0,0 +1,39 @@ +//finf Fs
+clc
+//soltuion
+//given
+d=38//mm
+D=2000//mm
+W=50000//N
+depth=900//m
+v=3//m/s
+a=1.5//m/s^2
+dw=0.05*d//mm
+Bs=1880//N/mm^2//breaking strength
+Er=84*1000//N/mm^2
+w=47700//N
+//rope is 8*19
+n=8*19
+A=(%pi/4)*dw^2*n//mm^2
+mbs=Bs*A//min breaking strength
+printf("min breaking stresngth is,%f N\n",mbs)
+fb=84000*dw/D
+printf("bending stress acting is,%f N/mm^2\n",fb)
+Wb=fb*A//N
+printf("the bending load on rope is,%f N\n",Wb)
+g=9.81//m/s^2
+Wa=(W+w)/g*a//additonal load
+printf("additional load due to acc si,%f N\n",Wa)
+Wst=2*(W+w)
+printf("the starting load acting is,%f N\n",Wst)
+Wen=W+w+Wb//N//during normal working
+printf("effctive load during uniform velocity is,%f N\n",Wen)
+Fs=mbs/Wen
+printf("the factor of safety during normal working is,%f \n ",Fs)
+Wea=W+w+Wb+Wa//N//during acc
+Fsa=mbs/Wea
+printf("the factor of safety during acc is,%f ",Fsa)
+//during straing
+Wes=Wst+Wb//N
+Fss=mbs/Wes
+printf("the factor of safety during startin is,%f ",Fss)
\ No newline at end of file diff --git a/278/CH20/EX20.12/ex_20_12.sce b/278/CH20/EX20.12/ex_20_12.sce new file mode 100755 index 000000000..07f9d3800 --- /dev/null +++ b/278/CH20/EX20.12/ex_20_12.sce @@ -0,0 +1,22 @@ +//finf dia of wire
+clc
+//soltuion
+//given
+W=25000//N
+w=15000//n
+//D=30*d
+a=1//m/s^2
+er=80000//N/mm^2
+fu=1800//N/mm^2
+//A=0.38*d^2
+//let d be dia of rope
+Wd=W+w//N
+//dw=0.063*d..
+//Wb=Er*dw/D*A=63.84*d^2//N
+g=9.81
+Wa=(W+w)/g*a
+//Wt=Wd+Wa+Wb=44080+63.84*d^2//N....eq1
+//WT=A*stress=A*fu/Fs=114*d^2//assume Fs=6...eq2
+//from eq1 and eq2
+d=sqrt(44080/(114-63.84))//mm
+printf("choosing value of d from table 20.6,we get 32mm")
diff --git a/278/CH20/EX20.2/ex_20_2.sce b/278/CH20/EX20.2/ex_20_2.sce new file mode 100755 index 000000000..d9c91321c --- /dev/null +++ b/278/CH20/EX20.2/ex_20_2.sce @@ -0,0 +1,31 @@ +//find..
+clc
+//soltuion
+//given
+n=2
+B=15//deg
+A=750*10^-6
+u=0.12
+rho=1200//kg/m^3
+f=7*10^6//N/m^2
+d=0.300//m
+N=1500//rpm
+m=A*rho//kg/m
+v=(%pi*N*d)/60//m/s
+Tc=m*v^2//N
+q=%pi
+printf("the centrifugl tension is,%f N\n",Tc)
+T=f*A//N
+printf("max tension is,%f N\n",T)
+T1=T-Tc//N
+//log(T1/T2)=u*q*cosec(%pi/180*B)=0.6335
+T2=T1/4.3//N
+P=(T1-T2)*v*n//W
+printf("the power trans is,%f W\n",P)
+//for max power tranfer
+//let N1 be speed
+//Tc1=T/3
+//Tc1=m*v1^2
+v1=sqrt(T/(3*m))//m/s
+N1=(v1*60/(%pi*d))
+printf("rpm of shaft at max power trans,%f rpm",N1)
\ No newline at end of file diff --git a/278/CH20/EX20.3/ex_20_3.sce b/278/CH20/EX20.3/ex_20_3.sce new file mode 100755 index 000000000..b4bdf38b6 --- /dev/null +++ b/278/CH20/EX20.3/ex_20_3.sce @@ -0,0 +1,40 @@ +//find..
+clc
+//soltuion
+//given
+x=1//m
+P=95*1000//W
+d1=0.3//m
+N1=1000//rpm
+N2=375//rpm
+B=20//deg
+A=400*10^-6//m^2
+f=2.1//N/mm^2
+rho=1100//kg/m^3
+u=0.28
+t=42//N/mm^2
+d2=N1*d1/N2//m
+//sin(a)=(r2-r1)/x=0.25
+a=(%pi/180)*14.5
+q=%pi-2*a//rad
+printf("the angle of contact is,%f rad\n",q)
+m=A*rho//kg/m
+v=(%pi*N1*d1)/60//m/s
+Tc=m*v^2//N
+T=f*A*10^6//N
+printf("max tension is,%f N\n",T)
+T1=T-Tc//N
+//log(T1/T2)=u*q*cosec(%pi/180*B)=0.9407
+T2=T1/8.72//N
+Ppb=(T1-T2)*v//W
+printf("power tranmited per belt is,%f W\n",Ppb)
+//n=P/Ppb//
+printf("the number of belts are,%f \n",P/Ppb)
+printf("number of belts are say 10\n")
+n=10
+//let D be dia of shaft
+T3=(P*60)/(2*%pi*N2)*1000//N-mm
+M=(T1+T2+2*Tc)*200*10//N-mm
+Te=sqrt(T3^2 + M^2)
+D=[(Te*16)/(%pi*t)]^(1/3)//m
+printf("shaft dia is,%f mm\n",D)
\ No newline at end of file diff --git a/278/CH20/EX20.5/ex_20_5.sce b/278/CH20/EX20.5/ex_20_5.sce new file mode 100755 index 000000000..f53032495 --- /dev/null +++ b/278/CH20/EX20.5/ex_20_5.sce @@ -0,0 +1,34 @@ +//find..
+clc
+//soltuion
+//given
+P=20000//W
+d1=0.25//m
+N1=1800//rpm
+d2=0.9//m
+x=1//m
+B=20//deg
+u=0.2
+rho=1110//kg/m^3
+f=2.1//N/mm^2
+A=230*10^-6//m^2
+//sin(a)=(r2-r1)/x=0.325
+a=(%pi/180)*18.96
+q1=%pi-2*a//rad
+q2=%pi+2*a
+//since uq for flat pulley si smalll,therfore desing is flat pulley based
+v=(%pi*N1*d1)/60//m/s
+m=A*rho//kg/m
+Tc=m*v^2//N
+printf("the centrifugl tension is,%f N\n",Tc)
+T=f*A*10^6//N
+printf("max tension is,%f N\n",T)
+T1=T-Tc//N
+//log(T1/T2)=u*q2=0.3304
+T2=T1/2.14//N
+Ppb=(T1-T2)*v//W
+printf("power tranmited per belt is,%f W\n",Ppb)
+//n=P/Ppb//
+printf("the number of belts are,%f \n",P/Ppb)
+printf("number of belts are say 5\n")
+n=5
\ No newline at end of file diff --git a/278/CH20/EX20.6/ex_20_6.sce b/278/CH20/EX20.6/ex_20_6.sce new file mode 100755 index 000000000..1cce0d4de --- /dev/null +++ b/278/CH20/EX20.6/ex_20_6.sce @@ -0,0 +1,22 @@ +//find..
+clc
+//soltuion
+//given
+d=2.6//m
+n=15
+B=22.5
+q=2.967//rad
+u=0.28
+T=960//N
+m=1.5//kg/m
+//let N be speed
+v=sqrt(T/(3*m))//m/s
+N=(v*60)/(%pi*d)//rpm
+printf("rpm is,%f rpm\n",N)
+//for max power trans
+Tc=T/3
+T1=T-Tc
+//log(T1/T2)=u*q*cosec(%pi/180*B)=0.9435
+T2=T1/8.78//
+P=(T1-T2)*v*n//W
+printf("the power trans is,%f W\n",P)
\ No newline at end of file diff --git a/278/CH20/EX20.7/ex_20_7.sce b/278/CH20/EX20.7/ex_20_7.sce new file mode 100755 index 000000000..5caa24356 --- /dev/null +++ b/278/CH20/EX20.7/ex_20_7.sce @@ -0,0 +1,23 @@ +//find..
+clc
+//soltuion
+//given
+n=10
+v=25//m/s
+P=115*1000//W
+q=%pi
+B=22.5//deg
+u=0.2
+m=0.6//kg/m
+//let T1 and T2 be tension on tight and slag side
+//P=(T1-T2)*v*n//W
+//T1-T2=460...eq1
+//log(T1/T2)=u*q*cosec(%pi/180*B)=0.714
+T2=T1/5.18//....eq2
+//from eq1 and eq2
+T1=570//N
+T2=110//N
+Tc=m*v^2
+Tt1=T1+Tc
+Tt2=T2+Tc
+printf("the value of Tt1 and Tt2 is,%f N\n,%f N",Tt1,Tt2)
diff --git a/278/CH20/EX20.8/ex_20_8.sce b/278/CH20/EX20.8/ex_20_8.sce new file mode 100755 index 000000000..d4ecae7c1 --- /dev/null +++ b/278/CH20/EX20.8/ex_20_8.sce @@ -0,0 +1,23 @@ +//find..
+clc
+//soltuion
+//given
+P=600*1000//W
+d=4//m
+N=90//rpm
+q=2.8//rad
+B=22.5//deg
+u=0.28
+m=1.5//kg/m
+T=2400//N
+v=(%pi*N*d)/60//m/s
+Tc=m*v^2//N
+printf("the centrifugl tension is,%f N\n",Tc)
+T1=T-Tc//N
+//log(T1/T2)=u*q*cosec(%pi/180*B)=0.8907
+T2=T1/7.78//N
+Ppb=(T1-T2)*v//W
+printf("power tranmited per belt is,%f W\n",Ppb)
+//n=P/Ppb//
+printf("the number of belts are,%f \n",P/Ppb)
+printf("number of belts are say 20\n")
\ No newline at end of file diff --git a/278/CH20/EX20.9/ex_20_10.sce b/278/CH20/EX20.9/ex_20_10.sce new file mode 100755 index 000000000..4553282a6 --- /dev/null +++ b/278/CH20/EX20.9/ex_20_10.sce @@ -0,0 +1,39 @@ +//design wire rope
+clc
+//soltuion
+//given
+W=55000//N
+depth=300//m
+v=500//m/min
+t=10//s
+//ref T20.6,we choose rope type 6*19
+//,tab; 20.11,Fs =7,for depth 300 to 600m,design load is calculated by taking 2 to 2.5 times factor of safety fiven is table
+//ref table 20.11
+Designload=15*55*1000//N
+//ref table 20.6,tesnile strength of 6*19 is=595*d^2
+//595d^2=designload
+//d=sqrt(Desingload/595)//mm
+printf("the dia of rope is,%f mm\n",sqrt(Designload/595))
+printf("the dia of rope is,say 38mm\n")
+d=38//mm
+dw=0.063*d//ref table 20.10,dw=dia of wire
+A=0.38*d^2
+//ref table 20.6
+w=0.0363*d^2*depth//N
+//ref table 20.12
+D=100*d
+fb=84000*dw/D
+printf("bending stress acting is,%f N/mm^2\n",fb)
+Wb=fb*A//N
+printf("the bending load on rope is,%f N\n",Wb)
+a=v/(60*t)//acceleration
+g=9.81//m/s^2
+Wa=(W+w)/g*a//additonal load
+printf("additional load due to acc si,%f N\n",Wa)
+Wst=2*(W+w)
+printf("the starting load acting is,%f N\n",Wst)
+We=W+w+Wb//N
+printf("effctive load during uniform velocity is,%f N\n",We)
+Fsa=Designload/We
+printf("actual factor of safety is,%f \n",Fsa)
+printf("since factor of safety caculated above are safe,therefore wire rope of dia 38mm and 6*19 is chosen")
\ No newline at end of file diff --git a/278/CH21/EX21.1/ex_21_1.sce b/278/CH21/EX21.1/ex_21_1.sce new file mode 100755 index 000000000..066814e12 --- /dev/null +++ b/278/CH21/EX21.1/ex_21_1.sce @@ -0,0 +1,36 @@ +//edsig chain dirve
+clc
+//soltuion
+//given
+RP=15000//W//rated power
+N1=1000//rpm
+N2=350//rpm
+VR=N1/N2
+//ref table 21.5,numbr of teeth on smaller sprocket is T1=25
+T1=25
+T2=T1*N1/N2
+K1=1.5//load factor
+K2=1//lubricaiton factor
+K3=1.25//rating factor
+Ks=K1*K2*K3//service factor
+DP=Ks*RP//design power
+//from table 21.4,corrs to N1=1000rpm,power transmittd for chain 12 is 15.65 kW per strand,
+//therefore chain 12 with 2 strands is used tot ransmit power
+//using table 21.1
+p=19.05//pitch//mm
+d=12.07//mm//roller dia
+w=11.68//mm//min width of roller
+Wb=59000//N
+//d1=p*cosec(180/T1)=0.152//m
+d1=0.152//m
+//d2=p*cosec(180/T2)=0.436//m
+d2=0.436//m
+printf("the itch circle dia of smalla nd large sprocket is,%f mm\n,%f mm\n",d1,d2)
+v1=%pi*d1*N1/60//m/s
+W=RP/v1//N
+Fs=Wb/W
+c=30*p//mm//min center dis
+x=c-4//correct centre dis
+K=(T1+T2)/2+(2*x/p)+[(T1-T2)/(2*%pi)]^2*p/x//mm
+L=K*p
+printf("the length of chian is,%f mm\n",L)
\ No newline at end of file diff --git a/278/CH22/EX22.1/ex_22_1.sce b/278/CH22/EX22.1/ex_22_1.sce new file mode 100755 index 000000000..cbab28a55 --- /dev/null +++ b/278/CH22/EX22.1/ex_22_1.sce @@ -0,0 +1,34 @@ +//find...
+clc
+//solution
+//given
+D=300//mm
+R=0.150//mm
+Cs=0.003
+N=1800//rpm
+w=188.5//rad/s
+rho=7250//kg/m^3
+//let m eb the mass of fly wheel
+//ref fig 22.6
+//total energy at E =total energy at A
+//Eb=E+295
+//Ec=E+295-685=E-390
+//Ed=E-350
+//Ee=E-690
+//Ef=E+270
+//Eg=E
+//Ea=E
+//max energy is at B and min is a E
+//dE=Eb-Ee=985
+//dE=985//mm^2
+//conveting to N-m
+dE=985*0.087//N-m
+//dE=m*R^2*w^2*Cs
+m=dE/(R^2*w^2*Cs)//kg
+printf("the mass of flywheel is,%f kg\n",m)
+//let t be thickness and b be width of rim
+//b=2t
+//A=b*t=2*t^2
+//m=A*2*%pi*R*rho=13668*t^2
+t=sqrt(m/13668)//m
+printf("the thicknes and width is,%f m\n,%f m\n",t,2*t)
\ No newline at end of file diff --git a/278/CH22/EX22.10/ex_22_10.sce b/278/CH22/EX22.10/ex_22_10.sce new file mode 100755 index 000000000..5bbb6e43d --- /dev/null +++ b/278/CH22/EX22.10/ex_22_10.sce @@ -0,0 +1,66 @@ +//find...
+clc
+//solution
+//given
+P=180*1000//W
+N=240//rpm
+ft=5.2*10^6//N/m^2
+//N1-N2=0.03
+rho=7220//kg/m^3
+tf=40//N/mm^2
+Tmean=(P*60)/(2*%pi*N)//N-m
+printf("mean torque acig is,%f N-m\n",Tmean)
+//ref fig 22.18
+q=4*%pi
+Wdpc=Tmean*q
+Wp=1.33*Wdpc//work done in power stroke....eq1
+//Wp1=(0.5*%pi)*Tmax...eq2
+Tmax=Wp/(%pi/2)//N-m
+printf("max torque is,%f N-m\n",Tmax)
+//BG=BF-FG
+BG=Tmax-Tmean//N-m
+BF=Tmax
+dE=Wp*(BG/BF)^2//N-m
+printf("dE is,%f N-m\n",dE)
+//let D be mean dia
+//let v be peripheral velo
+v=sqrt(ft/rho)//m/s
+D=(v*60)/(N*%pi)//m
+R=D/2
+printf("the dia of wheel is,%f m\n",D)
+//N1-N2=0.03*N
+Cs=0.03
+w=2*%pi*N/60//rad/s
+//dE=E*2*Cs
+m=dE/(R^2*w^2*Cs)
+printf("mass of wheel is,%f kg\n",m)
+//let t be thickness and b be width of rim
+//b=2t
+//A=b*t=2*t^2
+t=sqrt(m/96730)//mm
+printf("the thicknes and width is,%f m\n,%f m\n",t,2*t)
+//let d be dia of hub ,d1 be dia of shaft,l be length of hub
+//let Tmax1 be max torque on shaft
+Tmax1=2*Tmean*1000//N-mm
+//d1=(Tmax1*16/(%pi*tf))^(1/3)
+printf("dia od shaft is,%f mm\n",(Tmax1*16/(%pi*tf))^(1/3))
+printf("the dia of shaft is say 125mm\n")
+d1=125//mm
+d=2*d1//mm
+l=2*t//mm
+printf("the dia of hub and length of hub is,%f mm\n,%f m\n",d,l)
+//let a1 be major and b1 be minor axis
+//a1=2*b1
+n=6
+fb=15//N/mm^2
+M=Tmax1*(D*1000-d)/(D*n*1000)//N-mm
+printf("bending moment is,%f N-mm\n",M)
+//Z=(%pi/32)*b1*a1^2=0.05*a1^3
+//fb=M/Z
+a1=(M/(fb*0.05))^(1/3)//mm
+b1=0.5*a1
+printf("major and minor axis is,%f mm\n,%f mm\n",a1,b1)
+printf("corrsponding to shaft of dia 125 mm,width is 36 mm and thicknss ofkey is 20 mm\n")
+//let L be length of key
+L=Tmax1/(36*tf*d1/2)//mm
+printf("length of key is,%f mm\n",L)
\ No newline at end of file diff --git a/278/CH22/EX22.11/ex_22_11.sce b/278/CH22/EX22.11/ex_22_11.sce new file mode 100755 index 000000000..9d122ee1b --- /dev/null +++ b/278/CH22/EX22.11/ex_22_11.sce @@ -0,0 +1,49 @@ +//find...
+clc
+//solution
+//given
+P=185*1000//W
+N=100//rpm
+//dE=0.15*E
+D=2.4//m
+R=1.2//m
+//let m be mass
+E=(P*60)/N//N-m
+dE=0.15*E//N-m
+rho=7200
+Cs=0.02
+v=(%pi*D*N)/60//m/s
+m=dE/(v^2*Cs)//kg
+printf("mass is,%f kg\n",m)
+//let t be thickness and b be width of rim
+//b=2t
+//m=A*%pi*D*rho
+//A=b*t=2*t^2
+t=sqrt(m/108588)//mm
+printf("the thicknes and width is,%f m\n,%f m\n",t,2*t)
+//let d be dia of hub ,d1 be dia of shaft,l be length of hub
+Tmean=(P*60)/(2*%pi*N)//N-m
+Tmax1=2*Tmean*1000//N-mm
+//d1=(Tmax1*16/(%pi*tf))^(1/3)
+printf("dia od shaft is,%f mm\n",(Tmax1*16/(%pi*tf))^(1/3))
+printf("the dia of shaft is say 165mm\n")
+d1=165//mm
+d=2*d1//mm
+l=2*t//mm
+printf("the dia of hub and length of hub is,%f mm\n,%f m\n",d,l)
+//let a1 be major and b1 be minor axis
+//a1=2*b1
+n=6
+fb=14//N/mm^2
+M=Tmax1*(D*1000-d)/(D*n*1000)//N-mm
+printf("bending moment is,%f N-mm\n",M)
+//Z=(%pi/32)*b1*a1^2=0.05*a1^3
+//fb=M/Z
+a1=(M/(fb*0.05))^(1/3)//mm
+b1=0.5*a1
+tf=40
+printf("major and minor axis is,%f mm\n,%f mm\n",a1,b1)
+printf("corrsponding to shaft of dia 165 mm,width is 45 mm and thicknss of key is 25 mm\n")
+//let L be length of key
+L=Tmax1/(45*tf*d1/2)//mm
+printf("length of key is,%f mm\n",L)
\ No newline at end of file diff --git a/278/CH22/EX22.13/ex_22_13.sce b/278/CH22/EX22.13/ex_22_13.sce new file mode 100755 index 000000000..39f90f169 --- /dev/null +++ b/278/CH22/EX22.13/ex_22_13.sce @@ -0,0 +1,50 @@ +//find...
+clc
+//solution
+//given
+Do=1.8//m
+Di=1.35//m
+b=0.3//m
+N=250//rpm
+T=15000//N-m
+ftb=35//n/mm^2
+ftl=40//n/mm^2
+//w=1.25*h
+n=6
+fta=15//N/mm^2
+d1=150//mm
+rho=7200//kg/m^3
+D=(Do+Di)/2//m
+t=(Do-Di)/2//m
+v=(%pi*D*N)/60//m/s
+ft=rho*v^2*10^6//N/mm^2
+A=b*t//m^2
+Ft=ft*A*10^6//N
+//let dc be core dia
+//Ft=(%pi/4)*dc^2*ftb*4=110*dc^2
+//dc=sqrt(Ft/110)//mm
+printf("the core dia is,%f mm\n",sqrt(Ft/110))
+printf("the standard core dia is 48.65mm\n")
+dc=48.65//mm
+//let h be depth of link and w be width of link
+//w=1.25*h
+//Al=w*h=1.25*h^2
+//let Fmax be max tensile force
+Fmax=2*ft*A//N....eq1
+//Fmax=4*ftl*Al=200*h^2...eq2
+//from eq 1 and eq2
+h=46//mm
+w=1.25*h//mm
+printf("the heigth and width of of link is,%f mm\n,%f mm\n",h,w)
+//let a1 be major and b1 be minor axis
+//a1=2*b1
+n=6
+d=2*d1//m
+M=T*(D*1000-d)/(D*n*1000)//N-mm
+printf("bending moment is,%f N-mm\n",M*1000)
+//Z=(%pi/32)*b1*a1^2=0.05*a1^3
+//fb=M/Z
+a1=(M*1000/(fta*0.05))^(1/3)//mm
+b1=0.5*a1
+tf=40
+printf("major and minor axis is,%f mm\n,%f mm\n",a1,b1)
\ No newline at end of file diff --git a/278/CH22/EX22.2/ex_22_2.sce b/278/CH22/EX22.2/ex_22_2.sce new file mode 100755 index 000000000..6b95c559f --- /dev/null +++ b/278/CH22/EX22.2/ex_22_2.sce @@ -0,0 +1,38 @@ +//find...
+clc
+//solution
+//given
+N=900//rpm
+w=94.26//rad/s
+//(w1-w2)/w=0.02
+Cs=0.02
+D=650//mm
+R=0.325//m
+rho=7200//kg/m^3
+//let m eb the mass of fly wheel
+//ref fig 22.7
+//total energy at E =total energy at A
+//Eb=E-35
+//Ec=E+375
+//Ed=E+390
+//Ee=E+415
+//Ef=E+80
+//Eg=E+340
+//Eh=E-25
+//Ek=E+360
+//El=E
+//Ea=E
+//max energy is at B and min is a E
+//dE=Eb-Ee=450
+//dE=450//mm^2
+//conveting to N-m
+dE=450*5.5//N-m
+//dE=m*R^2*w^2*Cs
+m=dE/(R^2*w^2*Cs)//kg
+printf("the mass of flywheel is,%f kg\n",m)
+//let t be thickness and b be width of rim
+//b=2t
+//A=b*t=2*t^2
+//m=A*2*%pi*R*rho=29409*t^2
+t=sqrt(m/29409)//m
+printf("the thicknes and width is,%f m\n,%f m\n",t,2*t)
\ No newline at end of file diff --git a/278/CH22/EX22.3/ex_22_3.sce b/278/CH22/EX22.3/ex_22_3.sce new file mode 100755 index 000000000..6d2f80dd2 --- /dev/null +++ b/278/CH22/EX22.3/ex_22_3.sce @@ -0,0 +1,25 @@ +//find...
+clc
+//solution
+//given
+P=150*1000//W
+N=80//rpm
+Ce=0.1
+//(w1-w2)=0.02
+D=2//m
+R=1//m
+rho=7200//kg/m^3
+w=2*%pi*N/60//rad/s
+//Cs=(w1-w2)/w
+Cs=0.04
+Wdpc=P*60/N//N-m
+dE=Ce*Wdpc//N-m
+dEm=0.95*dE
+//let m eb the mass of fly wheel
+//dE=m*R^2*w^2*Cs
+m=dEm/(R^2*w^2*Cs)//kg
+printf("the mass of flywheel is,%f kg\n",m)
+//let A be the area of rim
+//m=A*2*%pi*R*rho
+A=m/(2*%pi*R*rho)//m^2
+printf("the area of rim is,%f m^2",A)
\ No newline at end of file diff --git a/278/CH22/EX22.4/ex_22_4.sce b/278/CH22/EX22.4/ex_22_4.sce new file mode 100755 index 000000000..a4893e73f --- /dev/null +++ b/278/CH22/EX22.4/ex_22_4.sce @@ -0,0 +1,28 @@ +//find...
+clc
+//solution
+//given
+P=20000//W
+N=300//rpm
+w=31.42//rad/s
+//(w1-w2)/w=0.01*w
+//ref fig 22.8
+q=4*%pi
+Tmean=(P*60)/(2*%pi*N)//N-m
+printf("mean torque acting is,%f N-m\n",Tmean)
+Wdpc=Tmean*q//N-m...eq1
+//Wn=We-Wc=We-We/2.3=0.565*We...eq2
+//from eq1 and eq2
+We=14160//N-m
+Tmax=We*2/(%pi)//N-m
+//BG=BF-FG
+BG=Tmax-Tmean//N-m
+BF=Tmax
+dE=We*(BG/BF)^2//N-m
+printf("the ")
+//Cs=(w1-w2)/w
+Cs=0.02
+//let I be moment of inertia
+//dE=I*w^2*Cs
+I=dE/(w^2*Cs)//kg-m^2
+printf("the moment of inertia is,%f kg-m^2",I)
\ No newline at end of file diff --git a/278/CH22/EX22.5/ex_22_5.sce b/278/CH22/EX22.5/ex_22_5.sce new file mode 100755 index 000000000..8d8aa96a7 --- /dev/null +++ b/278/CH22/EX22.5/ex_22_5.sce @@ -0,0 +1,46 @@ +//find...
+clc
+//solution
+//given
+N=600//rpm
+w=62.84//rad/s
+rho=7250//kg/m^3
+ft=6*10^6//n/M^2
+//REF fig 22.12
+//let I be mont of inertia
+//total energy at E =total energy at A
+//Eb=E+160
+//Ec=E-12
+//Ed=E+156
+//Ee=E-35
+//Ef=E+162
+//Eg=E
+//Ea=E
+//max energy is at F and min is a E
+//dE=Ef-Ee=197
+//dE=197//mm^2
+//conveting to N-m
+dE=197*13.1//N-m
+//Cs=(w1-w2)/w
+Cs=0.02
+//let I be moment of inertia
+//dE=I*w^2*Cs
+I=dE/(w^2*Cs)//kg-m^2
+printf("the moment of inertia is,%f kg-m^2\n",I)
+//let t be thickness and b be width of rim
+//b=2t
+v=sqrt(ft/rho)//m/s
+printf("the tangetntial velocity is,%f m/s\n",v)
+//v=%pi*D*N/60=31.42*D
+printf("dia of flywheel is,%d mm\n",v/31.42*1000)
+//let E be total energy
+E=dE/(2*Cs)//N-m
+Emin=0.92*E//N-m
+//let m eb bmass
+m=Emin*2/(v^2)//kg
+//let t be thickness and b be width of rim
+//b=2t
+//A=b*t=2*t^2
+//m=A*2*%pi*R*rho=41686*t^2
+t=sqrt(m/41686)//m
+printf("the thickness and iwth of rim is,%f m\n,%f m\n",t,2*t)
\ No newline at end of file diff --git a/278/CH22/EX22.6/ex_22_6.sce b/278/CH22/EX22.6/ex_22_6.sce new file mode 100755 index 000000000..89dc7f084 --- /dev/null +++ b/278/CH22/EX22.6/ex_22_6.sce @@ -0,0 +1,42 @@ +//find...
+clc
+//solution
+//given
+N=300//rpm
+w=31.42//rad/s
+ft=5.6*10^6//N/m^2
+rho=7200
+//let D be dia
+//v=(%pi*D*N)/60=15.71*D//m/s
+//ft=rho*v^2=1.8*10^6*D^2
+D=sqrt(ft/(1.8*10^6))//m
+R=D/2//m
+printf("the dia of flywheel is,%f m\n",D)
+//ref fig 22.13
+//total energy at E =total energy at A
+//Eb=E-32
+//Ec=E+376
+//Ed=E+109
+//Ee=E+442
+//Ef=E+132
+//Eg=E+358
+//Eh=E-16
+//Ei=E+244
+//Ej=E
+//Ea=E
+//max energy is at E and min is a B
+//dE=Eb-Ee=474
+//dE=474//mm^2
+//conveting to N-m
+dE=474*27.3//N-m
+//Cs=(w1-w2)/w
+Cs=0.03
+//dE=m*R^2*w^2*Cs
+m=dE/(R^2*w^2*Cs)//kg
+printf("the mass of flywheel is,%f kg\n",m)
+//let t be thickness and b be width of rim
+//b=4t
+//A=b*t=4*t^2
+//m=A*2*%pi*R*rho=159624*t^2
+t=sqrt(m/159624)//m
+printf("the thickness and iwth of rim is,%f m\n,%f m\n",t,4*t)
\ No newline at end of file diff --git a/278/CH22/EX22.7/ex_22_7.sce b/278/CH22/EX22.7/ex_22_7.sce new file mode 100755 index 000000000..5836e6a6c --- /dev/null +++ b/278/CH22/EX22.7/ex_22_7.sce @@ -0,0 +1,41 @@ +//find...
+clc
+//solution
+//given
+P=50000//W
+N=150//rpm
+n=75
+ft=4*10^6//N/m^2
+rho=7200
+Tmean=(P*60)/(2*%pi*N)//N-m
+printf("mean torque acig is,%f N-m\n",Tmean)
+//ref fig 22.14
+q=4*%pi
+Wdpc=Tmean*q
+Wp=1.4*Wdpc//work done in power stroke....eq1
+//from dia
+//Wp1=(0.5*%pi)*Tmax...eq2
+Tmax=Wp/1.571//N-m
+printf("max torque is,%f N-m\n",Tmax)
+//BG=BF-FG
+BG=Tmax-Tmean//N-m
+BF=Tmax
+dE=Wp*(BG/BF)^2//N-m
+printf("dE is,%f N-m\n",dE)
+//let D be mean dia
+//let v be peripheral velo
+v=sqrt(ft/rho)//m/s
+D=(v*60)/(N*%pi)//m
+printf("the dia of wheel is,%f m\n",D)
+//let t be thickness and b be width of rim
+//b=4t
+//A=b*t=4*t^2
+//N1-N2=0.01*N
+Cs=0.01
+//dE=E*2*Cs
+E=dE/(2*Cs)//N-m
+Erim=(15/16)*E//N-m
+printf("Erim is,%f N-m\n",Erim)
+m=Erim*2/v^2//kg
+t=sqrt(m/271468)
+printf("the thickness and width si,%f m\n,%f m\n",t,4*t)
diff --git a/278/CH22/EX22.9/ex_22_9.sce b/278/CH22/EX22.9/ex_22_9.sce new file mode 100755 index 000000000..77a02f682 --- /dev/null +++ b/278/CH22/EX22.9/ex_22_9.sce @@ -0,0 +1,32 @@ +//find...
+clc
+//solution
+//given
+n=25
+d1=25//mm
+t1=18//mm
+tu=300//N/mm^2
+effm=0.95
+Cs=0.1
+ft=6//N/mm^2
+rho=7250//kg/m^3
+D=1.4//m
+R=0.7//m
+As=%pi*d1*t1//area of plate sheared
+Fs=As*tu//N
+Eps=0.5*Fs*t1//N-mm//energy req per stroke
+Epm=Eps*n/1000//N-m
+P=Epm/(60*effm)//W
+printf("power req is,%f W\n",P)
+//let t be thickness and b be width of rim
+//b=2t
+//A=b*t=2*t^2
+dE=(9/10)*Eps//N-m
+//let m be mass of wheel
+Erim=0.95*dE//N-m
+N=9*25//rpm
+w=2*%pi*N/60//rad/s
+m=Erim/(R^2*w^2*Cs)//kg
+//m=A*2*%pi*R*rho=63782*t^2
+t=sqrt(m/63782)//m
+printf("the thickness and width is,%f m\n,%f m\n",t,2*t)
diff --git a/278/CH23/EX23.1/ex_23_1.sce b/278/CH23/EX23.1/ex_23_1.sce new file mode 100755 index 000000000..3f0e22cdd --- /dev/null +++ b/278/CH23/EX23.1/ex_23_1.sce @@ -0,0 +1,12 @@ +//find
+clc
+//solution
+//given
+D=50//mm
+d=5//mm
+n=20//mm
+W=500//N
+C=D/d
+Ks=1+(1/(2*C))
+t=Ks*[8*W*D/(%pi*d^3)]//N/mm^2
+printf("shear stress acting is,%f N/mm^2",t)
\ No newline at end of file diff --git a/278/CH23/EX23.10/ex_23_10.sce b/278/CH23/EX23.10/ex_23_10.sce new file mode 100755 index 000000000..bc39b5c0d --- /dev/null +++ b/278/CH23/EX23.10/ex_23_10.sce @@ -0,0 +1,37 @@ +//find
+clc
+//solution
+//given
+m=2.97//kg
+x=0.15//m
+y=0.1125//m
+r2=0.1//m
+r1=0.15//m
+N2=240//rpm
+t=420//N/mm^2
+G=84*1000//N/mm^2
+C=8
+//ref fig 23.16
+w2=2*%pi*N2/60//rad/s
+w1=w2+(7.5*w2/100)//rad/s
+//let Fc1 and Fc2 be centri fugal forces a w1 and w2
+//S1=2*Fc1*x/y
+S1=2*m*r1*w1^2*x/y//N
+S2=2*m*r2*w2^2*x/y//N
+dx=(r1-r2)*y/x*1000//mm
+K=(4*C-1)/(4*C-4)+(0.615/C)
+W=S1//max force
+printf("dia of sprig wire is,%f vmm\n",sqrt((K*8*W*C)/(t*%pi)))
+printf("dia is say 7.62 mm,taking standard conditions rfom table 23.2\n")
+d=7.62
+D=C*d
+W1=S1-S2
+printf("mean dia is,%f mm\n",D)
+printf("numbr of tunrs are,%f \n",dx*G*d/(8*W1*C^3))
+printf("numbr of turns are say 16\n")
+n=16
+nb=n+2
+dxmax=dx*W/(W1)
+fL=nb*d + dxmax + 0.15*dxmax
+printf("free length is ,%f mm\n",fL)
+printf("pitch of coil is,%f mm",fL/(nb-1))
\ No newline at end of file diff --git a/278/CH23/EX23.11/ex_23_11.sce b/278/CH23/EX23.11/ex_23_11.sce new file mode 100755 index 000000000..408ebd50c --- /dev/null +++ b/278/CH23/EX23.11/ex_23_11.sce @@ -0,0 +1,46 @@ +//find
+clc
+//solution
+//given
+P=30000//W
+N=3000//rpm
+pb=0.085//N/mm^2
+v=2300//m/min
+//d1=1.3d2
+//r1=1.3r2
+u=0.3
+ns=6
+D=25//mm
+t=420//N/mm^2
+G=84000//N/mm^2
+Tmean=P*60/(2*%pi*N)//N-m
+Tmax=1.2*Tmean*1000//N-mm
+//C=pb*r2
+//W=C*2*%pi*(r1-r2)
+//Tmax=2*%pi*u*C[r1^2-r2^2]
+//Tmax=0.11*r2^3
+r2=(Tmax/0.11)^(1/3)//mm
+r1=1.3*r2//mm
+r=(r1+r2)/2000//m
+v1=2*%pi*N*r//m/min
+printf("speed obtained is,%f m/min\n",v1)
+//since velocity ontaine di sless then v,hence design is safe
+//W=C*2*%pi*(r1-r2)
+W=pb*r2*2*%pi*(r1-r2)//N
+W1=W/6//force on each spring
+//let d1 eb dia
+T=W1*D/2//N-mm
+d1=(16*T/(%pi*t))^(1/3)//mm
+C=D/d1
+K=(4*C-1)/(4*C-4)+(0.615/C)
+printf("dia of sprig wire is,%f vmm\n",((K*8*W1*D)/(t*%pi))^(1/3))
+printf("taking standard dia 4.064 from table 23.2,we get d is 4.064\n")
+d=4.064//mm
+Do=D+d
+Di=D-d
+printf("mean dia,outer di and inner dia are,%f mm\n,%f mm\n,%f mm\n",D,Do,Di)
+dx=8*W1*D^3*8/(G*d^4)//mm
+nb=8+2
+fL=nb*d + dx +0.15*d
+printf("free length is ,%f mm\n",fL)
+printf("pitch of coil is,%f mm",fL/(nb-1))
\ No newline at end of file diff --git a/278/CH23/EX23.12/ex_23_12.sce b/278/CH23/EX23.12/ex_23_12.sce new file mode 100755 index 000000000..58821e7c1 --- /dev/null +++ b/278/CH23/EX23.12/ex_23_12.sce @@ -0,0 +1,16 @@ +//find
+clc
+//solution
+//given
+U=1000//N-m
+D=0.100//m
+d=0.02//m
+n=30
+G=85*10^9//N/m^2
+C=D/d
+K=(4*C-1)/(4*C-4)+(0.615/C)
+V=(%pi*D*n)*[%pi/4*d^2]//volume//m^3
+t=(U*4*K^2*G/V)^(0.5)//N/m^2
+printf("max shear stress acting is,%f N/m^2\n",t)
+dx=%pi*t*D^2*n/(K*d*G)
+printf("deflection produced is,%f m",dx)
diff --git a/278/CH23/EX23.13/ex_23_13.sce b/278/CH23/EX23.13/ex_23_13.sce new file mode 100755 index 000000000..ce940f183 --- /dev/null +++ b/278/CH23/EX23.13/ex_23_13.sce @@ -0,0 +1,16 @@ +//find
+clc
+//solution
+//given
+d=10//mm
+D=120//mm
+n=10
+W=200//N
+G=80*1000//N/mm^2
+t=8*W*D/(%pi*d^3)*[1+(d/2*D)]//N/mm^2
+dx=8*W*D^3*n/(G*d^4)//mm
+printf("stress and eflection is,%f N/mm^2\n,%f N/mm^2\n",t,dx)
+sf=W/dx
+printf("stiffness is,%f N/mm\n",sf)
+U=0.5*W*dx
+printf("enerrgy stored is,%f N-mm\n",U)
\ No newline at end of file diff --git a/278/CH23/EX23.15/ex_23_15.sce b/278/CH23/EX23.15/ex_23_15.sce new file mode 100755 index 000000000..6ef7c9414 --- /dev/null +++ b/278/CH23/EX23.15/ex_23_15.sce @@ -0,0 +1,28 @@ +//find
+clc
+//solution
+//given
+m=20000//kg
+v=2//m/s
+D=300//mm
+dx=250//mm
+t=600//N/mm^2
+E=0.5*m*v^2*10^3//N-mm
+//let W be equivalent load
+//Es=0.5*W*dx*2=250*W
+W=E/250//N
+T=W*D/2//N-mm
+printf("torque acting is,%f N-mm\n",T)
+//d=(T*16/(%pi*t))^(1/3)//mm
+printf("dia is,%f mm\n",(T*16/(%pi*t))^(1/3))
+printf("dia is say 60mm\n")
+d=60//mm
+G=84000//N/mm^2
+//let be numbr of active tunrs
+//n=dx*G*d^4/(D^3*8*W)
+printf("numbr of turns are,%f \n",dx*G*d^4/(D^3*8*W))
+printf("numbr of turns are,say 8\n")
+nb=8+2
+fL=nb*d + dx +0.15*dx
+printf("free length is ,%f mm\n",fL)
+printf("pitch of coil is,%f mm",fL/(nb-1))
\ No newline at end of file diff --git a/278/CH23/EX23.16/ex_23_16.sce b/278/CH23/EX23.16/ex_23_16.sce new file mode 100755 index 000000000..e41c51988 --- /dev/null +++ b/278/CH23/EX23.16/ex_23_16.sce @@ -0,0 +1,26 @@ +//find
+clc
+//solution
+//given
+m=1800//kg
+v=1.2//m/s
+dx=200//m
+t=365//N/mm^2
+C=6
+G=80*1000//N/mm2
+E=0.5*m*v^2*10^3//N-mm
+//let W be equivalent load
+//Es=0.5*W*dx*2=200*W
+W=E/200//N
+//let b be suide of square and D be mean Dia\
+//D=6b
+K=(4*C-1)/(4*C-4)+(0.615/C)
+//t=K*2.4*W*D/b^3=116870/b^2
+//b=sqrt(116870/t)//mm
+printf("sqrt(116870/t),%f mm\n",sqrt(116870/t))
+printf("side of square is,say 18 mm\n")
+b=18//mm
+printf("dia of coil is,%f mm\n",6*b)
+//let be numbr of acitve colild
+n=dx*G*b/(5.568*W*C^3)
+printf("acitve turns are ,%f \n",n)
\ No newline at end of file diff --git a/278/CH23/EX23.18/ex_23_18.sce b/278/CH23/EX23.18/ex_23_18.sce new file mode 100755 index 000000000..85113365e --- /dev/null +++ b/278/CH23/EX23.18/ex_23_18.sce @@ -0,0 +1,12 @@ +//find
+clc
+//solution
+//given
+n=12//...k constant
+n1=5//....k1
+n2=7//....k2
+//X=G*d^4/(8*D^3)//constant
+//X=k*n
+//k1=X/n1
+//k2=X/n2
+printf("stifness of spring 1 is X/5,i.e 2.4k and stiffness of spring 2 is X/7,i.e 1.7k")
\ No newline at end of file diff --git a/278/CH23/EX23.19/ex_23_19.sce b/278/CH23/EX23.19/ex_23_19.sce new file mode 100755 index 000000000..9b11e1332 --- /dev/null +++ b/278/CH23/EX23.19/ex_23_19.sce @@ -0,0 +1,51 @@ +//find
+clc
+//solution
+//given
+W=5000//N
+dx=40//mm
+t1=850//N/mm^2
+t2=850//N/mm^2
+C=6
+G=80000//N/mm^2
+//ref fig 23.22
+//D1-D2=2*d1
+//D1=C*d1
+//D2=C*d2
+//d1/d2=1.5
+//W1/W2=2.25....eq1
+//W1+W2=W....eq2
+//from 1 and 2,we get
+W1=3492//N
+W2=1538//N
+K1=(4*C-1)/(4*C-4)+(0.615/C)
+K2=K1
+//d1=(K1*8*W1*C/(%pi*t1))^(0.5)
+printf("dia of spring wires is,%f mm\n",(K1*8*W1*C/(%pi*t1))^(0.5))
+printf("dia is ,say 10mm\n")
+printf("mean outer dia is,%f mm\n",6*d1)
+d1=10
+D1=6*d1
+printf("dia of spring wires is,%f mm\n",(K2*8*W2*C/(%pi*t2))^(0.5))
+printf("dia is ,say 6 mm\n")
+d2=6
+printf("mean outer dia is,%f mm\n",6*d2)
+D2=6*d2
+//n1=(8*W1*C^3)/(dx*G*d1)
+printf("number of turns are in outer coil,%f \n",1/[(8*W1*C^3)/(dx*G*d1)])
+printf("numbr of turns are say 6\n")
+n1=6
+n1b=n1+2
+Ls1=n1b*d1
+n2b=n1b*d1/d2
+n2=n2b-2
+printf("numbr of tuns in inner coil is,%f \n",n2)
+fL=Ls1+dx+0.15*dx
+printf("free length is,%f mm\n",fL)
+printf("outr dia of outr spring is,%f mm\n",D1+d1)
+printf("innr dia of outr spring is,%f mm\n",D1-d1)
+printf("outer dia of innr spring is,%f mm\n",D2+d2)
+printf("innr dia of innr spring is,%f mm\n",D2-d2)
+
+
+
diff --git a/278/CH23/EX23.2/ex_23_2.sce b/278/CH23/EX23.2/ex_23_2.sce new file mode 100755 index 000000000..554530816 --- /dev/null +++ b/278/CH23/EX23.2/ex_23_2.sce @@ -0,0 +1,22 @@ +//find
+clc
+//solution
+//given
+d=6//mm
+Do=75//mm
+t=350//N/mm^2
+G=84*1000//N/mm^2
+D=Do-d//mm
+C=D/d
+//let W be axial load
+//neglecting curvature
+Ks=1+(1/(2*C))
+//t=Ks*[8*W*D/(%pi*d^3)]//N/mm^2
+W=(t*%pi*d^3)/(8*Ks*D)
+printf("load acting is,%f N\n",W)
+dpt=8*W*D^3/(G*d^4)//deflection per turn//mm
+printf("defelection per turn is,%f mm",dpt)
+//considering curvature
+K=(4*C-1)/(4*C-4)+(0.615/C)
+W=t*%pi*d^2/(K*8*C)//N
+printf("load acting by takin curvature in consideration is,%f N\n",W)
diff --git a/278/CH23/EX23.20/ex_23_20.sce b/278/CH23/EX23.20/ex_23_20.sce new file mode 100755 index 000000000..0e9e35a43 --- /dev/null +++ b/278/CH23/EX23.20/ex_23_20.sce @@ -0,0 +1,35 @@ +//find
+clc
+//solution
+//given
+dx1=15//mm
+n1=10
+D1=40//mm
+d1=5//mm
+n2=8
+D2=30//mm
+d2=4//mm
+W=400//N
+G=84000//N/mm^2
+//comprssion of each spring
+P1=dx1*G*d1^4/(8*D1^3*n1)//N
+R=W-P1//remaining load istaken by both spring
+//P2=P1*dx2/dx1=10.27*dx2
+//dx2=8*W2*D2^3/(G*d2^4)=0.08*W2
+//W2=12.5*dx2
+//P2+W2=W-P1
+dx2=(W-P1)/(22.77)//mm
+P2=10.27*dx2
+printf("total deflection is,%f mm\n",dx1+dx2)
+W1=P1+P2
+printf("load on outr spring is,%f N\n",W1)
+W2=12.5*dx2
+printf("load shared by innr spring is,%f N\n",W2)
+C1=D1/d1
+C2=D2/d2
+K1=(4*C1-1)/(4*C1-4)+(0.615/C1)
+K2=(4*C2-1)/(4*C2-4)+(0.615/C2)
+t1=K1*8*W1*D1/(%pi*d1^3)//N/mm^2
+t2=K2*8*W2*D2/(%pi*d2^3)//N/mm^2
+printf("stress induced in outr spring is,%f N/mm^2\n",t1)
+printf("strss induce in iner spring is,%f N/mm^2\n",t2)
diff --git a/278/CH23/EX23.21/ex_23_21.sce b/278/CH23/EX23.21/ex_23_21.sce new file mode 100755 index 000000000..3420ca1f2 --- /dev/null +++ b/278/CH23/EX23.21/ex_23_21.sce @@ -0,0 +1,15 @@ +//find
+clc
+//solution
+//given
+D=60//mm
+d=6//mm
+M=6000//N-mm
+C=10
+E=200000//N/mm^2
+n=5.5
+K=(4*C^2-C-1)/(4*C^2-4*C)
+fb=K*(32*M/(%pi*d^3))//N/mm^2
+printf("bending stressa acting is,%f N/mm^2\n",fb)
+q=64*M*D*n/(E*d^4)//rad
+printf("angular deflection is,%f rad",q)
\ No newline at end of file diff --git a/278/CH23/EX23.22/ex_23_22.sce b/278/CH23/EX23.22/ex_23_22.sce new file mode 100755 index 000000000..2c6358851 --- /dev/null +++ b/278/CH23/EX23.22/ex_23_22.sce @@ -0,0 +1,15 @@ +//find
+clc
+//solution
+//given
+b=6//mm
+t1=0.25//mm
+l=2500//mm
+t=800//N/mm^2
+E=200*1000//N/mm^2
+M=t*b*t1^2/(12)//N-mm
+printf("bending moment is,%f N-mm\n",M)
+q=12*M*l/(E*b*t1^2)//rad
+printf("angular def is,%f rad\n",q)
+U=0.5*M*q
+printf("energy stored is,%f N-mm",U)
\ No newline at end of file diff --git a/278/CH23/EX23.23/ex_23_23.sce b/278/CH23/EX23.23/ex_23_23.sce new file mode 100755 index 000000000..440d976d7 --- /dev/null +++ b/278/CH23/EX23.23/ex_23_23.sce @@ -0,0 +1,24 @@ +//find
+clc
+//solution
+//given
+tL=140000//N
+ns=4
+n=10
+L=500//mm
+dx=80//mm
+E=200000//N/mm^2
+f=600//N/mm^2
+W=tL/8//N
+//let t be thickness and b be th width
+//f=6WL/(nbt^2)
+//nbt^2=87.5*1000...eq1
+//dx=6WL^3/(nEbt^3)
+//nbt^3=0.82*10^6....eq2
+//from eq1 and eq2 ,we get
+t=10//mm
+b1=87.5*1000/(n*t^2)
+printf("width using bending stress is,%f mm\n",b1)
+b2=0.82*10^6/(n*t^3)
+printf("width using deflection is,%f mm\n",b2)'
+printf("taking larger value 87.5 mm into account...")
\ No newline at end of file diff --git a/278/CH23/EX23.24/ex_23_24.sce b/278/CH23/EX23.24/ex_23_24.sce new file mode 100755 index 000000000..d58528177 --- /dev/null +++ b/278/CH23/EX23.24/ex_23_24.sce @@ -0,0 +1,24 @@ +//find
+clc
+//solution
+//given
+n=12
+nf=2
+L1=525//mm
+l=85//mm
+W=2700//N
+ff=280//N/mm^2
+E=210*1000//N/mm^2
+//let t be thickness and b be th width
+//nt/b=3
+//b=4t
+n=12
+L=(2*L1-l)/2//mm
+ng=n-nf
+//ff=18WL/(bt^2(2ng+3nf))
+//ff=225476/t^3
+t=(225476/ff)^(1/3)//mm
+printf("thickness and width is,%f mm\n,%f mm\n",t,4*t)
+b=4*t//taking t=9.3 not 10
+dx=12*W*L^3/(E*b*t^3*(2*ng+3*nf))
+printf("deflection is,%f mm\n",dx)//
\ No newline at end of file diff --git a/278/CH23/EX23.26/ex_23_26.sce b/278/CH23/EX23.26/ex_23_26.sce new file mode 100755 index 000000000..141a7affe --- /dev/null +++ b/278/CH23/EX23.26/ex_23_26.sce @@ -0,0 +1,46 @@ +//find
+clc
+//solution
+//given
+W=3000//N
+n=7
+b=65//mm
+nf=2
+L1=550//mm
+l=80//mm
+f=350//N/mm^2
+fb=80//N/mm^2
+E=210000//N/mm^2
+//let t be thickness
+L=(2*L1-l)/2//mm
+ng=n-nf
+//f=18WL/(bt^2(2ng+3nf))=26480/t^2
+//t=sqrt(26480/350)//mm
+printf("thickness is,%f mm\n",sqrt(26480/350))
+printf("thickness is, say 9mm\n")
+t=9//mm
+dx=12*W*L^3/(E*b*t^3*(2*ng+3*nf))
+printf("deflection is,%f mm\n",dx)//
+l1=b//length of pin
+pb=8//N/mm^2
+//let d be dia of pin
+d=W/(l1*pb)//mm
+//ref fig 23.33
+l2=l1+4//mm
+M=W*l2/4//N-mm
+//Z=(%pi/32)*d1^3=0.0982*d1^3
+d1=(M/(fb*0.0982))^(1/3)
+printf("inner dia of pin is,%f mm\n",d1)
+ls=1020/(7-1)+l//mm
+printf("lnegth of smallest leaf is,%f mm\n",ls)
+l2nd=1020/(7-1)*2+l//mm
+printf("length of 2nd leaf is,%f mm\n",l2nd)
+l3rd=1020/(7-1)*3+l//mm
+printf("length of third leaf is,%f mm\n",l3rd)
+l4th=1020/(7-1)*4+l//mm
+printf("length of 4th leaf is,%f mm\n",l4th)
+l5th=1020/(7-1)*5+l//mm
+printf("length of 5th leaf is,%f mm\n",l5th)
+l6th =1020/(7-1)*6+l//mm
+printf("length of 6ht leaf is,%f mm\n",l6th)
+mL=2*L1+%pi*(d+t)*2
diff --git a/278/CH23/EX23.3/ex_23_3.sce b/278/CH23/EX23.3/ex_23_3.sce new file mode 100755 index 000000000..99e627243 --- /dev/null +++ b/278/CH23/EX23.3/ex_23_3.sce @@ -0,0 +1,20 @@ +//find
+clc
+//solution
+//given
+W=1000//N
+dx=80//mm
+n=30
+G=85*1000//N/mm^2
+//let D be mean dia of spring coil ,d be dia of spring wire
+//C =D/d
+d=4//assume//mm
+//dx=8*W*D^3*n/(G*d^4)
+//dx=8*W*C^3*n/(G*d)
+C=[dx*G*d/(8*W*n)]^(1/3)
+D=C*d//mm
+printf("dia of coil is,%f mm\n",D)
+printf("outer dia is ,%f mm\n",D+d)
+K=(4*C-1)/(4*C-4)+(0.615/C)
+t=K*(8*W*C)/(%pi*d^2)
+printf("max shear stress induced is,%f N/mm^2",t)
\ No newline at end of file diff --git a/278/CH23/EX23.4/ex_23_4.sce b/278/CH23/EX23.4/ex_23_4.sce new file mode 100755 index 000000000..94c11b6b8 --- /dev/null +++ b/278/CH23/EX23.4/ex_23_4.sce @@ -0,0 +1,19 @@ +//find
+clc
+//solution
+//given
+W=30//N
+d=2//mm
+n=18
+C=6
+D=12//mm
+t=680//N/mm^2
+G=80*1000//N/mm^2
+K=(4*C-1)/(4*C-4)+(0.615/C)
+t1=K*(8*W*C)/(%pi*d^2)
+printf("tortional shear stress is,%f N/mm^2\n",t1)
+k=G*d/(8*C^3*n)
+printf("spring rate is,%f N/mm\n",k)
+//let W1 force cause t shear
+W1=t*%pi*d^2/(K*8*C)//N
+printf("force to cause the body of spring to yield stregth is,%f N",W1)
\ No newline at end of file diff --git a/278/CH23/EX23.5/ex_23_4.sce b/278/CH23/EX23.5/ex_23_4.sce new file mode 100755 index 000000000..94c11b6b8 --- /dev/null +++ b/278/CH23/EX23.5/ex_23_4.sce @@ -0,0 +1,19 @@ +//find
+clc
+//solution
+//given
+W=30//N
+d=2//mm
+n=18
+C=6
+D=12//mm
+t=680//N/mm^2
+G=80*1000//N/mm^2
+K=(4*C-1)/(4*C-4)+(0.615/C)
+t1=K*(8*W*C)/(%pi*d^2)
+printf("tortional shear stress is,%f N/mm^2\n",t1)
+k=G*d/(8*C^3*n)
+printf("spring rate is,%f N/mm\n",k)
+//let W1 force cause t shear
+W1=t*%pi*d^2/(K*8*C)//N
+printf("force to cause the body of spring to yield stregth is,%f N",W1)
\ No newline at end of file diff --git a/278/CH23/EX23.6/ex_23_6.sce b/278/CH23/EX23.6/ex_23_6.sce new file mode 100755 index 000000000..aa38e4720 --- /dev/null +++ b/278/CH23/EX23.6/ex_23_6.sce @@ -0,0 +1,26 @@ +//find
+clc
+//solution
+//given
+W1=2250//N
+W2=2750//N
+dx=6
+C=5
+t=420//N/mm^2
+G=84*1000//N/mm^2
+//T=W2*D/2=W*5d/2=6875*d
+//T=(%pi/16)*t*d^3
+d=sqrt(6875/82.48)//mm
+printf("mean dia is,%f mm\n",5*d)
+printf("outer dia is,%f \n",5*d+d)
+printf("inner dia is,%f mm\n",5*d-d)
+W=500//N
+//n=dx*G*d/(8*W*C^3)
+printf("numbr of tunrs are,%f \n",dx*G*d/(8*W*C^3))
+printf("numbr of turns are say 10\n")
+n=10
+nb=n+2
+dxmax=(6/500)*2750//mm
+fL=nb*d + dxmax + 0.15*dxmax
+printf("free length is ,%f mm\n",fL)
+printf("pitch of coil is,%f mm",fL/(nb-1))
\ No newline at end of file diff --git a/278/CH23/EX23.7/ex_23_7.sce b/278/CH23/EX23.7/ex_23_7.sce new file mode 100755 index 000000000..c48c2697d --- /dev/null +++ b/278/CH23/EX23.7/ex_23_7.sce @@ -0,0 +1,39 @@ +//find
+clc
+//solution
+//given
+W1=400//N
+W2=250//N
+Di=25//mm
+l1=40//mm
+l2=50//mm
+t=400//N/mm^2
+//D=25+d
+//T=W1*D/2=400*(25+d)/2=(5000+200*d)N-mm
+//T=(%pi/16)*t*d^3
+//78.55*d^3=5000+200*d
+//by hit and trial,d=4.2//mm
+d=4.47//mm(standard value od diameter from table 23.2)
+D=25+d
+C=D/d
+K=(4*C-1)/(4*C-4)+(0.615/C)
+//d1=sqrt(K*8*W1*C/(t*%pi))
+printf("value od d1 is,%f mm\n",d)
+printf("standard value corr to 4.54 is,4.877 mm\n")
+//taking d1=4.877 in to consideration
+d1=4.877
+D1=25+d1
+Do=D1+d1
+//let n be numbr of turns
+dx=l2-l1//deflwection
+//n=dx*G*d1^4/(8*D1^3*W)//
+G=80000//N/mm^2
+W=150
+printf("numbr of turns are ,%f \n",dx*G*d1^4/(8*D1^3*W))
+printf("numbr of turns are say 15\n")
+n=15
+nb=n+2
+dxmax=(dx/150)*W1
+fL=nb*d1 + dxmax + 0.15*dxmax
+printf("free length is ,%f mm\n",fL)
+printf("pitch of coil is,%f mm",fL/(nb-1))
diff --git a/278/CH23/EX23.8/ex_23_8.sce b/278/CH23/EX23.8/ex_23_8.sce new file mode 100755 index 000000000..cd171b399 --- /dev/null +++ b/278/CH23/EX23.8/ex_23_8.sce @@ -0,0 +1,34 @@ +//find
+clc
+//solution
+//given
+D1=65//mm
+p1=0.7//N/mm^2
+p1=0.75//N/mm^2
+dx=3.5//mm
+t=550//N/mm^2
+G=84000//N/mm^2
+C=6
+W1=(%pi/4)*D1^2*p1//N
+W2=(%pi/4)*D1^2*p2//N
+W=W1-W2//N
+//T=W2*D/2=7467*d
+//D=6d
+//T=(%pi/16)*t*d^3=108*d^3
+//d=sqrt(7467/108)//mm
+printf("dia of spring wire is,%f mm\n",sqrt(7467/108))
+printf("standard dia is 8.839 mm from table 23.2\n")
+d=8.839
+D=6*d//mm
+Do=D+d
+Di=D-d
+printf("mean dia,outer di and inner dia are,%f mm\n,%f mm\n,%f mm\n",D,Do,Di)
+//let n be nubr of tunrs
+printf("numbr of turns are ,%f \n",dx*G*d1^4/(8*D1^3*W))
+printf("numbr of turns are say 10\n")
+n=10
+nb=n+1
+fL=n*d+ (n-1)*d
+printf("free length is ,%f mm\n",fL)
+printf("pitch of coil is,%f mm",fL/(nb-1))
+
diff --git a/278/CH23/EX23.9/ex_23_9.sce b/278/CH23/EX23.9/ex_23_9.sce new file mode 100755 index 000000000..e611b4ea2 --- /dev/null +++ b/278/CH23/EX23.9/ex_23_9.sce @@ -0,0 +1,27 @@ +//find
+clc
+//solution
+//given
+vd=60//mm//valve dia
+pb=1.2//N/mm^2
+dx2=10//mm
+C=5
+dx1=35//mm
+t=500//N/mm^2
+G=80000//N/mm^2
+W1=(%pi/4)*vd^2//N
+dxmax=dx1+dx2
+W=W1*dxmax/dx1//N
+K=(4*C-1)/(4*C-4)+(0.615/C)
+printf("dia of sprig wire is,%f vmm\n",sqrt((K*8*W*C)/(t*%pi)))
+printf("dia is say 12.7 mm,taking standard conditions rfom table 23.2\n")
+d=12.7
+D=C*d
+printf("mean dia is,%f mm\n",D)
+printf("numbr of tunrs are,%f \n",dxmax*G*d/(8*W*C^3))
+printf("numbr of turns are say 11\n")
+n=11
+nb=n+2
+fL=nb*d + dxmax + 0.15*dxmax
+printf("free length is ,%f mm\n",fL)
+printf("pitch of coil is,%f mm",fL/(nb-1))
\ No newline at end of file diff --git a/278/CH24/EX24.1/ex_24_1.sce b/278/CH24/EX24.1/ex_24_1.sce new file mode 100755 index 000000000..a00d11097 --- /dev/null +++ b/278/CH24/EX24.1/ex_24_1.sce @@ -0,0 +1,19 @@ +//find..
+clc
+//solution
+//given
+W=4000//N
+r2=50//mm
+r1=100//mm
+//let pmax be max pressure
+//C2=pmax*r2=50pmax
+//W=2*%pi*C(r1-r2)=16710*pmax
+pmax=W/15170//N/mm^2
+printf("max pressure is,%f N/mm^2\n",pmax)
+//let pmin be min pressure
+//C1=r1*pmin=100*pmin
+//W=2*%pi*C(r1-r2)=31420*pmin
+pmin=W/31420//N/mm^2
+printf("min pressure is,%f N/mm^2\n",pmin)
+pav=W/(%pi*(r1^2-r2^2))//N/mm^2)
+printf("avrage pressure is,%f N/mm^2\n",pav)
\ No newline at end of file diff --git a/278/CH24/EX24.10/ex_24_10.sce b/278/CH24/EX24.10/ex_24_10.sce new file mode 100755 index 000000000..6f04eb203 --- /dev/null +++ b/278/CH24/EX24.10/ex_24_10.sce @@ -0,0 +1,30 @@ +//find..
+clc
+//solution
+//given
+n1=3
+n2=2
+n=4
+d1=240//mm
+r1=120//mm
+d2=120//mm
+r2=60//mm
+u=0.3
+P=25000//W
+N=1575//rpm
+T=P*60/(2*%pi*N)*1000//N-mm
+R=(2/3)*[(r1^3-r2^3)/(r1^2-r2^2)]//mm
+//T=u*n*W*R=112*W
+W=T/112//N
+printf("load acting is,%f N\n",W)
+ns=6//numbr of springs
+csos=8//contact surface of spring
+we=1.25//wear on each spring
+Twe=we*csos/1000//total wear
+Ss=13000//N/m//stiffness of spring
+Rsf=Twe*Ss*ns//reduction
+W1=W-Rsf
+R1=(r1+r2)/2000
+T=n*u*W1*R1//N-m
+P=T*2*%pi*N/60//W
+printf("power trans is,%f W\n",P)
\ No newline at end of file diff --git a/278/CH24/EX24.11/ex_24_11.sce b/278/CH24/EX24.11/ex_24_11.sce new file mode 100755 index 000000000..16d076819 --- /dev/null +++ b/278/CH24/EX24.11/ex_24_11.sce @@ -0,0 +1,23 @@ +//find..
+clc
+//solution
+//given
+D=80//mm
+R=40//mm
+a=(%pi/180)*15//deg
+u=0.3
+W=200//N
+N=900//rpm
+w=94.26//rad/s
+m=14//kg
+k=0.16//
+//T=u*W*R*cosec(a)=9273//N-mm
+T=9273//N-mm
+printf("torque acting is,%f N-mm\n",T)
+I=m*k^2//kg-m^2
+alpha=T/(1000*I)//angular acc//rad/s^2
+//w=0+alpha*t
+t=w/alpha///sec
+q=(w+0)/2*t//rad
+E=T*q//energy lost in slipping
+printf("energy lost is,%f N-mm\n",E)
\ No newline at end of file diff --git a/278/CH24/EX24.12/ex_24_12.sce b/278/CH24/EX24.12/ex_24_12.sce new file mode 100755 index 000000000..58849c286 --- /dev/null +++ b/278/CH24/EX24.12/ex_24_12.sce @@ -0,0 +1,19 @@ +//find..
+clc
+//solution
+//given
+P=45*1000//W
+N=1000//rpm
+a=(%pi/180)*12.5
+D=500//mm
+R=250//mm
+u=0.2
+pn=0.1//N/mm^2
+T=P*60/(2*%pi*N)*1000//N-mm
+//let b be face width
+//T=2*%pi*u*R^2*b
+b=T/(2*%pi*pn*u*R^2)//mm
+printf("face width is,%f mm\n",b)
+Wn=pn*2*%pi*R*b//N
+We=Wn*(sin(a)+0.25*u*cos(a))
+printf("axial force applied is,%f N\n",We)
diff --git a/278/CH24/EX24.13/ex_24_13.sce b/278/CH24/EX24.13/ex_24_13.sce new file mode 100755 index 000000000..2131d12ad --- /dev/null +++ b/278/CH24/EX24.13/ex_24_13.sce @@ -0,0 +1,29 @@ +//find..
+clc
+//solution
+//given
+P=30000//W
+N=750//rpm
+a=(%pi/180)*12.5
+pn=0.1//N/mm62
+Kl=1.75
+t=42//N/mm^2
+//D=6*b
+T=60*P/(2*%pi*N)*Kl*1000//N-mm
+//d=(T*16/(%pi*t))^(1/3)//mm
+printf("dia of shaft is,%f mm\n",(T*16/(%pi*t))^(1/3))
+printf("dia of shaft is say,50 mm\n")
+d=50//mm
+//T=2*%pi*u*pn*R^2*b
+//b=R/3
+//T=0.042*R^3
+R=(T/0.042)^(1/3)//mm
+printf("mean dia of shaft is,%f mm\n",2*R)
+D=2*R
+b=D/6
+printf("face width is,%f mm\n",b)
+//ref fig 24.9
+r1=R+ (b/2)*sin(a)//mm
+printf("radius of outr clutch is,%f mm\n",r1)
+r2=R-(b/2)*sin(a)//mm
+printf("radius of inner clutch is,%f mm\n",r2)
\ No newline at end of file diff --git a/278/CH24/EX24.14/ex_24_14.sce b/278/CH24/EX24.14/ex_24_14.sce new file mode 100755 index 000000000..1ca9da8cb --- /dev/null +++ b/278/CH24/EX24.14/ex_24_14.sce @@ -0,0 +1,26 @@ +//find..
+clc
+//solution
+//given
+P=15000//W
+N=900//rpm
+n=4
+R=0.15//m
+u=0.25
+//let m be the mass
+w=2*%pi*N/60//rad/s
+w1=(3/4)*w//rad/s
+r=0.12//m
+//Pc=m*w^2*r=1066*m//N
+//Ps=m*w1^2*r=600m//N
+T=P*60/(2*%pi*N)//N-m
+//T=u*(Pc-Ps)*R*n=70m
+m=T/70//kg
+printf("mass of shoes is,%f kg\n",m)
+a=%pi/3
+l=R*a*1000//mm
+//A=l*n=157*b//mm^2
+//F=A*p=15.7*b//N
+//15.7*b=Pc-Ps=466m
+b=466*m/(15.7)//mm
+printf("face width is,%f mm\n",b)
\ No newline at end of file diff --git a/278/CH24/EX24.2/ex_24_2.sce b/278/CH24/EX24.2/ex_24_2.sce new file mode 100755 index 000000000..3e72a19b2 --- /dev/null +++ b/278/CH24/EX24.2/ex_24_2.sce @@ -0,0 +1,28 @@ +//find..
+clc
+//solution
+//given
+P=110*1000//W
+N=1250//rpm
+d1=300//mm
+r1=150//mm
+u=0.4
+n=2
+p=0.14//N/mm^2
+//let d2 b einner dia
+//r2 be inner radius
+T=P*60/(2*%pi*N)*1000//N-mm
+//W=p*(%pi)*(r1^2-r2^2)=0.534*(150^2-r2^2)
+//R=(2/3)*[(r1^3-r2^3)/(r1^2-r2^2)]
+//T=n*u*W*R
+//T=0.285*[150^3-r2^3]
+r2=(150^3-2.95*10^6)^(1/3)//mm
+d2=2*r2//mm
+printf("inner dia is,%f mm\n",d2)
+W=0.534*[r1^2-r2^2]//N
+printf("axial thrust is,%f N\n",W)
+R=(r1+r2)/2//mm
+Tmax=n*u*W*R//N-mm
+printf("max torque is,%f N-mm\n",Tmax)
+pmax=W/(2*%pi*r2*(r1-r2))//N/mm^2
+printf("max pressure acitngis,%f N/mm^2\n",pmax)
\ No newline at end of file diff --git a/278/CH24/EX24.3/ex_24_3.sce b/278/CH24/EX24.3/ex_24_3.sce new file mode 100755 index 000000000..2ffe495c1 --- /dev/null +++ b/278/CH24/EX24.3/ex_24_3.sce @@ -0,0 +1,23 @@ +//find..
+clc
+//solution
+//given
+n=2
+P=25000//W
+N=3000//rpm
+u=0.255
+//d1/d2=1.25
+pmax=0.1//N/mm^2
+T=P*60/(2*%pi*N)*1000//N-mm
+//C=pmax*r2
+//W=2*%pi*pmax*r2*(r1-r2)=0.157*r2//r1/r2=1.25
+//R=(r1+r2)/2=1.125*r2
+///T=n*u*W*R=0.09*r2^3//N-mm
+r2=(T/0.09)^(1/3)//mm
+r1=1.25*r2
+d1=2*r1//mm
+d2=2*r2//mm
+W=2*%pi*0.1*r2*(r1-r2)//N
+printf("outr dia is,%f mm\n",d1)
+printf("nner dia is,%f mm\n",d2)
+printf("axial thrust is,%f N\n",W)
diff --git a/278/CH24/EX24.4/ex_23_4.sce b/278/CH24/EX24.4/ex_23_4.sce new file mode 100755 index 000000000..ed054313b --- /dev/null +++ b/278/CH24/EX24.4/ex_23_4.sce @@ -0,0 +1,25 @@ +//find..
+clc
+//solution
+//given
+P=100*1000//W
+N=2400//rpm
+T=500*1000//N-mm
+pb=0.07//N/mm^2
+u=0.3
+ns=8
+Ss=40//N/mm
+//let r1 be outr and r2 be inner rad
+//r1=1.25*r2
+//C=0.07*r2
+//W=2*%pi*0.07*r2(r1-r2)=0.11*r2^2//N
+//R=(r1+r2)/2=1.125*r2
+///T=n*u*W*R=0.074*r2^3//N-mm
+r2=(T/0.074)^(1/3)//mm
+r1=1.25*r2//mm
+printf("inner and outr radii is,%f mm\,%f mm\n",r2,r1)
+s=Ss*ns//N/mm
+W=0.11*r2^2//N
+printf("axial force is,%f N\n",W)
+dx=W/s
+printf("intial compresion is,%f mm\n",dx)
diff --git a/278/CH24/EX24.6/ex_24_6.sce b/278/CH24/EX24.6/ex_24_6.sce new file mode 100755 index 000000000..a9f31271a --- /dev/null +++ b/278/CH24/EX24.6/ex_24_6.sce @@ -0,0 +1,40 @@ +//find..
+clc
+//solution
+//given
+T=250*1000//N-mm
+N=2000//rpm
+d1=250//mm
+r1=125//mm
+v=15.3//m/s
+Te=100//N-m
+m=1500//kg
+Dw=0.7//m
+Rw=0.35//m
+I=1//kg-m^2
+Ta=175//N-m
+gr=5//gear ratio
+u=0.3
+pb=0.13//N/mm^2
+n=2
+//R=(r1+r2)/2=62.5+0.5r2
+//W=p*%pi*[r1^2-r2^2]//N
+///T=n*u*W*R
+//T=0.245*[976.56*1000+7812.5*r2-62.5*r2^2-0.5*r2^3]
+//using hit and trial
+r2=70//mm
+we=2*%pi*N/60//rad/s
+ww=v/Rw//rad/s
+wo=ww*5//rad/s
+ae=(Te-T)/I//rad/s^2
+Fa=Ta/Rw//N
+a=Fa/m//m/s^2
+ao=a*gr/Rw//rad/s^2
+dt=(wo-we)/(ao-ae)//s
+qe=we*dt +0.5*ae*dt^2//rad
+qo=wo*dt+0.5*ao*dt^2//rad
+q=qo-qe//rad
+x=q/(2*%pi)//numbr of revoltuion
+printf("numbr of revolution are,%f revolution\n",x)
+Q=T*q//heat
+printf("heat generated is,%f J\n",Q)
\ No newline at end of file diff --git a/278/CH24/EX24.7/ex_24_7.sce b/278/CH24/EX24.7/ex_24_7.sce new file mode 100755 index 000000000..76362e94b --- /dev/null +++ b/278/CH24/EX24.7/ex_24_7.sce @@ -0,0 +1,17 @@ +//find..
+clc
+//solution
+//given
+n=4
+//n1+n2=5
+pb=0.127//N/mm^2
+N=500//rpm
+r1=125//mm
+r2=75//mm
+u=0.3
+C=pb*r2//N/mm
+W=2*%pi*C*(r1-r2)//N
+R=(r1+r2)/2/1000//m
+T=n*u*W*R//N-m
+P=T*2*%pi*N/60
+printf("power trans is,%f W\n",P)
\ No newline at end of file diff --git a/278/CH24/EX24.8/ex_24_8.sce b/278/CH24/EX24.8/ex_24_8.sce new file mode 100755 index 000000000..3c8a468fd --- /dev/null +++ b/278/CH24/EX24.8/ex_24_8.sce @@ -0,0 +1,20 @@ +//find..
+clc
+//solution
+//given
+n1=3
+n2=2
+d2=120//mm
+r2=60//mm
+pmax=0.1//N/mm^2
+P=25000//W
+N=1575//rpm
+u=0.3
+T=P*60/(2*%pi*N)*1000//N-mm
+C=pmax*r2//N/mm
+//W=2*%pi*C(r1-r2)=37.7(r1-60)//N
+//R=(r1+r2)/2=0.5*r1 +30
+n=n1+n2-1
+//T=n*u*R*W=22.62*r1^2-81432
+r1=sqrt((T+81432)/22.62)
+printf("outr dia is,%f mm\n",r1)
\ No newline at end of file diff --git a/278/CH24/EX24.9/ex_24_9.sce b/278/CH24/EX24.9/ex_24_9.sce new file mode 100755 index 000000000..6f04eb203 --- /dev/null +++ b/278/CH24/EX24.9/ex_24_9.sce @@ -0,0 +1,30 @@ +//find..
+clc
+//solution
+//given
+n1=3
+n2=2
+n=4
+d1=240//mm
+r1=120//mm
+d2=120//mm
+r2=60//mm
+u=0.3
+P=25000//W
+N=1575//rpm
+T=P*60/(2*%pi*N)*1000//N-mm
+R=(2/3)*[(r1^3-r2^3)/(r1^2-r2^2)]//mm
+//T=u*n*W*R=112*W
+W=T/112//N
+printf("load acting is,%f N\n",W)
+ns=6//numbr of springs
+csos=8//contact surface of spring
+we=1.25//wear on each spring
+Twe=we*csos/1000//total wear
+Ss=13000//N/m//stiffness of spring
+Rsf=Twe*Ss*ns//reduction
+W1=W-Rsf
+R1=(r1+r2)/2000
+T=n*u*W1*R1//N-m
+P=T*2*%pi*N/60//W
+printf("power trans is,%f W\n",P)
\ No newline at end of file diff --git a/278/CH25/EX25.1/ex_25_1.sce b/278/CH25/EX25.1/ex_25_1.sce new file mode 100755 index 000000000..fcc21c918 --- /dev/null +++ b/278/CH25/EX25.1/ex_25_1.sce @@ -0,0 +1,27 @@ +//find..
+clc
+//solution
+//given
+m=1200//kg
+s=1/5
+v=20//m/s
+h=50//m
+d=600//mm
+r=0.300//m
+mb=20//kg
+c=520//J/kg/dec C
+Ek=(0.5)*m*v^2//N-m
+g=9.81//m/s^2
+Ep=m*g*h*s//N-m
+E=Ep+Ek
+Ft=E/50//N
+Tb=Ft*r//N-m
+printf("torque applied is,%f N-m\n",Tb)
+//let dt be average temp rise
+Hg=E
+dt=Hg/(mb*c)//deg celcius
+printf("average temperature rise is,%f deg celcius\n",dt)
+//et u be coefficient of friction
+Rn=m*g
+u=Ft/(Rn)//
+printf("min coefficient of friction is,%f ",u)
diff --git a/278/CH25/EX25.10/ex_25_10.sce b/278/CH25/EX25.10/ex_25_10.sce new file mode 100755 index 000000000..0947d1403 --- /dev/null +++ b/278/CH25/EX25.10/ex_25_10.sce @@ -0,0 +1,30 @@ +//find..
+clc
+//solution
+//given
+//ref fig 25.21 and 25.22
+q=3.93//rad
+d=350//mm
+r=175//mm
+Tb=350*1000//N-mm
+u=0.3
+//let P1 be pull,cloackwise roration
+//log(T1/T2)=u*q
+//T1/T2=3.256 ...eq1
+//Tb=(T1-T2)*r=175(T1-T2)
+//T1-T2=2000//N.....eq2
+//from eq1 and eq2,we get
+T1=2886.5//N
+T2=886.5//N
+//taking moment abt O
+P1=(T2*150-T1*35)/500
+printf("pull req clockwise is,%f N\n",P1)
+//P2 ,anticlockwise
+P2=(T1*150-T2*35)/500//N
+printf("pull req in anticlockwise is,%f N\n",P2)
+//ref fig 25.23
+//find OA
+OB=35
+//self locking considered
+OA=T1*OB/T2//mm
+printf("value of OA is,%f mm\n",OA)
\ No newline at end of file diff --git a/278/CH25/EX25.11/ex_25_11.sce b/278/CH25/EX25.11/ex_25_11.sce new file mode 100755 index 000000000..6af92c3e6 --- /dev/null +++ b/278/CH25/EX25.11/ex_25_11.sce @@ -0,0 +1,20 @@ +//find..
+clc
+//solution
+//given
+d=600//mm
+r=0.300//mm
+q=4.2//rad
+t=5//mm
+w=100//mm
+u=0.3
+ft=50//N/mm^2
+//let P be least force req
+//log(T1/T2)=u*q
+//T1/T2=3.53 ...eq1
+T1=ft*t*w
+T2=T1/3.53
+P=(T2*150-T1*75)/(600)//N
+printf("force req is ,%f N\n ",P)
+Tb=(T1-T2)*r//N-m
+printf("torque applied is,%f N-m\n",Tb)
\ No newline at end of file diff --git a/278/CH25/EX25.12/ex_25_12.sce b/278/CH25/EX25.12/ex_25_12.sce new file mode 100755 index 000000000..375090567 --- /dev/null +++ b/278/CH25/EX25.12/ex_25_12.sce @@ -0,0 +1,30 @@ +//find..
+clc
+//solution
+//given
+P=220//N
+u=0.4
+q=%pi
+d=150//mm
+r=0.075//m
+//let T1 be max force
+//T2 be min force
+Tb=450//N-m
+//Tb=(T1-T2)*r
+T1=(T2+6000)//N
+//taking mont abt O
+//220*200+T1*50=T2*100
+T2=[(220*200)+(300000)]/50//N
+T1=6000+T2//N
+printf("max and min force is,%f N\n,%f N\n",T1,T2)
+//ref fig 25.25,26,27
+//log(T11/T22)=u*q
+//T11/T22=3.52 ...eq1
+//taking moment ABT O
+//220*200+T22*50=T11*100....eq2
+//from eq1 and eq 2,we egt
+T11=146//N
+T22=514//N
+Tb=(T11-T22)*r//N-m
+printf("max torque acting is %f N-m\n",Tb)
+
diff --git a/278/CH25/EX25.14/ex_25_14.sce b/278/CH25/EX25.14/ex_25_14.sce new file mode 100755 index 000000000..c0cd89ec0 --- /dev/null +++ b/278/CH25/EX25.14/ex_25_14.sce @@ -0,0 +1,27 @@ +//find..
+clc
+//solution
+//given
+n=12
+q=(%pi/180)*7.5//rad
+t=0.075//m
+d=0.85//m
+P=225*1000//W
+N=240//rpm
+u=0.4
+//ref fig 25.35
+//(T1+T1b)*sin(q)=Rn....eq1
+//(T1-T1b)*cos(q)=uRn....eq2
+//(T1/T1b)=(1+utan(q))/(1-utan(q))//constant
+//similarly for other blocks
+//T1b/T2b=T2b/T3b..etc remain constant
+//T1/T2={(1+utan(q))/(1-utan(q))}^12=3.55//....eq1
+//let P1 be least force req at C
+D=d+2*t//m
+//(T1-T2)=P*60/(%pi*D*N)=17900//N....eq2
+//from eq1 and eq2
+T1=24920//N
+T2=7020//N
+P1=(T2*150-T1*30)/500//N
+printf("least force req is,%f N\n",P1)
+
diff --git a/278/CH25/EX25.15/ex_25_15.sce b/278/CH25/EX25.15/ex_25_15.sce new file mode 100755 index 000000000..9ab6e4053 --- /dev/null +++ b/278/CH25/EX25.15/ex_25_15.sce @@ -0,0 +1,25 @@ +//find..
+clc
+//solution
+//given
+//ref fig 25.37,25,38,39
+b=35//mm
+u=0.4
+r=150//mm
+l=200//mm
+q1=(%pi/180)*25//rad
+q2=(%pi/180)*125//rad
+p1=0.4//N/mm^2
+Tbi=u*p1*b*r^2*(cos(q1)-cos(q2))//braking torque
+Tb=2*Tbi//total braking torque
+O1B=100
+OO1=O1B/cos(q1)//mm
+printf("OO1 is,%f mm\n",OO1)
+Mn=0.5*p1*b*r*OO1*[(q2-q1)+0.5*(sin(2*q1)-sin(2*q2))]
+printf("moment due to normal force is,%f N-mm\n",Mn)
+Mf=u*p1*b*r*[r*(cos(q1)-cos(q2))+((OO1/4)*(cos(2*q2)-cos(2*q1)))]
+printf("moment due to friction force is,%f N-mm\n",Mf)
+F1=(Mn-Mf)/l//N
+printf("F1 is,%f N\n",F1)
+F2=(Mn+Mf)/l//N
+printf("F2 is ,%f N\n",F2)
diff --git a/278/CH25/EX25.2/ex_25_2.sce b/278/CH25/EX25.2/ex_25_2.sce new file mode 100755 index 000000000..8bd47e742 --- /dev/null +++ b/278/CH25/EX25.2/ex_25_2.sce @@ -0,0 +1,16 @@ +//find..
+clc
+//solution
+//given
+d=250//mm
+r=125//mm
+q=%pi/4
+P=700//N
+u=0.35
+ub=(4*u*sin(q))/(2*q+sin(2*q))//eqivalent coffint of friction
+//Ft=ub*Rn
+//taking moment abt O
+//700*(250+200)+Ft*50=Rn*200=Ft/ub*200=520*Ft
+Ft=700*(250+200)/470//N
+Tb=Ft*r
+printf("torque applied is,%f N-mm\n",Tb)
\ No newline at end of file diff --git a/278/CH25/EX25.3/ex_25_3.sce b/278/CH25/EX25.3/ex_25_3.sce new file mode 100755 index 000000000..396bead04 --- /dev/null +++ b/278/CH25/EX25.3/ex_25_3.sce @@ -0,0 +1,13 @@ +//find..
+clc
+//solution
+//given
+r=0.16//m
+u=0.3
+P=600//N
+//taking moment abt point A
+//Rn=Ft/u
+//Rn*350+Ft*(200-160)=600*(400+350)
+Ft=600*750/1207//N
+Tb=Ft*r//N-m
+printf("torque acting is,%f N-m\n",Tb)
\ No newline at end of file diff --git a/278/CH25/EX25.4/ex_25_4.sce b/278/CH25/EX25.4/ex_25_4.sce new file mode 100755 index 000000000..b46b8c51e --- /dev/null +++ b/278/CH25/EX25.4/ex_25_4.sce @@ -0,0 +1,21 @@ +//find..
+clc
+//solution
+//given
+Tb=360*1000//N-mm
+d=300//mm
+r=0.15//m
+u=0.3
+//ref fig 25.8 and 25.9
+Ft=Tb/0.15/1000//N
+Rn=Ft/u
+//P*(600+200)+Ft*50=Rn*200
+P=(Rn*200-Ft*50)/800
+printf("force req in fig25.8 is,%f N\n",P)
+//P1*800=Rn*200+Ft*50
+P1=(Rn*200+Ft*50)/800
+printf("force req in fig 25.9 is,%f N\n",P1)
+//P*(600+200)+Ft*x-Rn*200=0
+//if P=0
+x=Rn*200/Ft//mm
+printf("location of fulcrum is,%f mm\n",x)
\ No newline at end of file diff --git a/278/CH25/EX25.5/ex_25_5.sce b/278/CH25/EX25.5/ex_25_5.sce new file mode 100755 index 000000000..92f32f94f --- /dev/null +++ b/278/CH25/EX25.5/ex_25_5.sce @@ -0,0 +1,29 @@ +//find..
+clc
+//solution
+//given
+de=650//mm
+re=0.325//m
+d=1//m
+r=0.500//mm
+n=4
+q=(%pi/180)*22.5
+m=2000//kg
+v=2.5//m/s
+h=2.75//m
+u=0.2
+g=9.81//m/s^2
+pb=0.3//N/mm^2
+acc=v^2/(2*h)//m/s^2
+fc=m*acc//N
+W=(2000*9.81)+fc//N
+T=W*re//N-m
+Ftt=T/r//N
+Ft=Ftt/4//N
+Rn=Ft/0.2//N
+//Ab=w*(2*r*sin(q))=382.7*w//mm^2
+//pb=W/Ab
+w=Rn/(0.3*382.7)//mm
+printf("width of side is ,%f mm\n",w)
+TE=(0.5*m*v^2)+(m*g*h)
+printf("heat generated is,%f N-m\n",TE)
diff --git a/278/CH25/EX25.6/ex_25_6.sce b/278/CH25/EX25.6/ex_25_6.sce new file mode 100755 index 000000000..41e0ac336 --- /dev/null +++ b/278/CH25/EX25.6/ex_25_6.sce @@ -0,0 +1,36 @@ +//find..
+clc
+//solution
+//given
+Tb=1400*1000//N-mm
+d=350//mm
+r=175//mm
+q=(1.75)/2//rad
+u=0.4
+pb=0.3//N/mm^2
+//ref fig 25.11
+ub=(4*u*sin(q))/(2*q+sin(2*q))//eqivalent coffint of friction
+//let S be spring force
+//taking moment abt fulcrum O1
+//Rn1=Ft1/u
+//S*450=Rn1*200 + Ft1*(175-40)
+//put Rn1=Ft1/ub...
+//S*450=579.4*Ft1
+//Ft1=S*450/579.4
+//taking moment abt O2
+//S*450+Ft2(175-40)=Rn2*200
+//Rn2=Ft2/ub
+//S*450+Ft2(175-40)=444.4Ft2
+//Ft2=S*450/309.4
+//Tb=(Ft1+Ft2)*r=390.25*S
+S=Tb/390.25//N
+printf("spring force is,%f N\n",S)
+//let b be width of brakes shoes
+//Ab=b*(2*r*sin(q))//mm
+Ft1=S*450/579.4
+Rn1=Ft1/ub
+Ft2=S*450/309.4
+Rn2=Ft2/ub
+//pb=Rn2/Ab
+b=Rn2/(pb*2*r*sin(q))
+printf("width of brake is,%f mm\n",b)
\ No newline at end of file diff --git a/278/CH25/EX25.7/ex_25_7.sce b/278/CH25/EX25.7/ex_25_7.sce new file mode 100755 index 000000000..cd898d9a8 --- /dev/null +++ b/278/CH25/EX25.7/ex_25_7.sce @@ -0,0 +1,49 @@ +//find..
+clc
+//solution
+//given
+Tb=3*10^6//N-mm
+d=1//m
+r=500//mm
+u=0.3
+q=0.61//rad
+ub=(4*u*sin(q))/(2*q+sin(2*q))//eqivalent coffint of friction
+//ref fig 25.12
+//let S be spring force
+//taking moment abt fulcrum O1
+//S*1250=Rn1*600 + Ft1*(500-250)
+//put Rn1=Ft1/ub...
+//S*1250=2125*Ft1
+//Ft1=S*1250/2125
+//taking moment abt O2
+//S*1250+Ft2(500-250)=Rn2*600
+//Rn2=Ft2/ub
+//S*1250+Ft2(500-250)=1625Ft2
+//Ft2=S*1250/1625
+//Tb=(Ft1+Ft2)*r=680*S
+S=Tb/680
+printf("spring force is,%f N\n",S)
+//let b be width of brakes shoes
+//Ab=b*(2*r*sin(q))//mm
+Ft1=S*1250/2125
+Rn1=Ft1/ub
+Ft2=S*1250/1625
+Rn2=Ft2/ub
+//pb=Rn2/Ab
+b=Rn2/(pb*2*r*sin(q))
+printf("width of brake is,%f mm\n",b)
+//dimension of coil
+//let D be mean dia and d be spring wire dia
+C=6
+t=500//N/mm^2
+n=8
+G=80000//N/mm^2
+K=(4*C-1)/(4*C-4)+(0.615/C)
+Ws=1.3*S
+d=((K*8*Ws*C)/(t*%pi))^(0.5)//mm
+D=6*d//mm
+printf("meand and spring wire dia is,%f mm\n,%f mm\n",D,d)
+dx=8*Ws*C^3*n/(G*d)//mm
+nb=n+2
+fL=nb*d + dx+0.15*dx
+printf("free length of spring is,%f mm\n",fL)
\ No newline at end of file diff --git a/278/CH25/EX25.8/ex_25_8.sce b/278/CH25/EX25.8/ex_25_8.sce new file mode 100755 index 000000000..1aa12956e --- /dev/null +++ b/278/CH25/EX25.8/ex_25_8.sce @@ -0,0 +1,30 @@ +//find..
+clc
+//solution
+//given
+d=600//mm
+r=300//mm
+N=200//rpm
+u=0.25
+q=4.713//rad
+P=35000//W
+t=2.5//mm
+ft=50//N/mm^2
+//let P1 be pull
+//log(T1/T2)=u*q
+//T1/T2=3.25...eq1
+//let Tb be breaking torque
+//ref fig 25.16
+Tb=P*60/(2*%pi*N)*1000//N-mm
+//Tb=(T1-T2)*r=300(T1-T2)
+//T1-T2=5557//N.....eq2
+//from eq1 and eq2,we get
+T1=8027//N
+T2=2470//N
+//taking moment abt O
+//P1*750=T*OD=T2*62.5*1.414
+P1=T2*62.5*1.414/750//N
+printf("pull req is,%f N\n",P1)
+//let w be width
+w=T1/(ft*t)
+printf("width is,%f mm\n",w)
\ No newline at end of file diff --git a/278/CH25/EX25.9/ex_25_9.sce b/278/CH25/EX25.9/ex_25_9.sce new file mode 100755 index 000000000..1644f74b9 --- /dev/null +++ b/278/CH25/EX25.9/ex_25_9.sce @@ -0,0 +1,63 @@ +//find..
+clc
+//solution
+//given
+d=450//mm
+r=225//mm
+Tb=225*1000//N-mm
+OB=100//mm
+u=0.25
+ft=70//N/mm^2
+fc=70//N/mm^2
+t=56//N/mm^2
+pb=8//N/mm^2
+//let P be operating force
+//ref fig 25.17
+q=4.713//rad
+//log(T1/T2)=u*q
+//T1/T2=3.25 ...eq1
+//let Tb be breaking torque
+//ref fig 25.17
+//(T1-T2)*r=Tb//N-mm
+//T1-T2=1000//N.....eq2
+//r=from eq1 and eq2
+T1=1444//N
+T2=444//N
+//taking moment abt O
+//P*500=T2*100
+P=T2*100/500
+//let ds be dia of shaft
+//ds=[Tb*16/(%pi*t)]^(1/3)
+printf("dia fo shaft is,%f mm\n",[Tb*16/(%pi*t)]^(1/3))
+printf("dia of shaft is,say 30mm\n")
+ds=30//mm
+printf("corrsponding to dia 30mm ,we get width(w) is equal to 10 mm,and thickness 8mm\n")
+//let l be length of key
+w=10//mm
+t1=8//mm
+l1=Tb/(w*t*ds/2)//mm
+printf("length on basis of shearing is,%f mm\n",l1)
+l2=Tb/(t1/2*fc*ds/2)//mm
+printf("length using crushing stress is,%f mm\n",l2)
+printf("taking larger of two l2,in to consideration\n")
+l=l2//mm
+//let t2 be thickness of lever
+//B be width,B=2t2
+//Z=(1/6)*t2*B^2=0.67*t2^3//mm^3
+M=P*500//N-mm
+//fc=M/Z
+//t2=(M/(fc*0.67))^(1/3)
+printf("thickness of lever is,%f mm\n",(M/(fc*0.67))^(1/3))
+printf("thicnkness is say 10mm\n")
+t2=10//mm
+printf("width of lever is,%f mm\n",2*t2)
+//design of pins
+//let d3 be dia and l3 be length of pins at O and B
+//d3=1.25*d3
+//T1=d3**l3*pb=10*d3^2
+d3=sqrt(T1/10)//mm
+printf("length and dia of pins is,%f mm\n,%f mm\n",1.25*d3,d3)
+ti=T1*4/(2*%pi*d3^2)//N/mm62
+printf("induced stress is,%f N/mm^2\n",ti)
+printf("since induced stress is within permissible limit ,hence design is safe\n")
+
diff --git a/278/CH25/EX26.5/ex_26_5.sce b/278/CH25/EX26.5/ex_26_5.sce new file mode 100755 index 000000000..4b3b77641 --- /dev/null +++ b/278/CH25/EX26.5/ex_26_5.sce @@ -0,0 +1,20 @@ +//find
+clc
+//solution
+//given
+l=80//mm
+W=2800//N
+d=0.05//m
+c=2*0.05//mm
+Z=0.021
+Qd=80//J/s
+p=W/(l*d*1000)//N/mm^2
+//u=(33/10^8)*(Z*N/p)*(d*1000/c)+0.002
+//u=(495*N/10^8)+0.002
+//Qg=u*W*V
+V=%pi*d*N/60//m/s
+//Qg=((495*N/10^8)+0.002)*2800*[%pi*d*N/60]
+//N^2 +404 N-2.2*10^6=0
+//solving quadratic equation
+N=1295//rpm
+printf("rpm is, %f rpm\n ",N)
diff --git a/278/CH26/EX26.1/ex_26_1.sce b/278/CH26/EX26.1/ex_26_1.sce new file mode 100755 index 000000000..70decc72b --- /dev/null +++ b/278/CH26/EX26.1/ex_26_1.sce @@ -0,0 +1,41 @@ +//find
+clc
+//solution
+//given
+W=20000//N
+N=900//rpm
+to=55//deg celcius
+Z=0.017//kg/m/s
+ta=15.5//deg celciusp=1.5//N/mm^2
+t=10//deg celcius
+C=1232//W/m^2/deg celcius
+//from table 26.3
+d=0.100//m//assume
+p=1.5//N/mm^2
+l=1.6*d*1000//mm
+printf("length of journal is,%f mm\n",l)
+pb=W/(l*d*1000)//bearig preassure
+printf("bearing pressure actin is,%f N/mm^2\n",pb)
+printf("since given bearing pressure is 1.5 ,hence dimension of l and d is safe\n")
+//x1=Z*N/pb
+//from table 26.3,operqating value of =ZN/pb=28
+x1=28
+//the minimum value of bearign modulus at which the oil film will break is given by
+K1=x1/3
+cr=0.0013//clearance ratio
+//since calculated value of bearing characteristic numbr is is more then 9.33,hterfore bearignoperates in hydrodynamic conditions
+K2=12.24
+k=0.002
+u=(33/10^8)*K2*(1/cr)+0.002
+printf("coefficient of riction is,%f \n",u)
+Qg=u*W*[%pi*d*N]/60//W
+printf("heat generate is,%f W\n",Qg)
+//Qd=C*A*(tb-ta)
+//tb-ta=0.5(to-ta)=19.75
+Qd=C*l*d*19.75/1000//W
+printf("heat dessipated is,%f W\n",Qd)
+Qa=Qg-Qd//artificial cooling req
+//let m be mass of liq req
+//Qt=m*S*t=m*1900*10=19000m//assume S=1900 J/kg/C
+m=Qa/19000//kg/s
+printf("mass of cooling liq req per sec is,%f kg/s",m)
diff --git a/278/CH26/EX26.10/ex_26_10.sce b/278/CH26/EX26.10/ex_26_10.sce new file mode 100755 index 000000000..f8ff5f7ce --- /dev/null +++ b/278/CH26/EX26.10/ex_26_10.sce @@ -0,0 +1,18 @@ +//find
+clc
+//solution
+//given
+d=300//rpm
+r=150//rpm
+W=200*1000//N
+N=75//rpm
+u=0.05
+p=0.3//N/mm^2
+D=1.4*d//mm
+R=D/2
+n=W/(p*%pi*(R^2-r^2))
+printf("numbr of collar is,%f ",n)
+T=(2/3)*u*W*[(R^3-r^3)/(R^2-r^2)]//N-mm
+P=2*%pi*N*T/60000
+printf("power loast in friction is,%f W\n",P)
+printf("heat generated at ba=earing is,%f W\n",P)
diff --git a/278/CH26/EX26.2/ex_26_2.sce b/278/CH26/EX26.2/ex_26_2.sce new file mode 100755 index 000000000..b59aa9ce2 --- /dev/null +++ b/278/CH26/EX26.2/ex_26_2.sce @@ -0,0 +1,20 @@ +//find
+clc
+//solution
+//given
+W=150000//N
+d=0.3//m
+N=1800//rpm
+p=1.6//N/mm^2
+Z=0.02//kg/m/s
+c=0.25//mm
+//let l be the length of bearing in mm
+//A=l*d=300*l//mm^2
+//pb=W/A
+l=W/(300*p)//mm
+printf("length of bearing is,%f mm\n",l)
+u=(33/10^8)*(Z*N/p)*(d*1000/c)+0.002
+printf("coeeficient of friction is,%f \n",u)
+V=%pi*d*N/60//m/s
+Qg=u*W*V
+printf("heat gen is,%f W\n",Qg)
\ No newline at end of file diff --git a/278/CH26/EX26.3/ex_26_3.sce b/278/CH26/EX26.3/ex_26_3.sce new file mode 100755 index 000000000..ea4977109 --- /dev/null +++ b/278/CH26/EX26.3/ex_26_3.sce @@ -0,0 +1,28 @@ +//find
+clc
+//solution
+//given
+d=0.05//m
+l=0.1//m
+p=1.4//N/mm^2
+N=900//rpm
+//d/c=1000
+Z=0.011
+to=75//deg C
+ta=35//deg C
+t=10//deg C
+S=1850
+u=(33/10^8)*(Z*N/p)*1000+0.002
+W=p*d*l*10^6//N
+V=%pi*d*N/60//m/s
+Qg=u*W*V///W
+//(tb-ta)=0.5(75-35)=20//deg C
+C=280//W/m^2/C
+Qd=C*l*d*20//J/s
+printf("headt dessipated is,%f W\n",Qd)
+Qa=Qg-Qd//W
+//let m be mass
+//Qt=m*S*t=18500*t
+m=Qa/18500//kg/s
+printf("artificial heat is,%f W\n",Qa)
+printf("mass of lubricant ewq is,%f kg/s\n",m)
\ No newline at end of file diff --git a/278/CH26/EX26.4/ex_26_4.sce b/278/CH26/EX26.4/ex_26_4.sce new file mode 100755 index 000000000..52e1b62f2 --- /dev/null +++ b/278/CH26/EX26.4/ex_26_4.sce @@ -0,0 +1,18 @@ +//find
+clc
+//solution
+//given
+d=0.15//m
+W=10000//N
+N=1500//rpm
+//l=1.5*d
+c=0.15//mm
+Z=0.011
+l=1.5*d*1000//mm
+p=W/(l*d*1000)//N/mm^2
+u=(33/10^8)*(Z*N/p)*(d*1000/c)+0.002
+printf("coefficient of friction is,%f\n",u)
+V=%pi*d*N/60//m/s
+Qg=u*W*V//W
+printf("power wasted in friction is,%f W\n",Qg)
+
diff --git a/278/CH26/EX26.6/ex_26_6.sce b/278/CH26/EX26.6/ex_26_6.sce new file mode 100755 index 000000000..1a6a4aac7 --- /dev/null +++ b/278/CH26/EX26.6/ex_26_6.sce @@ -0,0 +1,14 @@ +//find
+clc
+//solution
+//given
+d=0.06//m
+l=0.09//m
+N=450//rpm
+Z=0.06//kg/m/s
+c=0.1
+S=14.3*10^6
+p=(Z*N)*(d*1000/c)^2/S//N/mm^2
+printf("bearing pressure is,%f N/mm^2",p)
+W=p*l*d*10^6//N
+printf("safe load is ,%f N\n",W)
\ No newline at end of file diff --git a/278/CH26/EX26.7/ex_26_7.sce b/278/CH26/EX26.7/ex_26_7.sce new file mode 100755 index 000000000..f97c7218e --- /dev/null +++ b/278/CH26/EX26.7/ex_26_7.sce @@ -0,0 +1,20 @@ +//find
+clc
+//solution
+//given
+d=80//mm
+l=120//mm
+n=4
+W=16.5*1000//N
+a=150//mm
+fb=15//N/mm^2
+ft=35//N/mm^2
+E=110*1000//N/mm^2
+t=sqrt(3*W*a/(2*fb*l))//mm
+printf("thickness of bearing cap,%f mm\n",t)
+//let dc be core dia
+dc=[(4/3)*(W/n)*(4/%pi)*(1/ft)]^(0.5)//mm
+printf("dia of bolts is,%f mm\n",dc)
+//let dx be deflction
+dx=W*a^3/(4*E*l*t^3)//mm
+printf("deflction of cap is,%f mm\n",dx)
diff --git a/278/CH26/EX26.8/ex_26_8.sce b/278/CH26/EX26.8/ex_26_8.sce new file mode 100755 index 000000000..bc9bfb77a --- /dev/null +++ b/278/CH26/EX26.8/ex_26_8.sce @@ -0,0 +1,16 @@ +//find
+clc
+//solution
+//given
+D=150//mm
+R=75//mm
+d=50//mm
+r=25//mm
+p=0.8//N/mm^2
+N=100//rpm
+u=0.015
+W=p*%pi*[R^2-r^2]//N
+printf("load to be supported is,%f N\n",W)
+T=(2/3)*u*W*[(R^3-r^3)/(R^2-r^2)]//N-mm
+P=2*%pi*N*T/60000
+printf("power loast in friction is,%f W\n",P)
\ No newline at end of file diff --git a/278/CH26/EX26.9/ex_26_9.sce b/278/CH26/EX26.9/ex_26_9.sce new file mode 100755 index 000000000..d2bd92d33 --- /dev/null +++ b/278/CH26/EX26.9/ex_26_9.sce @@ -0,0 +1,17 @@ +//find
+clc
+//solution
+//given
+n=6
+D=300//mm
+R=150//mm
+d=200//mm
+r=100//mm
+N=120//rpm
+p=0.4//N/mm^2
+u=0.05
+W=p*%pi*n*[R^2-r^2]//N
+printf("load to be supported is,%f N\n",W)
+T=(2/3)*u*W*[(R^3-r^3)/(R^2-r^2)]//N-mm
+P=2*%pi*N*T/60000
+printf("power loast in friction is,%f W\n",P)
\ No newline at end of file diff --git a/278/CH26/EX29.10/ex_26_10.sce b/278/CH26/EX29.10/ex_26_10.sce new file mode 100755 index 000000000..f8ff5f7ce --- /dev/null +++ b/278/CH26/EX29.10/ex_26_10.sce @@ -0,0 +1,18 @@ +//find
+clc
+//solution
+//given
+d=300//rpm
+r=150//rpm
+W=200*1000//N
+N=75//rpm
+u=0.05
+p=0.3//N/mm^2
+D=1.4*d//mm
+R=D/2
+n=W/(p*%pi*(R^2-r^2))
+printf("numbr of collar is,%f ",n)
+T=(2/3)*u*W*[(R^3-r^3)/(R^2-r^2)]//N-mm
+P=2*%pi*N*T/60000
+printf("power loast in friction is,%f W\n",P)
+printf("heat generated at ba=earing is,%f W\n",P)
diff --git a/278/CH27/EX27.1/ex_27_1.sce b/278/CH27/EX27.1/ex_27_1.sce new file mode 100755 index 000000000..a14e601ab --- /dev/null +++ b/278/CH27/EX27.1/ex_27_1.sce @@ -0,0 +1,20 @@ +//find
+clc
+//solution
+//given
+W1=3//kN
+//n1=0.1*n
+W2=2//kN
+//n2=0.2*n
+W3=1//kN
+//n3=0.3n
+W4=0
+//n4=0.4n
+L95=20*10^6//rev
+b=1.17
+//x=L95/L90
+x=[log(1/0.95)/log(1/0.90)]^(1/1.17)
+L90=L95/x//rev
+W={[(0.1*W1^3)+(0.2*W2^3)+(0.3*W3^3)+0]/[0.1+0.2+0.3+0.4]}^(1/3)
+C=W*(L90/10^6)^(1/3)
+printf("dynamic load rating is,%f kN",C)
\ No newline at end of file diff --git a/278/CH27/EX27.2/ex_27_2.sce b/278/CH27/EX27.2/ex_27_2.sce new file mode 100755 index 000000000..39194f88c --- /dev/null +++ b/278/CH27/EX27.2/ex_27_2.sce @@ -0,0 +1,13 @@ +//find
+clc
+//solution
+//given
+N=720//rpm
+Lh=24000//hours
+W=1//N
+L99=60*N*Lh//rev
+//x=L99/L90
+x=0.85*0.9*[log(1/0.99)/log(1/0.90)]^(1/1.17)
+L90=L99/x//rev
+C=W*(L90/10^6)^(1/3)
+printf("dynamic load rating is,%f kN",C)
\ No newline at end of file diff --git a/278/CH27/EX27.3/ex_27_3.sce b/278/CH27/EX27.3/ex_27_3.sce new file mode 100755 index 000000000..31bde7416 --- /dev/null +++ b/278/CH27/EX27.3/ex_27_3.sce @@ -0,0 +1,27 @@ +//find
+clc
+//solution
+//given
+Wr=4000//N
+Wa=5000//N
+N=1600//rpm
+Lh=5*300*10//hrs//bearing life in hours
+L=60*N*Lh//rev
+//W=XVWr + YWa
+//from tale 27.4,..we get
+X=0.56
+Y=1
+V=1
+W=0.56*1*Wr +1*Wa//N
+C=W*(L/10^6)^(1/3)
+printf("dynamic load rating is,%f kN\n",C)
+//from table 27.6, bearing numbr 315.
+Co=72000//N
+C1=90000//N
+//Wa/Co=0.07,..
+//from table 27.4
+X1=0.56
+Y1=1.6
+W=0.56*1*Wr + 1.6*Wa//N
+Cb=W*(L/10^6)^(1/3)
+printf("basic dynamic load rating is,%f kN\n",Cb)
diff --git a/278/CH27/EX27.4/ex_27_4.sce b/278/CH27/EX27.4/ex_27_4.sce new file mode 100755 index 000000000..9e6cc2099 --- /dev/null +++ b/278/CH27/EX27.4/ex_27_4.sce @@ -0,0 +1,19 @@ +//find
+clc
+//solution
+//given
+Wr=2500//N
+Wa=1500//N
+//Wa/Wr=0.6
+//refer table 27.4
+X=1
+V=1
+Y=0
+W=X*V*Wr + Y*Wa//N
+//from table 27.5,Ks=1.5...
+Ks=1.5
+W1=W*Ks//N
+//ref table 27.6
+C=53000//N
+L=(C/W)^(3)*10^6
+printf("rating life is,%f rev\n",L)
\ No newline at end of file diff --git a/278/CH27/EX27.5/ex_27_5.sce b/278/CH27/EX27.5/ex_27_5.sce new file mode 100755 index 000000000..8d48074c4 --- /dev/null +++ b/278/CH27/EX27.5/ex_27_5.sce @@ -0,0 +1,15 @@ +//find
+clc
+//solution
+//given
+Wr=7000//N
+Wa=2100//N
+L=160*10^6//rev
+N=300//rpm
+//ref table 27.4,Wa/Wr=0.3..
+X=0.65
+Y=3.5
+V=1
+W=X*V*Wr + Y*Wa//N
+C=W*(L/10^6)^(1/3)//N
+printf("baisc dynamin load rating is,%f N\n",C)
\ No newline at end of file diff --git a/278/CH27/EX27.6/ex_27_6.sce b/278/CH27/EX27.6/ex_27_6.sce new file mode 100755 index 000000000..fadfa4ad2 --- /dev/null +++ b/278/CH27/EX27.6/ex_27_6.sce @@ -0,0 +1,39 @@ +//find
+clc
+//solution
+//given
+Lh=15000//hrs
+Wr1=2000//N
+Wa1=1200//N
+N1=400//rpm
+Ks1=3
+Wr2=1500//N
+Wa2=1000//N
+N2=500//rpm
+Ks2=1.5
+Wr3=1000//N
+Wa3=1500//N
+N3=600//rpm
+Ks3=2
+Wr4=1200//N
+Wa4=2000//N
+N4=800//rpm
+Ks4=1
+X=1
+Y=1.5
+V=1
+W1=(Wr1 + Y*Wa1)*3//N
+W2=(Wr2 + Y*Wa2)*1.5//N
+W3=(Wr3 + Y*Wa3)*2//N
+W4=(Wr4 + Y*Wa4)*1//N
+printf("value of W1,W2,W3,W4 is,%f N\n,%f N\n,%f N\n,%f N\n",W1,W2,W3,W4)
+//L=60*N*Lh=0.9*10^6*N
+L1=(1/10)*0.9*10^6*N1
+L2=(1/10)*0.9*10^6*N2
+L3=(1/5)*0.9*10^6*N3
+L4=(3/5)*0.9*10^6*N4
+printf("life of bearing is,%f rev\n,%f rev\n,%f rev\n,%f rev\n",L1,L2,L3,L4)
+W=[(L1* W1^3 + L2* W2^3 + L3* W3^3 + L4* W4^3)/(L1+L2+L3+L4)]^(1/3)
+L=L1+L2+L3+L4//rev
+C=W*(L/10^6)^(1/3)//N
+printf("dynamic load rating is,%f kN",C)
\ No newline at end of file diff --git a/278/CH28/EX28.1/ex_28_1.sce b/278/CH28/EX28.1/ex_28_1.sce new file mode 100755 index 000000000..231056c07 --- /dev/null +++ b/278/CH28/EX28.1/ex_28_1.sce @@ -0,0 +1,32 @@ +//find
+clc
+//solution
+//given
+G=10
+//Tg/Tp=10
+//Dg/Dp=10
+L=660//mm
+P=500*1000//W
+Np=1800//rpm
+q=(%pi/180)*22.5
+Wn=175//N/mm
+Aw=1
+//Tp=(2*Aw)/[G*{sqrt(1+1/G*(1/G +2)*(sin(q))^2)-1}]
+//x=G*{sqrt(1+1/G*(1/G +2)*(sin(q))^2)-1}
+printf("numbr of teeth on pinion is,%f\n",Tp)
+printf("numbr of teeth on pinion is,say 14\n")
+Tp=14
+Tg=G*Tp
+//L=Dg/2+Dp/2=5.5*Dp///Dg/Dp=10
+Dp=L/5.5
+Dg=10*Dp
+m=Dp/Tp
+printf("modulde is,%f \n",m)
+Tp1=Dp/m
+Tg1=G*Tp1
+printf("numbr of teeth on pinion and gear is,%f \n,%f \n",Tp1,Tg1)
+T=P*60/(2*%pi*Np)//N-m
+Wt=T/(Dp/2)
+Wn=Wt/cos(q)
+b=Wn/175*1000//mm
+printf("width is,%f mm\n",b)
\ No newline at end of file diff --git a/278/CH28/EX28.2/ex_28_2.sce b/278/CH28/EX28.2/ex_28_2.sce new file mode 100755 index 000000000..3a0e59f21 --- /dev/null +++ b/278/CH28/EX28.2/ex_28_2.sce @@ -0,0 +1,20 @@ +//find
+clc
+//solution
+//given
+Np=600//rpm
+vr=4//Tg/Tp=4
+fop=84//N/mm^2
+fog=105//N/mm^2
+Tp=16
+m=8//mm
+b=90//mm
+Dp=m*Tp/1000//m
+v=%pi*Dp*Np/60//m/s
+Cv=3/(3+v)
+yp=0.154-(0.912/Tp)
+yg=0.154-(0.912/Tg)
+//fop*yp<fog*yg...therefore diseign is pinion based
+Wt=fop*Cv*b*%pi*m*yp//N
+P=Wt*v
+printf("power trans is,%f W\n",P)
\ No newline at end of file diff --git a/278/CH28/EX28.3/ex_28_3.sce b/278/CH28/EX28.3/ex_28_3.sce new file mode 100755 index 000000000..5eaa991d0 --- /dev/null +++ b/278/CH28/EX28.3/ex_28_3.sce @@ -0,0 +1,29 @@ +//find
+clc
+//solution
+//given
+P=20000//W
+Np=300//rpm
+vr=3//Tg/Tp=3
+fop=120//N/mm^2
+fog=100
+Tp=15
+//b=14*m
+//v=%pi*Dp*Np/60=%pi*m*Tp*Np/60=0.236*m//m/s
+Cs=1
+//Wt=(P/v)*Cs=84746/m//N
+//Cv=3/(3+v)=3/(3+0.236*m)
+yp=0.154-(0.912/Tp)
+Tg=3*Tp
+yg=0.154-(0.912/Tg)
+//fop*yp<fog*yg....desing is pinion based
+//Wt=fop*Cv*b*%pi*m*yp//N=1476*m^2/(3+0.236m)
+//using hit and trial,m=6.4
+//taking m=8 standard value
+m=8
+printf("module is,%f mm\n",m)
+b=14*m
+printf("face width is,%f mm\n",b)
+Dp=m*Tp
+Dg=m*Tg
+printf("pitch dia of pinion and gear is,%f \n,%f \n",Dp,Dg)
\ No newline at end of file diff --git a/278/CH28/EX28.4/ex_28_4.sce b/278/CH28/EX28.4/ex_28_4.sce new file mode 100755 index 000000000..5afc5d929 --- /dev/null +++ b/278/CH28/EX28.4/ex_28_4.sce @@ -0,0 +1,33 @@ +//find
+clc
+//solution
+//given
+P=22500//W
+vr=2//Dg/Dp=2
+Np=200//rpm
+L=600//mm
+fop=60
+fog=60
+//b=10m
+C=80
+K=1.4
+//L=Dg/2+Dp/2=1.5*Dp
+Dp=L/1.5
+Dg=2*Dp
+v=%pi*Dp*Np/60//m/s
+Cv=3/(3+v)
+//Tp=Dp/m
+//yp=0.175-(0.841/Tp)
+//yp=0.175-0.0021*m
+Cs=1//assume
+Wt=P*Cs/v//N
+//Wt=fop*Cv*b*%pi*m*yp//N=137.6m^2-1.65m^3
+//using hit and trial,m=0.65
+//taking m=8 standard value
+m=8
+printf("module is,%f mm\n",m)
+b=14*m
+printf("face width is,%f mm\n",b)
+Tp=Dp/m
+Tg=Dg/m
+printf("numbr of teeth on pinion and gear is,%f \n,%f \n",Tp,Tg)
diff --git a/278/CH28/EX28.5/ex_28_5.sce b/278/CH28/EX28.5/ex_28_5.sce new file mode 100755 index 000000000..be50f72f9 --- /dev/null +++ b/278/CH28/EX28.5/ex_28_5.sce @@ -0,0 +1,32 @@ +//find
+clc
+//solution
+//given
+L=500//mm
+Nm=900//rpm
+Nc=200//rpm
+T=5000//N-m
+Tmax=1.25*T
+vr=Nm/Nc
+//Dp+Dg=(L*2)...eq1
+//Dg=vr*Dp....eq2
+//usieng eq1 and eq2
+Dp=182//mm
+Dg=4.5*Dp/1000//m
+v=%pi*Dg*Nc/60//m/s
+Cv=3/(3+v)
+fog=140
+//yg=.175-(0.841/Tg)=0.175-0.841*m/Dg...Tg=Dg/m
+//yg=0.175-0.001m
+Wt=2*Tmax/Dg//N
+//Wt=fog*Cv*b*%pi*m*yg=200*m^2-1.144m^3....
+//using hit anf trial m=8.95,say 10
+m=10//mm
+b=10*m
+printf("module is,%f mm\n",m)
+printf("face width is,%f mm\n",b)
+Tp=Dp/m
+Tg=Dg/m
+Dp=m*Tp
+Dg=m*Tg
+printf("pitch dia of pinion and gear si,%f mm\n,%f mm\n",Dp,Dg*1000)
diff --git a/278/CH28/EX28.6/ex_28_6.sce b/278/CH28/EX28.6/ex_28_6.sce new file mode 100755 index 000000000..be50f72f9 --- /dev/null +++ b/278/CH28/EX28.6/ex_28_6.sce @@ -0,0 +1,32 @@ +//find
+clc
+//solution
+//given
+L=500//mm
+Nm=900//rpm
+Nc=200//rpm
+T=5000//N-m
+Tmax=1.25*T
+vr=Nm/Nc
+//Dp+Dg=(L*2)...eq1
+//Dg=vr*Dp....eq2
+//usieng eq1 and eq2
+Dp=182//mm
+Dg=4.5*Dp/1000//m
+v=%pi*Dg*Nc/60//m/s
+Cv=3/(3+v)
+fog=140
+//yg=.175-(0.841/Tg)=0.175-0.841*m/Dg...Tg=Dg/m
+//yg=0.175-0.001m
+Wt=2*Tmax/Dg//N
+//Wt=fog*Cv*b*%pi*m*yg=200*m^2-1.144m^3....
+//using hit anf trial m=8.95,say 10
+m=10//mm
+b=10*m
+printf("module is,%f mm\n",m)
+printf("face width is,%f mm\n",b)
+Tp=Dp/m
+Tg=Dg/m
+Dp=m*Tp
+Dg=m*Tg
+printf("pitch dia of pinion and gear si,%f mm\n,%f mm\n",Dp,Dg*1000)
diff --git a/278/CH28/EX28.7/ex_28_7.sce b/278/CH28/EX28.7/ex_28_7.sce new file mode 100755 index 000000000..c9e6008bb --- /dev/null +++ b/278/CH28/EX28.7/ex_28_7.sce @@ -0,0 +1,38 @@ +//find
+clc
+//solution
+//given
+Np=1500//rpm
+P=15000//W
+vr=3
+q=(%pi/180)*14.5
+Tp=25
+fop=200
+fog=200
+t=40
+P1=1.25*P
+Tg=3*Tp
+m=6//mm..assume
+Dp=m*Tp/1000
+Dg=m*Tg
+v=%pi*Dp*Np/60//m/s
+Cs=1
+Wt=(P1/v)*Cs//N
+Cv=3/(3+v)
+yp=0.124-(0.684/Tp)
+//let b be face width
+b1=Wt/(fop*Cv*%pi*m*yp)//mm
+printf("face width is,%f mm\n",b1)
+//in practical situation b is btw 9.5m to 12.5m..sometime it is also taken as 6m
+b=6*m
+printf("face width actual is,%f mm\n",b)
+printf("addndum,dedendum,working depth,min total depth,tooth thickness,min clearance is,%fmm \n,%fmm \n,%fmm \n,%fmm \n,%fmm \n,%fmm \n",m,1.25*m,2*m,2.25*m,1.5708*m,0.25*m)
+Wn=Wt/sin(q)
+Wp=0.00118*Tp*b*m^2//N
+Wr=sqrt(Wn^2 + Wp^2 +2*Wn*Wp*cos(q))
+M=Wr*100//N-mm
+T=Wt*(Dp/2)*1000//N-mm
+Te=sqrt(T^2 +M^2)
+//let dp be pinion hub dia
+dp=(Te/7.855)^(1/3)
+printf("pinion hub dia is,%f mm\n",dp)
\ No newline at end of file diff --git a/278/CH29/EX29.1/ex_29_1.sce b/278/CH29/EX29.1/ex_29_1.sce new file mode 100755 index 000000000..49dcb9fbd --- /dev/null +++ b/278/CH29/EX29.1/ex_29_1.sce @@ -0,0 +1,39 @@ +//find
+clc
+//solution
+//given
+P=15000//W
+q=(%pi/180)*20
+a=(%pi/180)*45
+Np=10000//rpm
+Dp=0.08//m
+Dg=0.32//m
+fop=100
+fog=100
+fes=618
+//let m is module
+T=P*60/(2*%pi*Np)//N-m
+Wt=T/(Dp/2)//N
+//Tp=Dp/m
+//Te=Tp/(cos(a))^3=226.4/m
+//ypb=0.175-(0.841/Te)=0.175-0.0037m
+v=%pi*Dp*Np/60//m/s
+Cv=0.75/(0.75+sqrt(v))
+//b=12.5m...assume
+//Wt=fop*Cv*b*%pi*m*ypb=72m^2-1.5m^3
+//using hit and trial m=2.3..say 2.5
+m=2.5
+b=12.5*m
+printf("module and face width is,%f mm\n,%f mm\n",m,b)
+vr=Dg/Dp
+Q=2*vr/(vr+1)
+//x=tan(qn)
+x=tan(q)*tan(a)
+qn=(%pi/180)*14.4
+Ep=200*1000
+Eg=200*1000
+K=(fes)^2*sin(qn)*(1/1.4)*(1/Ep +1/Eg)//N/mm^2
+Ww=Dp*b*Q*K*1000/(cos(a))^2//N
+printf("load stress factor is,%f N/mm^2\n",K)
+printf("wear load acting is,%f N\n",Ww)
+printf("since wear load acting is more then tangentia tooth load ,hence design is safe")
\ No newline at end of file diff --git a/278/CH29/EX29.2/ex_29_2.sce b/278/CH29/EX29.2/ex_29_2.sce new file mode 100755 index 000000000..c09a286a0 --- /dev/null +++ b/278/CH29/EX29.2/ex_29_2.sce @@ -0,0 +1,32 @@ +//find
+clc
+//solution
+//given
+a=(%pi/180)*30
+P=35000//W
+N=1500//rpm
+Tg=24
+q=(%pi/180)*20
+fo=56
+//b=3*pn...pn=pc*cos(a)...pc=%pi*m..put in eq2
+T=P*60/(2*%pi*N)//N-mm
+Te=T/(cos(a))^3//N
+yb=0.154-(0.912/Te)
+//Wt=T/(Dg/2)=(2T/m/Tg)....Dg=m*Tg
+//Wt=18600/m....eq1
+//v=%pi*N*Dg/60=%pi*m*Tg*N/60
+//v=1.885 m//m/s
+//Cv=15/(1+v)=15/(15+1.885m)
+//Wt=fo*Cv*b*%pi*m*yp//N...eq2
+//Wt=(fo*Cv)*3*%pi*m*cos(a)*%pi*m*yb
+//Wt=2780m^2/(15+1.885*m)....eq3
+//using hit an trial and eq 1 and 3,we get m=5.5,say 6
+m=6
+Dg=m*Tg
+printf("module and pitch dia of gear is,%f mm\n,%f mm\n",m,Dg)
+b=3*%pi*m*cos(a)
+printf("face width is,%f mm\n",b)
+Wt=18600/m
+Wa=Wt*tan(a)//N
+printf("axial tooth is,%f N\n",Wa)
+
diff --git a/278/CH29/EX29.3/ex_29_3.sce b/278/CH29/EX29.3/ex_29_3.sce new file mode 100755 index 000000000..a48137383 --- /dev/null +++ b/278/CH29/EX29.3/ex_29_3.sce @@ -0,0 +1,75 @@ +//find
+clc
+//solution
+//given
+P=22000//W
+Np=1800//rpm
+Ng=600//rpm
+a=(%pi/180)*30
+q=(%pi/180)*20
+Tp=24
+vr=3
+fo=50//N/mm^2
+//b=4*pc
+oh=150//mm..overhang
+t=50//N/mm^2
+T=P*60*1000/(2*%pi*Np)//N-mm
+printf("torque acting is,%f N-mm\n",T)
+Te=T/(cos(a))^3//N
+yb=0.154-(0.912/Te)
+//Wt=T/(Dp/2)=(2T/m/Tp)....Dp=m*Tp
+//Wt=9725/m....eq1
+//v=%pi*m*Tp*Np=135.735*m//m/min
+//Cv=350/(350+v)
+//Wt=fo*Cv*b*%pi*m*yp//N...eq2
+//Wt=(fo*Cv)*4*%pi*m*%pi*m*yb...eq3
+//using hit and trial in eq2 and eq3,we egt m=4.75..say 6
+m=6
+b=4*%pi*m
+printf("module and face width is,%f mm\n,%f mm\n",m,b)
+Dp=m*Tp
+Tg=3*Tp
+printf("numbr of teeeth on gear is,%f \n",Tg)
+Dg=m*Tg
+printf("pitch circle dia of pinion and gear is is,%f mm\n,%f mm\n",Dp,Dg)
+Tg=3*Tp
+printf("numbr of teeeth on gear is,%f \n",Tg)
+//let dp be dia of pinion shaft
+Wt=9725/m
+printf("Wt is,%f N\n",Wt)
+Wa=Wt*tan(a)
+printf("Wa is,%f N\n",Wa)
+M1=Wt*oh//N-mm
+M2=Wa*Dp/2//N-mm
+M=sqrt(M1^2 +M2^2)
+printf("equivalnet bendng moment is,%f N-mm\n",M)
+Te=sqrt(T^2 +M^2)
+//dp=(Te*16/(%pi*t))^(1/3)//mm
+printf("dia of pinion shaft is,%f mm\n",(Te*16/(%pi*t))^(1/3))
+printf("dia of pinion shaft is,say 35mm\n")
+dp=35//mm
+printf("dia of pinion hub is,%f mm\n",1.8*dp)
+printf("length of hub is,%f mm\n",1.25*dp)
+T1=T*vr//torque on gear shaft
+M22=Wa*Dg/2
+Mr=sqrt(M1^2 +M22^2)
+Te1=sqrt(Mr^2 + T1^2)
+//let dg be dia of gear shfat
+//dg=(Te1*16/(%pi*t))^(1/3)//mm
+printf("dia of gear shaft is,%f mm\n",(Te1*16/(%pi*t))^(1/3))
+printf("dia of gear shaft is,say 40 mm\n")
+dg=40//mm
+printf("dia of gear hub is,%f mm\n",1.8*dg)
+printf("length of hub is,%f mm\n",1.25*dg)
+//let a1 be major axis and b1 minor axis
+//b1=a1/2
+//Z=%pi*b1*a1^2/32=0.05*a1^3
+v=135.735*m
+Cv=350/(350+v)
+Ws=Wt/Cv//N
+Mb=Ws/4*Dg/2//N-mm
+printf("max bending moment acting is,%f N-mm\n",Mb)
+fb=42//N/mm^2
+//fb=M/Z
+a1=(Mb/(0.05*fb))^(1/3)//mm
+printf("major and minor axis of section is,%f mm\n,%f mm\n",a1,a1/2)
\ No newline at end of file diff --git a/278/CH3/EX3.1/ex_3_1.sce b/278/CH3/EX3.1/ex_3_1.sce new file mode 100755 index 000000000..32e21c6ff --- /dev/null +++ b/278/CH3/EX3.1/ex_3_1.sce @@ -0,0 +1,14 @@ +//find hole tolerance,shaft tolerance and allowance
+clc
+//solution
+//given
+lh=25//mm//lower limit of hole
+uh=25.02//mm//upper limit of hole
+ls=24.95//mm//lower limit of shaft
+us=24.97//mm//upper limit of shaft
+h=uh-lh//mm//hole tolerance
+s=us-ls//mm//shaft tolerance
+a=lh-us//mm//alownce
+printf("the hole tolerance is,%f mm\n",h)
+printf("the shaft tolerance is,%f mm \n",s)
+printf("the allowance is,%f mm",a)
\ No newline at end of file diff --git a/278/CH3/EX3.2/ex_3_2.sce b/278/CH3/EX3.2/ex_3_2.sce new file mode 100755 index 000000000..78dde6178 --- /dev/null +++ b/278/CH3/EX3.2/ex_3_2.sce @@ -0,0 +1,27 @@ +//find tolerances, fundamental deviations and limit sizs
+clc
+//solution
+//given
+//shaft is 40 H8/f7
+//since 40 mm lies in the diameter steps of 30 to 50 mm, therefore the mean diameter ie geometric mean of them
+D=sqrt(30*50)//mm
+i=0.45*((D)^(1/3))+(0.001*D)//mm//standard tolerance unit
+//therfore,standard tolerance is
+x=25*i*0.001//mm//standard tolerance for grade 8
+x1=16*i*0.001//mm//standard tolerance for grade 7
+//fundamental deviation
+es=-5.5*(D)^0.41*0.001//mm
+ei=es-0.025//mm
+//limit of size
+bs=40//mm//basic size
+uh=40+0.039//mm//upper limitt of hole=lower limit for hole+tolerance for hole
+us=40-0.025//mm//uppr limit of shaft is lower limit of hole-fundamental deviation
+ls=us-0.025//mm
+printf("the standard tolernce for IT8 is,%f mm\n",x)
+printf("the satndard tolerance for IT7 is,%f mm\n",x1)
+printf("the fundamental upper deviation for shaft is,%f mm\n",es)
+printf("the fundamental lower deavtion for shaft is,%f mm\n ",ei)
+printf("the basic size is,%f mm\n",bs)
+printf("upper limit for hole is,%f mm\n",uh)
+printf("the upper limit of shaft is,%f mm\n",us)
+printf("the lower limit of shaft is,%f mm\n",ls)
\ No newline at end of file diff --git a/278/CH3/EX3.3/ex_3_3.sce b/278/CH3/EX3.3/ex_3_3.sce new file mode 100755 index 000000000..053223e41 --- /dev/null +++ b/278/CH3/EX3.3/ex_3_3.sce @@ -0,0 +1,11 @@ +//find dimensions of hole and shaft in all three cases
+//a.)12 mm elctric motion
+//12 mm lies between 10 and 18,therefore
+D=sqrt(10*18)//mm
+i=0.45*(D)^0.33+0.001*D//standard tolrence unit
+IT8=25*i*0.001//mm//standard tolerance for IT8
+es=-11*(D)^0.41*0.001//mm//upper deviation for shaft
+ei=es-IT8//mm//lower deviation for shaft
+printf("the standard tolerance for shaft and hole of grade 8 is,%f mm\n",IT8)
+printf("the upper deviation for shaft is, %f mm",es)
+printf("the upper deviation for shaft is,%f mm",ei)
\ No newline at end of file diff --git a/278/CH3/EX3.4/ex_3_4.sce b/278/CH3/EX3.4/ex_3_4.sce new file mode 100755 index 000000000..a401781bd --- /dev/null +++ b/278/CH3/EX3.4/ex_3_4.sce @@ -0,0 +1,20 @@ +//find limits of shaft and bearing and maximum and minimum clearance
+clc
+//solution
+//given
+//75 mm basic size
+//since 75 lies betweenn 50 and 80
+D=sqrt(50*80)//mm
+i=0.45*(D)^0.33+0.001*D//standard tolerance unit
+IT8=25*i*0.001//mm
+IT7=16*i*0.001//mm
+es=-2.5*(D)^0.34//mm//upper deviation of shaft
+ei=es-IT7//mm//lower deviation fot hole
+bs=75//mm//basic size
+uh=75+IT8//upper limit of hole
+us=75-0.01//mm//upper limit of shft
+ls=us-0.03//mm
+MxC=uh-ls//mm//maximum clearance
+miC=75-us//mm
+printf("maximum clearance is,%f mm\n",MxC)
+printf("minimum clearance is,%f mm",miC)
\ No newline at end of file diff --git a/278/CH30/EX30.1/ex_30_1.sce b/278/CH30/EX30.1/ex_30_1.sce new file mode 100755 index 000000000..35ad39d2d --- /dev/null +++ b/278/CH30/EX30.1/ex_30_1.sce @@ -0,0 +1,33 @@ +//find
+clc
+//solution
+//given
+P=35000//W
+Np=1200//rpm
+Ng=780//rpm
+qs=%pi/2
+Tp=30
+q=(%pi/180)*14.5
+//b=L/4
+vr=Np/Ng
+Tg=vr*Tp
+//tan(qp1)=1/vr
+qp1=(%pi/180)*33
+qp2=(%pi/2)-qp1
+Tep=Tp/cos(qp1)
+Teg=Tg/cos(qp2)
+ypb=0.124-0.686/Tep
+ygb=0.124-0.686/Teg
+//since theyr are made of sme material,ypb <ypg,therfoere desing is pinion based
+T=P*60*1000/(2*%pi*Np)//N-mm
+//Wt=2*T/Dp=2T/(m*Tp)=18567/m//N
+//v=%pi*Dp*Np/1000=%pi*m*Tp*Np/1000
+//v=113.1*m m/min
+//fw=140*(280/(280+v)//N/mm^2)
+//L=Dp/(2*sin(qpi))=27.54*m//mm
+//b=L/4=6.885*m
+//Wt=fw*b*%pi*m*ypb*((L-b)/L)
+//Wt=140*(280/(280+113.1m))*6.6685m*%pi*m*ypb*((27.54m-6.885m)/27.54m)
+//using hit and trial,we get m=6.6,say 8
+m=8
+printf("module,face width,addendum,dedundum,dia of pinion,slant height are,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n %f mm\n",m,6.885*m,m,1.2*m,(m*Tp+2*8*cos(qp1)),27.54*m)
\ No newline at end of file diff --git a/278/CH30/EX30.2/ex_30_2.sce b/278/CH30/EX30.2/ex_30_2.sce new file mode 100755 index 000000000..d5c66a9a2 --- /dev/null +++ b/278/CH30/EX30.2/ex_30_2.sce @@ -0,0 +1,40 @@ +//find
+clc
+//solution
+//given
+qs=(%pi/2)
+Dp=0.08//m
+Dg=0.1//m
+q=(%pi/180)*14.5
+fop=55
+fog=55
+P=2750//W
+Np=1100
+//rpm
+fes=630
+Ep=84000//N/mm^2
+Eg=Ep
+vr=Dg/Dp
+//tan(qp1)=1/vr
+qp1=(%pi/180)*38.66
+qp2=(%pi/2)-qp1
+//Tp=Dp*1000/m
+//Tg=Dg*1000/m
+//Tep=Tp/cos(qp1)
+//Teg=Tg/cos(qp2)
+//ypb=0.124-0.686/Tep=0.124-0.00668*m
+//ygb=0.124-0.686/Teg
+v=%pi*Dp*Np/60//m/s
+Cv=6/(6+v)
+L=sqrt((Dg/2)^2 +(Dp/2)^2)*1000//mm
+b=L/3
+T=P*60*1000/(2*%pi*Np)//N-mm
+Wt=T/(Dp*1000/2)//N
+//Wt=fop*Cv*b*%pi*m*(0.124-0.00668*m)((L-b)/L)
+//Wt=175m-9.43m^2
+//using hit and trial,we get m=4.5,ssay
+m=5
+Tp=Dp*1000/m
+Tg=Dg*1000/m
+printf("module is,%f mm\n",m)
+printf("numbr of teeth on pinion and gear is,%f \n,%f \n",Tp,Tg)
diff --git a/278/CH30/EX30.3/ex_30_3.sce b/278/CH30/EX30.3/ex_30_3.sce new file mode 100755 index 000000000..b345678de --- /dev/null +++ b/278/CH30/EX30.3/ex_30_3.sce @@ -0,0 +1,64 @@ +//find
+clc
+//solution
+//given
+qs=%pi/2
+P=9000//W
+Tp=21
+Tg=60
+fop=85
+fog=55
+Np=1200//rpm
+Ng=420//rpm
+q=(%pi/180)*14.5
+vr=Tg/Tp
+//tan(qp1)=1/vr
+qp1=(%pi/180)*19.3
+qp2=(%pi/2)-qp1
+Tep=Tp/cos(qp1)
+Teg=Tg/cos(qp2)
+ypb=0.124-0.686/Tep
+ygb=0.124-0.686/Teg
+//since theyr are made of sme material,ygb <ypb,therfoere desing is gear based
+T=P*60*1000/(2*%pi*Ng)//N-mm
+//Wt=T/(Dg/2)=2*T/(m*Tg)=6820/m//N
+//v=%pi*Dg*Ng/60=1320*m//mm/s
+//Cv=6/(6+v)
+//L=Dg/(2*sin(qp2))=Tg*m/(2*sin(qp2))=32*m
+//b=L/3=10.67*m//mm
+//Wt=fog*Cv8b*%pi*m*ygb*((L-b)/L)
+//Wt=885m^2/(6+1.32*m)
+//885*m^3 -9002*m-40920
+//using hit and trial method,we get m=4.52,say m=5
+m=5//mm
+b=10.67*m
+printf("module is,%f mm\n",m)
+printf("face width is,%f mm\n",b)
+Dp=m*Tp
+Dg=m*Tg
+printf("pitch dia of pinion and gear is,%f mm\n,%f mm\n",Dp,Dg)
+v=1.32*m
+Wt=6820/m
+//table 28.7,
+e=0.055//mm//error
+//taking
+K=0.107//14.5 composite teeth
+Ep=210*1000//N/mm^2
+Eg=84*1000//N/mm^2
+C=K*e/(1/Ep + 1/Eg)//N/mm
+Wd=Wt+[(21*v*(b*C + Wt))/(21*v + sqrt(b*C + Wt))]
+printf("dynamic load acting is,%f N\n",Wd)
+fe=84
+Ws=fe*b*%pi*m*ygb
+printf("static load acting is,%f N\n",Ws)
+printf("since Ws<Wd,therefore desing is not perfect\n")
+C1=0.107*0.015/(1/Ep +1/Eg)//N-mm
+Wd1=Wt+[(21*v*(b*C1+ Wt))/(21*v + sqrt(b*C1 + Wt))]
+printf("new dynamic load acting is,%f N\n",Wd1)
+printf("now by changind dynamic factor (C),we get Ws>Wd,hence desing is,safe\n")
+fes=630//N/mm^2
+K1=(fes)^2*sin(q)*(1/1.4)*(1/Eg +1/Ep)//N/mm^2
+Q=2*Teg/(Teg+Tep)
+Ww=Dp*b*Q*K1
+printf("wear load acting is,%f N\n",Ww)
+printf("since Ww>Wd1.,hence desing is safe")
\ No newline at end of file diff --git a/278/CH30/EX30.4/ex_30_4.sce b/278/CH30/EX30.4/ex_30_4.sce new file mode 100755 index 000000000..3116eb068 --- /dev/null +++ b/278/CH30/EX30.4/ex_30_4.sce @@ -0,0 +1,57 @@ +//find
+clc
+//solution
+//given
+q=(%pi/180)*20
+qs=%pi/2
+vr=3
+fog=70
+fop=100
+P=37500//W
+Np=750//rpm
+//b=L/3
+oh=150//mm
+//tan(qp1)=1/vr
+qp1=(%pi/180)*18.43
+qp2=(%pi/2)-qp1
+Tp=20//assume
+Tg=vr*Tp
+Tep=Tp/cos(qp1)
+Teg=Tg/cos(qp2)
+ypb=0.124-0.686/Tep
+ygb=0.124-0.686/Teg
+Ng=Np/3
+//since theyr are made of sme material,ygb <ypb,therfoere desing is gear based
+T=P*60*1000/(2*%pi*Ng)//N-mm
+//Wt=T/(Dg/2)=2*T/(m*Tg)=47.7*1000/m//N
+//v=%pi*Dg*Ng/60=0.7855*m//m/s
+//Cv=3/(3+v)
+//L=Dg/(2*sin(qp2))=Tg*m/(2*sin(qp2))=32*m
+//b=L/3=10.67*m//mm
+//Wt=fog*Cv8b*%pi*m*ygb*((L-b)/L)
+//Wt=691*m^2/(3+0.7855*m)
+//using hit and trial,we get m=8.8,say 10
+m=10
+b=10.54*m
+printf("module is,%f mm\n",m)
+printf("face width is,%f mm\n",b)
+Dp=m*Tp
+Dg=m*Tg
+printf("pitch dia of pinion and gear is,%f mm\n,%f mm\n",Dp,Dg)
+//let dp be dia pf pinion shaft
+T1=P*60*1000/(2*%pi*Np)
+L=31.62*m
+Rm=(L-b/2)*Dp/(2*L)//mm
+WT=T1/Rm
+WRH=WT*tan(q)*sin(qp1)//N
+WRV=WT*tan(q)*cos(qp1)//N
+printf("axiala nd radial force actin on piston shaft is,%f N\n,%f N\n",WRH,WRV)
+M1=WRV*oh-WRH*Rm
+printf("moment due to Wrh and Wrv is,%f N-mm\n",M1)
+M2=WT*oh
+M3=sqrt(M1^2 +M2^2)
+Te=sqrt(T1^2 + M3^2)
+t=45
+printf("net moment acting is,%f N-mm\n",M3)
+dp=(16*Te/(%pi*t))^(1/3)
+printf("dia of pinion shaft is,%f mm\n",dp)
\ No newline at end of file diff --git a/278/CH31/EX31.1/ex_31_1.sce b/278/CH31/EX31.1/ex_31_1.sce new file mode 100755 index 000000000..25d3f63c5 --- /dev/null +++ b/278/CH31/EX31.1/ex_31_1.sce @@ -0,0 +1,20 @@ +//find
+clc
+//solution
+//given
+n=3
+m=6
+Dw=50//mm
+Tg=30
+q=(%pi/180)*14.5
+u=0.05
+//tan(y)=m*n/Dw
+y=(%pi/180)*19.8 //rad
+printf("lead angle is,%f deg\n",y)
+vr=Tg/n
+printf("velocity ratio is,%f \n",vr)
+Dg=m*Tg
+x=(Dw+Dg)/2
+printf("centre diat is,%f mm\n",x)
+eff=tan(y)*(cos(q)-u*tan(y))/(cos(q)*tan(y)+u)
+printf("effi is,%f \n",eff)
diff --git a/278/CH31/EX31.2/ex_31_2.sce b/278/CH31/EX31.2/ex_31_2.sce new file mode 100755 index 000000000..575eb4a2a --- /dev/null +++ b/278/CH31/EX31.2/ex_31_2.sce @@ -0,0 +1,24 @@ +//find
+clc
+//solution
+//given
+P=15000//W
+Nw=2000//rpm
+Ng=75//rpm
+n=3
+Dw=65//mm
+Tg=90
+m=6//mm
+q=(%pi/180)*20
+u=0.1
+T=P*60000/(2*%pi*Nw)//N-mm
+Wt=T/(Dw/2)//N
+printf("tangential force acting is,%f N\n",Wt)
+//let y be lead angle
+//tan(y)=m*n/Dw
+y=(%pi/180)*15.5 //rad
+Wa=Wt/tan(y)
+Wr=Wa*tan(q)
+printf("axial force and separating force acting is%f N\n,%f N\n",Wa,Wr)
+eff=tan(y)*(cos(q)-u*tan(y))/(cos(q)*tan(y)+u)
+printf("effi is,%f \n",eff)
diff --git a/278/CH31/EX31.3/ex_31_3.sce b/278/CH31/EX31.3/ex_31_3.sce new file mode 100755 index 000000000..cc894a9a1 --- /dev/null +++ b/278/CH31/EX31.3/ex_31_3.sce @@ -0,0 +1,87 @@ +//find
+clc
+//solution
+//given
+q=(%pi/180)*20
+P=10000//W
+NW=1400//rpm
+vr=12
+x=225//mm
+//1/(tan(y))^3=vr
+y=(%pi/180)*23.6
+printf("lead angle is ,%f rad\n",y)
+//let x/ln=u
+u=(1/2/%pi)*(1/sin(y)+vr/(cos(y)))
+ln=x/u
+//printf("normal lead is,%f mm\n",ln)
+l=ln/cos(y)
+//printf("axial lead is,%f mm\n",l)
+n=4
+Tw=n
+//pa=l/4//axial pitch
+m=8//assume
+pa=%pi*m
+printf("axial pitch is,%f mm\n",pa)
+l1=pa*n
+printf("axial lead is,%f mm\n",l1)
+ln1=l1*cos(y)
+printf("normal lead is,%f mm\n",ln1)
+x1=(ln1/2/%pi)*(1/sin(y)+vr/(cos(y)))
+printf("cenetre diatance is,%f mm\n",x1)
+Dw=l1/(%pi*tan(y))//mm
+printf("pitch circle dia is,%f mm\n",Dw)
+Lw1=pa*(4.5 + 0.02 *Tw)//using table 31.3
+//this length is to be inc by 25 to 30 mm for feed marks,therefore
+Lw=Lw1+25//mm
+printf("length of threaded portion is,%f mm\n",Lw)
+h=0.623*pa
+printf("depth of tooth is,%f mm\n",h)
+a=0.286*pa
+printf("addendum is,%f mm\n",a)
+Dow=Dw+2*a
+printf("outside dia of worm is,%f mm\n",Dow)
+Tg=n*vr
+Dg=m*Tg
+printf("pitc circle dia of worm gear si,%f mm\n",Dg)
+Dog=Dg+0.8903*pa
+printf("outside dia of worm gear is,%f mm\n",Dog)
+Dt=Dg +0.572*pa
+printf("throat dia is,%f mm\n",Dt)
+b=2.15*pa + 5
+printf("face width is,%f mm\n",b)
+NG=NW/vr
+T=P*60/(2*%pi*NG)//N-m
+WT=2*T*1000/Dg//N
+v=%pi*0.384*Ng/60//m/s
+Cv=6/(6+v)
+y1=0.154-(0.912/Tg)
+fo=84
+//Wt=fo*Cv*b*%pi*m*y1=84*0.72*b*m*0.135
+Wt=84*0.72*59*%pi*m*0.135
+printf("tangtial load actingi is %f N\n",Wt)
+printf("since it is more than load acting on gear ,so desing is safe\n")
+WD=Wt/Cv
+printf("dynamic load is,%f N\n",WD)
+printf("since WD>Wt,design is safe\n")
+WS=168*b*%pi*m*y1
+printf("static loac is ,%f N\n",WS)
+printf("since WS>Wt,design is safe\n")
+K=0.55
+WW=Dg*b*K'
+printf("wear laod is,%f N \n",WW)
+printf("since WW>Wt,design is safe\n")
+rv=%pi*Dw*NW/cos(y)/1000
+u2=0.025+rv/18000
+//tan(q2)=u2
+q2=(%pi/180)*2.548
+eff2=tan(y)/(tan(q2+y))
+Qg=1.25*P*(1-eff2)
+Aw=(%pi/4)*Dw^2//mm^2
+Ag=(%pi/4)*Dg^2
+A=Aw+Ag//mm^2
+//Qd=A*(t2-t1)*378
+Qd=Qg
+//t2-t1=G
+G=Qg/45.4
+printf("temp diff is,%f degree C\n",G)
+
diff --git a/278/CH31/EX31.4/ex_31_4.sce b/278/CH31/EX31.4/ex_31_4.sce new file mode 100755 index 000000000..189007bb4 --- /dev/null +++ b/278/CH31/EX31.4/ex_31_4.sce @@ -0,0 +1,44 @@ +//find
+clc
+//solution
+//given
+P=1100//W
+vr=27
+Nw=1440//rpm
+q=(%pi/180)*20
+x=100//mm
+//Dw=(x)^(0.875)/(1.416)//
+printf("pitch circle dia is,%f mm\n",(x)^(0.875)/(1.416))
+printf("pitch cirlce dia is,say 40mm\n")
+Dw=40//mm
+Dg=2*x-Dw//mm
+Tg=2*27//27 is transmission ratio,,from table 31.2
+pa=%pi*Dg/Tg//mm
+pc=pa
+m=pc/%pi//mm//module
+DG=pc*Tg/%pi
+printf("actual pitch is%f mm\n",DG)
+DW=2*x-DG
+printf("actual dia is,%f mm\n",DW)
+b=0.73*DW
+printf("face width is,%f mm\n",b)
+Ng=Nw/vr//rpm
+v=%pi*Dg*Ng/60//m/s'
+Cv=6/(6+v)
+y=0.154-(0.912/Tg)
+fo=84
+Wt=fo*Cv*b*%pi*m*y//N
+P1=Wt*v
+printf("power tran due to tangential load is,%f W\n",P1)
+printf("since power tran is more then given power,hence design is safe\n")
+WD=Wt/Cv//N
+P2=WD*v
+printf("powr due to dynamic load is,%f W\n",P2)
+printf("since power tran is more then given power,hence design is safe\n")
+fe=168
+Ws=fe*b*%pi*m*y//N
+P3=Ws*v
+printf("powr due to static load is,%f W\n",P3)
+P4=3650*(x)^(1.7)/(vr+ 5)
+printf("power due to heat des is,%f W",P4)
+printf("since power tran is more then given power,hence design is safe\n")
\ No newline at end of file diff --git a/278/CH32/EX32.1/ex_32_1.sce b/278/CH32/EX32.1/ex_32_1.sce new file mode 100755 index 000000000..1b7b27cad --- /dev/null +++ b/278/CH32/EX32.1/ex_32_1.sce @@ -0,0 +1,37 @@ +//find
+clc
+//solution
+//given
+BP=5000//W
+N=1200//rpm
+n=N/2
+pm=0.35//N/mm^2
+effm=0.8
+//let D bebore dia
+IP=BP/effm//W
+//IP=pm*l*A*n/60
+//A=%pi*D^2/4,l=1.5D
+//IP=4.12*10^-3 *D^3
+D=(IP*1000/4.12)^(1/3)//mm
+printf("dia of bore dis,%f mm\n",D)
+l=1.5*D
+L=1.15*l
+ft=42
+printf("stroke length is,%f mm\n",L)
+p=9*pm
+C=0.1
+th=D*sqrt(C*p/ft)
+printf("thickness of head is,%f mm\n",th)
+Fc=(%pi/4)*D^2*p//N//force on cylinder...eq1
+//let ns be nu,mbr of studs
+ns=6//...assume
+///let dc be core dia
+ft1=65//N/mm^2
+//d be nominal dia
+//Fs=ns*(%pi/4)*dc^2*ft1=216*d^2....eq2...//dc=0.84*d
+//using eq1 and eq2
+//we get
+//d=sqrt(Fc/216)
+printf("nominal dia is ,%f mm\n",sqrt(Fc/216))
+printf("nominal dia is,say 14 mm\n")
+d=14//mm
\ No newline at end of file diff --git a/278/CH32/EX32.2/ex_32_2.sce b/278/CH32/EX32.2/ex_32_2.sce new file mode 100755 index 000000000..fa0c6102c --- /dev/null +++ b/278/CH32/EX32.2/ex_32_2.sce @@ -0,0 +1,66 @@ +//find
+clc
+//solution
+//given
+D=100//mm
+L=0.125//m
+p=5//N/mm^2
+pm=0.75//N/mm^2
+effm=0.8
+m=41.7*10^-6//kg/BP/s
+HCV=42*1000//kJ/kg
+N=2000//rpm
+ft=38
+th1=sqrt((3*p*D^2)/(16*ft))
+printf("thickness of head on basis of strength is,%f mm\n",th1)
+n=N/2
+A=%pi*D^2/4//mm^2
+IP=pm*L*A*n/60
+BP=effm*IP
+printf("brake power is,%f W\n",BP)
+C=0.05
+H=C*HCV*m*BP//heat flowing piston head
+k=46.6//W/m/C
+//TC-TE=w
+w=220
+th2=H*1000/(12.56*k*w)
+printf("thickness of head on basis of heat dessiapation is,%f mm\n",th2)
+printf("taking large r value into consideration \n")
+th=th1
+printf("thickness of head is,%f mm\n",th)
+tr=7
+printf("thickness of ribs is,%f m\n",tr)
+pw=0.035
+ft1=90
+t1=D*sqrt(3*pw/ft1)
+//t2 lies btw 0.7 t1 to t1
+t2=3//mm
+//b1 lies btw th to 1.2th=16 to 19.2
+b1=18//mm
+//b2 lies btw 0.75t2 to t2
+b2=2.5
+printf("with of top land and othe ring land is,%f mm\n,%f mm\n",b1,b2)
+//G1 lie sbtw 3.5t1 to 4t1
+G1=12.8//mm
+//G2 lies btw 0.002D to 0.004 D
+G2=0.3//mm
+printf("gap btw free ends of ring and btw ring and cylindr is,%f mm\n,%f mm\n",G1,G2)
+u=0.1
+R1=u*%pi*D^2*p/4//...eq3
+//R2=pb*D*l=45*l...eq4
+//from eq3 and eq4.
+//l=R1/45
+printf("length of skirt is,%f mm\n",R1/45)
+printf("length of skirt is ,say 90mm\n")
+l=90
+Lp=l+(4*t2 + 3*3)+b1
+printf("length of piston is,%f mm\n",Lp)
+//let do be outside dia
+//l1 be lenngth of pin
+pb1=25//N/mm^2
+l1=0.45*D
+//Load1=pb1*do*l1=1125*do
+lo2=%pi*D^2*p/4
+do=lo2/1125//mm
+di=0.6*do
+printf("inside and outside dia is,%f mm\n,%f mm\n",di,do)
diff --git a/278/CH32/EX32.3/ex_32_3.sce b/278/CH32/EX32.3/ex_32_3.sce new file mode 100755 index 000000000..c96ae2349 --- /dev/null +++ b/278/CH32/EX32.3/ex_32_3.sce @@ -0,0 +1,32 @@ +//find
+clc
+//solution
+//given
+D=400//mm
+L=600//mm
+r=300//mm
+pm=0.3//N/mm^2
+p=2.5//N/mm^2
+W=50//kN
+//T1+T2=6.5//kN=P
+P=6.5
+q=(%pi/180)*pb
+//l/r=5
+Fp=(%pi/4)*D^2*p//N
+b=2*D
+b1=b/2
+b2=b/2
+H1=Fp*b1/b/1000//kN
+H2=Fp*b2/b/1000//kN
+//V2=W*c1/c
+//c1=c2=c/2
+V2=W/2
+V2=W/2
+H2b=P/2
+H3b=P/2
+//let dc be crankpin dia,lc be length
+fb=75//N/mm^2
+//Mc=(%pi/32)*dc^3*fb=7.364*10^-3*dc^3
+Mc1=H1*b2
+dc=(Mc1/(7.364*10^-3))^(1/3)
+printf("dia of crankpin is,%f mm\n",dc)
\ No newline at end of file diff --git a/278/CH32/EX32.4/ex_32_4.sce b/278/CH32/EX32.4/ex_32_4.sce new file mode 100755 index 000000000..2aec133a7 --- /dev/null +++ b/278/CH32/EX32.4/ex_32_4.sce @@ -0,0 +1,82 @@ +//find
+clc
+//solution
+//given
+D=400//mm
+L=600//mm
+r=300//mm
+pm=0.3//N/mm^2
+p=2.5//N/mm^2
+W=50//kN
+//T1+T2=6.5//kN=P
+P=6.5
+q=(%pi/180)*35
+//l/r=5
+Fp=(%pi/4)*D^2*p//N
+b=2*D
+b1=b/2
+b2=b/2
+H1=Fp*b1/b/1000//kN
+H2=Fp*b2/b/1000//kN
+//V2=W*c1/c
+//c1=c2=c/2
+V2=W/2
+V3=W/2
+H2b=P/2
+H3b=P/2
+//Desing of crankshaft wen crank is at dead centre
+//let dc be crankpin dia,lc be length
+fb=75//N/mm^2
+//Mc=(%pi/32)*dc^3*fb=7.364*10^-3*dc^3
+Mc1=H1*b2
+dc=(Mc1/(7.364*10^-3))^(1/3)
+printf("dia of crankpin is,%f mm\n",dc)
+pb=10
+lc=Fp/(dc*pb)//mm
+printf("lengthb of crankipin is,%f mm\n",lc)
+t=0.65*dc + 6.35
+printf("thickness of crank web is,%f mm\n",t)
+w=1.125*dc+12.7
+printf("width of crank pin is,%f mm\n",w)
+//let ds be dia of shaft
+l1=2*(b/2-lc/2-t)
+printf("l1 is,%f mm\n",l1)
+//c=l1+300=667,take c=800
+c=800
+l2=l1
+l3=l1
+c1=c/2
+c2=c/2
+Mw=V3*c1*1000//N-mm
+printf("bendin moment due to flywheel is,%f N-mm\n",Mw)
+Mt=H3b*c1*1000//N-mm
+Ms=sqrt(Mw^2 + Mt^2)//N-mm
+fb1=42
+printf("resultant bending moment is,%f N-mm\n",Ms)
+ds=((Ms*32)/(%pi*fb1))^(1/3)
+printf("dia of shaft is,%f mm\n",ds)
+//Desing of crankshaftt wen crank is at an angle of max twisting moment
+p1=1
+Fp1=(%pi/4)*D^2*p1/1000//kN
+q1=(%pi/180)*6.58
+Fq1=Fp1/cos(q1)
+FT1=Fq1*sin(q1+q)//kN
+FR=Fq1*sin(q1+q)//kN
+HT1=FT1*b1/b//kN
+HT2=FT1*b2/b
+HR1=FR*b1/b
+HR2=FR*b2/b
+//let dc1 be crankpin dia
+MC1=HR1*b2//kN-mm
+TC1=HT1*r//kN-mm
+TE1=sqrt(MC1^2 + TC1^2)*1000//N-mm
+t11=35//N/mm^2
+dc1=((TE1*16)/(%pi*t11))^(1/3)
+printf("dia of crankpin is,%f mm\n",dc1)
+printf("take larger value dc equal to 205 into consideration\n")
+//let ds1 be dai of shaft
+TS1=FT1*r*1000//N-mm
+TE2=sqrt(Ms^2 + TS1^2)
+t22=35
+ds22=(TE2*16/(%pi*t22))^(1/3)//mm
+printf("shaft dia is,%f mm\n",ds22)
\ No newline at end of file diff --git a/278/CH32/EX32.5/ex_32_5.sce b/278/CH32/EX32.5/ex_32_5.sce new file mode 100755 index 000000000..0475a5d71 --- /dev/null +++ b/278/CH32/EX32.5/ex_32_5.sce @@ -0,0 +1,37 @@ +//find
+clc
+//solution
+//given
+BP=5000//W
+N=1200//rpm
+n=N/2
+pm=0.35//N/mm^2
+effm=0.8
+//let D bebore dia
+IP=BP/effm//W
+//IP=pm*l*A*n/60
+//A=%pi*D^2/4,l=1.5D
+//IP=4.12*10^-3 *D^3
+D=(IP*1000/4.12)^(1/3)//mm
+printf("dia of bore dis,%f mm\n",D)
+l=1.5*D
+L=1.15*l
+ft=42
+printf("stroke length is,%f mm\n",L)
+p=9*pm
+C==0.1
+th=D*sqrt(C*p/ft)
+printf("thickness of head is,%f mm\n",th)
+Fc=(%pi/4)*D^2*p//N//force on cylinder...eq1
+//let ns be nu,mbr of studs
+ns=6//...assume
+///let dc be core dia
+ft1=65//N/mm^2
+//d be nominal dia
+//Fs=ns*(%pi/4)*dc^2*ft1=216*d^2....eq2...//dc=0.84*d
+//using eq1 and eq2
+//we get
+//d=sqrt(Fc/216)
+printf("nominal dia is ,%f mm\n",sqrt(Fc/216))
+printf("nominal dia is,say 14 mm\n")
+d=14//mm
\ No newline at end of file diff --git a/278/CH32/EX32.6/ex_32_6.sce b/278/CH32/EX32.6/ex_32_6.sce new file mode 100755 index 000000000..8a0dc0422 --- /dev/null +++ b/278/CH32/EX32.6/ex_32_6.sce @@ -0,0 +1,15 @@ +//find
+clc
+//solution
+//given
+dp=60//mm
+p=4//N/mm^2
+fb=46//N/mm^2
+k=0.42
+a=%pi/6
+t=k*dp*sqrt(p/fb)//mm
+printf("thickness of valve head is,%f mm\n",t)
+ds=dp/8 + 6.35//mm
+printf("stem dia is,%f mm\n",ds)
+h=dp/(4*cos(a))
+printf("max lift of valve is,%f mm\n",h)
\ No newline at end of file diff --git a/278/CH4/EX4.1/ex_4_1.sce b/278/CH4/EX4.1/ex_4_1.sce new file mode 100755 index 000000000..225a34457 --- /dev/null +++ b/278/CH4/EX4.1/ex_4_1.sce @@ -0,0 +1,12 @@ +//find diameter of the link stock,if permissible tensile stress is not to exceed 75 MPa.
+clc
+//solution
+//given:
+P=50000//N//maximum load is P
+f=75//(N/mm^2)//stress is given
+pi=3.14
+d=sqrt(4*P/(f*pi))//manipulating to get the value of d
+//d=diameter of link stock //using relation f=P/A
+printf("\n\nThe diameter of link stock is,%f mm\n,",d)
+
+
diff --git a/278/CH4/EX4.10/ex_4_10.sce b/278/CH4/EX4.10/ex_4_10.sce new file mode 100755 index 000000000..c1c5e8406 --- /dev/null +++ b/278/CH4/EX4.10/ex_4_10.sce @@ -0,0 +1,22 @@ +//calculate 1.)yield stress 2.)ultimate tensile stress 3.) percentage reduction in area 4.) percentage elongation
+clc
+//solution
+//given
+D=12//mm//initial diameter
+l=60//mm//initial length
+L=80//mm//final length
+d=7//mm//final diameter
+Wy=3400//N//yield load
+Wu=6100//N//ultimate load
+pi=3.14
+A=pi*D^2/4//mm^2//initial area of rod
+a=pi*d^2/4//mm^2//final area of rod
+Fy=Wy/A//N/mm^2//yield stress
+Fu=Wu/A//N/mm^2//ultimate stress
+%ria=(A-a)/A*100//percentage reduction in area
+%eil=(L-l)/L*100//percentage elongation in length
+printf("the yield stress is,%f N/mm^2\n",Fy)
+printf("the ultimate stress is ,%f N/mm^2\n",Fu)
+printf("the percentage reduction in area is,%f\n",%ria)
+printf("the percentage increase in length is,%fn",%eil)
+
diff --git a/278/CH4/EX4.11/ex_4_11.sce b/278/CH4/EX4.11/ex_4_11.sce new file mode 100755 index 000000000..689841369 --- /dev/null +++ b/278/CH4/EX4.11/ex_4_11.sce @@ -0,0 +1,28 @@ +//to find increase in length of compound bar and stress produced in steel and copper bar
+clc
+//solution
+//given
+lc=3000//mm//length of steel and copper bar
+lst=3000//mm//length of steel bar
+Ec=105//kN/mm^2//young's modulus of copper
+Est=210//kN/mm^2//young's modulus of steel
+b=25//mm//width
+t=12.5//mm//thickness
+P=50//kN//load applied
+//refer fig 4.14 in book
+//let dl be increace in length of compound bar
+Ast=b*t//mm^2//area of steel bar
+Ac=b*t//mm^2//area of copper bar
+Pc=(P*Ec)/(Ec+Est)//kN//load taken by copper bar
+Pst=P-Pc//kN//load taken by steel bar
+dl=(Pc*lc)/(Ac*Ec)//mm//change in length
+//stresses produced in individual bars are
+//since strain produced are same therefore
+//(Fst/Est)=(Fc/Ec)//since Est=2Ec,therefore Fst(stress in steel)=2*Fc(stress in copper)
+P=Pst+Pc//(Fst*Ast)+(Fc*Ac)//Ast=Ac//Fst=2Fc,therefore gievn equation can ve written as
+//50=2*Fc*Ac+(Fc*Ac)
+Fc=50/(3*Ac)//N/mm^2//stress in copper bar
+Fst=2*Fc//N/mm^2//stress in steel bar
+printf("the change in lentgth of compound bar is,%f mm\n",dl)
+printf("the stress in copper bar is ,%f kN/mm^2\n",Fc)
+printf("the stress in steel bar is , %f kN/mm^2",Fst)
\ No newline at end of file diff --git a/278/CH4/EX4.12/ex_4_12.sce b/278/CH4/EX4.12/ex_4_12.sce new file mode 100755 index 000000000..8c7ef529a --- /dev/null +++ b/278/CH4/EX4.12/ex_4_12.sce @@ -0,0 +1,27 @@ +//find stress after putting the system in lathe
+clc
+//soluton
+//given
+Ds=18//mm//diameter of steel
+Dc1=24//mm//inner diameter of copper rod initially
+Dc2=40//mm//outer diametr of copper
+Fs=10//N/mm^2//stress in steel rod
+pi=3.14
+As=(pi*Ds^2)/4//mm^2//area of steel rod
+Ac=(pi*(Dc2^2-Dc1^2))/4//mm^2//area of copper rod
+//since tensile load on steel rod is equal to compressive load on copper rod,therefore
+//Fs*As=Fc*Ac,therefore
+Fc=Fs*As/Ac//stress in copper rod//N/mm^2
+//when copper rod is reduced outside diametr changes to 40-1.5*2=37mm,therefore new area is
+Ac1=(pi*(37^2-24^2))//mm^2
+//cross section of other half remain same//if Ac2 is the area of remainder then Ac2=Ac
+//let Fc1 be stress in reduced section,Fc2 be stress in remainder ,Fs1 stress in rod aftre turning
+//since load on copper tube is equal to load on steel tube, therefore Ac1*Fc1=Ac2*Fc2=As*Fs1
+//from above equations Fc1=0.41*Fs1,Fc2=0.32*Fs1
+//let L be the length of steela nd copper rod ,since total change in length is equal to change inlength of rduced section before and aftr turning adn change in length of remainder section beofre and aftre turning
+//dl=dl1+dl2
+//(Fs-Fs1)*L/Es=(Fc1-Fc)*L/(2*Ec)+(Fc2-Fc)*(L)/(2*Ec)
+//given Es=2Ec
+//10-Fs1=0.41*Fs1-3.16+0.32*Fs1-3.16
+Fs1=(10+3.16+3.16)/(1+0.41+0.32)
+printf("the stress in the rod is,%f N/mm^2",Fs1)
\ No newline at end of file diff --git a/278/CH4/EX4.13/ex_4_13.sce b/278/CH4/EX4.13/ex_4_13.sce new file mode 100755 index 000000000..5fccf8919 --- /dev/null +++ b/278/CH4/EX4.13/ex_4_13.sce @@ -0,0 +1,19 @@ +//find the internal diameter of the tyre and least temp upto which type must be heated
+clc
+//solution
+//given
+D=1200//mm//diameter of wheel
+f=100//N/mm^2//stress
+E=200*10^3//N/mm^2//young's modulus
+a=6.5*10^-6//per degree celcius
+//we know stress/strain=E
+//100/x=E
+x=100/E//
+//x=(D-d)/d
+//x=D/d-1
+d=D/(x+1)//mm
+//let t be least temp to which tyre must be heated
+//pi*D=Pi*d(!+at)
+t=(D-d)/(d*a)
+printf("the internal diameter is, %f mm\n",d)
+printf("the least temp is,%f degree celcius",t)
\ No newline at end of file diff --git a/278/CH4/EX4.14/ex_4_14.sce b/278/CH4/EX4.14/ex_4_14.sce new file mode 100755 index 000000000..c6d1bcbbf --- /dev/null +++ b/278/CH4/EX4.14/ex_4_14.sce @@ -0,0 +1,39 @@ +//find stress 1.)when supports are unyielding 2.)when supports yield by 0.1 mm
+clc
+//solution
+//given
+t1=37//deg celcius
+t2=20//deg celcius
+Es=210*10^9//N/m^2
+Ed=74*10^9//N/m^2
+as=11.7*10^-6//per degree celcius
+aa=23.4*10^-6//per degree celcius
+ds=0.05//m
+da=0.025//m
+ls=0.6//m
+la=0.3//m
+pi=3.14
+//refer fig4.16 in book
+t=t1-t2//degree celcius
+x1=as*ls*t//contraction in steel bar
+x2=aa*la*t//contaction in aluminium bar
+x=x1+x2//total contraction
+//assume support B is removed,therefore there will no stress in bar,let us assume P force is applied to the right end to brougth in contact with support B..refer ffig 4.17
+As=(pi/4)*ds^2//m^2//area of steel bar
+Aa=(pi/4)*da^2//m^2
+//we know dls=change in length=(P*ls)/(As*Es),therefore dls=P*1.455*10^-9//m
+//dla=P*8.257*10^-9//m
+//threfore total dl=dls + dla=9.712*10^-9 *P//m
+//P*9.712*10^-9=x
+P=x/(9.712*10^-9)
+fs=P/As//stress in steel bar//N/m^2
+fa=P/Aa//stress in aluminiumbar//N/m^2
+//when supports are yielding by 0.1 mm
+X=x-10^-4//m
+P1=X/(9.712*10^-9)//N
+fs1=P1/As//N/m^2
+fa1=P1/Aa//N/m^2
+printf(" the initial stress in steel bar is, %f N/m^2\n",fs)
+printf("the initial stress in aluminium bar is,%f N/m^2\n",fa)
+printf("the final stress in steel bar is,%f N/m^2\n",fs1)
+printf("the final stress in alu bar is,%f N/m^2",fa1)
\ No newline at end of file diff --git a/278/CH4/EX4.15/ex_4_15.sce b/278/CH4/EX4.15/ex_4_15.sce new file mode 100755 index 000000000..aff2f336c --- /dev/null +++ b/278/CH4/EX4.15/ex_4_15.sce @@ -0,0 +1,33 @@ +//find stres induced in both bars and pins
+clc
+//solution
+//given
+dc=0.050//m
+dse=0.075//m
+dsi=0.050//m
+dp=0.018//m
+t=50//degree celcius
+Es=210*10^9//N/m^2
+Ec=105*10^9//N/m^2
+as=11.5*10^-6//per degree celcius
+ac=17*10^-6//per degree celcius
+//refer fig 4.18
+pi=3.14
+Ac=(pi/4)*dc^2//m^2
+As=(pi/4)*(dse^2-dsi^2)//m^2
+Ap=(pi/4)*(dp)^2
+//let l be the length of rods
+//dlc=l*ac*t=850*10^-6*l
+//dls=l*as*t=575*10^-6*l
+//x=dlc-dls=275*10^-6*l
+//x1=(P*l)/(Ac*Ec)=(P*l)/(206.22*10^6)//m
+//x2=(P*l)/(As*Es)=(P*l)/(515.55*10^6)//m
+//therefore X=x1+x2=(6.79*10^-9*P*l)
+//x=X
+P=(275*10^-6)/(6.79*10^-9)//N
+fc=P/Ac//N/m^2
+fs=P/As//N/m^2
+tp=P/(2*Ap)//N/m^2
+printf("the stress in coper bar is, %f N/m^2\n",fc)
+printf("the stress in steel bar is, %f N/m^2\n",fs)
+printf("the stress is pin is,%f N.m^2",tp)
\ No newline at end of file diff --git a/278/CH4/EX4.16/ex_4_16.sce b/278/CH4/EX4.16/ex_4_16.sce new file mode 100755 index 000000000..0d9330973 --- /dev/null +++ b/278/CH4/EX4.16/ex_4_16.sce @@ -0,0 +1,25 @@ +//find size of rod
+clc
+//solution
+//given
+P=50*10^3//N//load
+ft=100//N/mm^2//stress
+//let d be diameter in mm
+pi=3.14
+//A=(pi/4)*d^2//area
+//P=ft*A=100*A
+//d^2=(50*1000/78.54)
+d=sqrt(50000/78.54)//mm
+//let x be side if rod is square
+//P=ft*A=100*x^2
+x=sqrt(500)//mm
+//if rod s rectangular
+//A=b*t//b=3t,therfore
+//A=3*t^2//m^2
+//P=ft*A
+t=sqrt(50000/300)//mm
+b=3*t//mm
+printf("the diameter if rod is cylindrical is,%f mm\n",d)
+printf("the side is rod is square is,%f mm\n",x)
+printf("the length if rod is rectangular is ,%f mm \n",t)
+printf("the width if rod is rect is ,%f mm",b)
\ No newline at end of file diff --git a/278/CH4/EX4.17/ex_4_17.sce b/278/CH4/EX4.17/ex_4_17.sce new file mode 100755 index 000000000..f7a55f86a --- /dev/null +++ b/278/CH4/EX4.17/ex_4_17.sce @@ -0,0 +1,15 @@ +//find increase in volume
+clc
+//solution
+//given
+l=2400//mm//length
+A=900//mm^2//area
+P=500000//N//load
+m=1/0.25
+E=0.2*10^6//N/mm^2//young's modulus
+//let dV be change in volume
+V=A*l//mm^3//volume of rod
+st=P/(A*E)//strain
+//dV/V=st*(1-(2/m))
+dV=V*st*(1-(2/m))//mm^3
+printf("the change in volume is approximately,%f mm^3",dV)
\ No newline at end of file diff --git a/278/CH4/EX4.18/ex_4_18.sce b/278/CH4/EX4.18/ex_4_18.sce new file mode 100755 index 000000000..2250648fb --- /dev/null +++ b/278/CH4/EX4.18/ex_4_18.sce @@ -0,0 +1,17 @@ +//find stress corresponding to max inst extesnion and value of unkown weight
+clc
+//solution
+//given
+h=10//mm//height thru which weigth fall
+l=3000//mm//length of bar
+A=600//mm^2//xsection area of bar
+dl=2//mm//change in length of bar
+E=200*10^3//N/mm^2
+//let f be stress
+f=(E*dl)/l//N/mm^2
+//let w be value of unknown weigth
+//we know f=(W/A)*[1+sqrt{1+(2*h*A*E/W/l)}]
+//400/3=(W/600)*[1+sqrt{1+(2*10*600*200*1000/W/3000)}]
+W=6400*100/96//N
+printf("the stress induces is,%f N/mm^2\n",f)
+printf("the unknown weigth is,%f N",W)
\ No newline at end of file diff --git a/278/CH4/EX4.19/ex_4_19.sce b/278/CH4/EX4.19/ex_4_19.sce new file mode 100755 index 000000000..941000f97 --- /dev/null +++ b/278/CH4/EX4.19/ex_4_19.sce @@ -0,0 +1,17 @@ +//find the maximum instan stress and elongation
+clc
+//solution
+//given
+d=50//mm//diameter of rod
+l=2500//mm//length of bar
+u=100*10^3//N-mm//shock energy
+E=200*10^3//N/mm^2
+//let f be stress
+pi=3.14
+V=(pi/4)*d^2*l//mm^3
+//u=(f^2*V)/(2*E)
+f=sqrt(u*2*E/V)//N/mm^2
+//let dl be elongation produced
+dl=f*l/E//mm
+printf("the stress produced is,%f N/mm^2\n",f)
+printf("elongation priduces is, %f mm",dl)
\ No newline at end of file diff --git a/278/CH4/EX4.2/ex_4_2.sce b/278/CH4/EX4.2/ex_4_2.sce new file mode 100755 index 000000000..2b24065d7 --- /dev/null +++ b/278/CH4/EX4.2/ex_4_2.sce @@ -0,0 +1,13 @@ +//find tensile stress induced in the link at section A-A and B-B,refer fig 4.4
+clc
+//solution
+//given
+P=45000//N//load applied
+A1=45*20//mm^2//area of cross section at link A-A
+//stress in section A-A
+f1=P/A1//(N/mm^2)
+printf("the stress in section A-A is ,%f N/mm^2\n",f1)
+//stress in section B-B
+A2=20*(75-40)//mm^2//area of cross section at link B-B
+f2=P/A2//(N/mm^2)
+printf("the stress in B-B section ,%f N/mm^2",f2)
diff --git a/278/CH4/EX4.3/ex_4_3.sce b/278/CH4/EX4.3/ex_4_3.sce new file mode 100755 index 000000000..1467c605c --- /dev/null +++ b/278/CH4/EX4.3/ex_4_3.sce @@ -0,0 +1,21 @@ +//to find 1.)diameter of the rods,2.)extension in each rod in the length of 2.5m
+clc
+//solution
+//given
+P=3.5*10^6//N//load applied
+f1=85//(N/mm^2)// safe stress
+E=210*10^3//(N/mm^2)//young's modulus
+l=2.5*10^3//mm
+pi=3.14
+//1)diameter of rod(d)
+//let d be diameter of rods in mm
+//since both rods carries equal load ,therefore load on single rod is
+P1=P/2//N
+d=sqrt(4*P1/(f1*pi))//using f1=P/A//mm
+printf("the diameter of rods is,%f mm\n",d)
+//2)extension in rod
+//let x be extension in rod
+//E=(P1*l)/(A*x)
+ //P1/A=f1
+x=(f1*l)/E
+printf("the extension of rod is,%f mm",x)
\ No newline at end of file diff --git a/278/CH4/EX4.4/ex_4_4.sce b/278/CH4/EX4.4/ex_4_4.sce new file mode 100755 index 000000000..1c07aa2f8 --- /dev/null +++ b/278/CH4/EX4.4/ex_4_4.sce @@ -0,0 +1,29 @@ +//1.)calculate the stress on the lower washers before the nuts are tightened,refer fig 4.5
+//2.)what could be the stress in upper and lower washers...
+clc
+//solution
+//given
+d=20//mm
+d1=22//mm
+d2=50//mm
+d3=22//mm
+d4=44//mm
+P1=120000//N
+P2=5000//N
+//1)stress on lower washer before the nuts are tightened
+pi=3.14
+A1=(pi/4)*(d2^2-d1^2)//(mm^2)
+A2=(pi/4)*(d4^2-d3^2)//(mm^2)
+//since load is equally distributed on 4 washers,therfore load Q1=P1/4
+Q1=P1/4//N
+//calculating stress on lower washer
+f2=Q1/A1//(N/mm^2)
+printf("\n the stress on lower washer when nuts are not tightened is,%f N/mm^2\n",f2)
+//2)
+//stres on upper washers
+P2=5000//N
+f3=P2/A2//stress//(N/mm^2)
+printf("the stress on upper washer is,%f N/mm^2\n",f3)
+//stress on lower washer when nuts are tightened
+f4=(Q1+P2)/A1//(N/mm^2)
+printf("the stress on lower washer when nuts are tightened is,%f N/mm^2",f4)
\ No newline at end of file diff --git a/278/CH4/EX4.5/ex_4_5.sce b/278/CH4/EX4.5/ex_4_5.sce new file mode 100755 index 000000000..df6edb49a --- /dev/null +++ b/278/CH4/EX4.5/ex_4_5.sce @@ -0,0 +1,16 @@ +//find the compression of the piston rod
+clc
+//solution
+//given
+d=50//mm//diameter of rod
+l=600//mm//length of rod
+D=400//mm//diameter of piston
+p=0.9//(N/mm^2)//maximum steam pressure
+E=210*10^3//(N/mm^2)//young's modulus
+pi=3.14
+A=(pi/4)*D^2//(mm^2)//area of cross section of piston
+P=A*p//N//max load acting on piston
+a=(pi/4)*d^2//(mm^2)//area of cross section of piston rod
+//let x be the compression
+x=(P*l)/(E*a)//mm
+printf("the compression in piston rod is,%f mm",x)
\ No newline at end of file diff --git a/278/CH4/EX4.6/ex_4_6.sce b/278/CH4/EX4.6/ex_4_6.sce new file mode 100755 index 000000000..3784bdb6e --- /dev/null +++ b/278/CH4/EX4.6/ex_4_6.sce @@ -0,0 +1,12 @@ +//calculate the force required to produce cicular black of diameter 60mm in a plate of 5mm thickness
+clc
+//solution
+//given
+d=60//mm
+t=5//mm
+u=350//(N/mm^2)//ultimate stress
+pi=3.14
+A=pi*d*t//(mm^2)//area under shear
+//force required to punch a hole
+P=A*u
+printf("the force required is,%f N",P)
\ No newline at end of file diff --git a/278/CH4/EX4.7/ex_4_7.sce b/278/CH4/EX4.7/ex_4_7.sce new file mode 100755 index 000000000..eae6c4341 --- /dev/null +++ b/278/CH4/EX4.7/ex_4_7.sce @@ -0,0 +1,16 @@ +//find diameter of bars and of the pin,refer fig 4.8
+clc
+//solution
+//given
+P=80000//N//tensile force applied
+f1=100//(N/mm^2)
+f2=80//(N/mm^2)
+//diameter of bars in mm
+//A1=(pi/4)*D1^2//Area of bar
+//P=f1*(pi/4)*D1^2
+D1=sqrt((4*P)/(f1*pi))
+printf("\nthe diameter of bars is,%f mm\n",D1)
+//diameter of pin
+//A2=(2*pi/4)*D2^2//area of pin
+D2=sqrt((4*P)/(2*pi*f2))
+printf("\n the diameter of pin is,%f mm \n",D2)
\ No newline at end of file diff --git a/278/CH4/EX4.8/ex_4_8.sce b/278/CH4/EX4.8/ex_4_8.sce new file mode 100755 index 000000000..32f49a470 --- /dev/null +++ b/278/CH4/EX4.8/ex_4_8.sce @@ -0,0 +1,11 @@ +//find the crushing stress induced between plates and rivet
+clc
+//solution
+//given
+t=16//thickness//mm
+P=48*10^3//N
+n=2//two plates are given
+d=25//mm
+//stress acting
+f=(P/(d*t*n))//(N/mm^2)
+printf("the stress acting is,%f N/mm^2",f)
\ No newline at end of file diff --git a/278/CH4/EX4.9/ex_4_9.sce b/278/CH4/EX4.9/ex_4_9.sce new file mode 100755 index 000000000..58559fed9 --- /dev/null +++ b/278/CH4/EX4.9/ex_4_9.sce @@ -0,0 +1,14 @@ +//find the length of the sliding bearing
+clc
+//solution
+//given
+d=25//mm/diameter
+P=2500//N/force
+p=5//(N/mm^2)//bearing pressure
+//A=l*d =l*25//(mm^2)//projected area of bearing
+//p=P/A//pressure=force/area
+//therefore
+l=(P/(25*5))//mm//length
+printf("the required length is,%f mm",l)
+
+
diff --git a/278/CH5/EX5.1/ex_5_1.sce b/278/CH5/EX5.1/ex_5_1.sce new file mode 100755 index 000000000..fcb63ccb2 --- /dev/null +++ b/278/CH5/EX5.1/ex_5_1.sce @@ -0,0 +1,17 @@ +//find diameter of shaft
+clc
+//solution
+//given
+P=100000//W//power
+N=160//rpm
+//Tmax=1.25 Tmean
+t=70//N/mm^2//shear stress
+pi=3.14
+//P=2*pi*N*Tmean/60
+Tmean=(60*P)/(2*pi*N)//Nm
+Tmax=1.25*Tmean//Nm
+//Tmax=(pi/16)*t*d^3
+d=(Tmax*1000*16/(pi*t))^0.33
+printf("the mean torques is,%f Nm\n",Tmean)
+printf("the max torques is,%f Nm\n",Tmax)
+printf("the diametr of shaft is,%f mm",d)
\ No newline at end of file diff --git a/278/CH5/EX5.10/ex_5_10.sce b/278/CH5/EX5.10/ex_5_10.sce new file mode 100755 index 000000000..808613a35 --- /dev/null +++ b/278/CH5/EX5.10/ex_5_10.sce @@ -0,0 +1,30 @@ +//find stress at inner and outer surface
+clc
+//solution
+//given
+//refer fig 5.9
+W=5000//N
+bi=18//mm
+bo=6//mm
+h=40//mm
+Ri=25//mm
+Ro=25+40//mm
+A=0.5*{18+6}*40//are of section X-X//mm^2
+Rn=[{(bi+bo)/2}*h]/[{{{(bi*Ro)-(bo*Ri)}/h}*log(Ro/Ri)}-(bi-bo)]//mm//radius of curvature of neutral axis
+R=Ri+[(h*(bi+2*bo))/{3*(bi+bo)}]//mm//radius of curvature of centroidal axis
+e=R-Rn//distance between centroidal and neutral axis
+x=100+R//distance between load and central axis//mm
+M=W*x//N-mm//moment abt centroidal axis
+f=W/A//stress//N/mm^2
+yi=Rn-Ri//distance from neutral axis to inner surface
+yo=Ro-Rn//distance from neutral axis to outer surface
+fbi=(M*yi)/(A*e*Ri)//N/mm^2//maximum bending stress at inner surafce
+fbo=(M*yo)/(A*e*Ro)//N/mm^2//max bending strss at outr srface
+Fi=f+fbi//N//mm^2//resultant stress on inner surafce
+Fo=f+fbo//N/mm^2//resultant stress o outer surafce
+printf("the value of Rn is,%f mm\n",Rn)
+printf("the stress on section X-X is,%f N/mm^2\n",f)
+printf("the max bedning stress on inner surafce,%f N/mm^2\n",fbi)
+printf("the max bending stress on outer surface is,%f N/mm^2\n",fbo)
+printf("the resultant streess on inner surface is,%f N/mm^2\n",Fi)
+printf("the resultant stress on outer surface is,%f N/mm^2\n",Fo)
diff --git a/278/CH5/EX5.11/ex_5_11.sce b/278/CH5/EX5.11/ex_5_11.sce new file mode 100755 index 000000000..5a989eb27 --- /dev/null +++ b/278/CH5/EX5.11/ex_5_11.sce @@ -0,0 +1,30 @@ +//find stresses in inner and outer fibres
+clc
+//refer fig 5.11 and gfig 5.12
+//solution
+//given
+W=20*10^3//N
+Ri=50//mm
+Ro=150//mm
+h=100//mm
+b=20//mm
+A=b*h//mm^2//area
+Rn=h/{log(Ro/Ri)}//mm//rad of neutral axis
+R=Ri+h/2//rad of centroidal axis
+e=R-Rn
+x=R//mm//distnce btw load and centroidal axis
+M=W*x//N-mm
+f=W/A//N/mm^2
+yi=Rn-Ri
+yo=Ro-Rn
+fbi=(M*yi)/(A*e*Ri)//N/mm^2
+fbo=(M*yo)/(A*e*Ro)//N/mm^2
+Fi=f+fbi//N/mm^2
+Fo=f-fbo//N/mm^2
+printf("the value of e is,%f mm\n",e)
+printf("the value of Rn is,%f mm\n",Rn)
+printf("the stress on section X-X is,%f N/mm^2\n",f)
+printf("the max bedning stress on inner surafce,%f N/mm^2\n",fbi)
+printf("the max bending stress on outer surface is,%f N/mm^2\n",fbo)
+printf("the resultant streess on inner surface is,%f N/mm^2\n",Fi)
+printf("the resultant stress on outer surface is,%f N/mm^2\n",Fo)
\ No newline at end of file diff --git a/278/CH5/EX5.13/ex_5_12.sce b/278/CH5/EX5.13/ex_5_12.sce new file mode 100755 index 000000000..bbbd42d73 --- /dev/null +++ b/278/CH5/EX5.13/ex_5_12.sce @@ -0,0 +1,27 @@ +//find the load
+clc
+//refer fig 5.13
+//solution
+//given
+f=140//N/mm^2
+Ri=25//mm
+Ro=50//mm
+bi=19//mm
+ti=3//mm
+t=3//mm
+h=25//mm
+A=(3*22)+(3*19)//mm^2
+Rn={ti*(bi-t)+t*h}/{[(bi-t)*log((Ri+t)/Ri)]+[t*log(Ro/Ri)]}//mm
+R=Ri+{[(0.5*h^2*t)+(0.5*ti^2*(bi-t))]/{(h*t)+(ti*(bi-t))}}//mm
+e=R-Rn//mm
+x=50+R//mm
+//M=W*x//N-mm
+yi=Rn-Ri//mm
+//f1=W/A=0.008*W//N/mm^2//direct tensile stress
+//fbi=(M*yi)/(A*e*Ri)=0.115*W//N/mm^2
+//f=f1+fbi
+//0.123*W=140
+W=140/0.123//N
+printf("the value of e is,%f mm\n",e)
+printf("the value of Rn is,%f mm\n",Rn)
+printf("the load acting is,%f N",W)
\ No newline at end of file diff --git a/278/CH5/EX5.14/ex_5_14.sce b/278/CH5/EX5.14/ex_5_14.sce new file mode 100755 index 000000000..4547aa4db --- /dev/null +++ b/278/CH5/EX5.14/ex_5_14.sce @@ -0,0 +1,30 @@ +//cal stress at A and B
+clc
+//solution
+//given
+W=3000//N
+T=10^6//N-mm
+P=15000//N
+d=50//mm
+x=250//mm
+pi=3.14
+A=(pi/4)*d^2//mm^2//area of shaft
+f1=P/A//tensile stress at A and B
+M=W*x//N-mm
+Z=(pi/32)*d^3//mm^3
+f2=M/Z//N/mm^2
+fa=f1+f2//N/mm^2
+fb=f2-f1//N/mm^2//tensile stress at B
+fs=16*T/(pi*d^3)//N/mm^3
+Fama=(fa/2)+0.5*sqrt((fa)^2+4*(fs)^2)//max stress at A
+Fami=(fa/2)-0.5*sqrt((fa)^2+4*(fs)^2)//min stress at A
+Tama=0.5*[sqrt(((fa)^2)+(4*(fs)^2))]// max shear stress at A
+Fbma=(fb/2)+0.5*sqrt((fb)^2+4*(fs)^2)//max stress at B
+Fbmi=(fb/2)-0.5*sqrt((fb)^2+4*(fs)^2)//min stress at B
+Tbma=0.5*[sqrt(((fb)^2)+(4*(fs)^2))]//max shear stress at B
+printf("the max stress at A is,% f N/mm^2\n",Fama)
+printf("the min stress at A is,% f N/mm^2\n",Fami)
+printf("the max stress at B is,% f N/mm^2\n",Fbma)
+printf("the max stress at B is,% f N/mm^2\n",Fbmi)
+printf("the max shear stress at A is,%f N/mm^2\n",Tama)
+printf("the max shear stress at B is,%f N/mm^2",Tbma)
diff --git a/278/CH5/EX5.15/ex_5_15.sce b/278/CH5/EX5.15/ex_5_15.sce new file mode 100755 index 000000000..5c8a784e3 --- /dev/null +++ b/278/CH5/EX5.15/ex_5_15.sce @@ -0,0 +1,21 @@ +//detrmin max principasl stress and max shear stress at centre of shaft bearing
+clc
+//solution
+//given
+//refer fig 5.18
+W=15000//N
+d=80//mm
+y=140//mm
+x=120//mm
+pi=3.14
+M=W*x//N-mm
+T=W*y//N-mm
+Z=(pi/32)*d^3//mm^3
+f1=M/Z//N/mm^2//stress due to bending
+f2=16*T/(pi*d^3)//N/mm^2//stress due torsion
+Fm=(f1/2)+(0.5*sqrt(f1^2+4*f2^2))//Max stress
+Fs=0.5*(sqrt(f1^2+4*f2^2))//max shear stress
+printf("the max prin stress is,%f N/mm^2\n",Fm)
+printf("the max shear stress is ,%f N/mm^2",Fs)
+
+
diff --git a/278/CH5/EX5.16/ex_5_16.sce b/278/CH5/EX5.16/ex_5_16.sce new file mode 100755 index 000000000..389045e13 --- /dev/null +++ b/278/CH5/EX5.16/ex_5_16.sce @@ -0,0 +1,45 @@ +//find dia of bolt using all theories
+clc
+//solution
+//given
+Pt1=10000//N
+Ps=5000//N
+fs=100//N/mm^2
+m=10/3
+pi=3.14
+//let d be diameter of bolt in mm
+//A=(pi/4)*d^2=0.7854*d^2//mm^2
+//f1=Pt1/A=12.73/d^2//kN/mm^2
+//t=Ps/A=6.365/d^2//kN/mm^2
+//fs=[(f1^2)+(0.5*sqrt(f1^2 + 4*t^2))]//acc to max principal stress theory
+//fs=15.365/d^2//kN/mm^2
+d=sqrt(15365/fs)//mm
+//using max shear stres theory
+Tm=fs/2//N/mm^2
+//Tm=0.5*[f1^2+ 4*t^2]
+//Tm=9000/d1^2//N/mm^2
+d1=sqrt(9000*2/fs)//mm
+//using max principal strain theory
+//we know
+//fs=[(f1^2)+(0.5*sqrt(f1^2 + 4*t^2))]//
+//fs=15365/d2^2//N/mm^2//max pricipla stress
+//fs2=[(f1^2)-(0.5*sqrt(f1^2 + 4*t^2))]//min principal stress
+//fs2=-2635/d2^2//N/mm^2
+//fs/E-(fs2/(m*E))=fs/E
+//15365/d2^2+2635/(3.33*d2^2)=100
+d2=sqrt(16156/100)//mm
+//using max strain energy theory
+//fs^2+fs^2-2*fs*fs2/m=fs^2
+//[15365/d3^2]^2+[-2635/d3^2]^2+(2*15365*2635/d3^4/3.33)=100^2
+//[23600/d3^4]+[694/d3^4]+[2430/d3^4]=1
+d3=[26724]^(1/4)//mm
+//using max distortion energy theory
+//(fs^2)+(fs2)^2-(2*fs*fs2)=fs^2
+//[15365/d4^2]^2+[2635/d4^2]^2+(2*15365*2635/d4^4)=100^2
+//32391/d4^4=1
+d4=(32391)^(1/4)//mm
+printf("the dia og bolt using max prin stress theory is,%f mm\n",d)
+printf("the dia of bolt using max shear stress thewory is,%f mm\n",d1)
+printf("the dia of bolt using max prin strain theory is ,%f mm\n",d2)
+printf("the dia of bolt using max strain energy theory is,%f mm\n",d3)
+printf("the dia of boltusing distortion energy is,%f mm\n",d4)
\ No newline at end of file diff --git a/278/CH5/EX5.17/ex_5_17.sce b/278/CH5/EX5.17/ex_5_17.sce new file mode 100755 index 000000000..6bff1f355 --- /dev/null +++ b/278/CH5/EX5.17/ex_5_17.sce @@ -0,0 +1,32 @@ +//find dia using two diffrnt theories
+clc
+//soltion
+//given
+fs=700//N/mm^2
+M=10*10^6//N-mm
+T=30*10^6//N-mm
+Fs=2//factor of safety
+E=210*10^3//N/mm^2
+m=4
+pi=3.14
+//let d be dia of shaft in mm
+//Z=(pi/32)*d^3//mm^3
+//f1=M/Z=101.8*10^6/d^3//N/mm^2
+//t=16*T/(pi*d^3)=152.8*10^6/d^3//N/mm^2
+//ft1=(f1/2)+(0.5*sqrt((f1^2)+(4*t^2)))
+//ft1=211.9*10^6/d^3//N/mm^2/max prin stress
+//ft2=(f1/2)-(0.5*sqrt((f1^2)+(4*t^2)))//min prin stress
+//ft2=-110.1*10^6/d^3//N/mm^2
+//acc to max shear stress theory
+//Tmax=(ft1-ft2)/2=161*10^6/d^3//max shear stress theory
+//Tmax=fs/(2*Fs)
+//161*10^6/d^3=700/(2*2)
+d=(161*10^6/175)^(1/3)//mm
+//acc to max strain energy theory
+//1/(2*E)*[ft1^2+ft2^2-(2*ft1*ft2/m)]=1/(2*E)*[fs/Fs]^2
+//ft1^2 + ft2^2- (2*ft1*ft2/m)=[fs/Fs]^2
+//[211.9*10^6/d2^3]^2 + [-110.1*10^6/d2^3]^2 + [2*211.9*10^6*110.1*10^6*0.25/d2^6]=[700/2]^2
+//68689*10^12/d2^6=122500
+d2=(68689*10^12/122500)^(1/6)//mm
+printf("the dia of shaft using max shear stress theory is,%f mm\n",d)
+printf("the dia of shaft using max strain energy theory is,%f mm",d2)
diff --git a/278/CH5/EX5.18/ex_5_18.sce b/278/CH5/EX5.18/ex_5_18.sce new file mode 100755 index 000000000..e4b30b870 --- /dev/null +++ b/278/CH5/EX5.18/ex_5_18.sce @@ -0,0 +1,35 @@ +//find max value of torque
+clc
+//solution
+//given
+d=50//mm
+M=2000*10^6//N-mm
+fs=200//N/mm^2
+//let T be torque
+pi=3.14
+Z=(pi/32)*d^3//mm^3
+//acc to max principal stress theory
+f1=M/Z//N/mm^2//bending stress
+//t=16*T/(pi*d^3)//shear stress due to torque/
+//ft1=(f1/2)+(0.5*sqrt((f1^2)+4*t^2)//N/mm^2
+//ft2=(ft1/2)-(0.5*sqrt((f1^2)+4*t^2)//N/mm^2
+//Tmax=0.5*sqrt(f1^2 + 4*t^2)
+//ft1=fs
+//81.5+sqrt(6642.5+(1.65*10^-9*T^2))=200
+//6642.5+(1.65*10^-9*T^2)=14042
+//T^2=(14042-6642.5)/(1.65*10^-9)
+T=sqrt((14042-6642.5)/(1.65*10^-9))//N-mm
+//acc to max shear stress theory
+//Ty=fs/2//max shear stress=0.5*yield stress
+Ty=100//N/mm^2
+//sqrt(6642.5+(1.65*10^-9*T1^2))=100
+//T1^2=(10000-6642.5)/(1.65*10^-9)
+T1=sqrt(2035*10^9)//N-mm
+//acc to max distortion energy theory
+//ft1^2+ft2^2-ft1*ft2=fs^2
+//[81.5+sqrt(6642.5+1.65*10^-9*T1^2)]^2+[81.5-sqrt(6642.5+1.65*10^-9*T1^2)]^2-[81.5+sqrt(6642.5+1.65*10^-9*T1^2)]^2*[81.5-sqrt(6642.5+1.65*10^-9*T1^2)]^2=200^2
+//81.5^2+3*6642.5+3*1.65*10^-9*T1^2=200^2
+//T1^2=(40000-26570)/(4.95*10^-9)
+T1=sqrt((40000-26570)/(4.95*10^-9))//N-mm
+printf("the torque acting acc to max shear theory is,%f N-mm\n",T)
+printf("the torque acting acc to max distortion theoyr is,%f N-mm",T1)
\ No newline at end of file diff --git a/278/CH5/EX5.19/ex_5_19.sce b/278/CH5/EX5.19/ex_5_19.sce new file mode 100755 index 000000000..247116097 --- /dev/null +++ b/278/CH5/EX5.19/ex_5_19.sce @@ -0,0 +1,20 @@ +//find max and min intensties of stress in the section
+clc
+//solution
+//given
+//refer fig 5.21
+b=150//mm
+d=120//mm
+P=180*10^3//N
+e=10//mm
+A=b*d//mm^2
+fo=P/A//N/mm^2//direct compressive stress
+//Z=Iyy/y
+Z=d*b^2/6//mm^3
+M=P*e//N-mm
+fb=M/Z//bending stress//N/mm^2
+Fm=fo+fb//max stress
+Fmi=fo-fb//min stress
+printf("the max stress is,%f N/mm^2\n",Fm)
+printf("the min stress is,%f N/mm^2",Fmi)
+
diff --git a/278/CH5/EX5.2/ex_5_2.sce b/278/CH5/EX5.2/ex_5_2.sce new file mode 100755 index 000000000..f7073b3bc --- /dev/null +++ b/278/CH5/EX5.2/ex_5_2.sce @@ -0,0 +1,23 @@ +//find 1.)load applied 2.) twist angle(q)
+clc
+//solution
+//given
+d=35//mm//diametr of shaft
+r=17.5//mm
+l=1200//mm//length of rod
+D=500//mm
+R=250//mm
+C=80*10^3//N/mm^2//modulus of rigidity
+t=60//N/mm^2//tortionsl streess
+//let W bw load applied
+//T=R*W //torque
+//T=250*W//N-mm
+pi=3.14
+J=(pi/32)*(d)^4//mm^4
+//T/J=t/r
+//(250*W)/J=(t/r)
+W=(t/r)*J/250//N
+T=R*W
+q=(T*l)/(C*J)//degree
+printf("load applied is,%f N\n",W)
+printf("the angle of twist is,%f degree",q)
diff --git a/278/CH5/EX5.20/ex_5_20.sce b/278/CH5/EX5.20/ex_5_20.sce new file mode 100755 index 000000000..c937c40d0 --- /dev/null +++ b/278/CH5/EX5.20/ex_5_20.sce @@ -0,0 +1,18 @@ +//find stresses at the sides of the column
+clc
+//solution
+//given
+D=250//mm
+d=200//mm
+P=20000//N
+e=500//mm
+pi=3.14
+A=(pi/4)*[D^2-d^2]//mm^2
+fo=P/A//N/mm^2//direct compressive stress
+Z=(pi/64)*[D^4-d^4]*(1/125)//mm^3
+M=P*e//N-mm
+fb=M/Z//N/mm^2
+Fm=fb+fo//N/mm^2//max comprssive stress
+Fmi=fb-fo//max tensile stress//N/mm^2
+printf("the max comprssive stress is ,%f N/mm^2\n",Fm)
+printf("the max tensile stress is ,%f N/mm^2",Fmi)
\ No newline at end of file diff --git a/278/CH5/EX5.21/ex_5_21.sce b/278/CH5/EX5.21/ex_5_21.sce new file mode 100755 index 000000000..d30c1a6b7 --- /dev/null +++ b/278/CH5/EX5.21/ex_5_21.sce @@ -0,0 +1,27 @@ +//find stresses developed at each corner of the pier
+clc
+//solution
+//given
+//refer fig 5.23
+b=4//m
+d=3//m
+A=b*d//m^2
+P=30//kN
+ex=0.5//m
+ey=1//m
+Ixx=b*d^3/12//m^4
+Iyy=d*b^3/12//m^4
+x=3/2//m
+y=4/2//m
+//at A
+fa=(P/A)+(P*ex*x/(Ixx))+(P*ey*y/(Iyy))//kN/m^2
+//at B
+fb=(P/A) +(P*ex*x/(Ixx))-(P*ey*y/(Iyy))//kN/m^2
+//at C
+fc=(P/A)-(P*ex*x/(Ixx))+(P*ey*y/(Iyy))//kN/m^2
+//at D
+fd=(P/A)-(P*ex*x/(Ixx))-(P*ey*y/(Iyy))//kN/m^2
+printf("the stress at A is,%f N/m^2\n",fa)
+printf("the stress at B is,%f N/m^2\n",fb)
+printf("the stress at B is,%f N/m^2\n",fc)
+printf("the stress at D is ,%f N/m^2",fd)
diff --git a/278/CH5/EX5.22/ex_5_22.sce b/278/CH5/EX5.22/ex_5_22.sce new file mode 100755 index 000000000..44803a83f --- /dev/null +++ b/278/CH5/EX5.22/ex_5_22.sce @@ -0,0 +1,25 @@ +//find b1 in fig 5.24
+clc
+//solution
+//given
+P=80000//N
+ft=70//N/mm^2//stress
+//b=3*t
+//A=b*t
+//A=3t*t
+//P=ft*A
+//t^2=80000/210
+t=sqrt(80000/210)//mm
+b=3*t//mm
+////when the link is shown by dotted line, it will be subjected to direct stress as we;; as bending stress
+//A1=b1*t
+//fo=P/A
+//fo=P/(b1*t)
+//fb=M/Z//=P*e/(t*b1^2)
+//f=fo+fb//total stress
+//f=P/(t*b1)*[(6*e/b1)+1]
+//70=(80000/(20*b1))*[4]
+b1=16*10^3/70//mm
+printf("the thickness is,%f mm\n",t)
+printf("the width is,%f mm\n",b)
+printf("the new width is,%f mm\n",b1)
\ No newline at end of file diff --git a/278/CH5/EX5.24/ex_5_23.sce b/278/CH5/EX5.24/ex_5_23.sce new file mode 100755 index 000000000..44803a83f --- /dev/null +++ b/278/CH5/EX5.24/ex_5_23.sce @@ -0,0 +1,25 @@ +//find b1 in fig 5.24
+clc
+//solution
+//given
+P=80000//N
+ft=70//N/mm^2//stress
+//b=3*t
+//A=b*t
+//A=3t*t
+//P=ft*A
+//t^2=80000/210
+t=sqrt(80000/210)//mm
+b=3*t//mm
+////when the link is shown by dotted line, it will be subjected to direct stress as we;; as bending stress
+//A1=b1*t
+//fo=P/A
+//fo=P/(b1*t)
+//fb=M/Z//=P*e/(t*b1^2)
+//f=fo+fb//total stress
+//f=P/(t*b1)*[(6*e/b1)+1]
+//70=(80000/(20*b1))*[4]
+b1=16*10^3/70//mm
+printf("the thickness is,%f mm\n",t)
+printf("the width is,%f mm\n",b)
+printf("the new width is,%f mm\n",b1)
\ No newline at end of file diff --git a/278/CH5/EX5.25/ex_5_25.sce b/278/CH5/EX5.25/ex_5_25.sce new file mode 100755 index 000000000..cc41414a9 --- /dev/null +++ b/278/CH5/EX5.25/ex_5_25.sce @@ -0,0 +1,30 @@ +//find x-sectional dimensions of the bracket
+clc
+//solution
+//given
+//refer fig 5.28
+P=6000//N
+q=45//deg
+f=60//N/mm^2
+//let t be thickness and b=2*t//gevin
+//A=b*t//mm^2
+//A=2t^2//mm^2
+//Z=t*b^2/12
+//Z=4*t^3/6//mm^3
+Ph=6000*cos(45)//N//horizontal component of P
+Mh=Ph*75//N-mm
+//fh=Mh/Z
+//fh=477225/t^3//N/mm^2
+Pv=6000*sin(45)//N
+Mv=Pv*130//N-mm
+//fov=Pv/A//dirct stress due vertical component
+//fov=2121/t^2//N/mm^2
+//fbv=Mv/Z//max bednding stress
+//fbv=827190/t^3//N/mm^2
+//f=477225/t^3+2121/t^2+827190/t^3
+//60=1304415/t^3 + 2121/t^2
+//using hit and trial,we get t=28.4 mm
+t=28.4//mm
+b=2*t
+printf("the value of thickness is ,%f mm\n ",t)
+printf("the value of thickness is ,%f mm",b)
diff --git a/278/CH5/EX5.26/ex_5_27.sce b/278/CH5/EX5.26/ex_5_27.sce new file mode 100755 index 000000000..1312e4966 --- /dev/null +++ b/278/CH5/EX5.26/ex_5_27.sce @@ -0,0 +1,18 @@ +//find max stress intensity and shear stress at joint
+clc
+//given
+//solution
+//refer figure 5.33
+H=500//mm
+B=200//mm
+h=450//mm
+b=15//mm
+F=400000//N
+I=645*10^6//mm^4
+Tmax=(F/(I*b))*[(B/8)*(H^2-h^2)+(b*h^2/8)]//N/mm^2//max intensity of shear stress
+Fj=F/(8*I)*(H^2-h^2)//stress at joint
+FJ=F/(8*I)*(H^2-h^2)*(B/b)//stress at ujnction
+printf("the stress at jointf is,%f N/mm^2\n",Fj)
+printf("the stress at junction is ,%f N/mm^2\n",FJ)
+printf("the max shear stress is ,%f N/mm^2 ",Tmax)
+
diff --git a/278/CH5/EX5.3/ex_5_3.sce b/278/CH5/EX5.3/ex_5_3.sce new file mode 100755 index 000000000..500946dc6 --- /dev/null +++ b/278/CH5/EX5.3/ex_5_3.sce @@ -0,0 +1,24 @@ +//find daimeter of shaft
+clc
+//solution
+//given
+P=97.5*10^3//W//power
+N=180//rpm
+t=60//N/mm^2//tortional stress
+l=3000//mm//length of shaft
+C=80*10^3//N/mm^2
+//let T be torque in N-m
+pi=3.14
+q=0.0174//rad//angle
+//P=2*pi*N*T/60
+T=P*60/(2*pi*N)//N-m
+//we will find diameter of shaft using stiffness and strength
+//using strength
+//T*1000=(pi/16)*t*d^3
+d=(16*T*1000/pi/t)^0.33//mm
+//using stiffness
+//J=(pi/32)*d^4
+//T/J=C*q/l
+d1=(l*T*1000/C/q/0.0982)^(1/4)
+printf("the diameter using strength is,%f mm\n",d)
+printf("the diameter using stiffness is,%f mm\n",d1)
\ No newline at end of file diff --git a/278/CH5/EX5.4/ex_5_4.sce b/278/CH5/EX5.4/ex_5_4.sce new file mode 100755 index 000000000..8ea8ab5da --- /dev/null +++ b/278/CH5/EX5.4/ex_5_4.sce @@ -0,0 +1,26 @@ +//find exteranal diameter of shaft
+clc
+//solution
+//given
+P=600*10^3//W//power
+N=110//rpm
+//Tmax=1.2 Tmean
+t=63//N/mm^2
+l=3000//mm
+q=0.024 //rad//angle of twist
+//k=di/do=3/8//ratio of inner adn outer diameter
+C=84*10^3//N/mm^2
+pi=3.14
+//P=2*pi*N*Tmean/60
+Tmean=60*P/(2*pi*N)//N-m
+Tmax=1.2*Tmean//N-m
+//Tmax*1000=(pi/16)*t*(do)^3(1-k^4)
+do=[{16*Tmax*1000/pi/t}/{1-(3/8)^4}]^0.33//mm
+//J=(pi/32)*{do1^4-di^4}
+//J=(pi/32)*(do1)^4*{1-(3/8)^4}=0.0962*do1^4
+//we know T/J=C*q/l
+do1={Tmax*1000*l/(C*q*0.0962)}^(1/4)//mm
+printf("the mean torque is ,%f N-m\n",Tmean)
+printf("the maximum torque is,%f N-m\n",Tmax)
+printf("the outer diameter using strength is,%f mm\n",do)
+printf("the outer diameter using stiffness is,%f mm",do1)
diff --git a/278/CH5/EX5.5/ex_5_5.sce b/278/CH5/EX5.5/ex_5_5.sce new file mode 100755 index 000000000..504ba7f89 --- /dev/null +++ b/278/CH5/EX5.5/ex_5_5.sce @@ -0,0 +1,35 @@ +// find torque applied and tatal twist angle
+clc
+//solution
+//given
+L=3500//mm//total length
+//l1+l2+l3=3500
+do=100//mm
+di=62.5//mm
+d2=100//mm
+d3=87.5//mm
+t=47.5//N/mm^2//shear stress
+C=82.5*10^3//N/mm^2
+//refer fig 5.3
+pi=3.14
+J1=(pi/32)*[do^4-di^4]
+J2=(pi/32)*[d2]^4
+J3=(pi/32)*[d3]^4//mm^4
+//we know q=(T*l)/(C*J)//twist angle
+//q1=q2
+//(T*l1)/(C*J1)=(T*l2)/(C*J2)
+//therefore l1/l2=(J1/J2)=0.847
+//q1=q3
+//therefore (l1/l3)=(J1/J3)=1.447
+//l1+l2+l3=L=3500
+//l1+l1/0.847+l1/1.447=3500
+//l1(1+(1/0.847)+(1/1.447))=3500
+l1=3500/{1+(1/0.847)+(1/1.447)}
+l2=l1/0.847
+l3=l1/1.447
+//T/J=t/r
+T=(pi/16)*t*[(do^4-di^4)/do]//torque//N-mm
+//q=q1+q2+q3//total angle of twist
+q=(T/C)*[{l1/J1}+{l2/J2}+{l3/J3}]
+printf("the torque applied is,%f N-mm\n",T)
+printf("the total angle of twist is,%f radians",q)
\ No newline at end of file diff --git a/278/CH5/EX5.6/ex_5_6.sce b/278/CH5/EX5.6/ex_5_6.sce new file mode 100755 index 000000000..9054fa995 --- /dev/null +++ b/278/CH5/EX5.6/ex_5_6.sce @@ -0,0 +1,16 @@ +//find diameter of shaft
+clc
+//solution
+//given
+f=100//N/mm^2
+//let Ra and Rb be reaction at A and B
+//taking moment about A
+Rb={(35*750)+(25*150)}/950//kN
+Ra=25+35-Rb//kN
+//since maximum stress is taken into account, therfore maximum moment will be taken into calculations...
+Mc=Ra*150//N-mm
+Md=Rb*200//N-mm
+//Z=(pi/32)*d^3=0.0982*d^3
+//100=Md/Z//because Md>Mc
+d=[Md*1000/(100*0.0982)]^0.33
+printf("the diametr is,%f mm",d)
\ No newline at end of file diff --git a/278/CH5/EX5.7/ex_5_7.sce b/278/CH5/EX5.7/ex_5_7.sce new file mode 100755 index 000000000..d0bf2bb86 --- /dev/null +++ b/278/CH5/EX5.7/ex_5_7.sce @@ -0,0 +1,14 @@ +//find diameter of axle
+clc
+//solution
+//given
+L=1000//mm
+W=30*10^3//N
+f=60//N/mm^2//stress
+//let d be diameter
+pi=3.14
+//Z=(pi/32)*d^3
+M=W*L/4//N-mm
+//f=M/Z
+d=[M/(60*0.09982)]^(1/3)//mm
+printf("the diameter of axle is,%f mm",d)
\ No newline at end of file diff --git a/278/CH5/EX5.8/ex_5_8.sce b/278/CH5/EX5.8/ex_5_8.sce new file mode 100755 index 000000000..2f4ecb552 --- /dev/null +++ b/278/CH5/EX5.8/ex_5_8.sce @@ -0,0 +1,14 @@ +//find width and depth of beam
+//refer fig 5.7
+clc
+W=400//N
+L=300//mm
+f=40//N/mm^2
+//h=2*b
+//Z=b*h^2/6=2b^3/3//mm^3
+M=W*L//N-mm
+//f=M/Z
+b=[M*1.5/(f)]^(1/3)//mm
+h=2*b//mm
+printf("the width of beam is ,%f mm\n",b)
+printf("the height of beam is,%f mm\n",h)
diff --git a/278/CH5/EX5.9/ex_5_9.sce b/278/CH5/EX5.9/ex_5_9.sce new file mode 100755 index 000000000..3177a03ef --- /dev/null +++ b/278/CH5/EX5.9/ex_5_9.sce @@ -0,0 +1,24 @@ +//determine dimensions of arm
+clc
+//solution
+//given
+P=10*10^3//W
+N=400//rpm
+D=1200//mm//
+R=600//mm//
+f=15//N/mm^2
+//let T be torque transmitted by pulley
+pi=3.14
+//P=2*pi*N*T/60
+T=(P*60)/(2*pi*N)//N-m
+L=T*1000/R//load transmitted//N
+//since pulley has 4 arms, therefore weigth on each arm is
+W=L/4//N
+M=W*R//N-mm
+//let 2a be length of minor axis and 2b be length of major axis,2a=4b//given
+//Z=(pi/4)*a^2*b=pi*b^2
+//f=M/Z
+b=[M/(15*pi)]^(1/3)//mm
+a=2*b//mm
+printf("the length of major axis is,%f mm\n",2*a)
+printf("the length of minor axis is,%f mm",2*b)
\ No newline at end of file diff --git a/278/CH6/EX6.1/ex_6_2_1.sce b/278/CH6/EX6.1/ex_6_2_1.sce new file mode 100755 index 000000000..93a32248b --- /dev/null +++ b/278/CH6/EX6.1/ex_6_2_1.sce @@ -0,0 +1,14 @@ +//to find the maximum stress induced
+b=60// b=60mm
+t=10//t=10mm
+d=12//d=12mm
+A=(b-d)*t
+disp(A,"Area=")
+W=12000//W=12kN
+Ns=W/A
+disp(Ns,"Nominal Stress=")
+x=d/b//ratio of diameter of hole to plate width
+// for d/b=0.2, Kt=2.5
+Kt=2.5
+Ms=Kt*Ns
+disp(Ms,"Maximum stress=")
diff --git a/278/CH6/EX6.10/ex_6_10.sce b/278/CH6/EX6.10/ex_6_10.sce new file mode 100755 index 000000000..3bd3bde18 --- /dev/null +++ b/278/CH6/EX6.10/ex_6_10.sce @@ -0,0 +1,34 @@ +syms F
+Wmin=-F
+Wmax=3*F
+d=13
+FS=2
+q=0.9
+Kt=1.42
+Ksz=0.85
+Ksur=0.89
+Kf=1.378
+sigmau=550
+sigmay=470
+sigmae=275
+Mmax=Wmax*125
+disp(Mmax,"Maximum bending moment=")
+Mmin=Wmin*125
+disp(Mmin,"Minimum bending moment=")
+Mm=(Mmax+Mmin)/2
+disp(Mm,"Mean bending moment=")
+Mv=(Mmax-Mmin)/2
+disp(Mv,"Variable bending moment=")
+syms d
+Z=(%pi/32)*d^3
+disp(Z,"Section modulus=")
+sigmam=Mm/Z
+disp(sigmam,"Mean bending stress=")
+sigmav=Mv/Z
+disp(sigmav,"Variable bending stress=")
+0=(sigmam/sigmay)-((sigmav*Kf)/(sigmae*Ksur*Ksz)-(1/FS)//according to Soderberg's relation
+F=1/(2*0.00891)
+disp(F,"According to soderbergs formula, F=")
+0=(sigmam/sigmau)-((sigmav*Kf)/(sigmae*Ksur*Ksz)-(1/FS)//according to goodman's relation
+F=1/(2*0.00873)
+disp(F,"According to Goodman formula, F=")
\ No newline at end of file diff --git a/278/CH6/EX6.11/ex_6_11.sce b/278/CH6/EX6.11/ex_6_11.sce new file mode 100755 index 000000000..b30077281 --- /dev/null +++ b/278/CH6/EX6.11/ex_6_11.sce @@ -0,0 +1,33 @@ +syms P
+Wmin=P
+Wmax=4*P
+l=500
+d=60
+FS=1.3
+Ksz=0.85
+Ksur=0.9
+
+sigmau=700
+sigmay=500
+sigmae=330
+Mmax=(Wmax*l)/4
+disp(Mmax,"Maximum bending moment=")
+Mmin=(Wmin*l)/4
+disp(Mmin,"Minimum bending moment=")
+Mm=(Mmax+Mmin)/2
+disp(Mm,"Mean bending moment=")
+Mv=(Mmax-Mmin)/2
+disp(Mv,"Variable bending moment=")
+syms d
+Z=(%pi/32)*d^3
+disp(Z,"Section modulus=")
+sigmam=Mm/Z
+disp(sigmam,"Mean bending stress=")
+sigmav=Mv/Z
+disp(sigmav,"Variable bending stress=")
+0=(sigmam/sigmay)-((sigmav*Kf)/(sigmae*Ksur*Ksz)-(1/FS)//according to Soderberg's relation
+P=11982
+disp(F,"According to soderbergs formula, F=")
+0=(sigmam/sigmau)-((sigmav*Kf)/(sigmae*Ksur*Ksz)-(1/FS)//according to goodman's relation
+P=13785
+disp(F,"According to Goodman formula, F=")
\ No newline at end of file diff --git a/278/CH6/EX6.12/ex_6_12.sce b/278/CH6/EX6.12/ex_6_12.sce new file mode 100755 index 000000000..72e23acd4 --- /dev/null +++ b/278/CH6/EX6.12/ex_6_12.sce @@ -0,0 +1,60 @@ +l=200
+Wamax=450
+Wamin=-150
+Wtmax=120
+Wtmin=-80
+FS=2
+sigmay=330
+sigmae=300
+Ka=0.7
+Kb=1
+Ktb=1.44
+Kta=1.64
+Ksz=0.85
+Ksur=0.90
+q=0.90
+//consider the reversed axial loading
+Wm=(Wamax+Wamin)/2
+disp(Wm,"Average axial load=")
+Wv=(Wamax-Wamin)/2
+disp(Wv,"Variable axial load=")
+syms d
+A=(%pi*d^2)/4
+sigmam=Wm/A
+disp(sigmam,"Average axial stress=")
+sigmav=Wv/A
+disp(sigmav,"Variable axial stress=")
+Kfa=1.576
+sigmaea=sigmae*Ka
+disp(sigmaea,"Endurance limit stress for reversed axial loading=")
+sigmanea=sigmam+(sigmav*sigmay*Kfa)/(sigmaea*Ksur*Ksz)
+Wm=(Wtmax+Wtmin)/2
+disp(Wm,"Mean bending load=")
+Wv=(Wtmax-Wtmin)/2
+disp(Wv,"Variable bending load=")
+Mm=Wm*(l-50)
+disp(Mm,"Mean bending moment at point A=")
+Mv=Wv*(l-50)
+disp(Mv,"Variable bending moment at point A=")
+Z=(%pi*d^3)/32
+disp(Z,"section modulus=")
+sigmam=Mm/Z
+disp(sigmam,"Mean bending stress=")
+sigmav=Mv/Z
+disp(sigmav,"Variable bending stress=")
+Kfb=1.396
+Kb=1
+sigmaeb=sigmae*Kb
+disp(sigmaeb,"Endurance limit for reverse bending load=")
+sigmaneb=sigmam+(sigmav*sigmay*Kfb)/(sigmaeb*Ksur*Ksz)
+sigmane=sigmanea+sigmaneb
+disp(sigmane,"Total equivalent normal stress at point A=")
+sigmane=sigmay/FS
+disp(sigmane,"Total equivalent normal stress at point A=")
+s=%s
+p=165*s^3-1428*s-337168
+x=roots(p)
+disp(x,"d=")
+//taking the real value of d
+d=12.9
+disp(d,"d=")
diff --git a/278/CH6/EX6.13/ex_6_13.sce b/278/CH6/EX6.13/ex_6_13.sce new file mode 100755 index 000000000..13404850d --- /dev/null +++ b/278/CH6/EX6.13/ex_6_13.sce @@ -0,0 +1,40 @@ +Mmax=440
+Mmin=-220
+sigmay=410*10^6
+sigmau=550*10^6
+sigmae=0.5*sigmau
+FS=2
+syms d
+Tmax=330
+Tmin=-110
+Tm=(Tmax+Tmin)/2
+taum=(16*Tm)/(%pi*d^3)
+disp(taum,"Mean shear stress=")
+Tv=(Tmax-Tmin)/2
+tauv=(16*Tv)/(%pi*d^3)
+disp(tauv,"Variable shear stress=")
+taue=0.55*sigmae
+Ksur=0.62
+Ksz=0.85
+Kfs=1
+tauy=o.5*sigmay//yield stress in shear loading is taken as one half of yield stress in reverse bending
+taues=taum+((tauv*tauy*Kfs)/(taue*Ksur*Ksz))
+Mm=(Mmax+Mmin)/2
+disp(Mm,"Mean bending moment=")
+Mv=(Mmax-Mmin)/2
+disp(Mv,"Variable bending moment=")
+syms d
+Z=(%pi/32)*d^3
+disp(Z,"Section modulus=")
+sigmam=Mm/Z
+disp(sigmam,"Mean bending stress=")
+sigmav=Mv/Z
+disp(sigmav,"Variable bending stress=")
+Kfb=1
+sigmaeb=sigmae
+sigmane=sigmam+((sigmav*sigmay*Kfb)/(sigmaeb*Ksur*Ksz))
+taues=(205*10^6)/2
+d=39.5
+disp(d,"d=")
+
+
diff --git a/278/CH6/EX6.14/ex_6_14.sce b/278/CH6/EX6.14/ex_6_14.sce new file mode 100755 index 000000000..7e522c963 --- /dev/null +++ b/278/CH6/EX6.14/ex_6_14.sce @@ -0,0 +1,48 @@ +sigmau=550
+sigmay=400
+Mmin=-150
+Mmax=400
+Tmin=-50
+
+Tmax=150
+Kfb=1.6
+Kfs=1.3
+FS=1.5
+Kb=1
+Ks=0.6
+Ksz=0.85
+Ksur=0.88
+Mm=(Mmax+Mmin)/2
+disp(Mm,"Mean bending moment=")
+Mv=(Mmax-Mmin)/2
+disp(Mv,"Variable bending moment=")
+syms d
+Z=(%pi/32)*d^3
+disp(Z,"Section modulus=")
+sigmam=(Mm*10^3)/Z
+disp(sigmam,"Mean bending stress=")
+sigmav=(Mv*10^3)/Z
+disp(sigmav,"Variable bending stress=")
+sigmaeb=sigmau/2
+sigmaneb=sigmam+(sigmav*sigmay*Kfb)/(sigmaeb*Ksur*Ksz)
+
+Tm=(Tmax+Tmin)/2
+taum=(16*Tm*10^3)/(%pi*d^3)
+disp(taum,"Mean shear stress=")
+Tv=(Tmax-Tmin)/2
+tauv=(16*Tv*10^3)/(%pi*d^3)
+disp(tauv,"Variable shear stress=")
+taue=sigmae*Ks
+disp(taue,"Endurance limit for reversed torsional loading=")
+tauy=0.5*sigmay
+disp(tauy,"Yield strength in shear=")
+//yield stress in shear loading is taken as one half of yield stress in reverse bending
+taues=taum+((tauv*tauy*Kfs)/(taue*Ksur*Ksz))
+d=33.84
+disp(d,"Diameter of shaft in mm is=")
+
+
+
+
+
+
diff --git a/278/CH6/EX6.2/ex_6_2_2.sce b/278/CH6/EX6.2/ex_6_2_2.sce new file mode 100755 index 000000000..171cb40af --- /dev/null +++ b/278/CH6/EX6.2/ex_6_2_2.sce @@ -0,0 +1,14 @@ +//to find the maximum stress induced
+D=50//D=50mm
+d=25//d=12mm
+r=5
+A=(%pi*d^2)/4
+disp(A,"Area=")
+W=12000//W=12kN
+Ns=W/A
+disp(Ns,"Nominal Stress=")
+x=D/d//ratio of maximum diameter to minimum diameter
+y=r/d//ratio of radius of fillet to minimum diameter
+Kt=1.64
+Ms=Kt*Ns
+disp(Ms,"Maximum stress=")
diff --git a/278/CH6/EX6.3/ex_6_3.sce b/278/CH6/EX6.3/ex_6_3.sce new file mode 100755 index 000000000..8e56c4457 --- /dev/null +++ b/278/CH6/EX6.3/ex_6_3.sce @@ -0,0 +1,21 @@ +//to determine value of minimum ultimate strength
+s=%s
+sigma1=300
+sigma2=-150
+sigmay=0.55*s
+sigmae=0.5*s
+FS=2
+sigmam=(sigma1+sigma2)/2
+sigmav=(sigma1-sigma2)/2
+disp(sigmam,"Mean stress=")
+disp(sigmav,"Variable stress=")
+p=s^2-900*s-22500
+sigmau=roots(p)
+sigmau1=924.35
+disp(sigmau1,"Minimum ultimate strength according to gerber equation=")
+0=(sigmam/s)+(sigmay/sigmae)-(1/FS)//Modified Goodman relation
+sigmau=2*525
+disp(sigmau,"Minimum ultimate strength according to Modified Goodman Relation is=")
+0=(sigmam/sigmay)+(sigmav/sigmae)-(1/FS)//Soderberg equation
+sigmau=2*586.36
+disp(sigmau,"Minimum ultimate strength according to Soderberg equation=")
\ No newline at end of file diff --git a/278/CH6/EX6.4/ex_6_4.sce b/278/CH6/EX6.4/ex_6_4.sce new file mode 100755 index 000000000..97b69c01f --- /dev/null +++ b/278/CH6/EX6.4/ex_6_4.sce @@ -0,0 +1,18 @@ +syms d
+Wmax=500
+Wmin=200
+sigmau=900
+sigmae=700
+FSu=3.5
+FSe=4
+Kf=1.65
+A=(%pi/4)*d^2
+Wm=(Wmax+Wmin)/2
+sigmam=(Wm*10^3)/A
+disp(sigmam,"Mean stress=")
+Wv=(Wmax-Wmin)/2
+sigmav=(Wv*10^3)/A
+disp(sigmav,"Variable stress=")
+0=1-((sigmam*Kf)/(sigmau/FSu))-(sigmav/(sigmae/FSe))//according to goodman relation
+d=sqrt(3960)
+disp(d,"d=")
diff --git a/278/CH6/EX6.5/ex_6_5.sce b/278/CH6/EX6.5/ex_6_5.sce new file mode 100755 index 000000000..81be14ebc --- /dev/null +++ b/278/CH6/EX6.5/ex_6_5.sce @@ -0,0 +1,17 @@ +syms t
+b=120
+Wmax=250
+Wmin=100
+sigmay=300
+sigmae=225
+FS=1.5
+A=b*t
+Wm=(Wmax+Wmin)/2
+sigmam=(Wm*10^3)/A
+disp(sigmam,"Mean stress=")
+Wv=(Wmax-Wmin)/2
+sigmav=(Wv*10^3)/A
+disp(sigmav,"Variable stress=")
+0=(sigmam/sigmay)-(sigmav/sigmae)-(1/FS)//according to Soderberg's relation
+t=7.64*FS
+disp(t,"t=")
\ No newline at end of file diff --git a/278/CH6/EX6.6/ex_6_6.sce b/278/CH6/EX6.6/ex_6_6.sce new file mode 100755 index 000000000..b507fe229 --- /dev/null +++ b/278/CH6/EX6.6/ex_6_6.sce @@ -0,0 +1,18 @@ +syms d
+Wmax=500
+Wmin=200
+sigmau=900
+sigmae=700
+FSu=3.5
+FSe=4
+Kf=1.65
+A=(%pi/4)*d^2
+Wm=(Wmax+Wmin)/2
+sigmam=(Wm*10^3)/A
+disp(sigmam,"Mean stress=")
+Wv=(Wmax-Wmin)/2
+sigmav=(Wv*10^3)/A
+disp(sigmav,"Variable stress=")
+0=1-((sigmam*Kf)/(sigmau/FSu))-(sigmav/(sigmae/FSe))//according to Soderberg's relation
+d=sqrt(3960)
+disp(d,"d=")
diff --git a/278/CH6/EX6.7/ex_6_7.sce b/278/CH6/EX6.7/ex_6_7.sce new file mode 100755 index 000000000..ec838c4f5 --- /dev/null +++ b/278/CH6/EX6.7/ex_6_7.sce @@ -0,0 +1,22 @@ +syms d
+Wmax=180
+Wmin=-180
+sigmau=1070
+sigmay=910
+sigmae=0.5*sigmau
+Ka=0.7
+Ksur=0.8
+Ksz=0.85
+Kf=1
+A=(%pi/4)*d^2
+Wm=(Wmax+Wmin)/2
+sigmam=(Wm)/A
+disp(sigmam,"Mean stress=")
+Wv=(Wmax-Wmin)/2
+sigmav=(Wv*10^3)/A
+disp(sigmav,"Variable stress=")
+sigmaea=sigmae*Ka
+disp(sigmaea,"Endurance limit in reverse axial loading=")
+0=(sigmam/sigmay)-((sigmav*Kf)/(sigmaea*Ksur*Ksz)-(1/FS)//according to Soderberg's relation
+d=sqrt(1800)
+disp(d,"d=")
diff --git a/278/CH6/EX6.8/ex_6_8.sce b/278/CH6/EX6.8/ex_6_8.sce new file mode 100755 index 000000000..fe6497fc9 --- /dev/null +++ b/278/CH6/EX6.8/ex_6_8.sce @@ -0,0 +1,29 @@ +Wmin=20*10^3
+Wmax=50*10^3
+l=500
+FS=1.5
+Kf=1
+Ksz=0.85
+Ksur=0.9
+sigmau=650
+sigmay=500
+sigmae=350
+Mmax=(Wmax*l)/4
+disp(Mmax,"Maximum bending moment=")
+Mmin=(Wmin*l)/4
+disp(Mmin,"Minimum bending moment=")
+Mm=(Mmax+Mmin)/2
+disp(Mm,"Mean bending moment=")
+Mv=(Mmax-Mmin)/2
+disp(Mv,"Variable bending moment=")
+syms d
+Z=(%pi/32)*d^3
+sigmam=Mm/Z
+0=(sigmam/sigmay)-((sigmav*Kf)/(sigmae*Ksur*Ksz)-(1/FS)//according to Soderberg's relation
+d=59.3
+disp(d,"According to soderbergs formula, d=")
+0=(sigmam/sigmau)-((sigmav*Kf)/(sigmae*Ksur*Ksz)-(1/FS)//according to Soderberg's relation
+d=62.1
+disp(d,"According to Goodmans formula, d=")
+printf("Taking larger of the two values, d=62.1mm")
+
diff --git a/278/CH6/EX6.9/ex_6_9.sce b/278/CH6/EX6.9/ex_6_9.sce new file mode 100755 index 000000000..03a8f9e9a --- /dev/null +++ b/278/CH6/EX6.9/ex_6_9.sce @@ -0,0 +1,20 @@ +d=50
+sigmau=630
+Tmax=2000
+Tmin=-800
+Tm=(Tmax+Tmin)/2
+taum=(16*Tm)/(%pi*d^3)
+disp(taum,"Mean shear stress=")
+Tv=(Tmax-Tmin)/2
+tauv=(16*Tv)/(%pi*d^3)
+taue=0.55*0.5*sigmau
+disp(taue,"Endurance limit=")
+sigmay=510
+Ksur=0.87
+Ksz=0.85
+Kf=1
+tauy=o.5*sigmay//yield stress in shear loading is taken as one half of yield stress in reverse bending
+0=(taum/tauy)-((tauv*Kf)/(taue*Ksur*Ksz)-(1/FS)//according to Soderberg's relation
+FS=1/0.541
+disp(FS,"Factor of safety=")
+
diff --git a/278/CH7/EX7.1/ex_7_1.sce b/278/CH7/EX7.1/ex_7_1.sce new file mode 100755 index 000000000..cafd83af4 --- /dev/null +++ b/278/CH7/EX7.1/ex_7_1.sce @@ -0,0 +1,10 @@ +d=1200
+p=1.75
+sigmat2=28
+sigmat1=42
+//when longitudinal stress does not exceed 28Mpa
+t2=(p*d)/(4*sigmat2)
+disp(t,"Minimum wall thickness in mm=")
+//when circumferential stress does not exceed 42MPa
+t1=(p*d)/(2*sigmat1)
+disp(t,"Minimum wall thickness in mm=")
\ No newline at end of file diff --git a/278/CH7/EX7.2/ex_7_2.sce b/278/CH7/EX7.2/ex_7_2.sce new file mode 100755 index 000000000..dd4c53df8 --- /dev/null +++ b/278/CH7/EX7.2/ex_7_2.sce @@ -0,0 +1,10 @@ +d=500
+p=2
+t=20
+//hoop stress
+sigmat1=(p*d)/(2*t)
+disp(sigmat1,"Hoop stress in MPa=")
+sigmat2=(p*d)/(4*t)
+disp(sigmat2,"Longitudinal stress in MPa=")
+tau=(sigmat1-sigmat2)/2
+disp(tau,"Maximum stress=")
\ No newline at end of file diff --git a/278/CH7/EX7.3/ex_7_3.sce b/278/CH7/EX7.3/ex_7_3.sce new file mode 100755 index 000000000..c6b630b81 --- /dev/null +++ b/278/CH7/EX7.3/ex_7_3.sce @@ -0,0 +1,24 @@ +p=3
+d=800
+n=1
+sigmat1=50
+F=25*10^3
+sigmatc=30
+nH=0.8
+nP=0.6
+t=(p*d)/(2*sigmat1*n)
+disp(t,"Thickness of pressure tank in mm=")
+F1=F+0.1*F
+p1=3-0.2//p1=pressure in tank-pressure drop
+D=sqrt(27500/2.2)
+t1=(p1*D)/(2*sigmatc)
+disp(t1,"Thickness of cylinder in mm=")
+// Power o/p of cylinder
+sp=0.45//stroke of piston=450mm
+ts=5//time req for working stroke=5s
+dp=sp/ts//distance moved by piston/sec=0.45/5
+w=F1*dp
+disp(w,"Power output of the cylinder in watts=")
+pp=(w*10^3*5)/(nH*nP*30)
+disp(pp,"Power of the motor in kW=")
+
diff --git a/278/CH7/EX7.4/ex_7_4.sce b/278/CH7/EX7.4/ex_7_4.sce new file mode 100755 index 000000000..5ce76c78a --- /dev/null +++ b/278/CH7/EX7.4/ex_7_4.sce @@ -0,0 +1,10 @@ +syms sigmat1;
+p=(5/8)*sigmat1
+d=100//diameter=100mm
+p1=90//N/mm^2
+E=205*10^3//N/mm^2
+mu=0.29
+t=(p*d)/(2*sigmat1)//thickness of a tube
+disp(t,"Thickness of a tube in mm")
+deltad=((p1*d^2)*(2-mu))/(2*t*E*2)
+disp(deltad,"Increase in diameter of tube in mm")
\ No newline at end of file diff --git a/278/CH7/EX7.5/ex_7_5.sce b/278/CH7/EX7.5/ex_7_5.sce new file mode 100755 index 000000000..fe981e423 --- /dev/null +++ b/278/CH7/EX7.5/ex_7_5.sce @@ -0,0 +1,6 @@ +d=3000//mm
+p=1.5//N-mm^2
+sigmat=90//Mpa
+n=0.75
+t=(p*d)/(4*sigmat*n)//mm
+disp(t,"Thickness of the vessel in mm")
\ No newline at end of file diff --git a/278/CH7/EX7.6/ex_7_6.sce b/278/CH7/EX7.6/ex_7_6.sce new file mode 100755 index 000000000..6edeed373 --- /dev/null +++ b/278/CH7/EX7.6/ex_7_6.sce @@ -0,0 +1,7 @@ +d=900//mm
+t=10//mm
+deltav=150*10^3//mm^3
+E=200*10^3//N/mm^2
+mu=0.3
+p=(deltav*8*t*E)/(%pi*d^4*(1-mu))
+disp(p,"Pressure exerted by the fluid on the shell in N/mm^2")
\ No newline at end of file diff --git a/278/CH8/EX8.1/ex_8_1.sce b/278/CH8/EX8.1/ex_8_1.sce new file mode 100755 index 000000000..d96e35216 --- /dev/null +++ b/278/CH8/EX8.1/ex_8_1.sce @@ -0,0 +1,37 @@ +//calculate radial and tangential stress
+clc
+//solution
+//given
+di=200//mm
+ri=100//mm
+t=50//mm
+p=5//N/mm^2
+ro=ri+t//mm
+//f=[p*(ri)^2]*[1+ro^2/x^2]*[1/(ro^2-ri^2)]
+//x is radius at which stress is found out
+//f=4*[1+(ro^2/(x^2))]//N/mm^2//tangential stress at distance x
+f1=4*[1+(150^2/(100^2))]//N/mm^2
+f2=4*[1+(150^2/(110^2))]//N/mm^2
+f3=4*[1+(150^2/(120^2))]//N/mm^2
+f4=4*[1+(150^2/(130^2))]//N/mm^2
+f5=4*[1+(150^2/(140^2))]//N/mm^2
+f6=4*[1+(150^2/(150^2))]//N/mm^2
+//f=4*[1-(ro^2/(x^2))]//radial stress at distance x
+r1=4*[1-(150^2/(100^2))]//N/mm^2
+r2=4*[1-(150^2/(110^2))]//N/mm^2
+r3=4*[1-(150^2/(120^2))]//N/mm^2
+r4=4*[1-(150^2/(130^2))]//N/mm^2
+r5=4*[1-(150^2/(140^2))]//N/mm^2
+r6=4*[1-(150^2/(150^2))]//N/mm^2
+printf("the tangential stress at distance x=100mm is,%f N/mm^2\n",f1)
+printf("the tangential stress at distance x=110mm is,%f N/mm^2\n",f2)
+printf("the tangential stress at distance x=120mm is,%f N/mm^2\n",f3)
+printf("the tangential stress at distance x=130mm is,%f N/mm^2\n",f4)
+printf("the tangential stress at distance x=140mm is,%f N/mm^2\n",f5)
+printf("the tangential stress at distance x=150mm is,%f N/mm^2\n",f6)
+printf("the radial stress at distance x=100mm is,%f N/mm^2\n ",r1)
+printf("the radial stress at distance x=110mm is,%f N/mm^2\n ",r2)
+printf("the radial stress at distance x=120mm is,%f N/mm^2\n ",r3)
+printf("the radial stress at distance x=130mm is,%f N/mm^2\n ",r4)
+printf("the radial stress at distance x=140mm is,%f N/mm^2\n ",r5)
+printf("the radial stress at distance x=150mm is,%f N/mm^2\n ",r6)
\ No newline at end of file diff --git a/278/CH8/EX8.2/ex_8_2.sce b/278/CH8/EX8.2/ex_8_2.sce new file mode 100755 index 000000000..8da55666c --- /dev/null +++ b/278/CH8/EX8.2/ex_8_2.sce @@ -0,0 +1,12 @@ +//find inside diameter of pipe and wall thickness
+clc
+//solution
+//given
+Q=40//m^3/min
+p=1.4//N/mm^2
+v=1800//m/min
+f=40//N/mm^2
+D=1.13*sqrt(40/1800)//m
+t=(p*D)/(2*f)+0.003//m
+printf("the inside diameter is,%f m\n ",D)
+printf("the wall thickness is,%f m",t)
diff --git a/278/CH8/EX8.3/ex_8_3.sce b/278/CH8/EX8.3/ex_8_3.sce new file mode 100755 index 000000000..d5999c609 --- /dev/null +++ b/278/CH8/EX8.3/ex_8_3.sce @@ -0,0 +1,27 @@ +//find out dimension of joint
+clc
+//solution
+//given
+D=250//mm
+p=0.7//N/mm^2
+//ref table 8.1,foa cast iron ft=14//N/mm^2
+ft=14//N/mm^2
+//table 8.2,C=9 mm//
+C=9//mm
+pi=3.14
+t=(p*D)/(2*ft)+C//mm
+d=0.75*t + 10//mm//nominal dia of bolts
+n=0.0275*D+1.6//mm//numbr of bolts
+tf=1.5*t+3//mm//thickness of flanges
+B=2.3*d//mm//width of flange
+Do=D+2*t+2*B//mm//outside dia of flange
+Dp=D+2*t+2*d+12//mm
+Pc=pi*Dp/n//mm
+printf("the thickness of pipe is,%f mm\n",t)
+printf("the nominal diameter of bolts is,%f mm\n",d)
+printf("the number of bolts is,%f \n",n)
+printf("the thickness of flanges is,%f mm\n",tf)
+printf("the width of flange is,%f mm\n",B)
+printf("the outside dia of flange is,%f mm\n",Do)
+printf("the pitch circle diameter is,%f mm\n",Dp)
+printf("the circumferencial pitch is,%f mm",Pc)
\ No newline at end of file diff --git a/278/CH8/EX8.4/ex_8_4.sce b/278/CH8/EX8.4/ex_8_4.sce new file mode 100755 index 000000000..30fb21c4b --- /dev/null +++ b/278/CH8/EX8.4/ex_8_4.sce @@ -0,0 +1,27 @@ +//find working stress in flange
+clc
+//solution
+//given
+//refer fig 8.12
+D=200//mm
+p=0.35//N/mm^2
+n=8
+d=16//mm
+Dp=290//mm
+tf=20//mm
+//using table ft=14//N/mm^2 ,table 8.2 gives C=9mm
+C=9//mm
+ft=14//N/mm^2
+t=(p*D/(2*ft))+C//mm
+d1=d+2//mm//dia of bolts
+D1=Dp-d1//mm
+pi=3.14
+F=(pi/4)*[D1]^2*p//N//force acting to separate flanges
+x=90//mm
+y=[Dp/2]-[D/2+t]//mm
+//let fb be working stress
+M=F*y/n//N-mm
+//Mr=fb*Z=(1/6)*x*(tf)^2=6000*fb
+//M=6000*fb
+fb=M/6000//N/mm^2
+printf("the working stress is ,%f N/mm^2",fb)
\ No newline at end of file diff --git a/278/CH8/EX8.5/ex_8_5.sce b/278/CH8/EX8.5/ex_8_5.sce new file mode 100755 index 000000000..f7e3147c5 --- /dev/null +++ b/278/CH8/EX8.5/ex_8_5.sce @@ -0,0 +1,32 @@ +//design oval flanged pipe
+clc
+//solution
+//given
+D=50//mm
+R=25//mm
+p=7//N/mm^2
+pi=3.14
+ft=20//N/mm^2
+fb=60//N/mm^2
+//t=R*[sqrt[(ft+p)/(ft-p)]-1]//mm//thickneess of pipe
+t=R*{sqrt[27/13]-1}//mm
+w=10//mm//width of packing
+D1=D+(2*w)//mm
+F=(pi/4)*(D1)^2*p//N
+Fb=F/2//force on bolts
+//let dc be diameter of bolts
+//Fb=(pi/4)*(dc)^2*fb
+dc=sqrt(13471.5/47.2)//mm
+d=dc/0.84//mm
+Do=D+(2*t)+(4.6*d)//mm//outer diameter of flange
+Dp=Do-(3*t+20)//mm//pitch dia of bolts
+b=89//mm
+e=33//mm
+Mxx=Fb*e//N-mm
+//Z=(1/6)*b*(tf)^2
+//Mxx=ft*14.83*tf^2
+tf=sqrt(444560/296.6)//mm
+printf("the thickness of pipe is,%f mm\n",t)
+printf("the nominal dia is,%f mm\n",d)
+printf("the outer diameter of flange is,%f mm\n",Do)
+printf("the thickness of flange is,%f mm",tf)
diff --git a/278/CH9/EX24.5/ex_24_5.sce b/278/CH9/EX24.5/ex_24_5.sce new file mode 100755 index 000000000..1ca9da8cb --- /dev/null +++ b/278/CH9/EX24.5/ex_24_5.sce @@ -0,0 +1,26 @@ +//find..
+clc
+//solution
+//given
+P=15000//W
+N=900//rpm
+n=4
+R=0.15//m
+u=0.25
+//let m be the mass
+w=2*%pi*N/60//rad/s
+w1=(3/4)*w//rad/s
+r=0.12//m
+//Pc=m*w^2*r=1066*m//N
+//Ps=m*w1^2*r=600m//N
+T=P*60/(2*%pi*N)//N-m
+//T=u*(Pc-Ps)*R*n=70m
+m=T/70//kg
+printf("mass of shoes is,%f kg\n",m)
+a=%pi/3
+l=R*a*1000//mm
+//A=l*n=157*b//mm^2
+//F=A*p=15.7*b//N
+//15.7*b=Pc-Ps=466m
+b=466*m/(15.7)//mm
+printf("face width is,%f mm\n",b)
\ No newline at end of file diff --git a/278/CH9/EX9.1/ex_9_1.sce b/278/CH9/EX9.1/ex_9_1.sce new file mode 100755 index 000000000..0f985f2f3 --- /dev/null +++ b/278/CH9/EX9.1/ex_9_1.sce @@ -0,0 +1,28 @@ +//find minimum force per pitch and find actual stresses developed
+clc
+//solution
+//given
+t=15//mm
+d=25//mm
+p=75//mm
+ftu=400//N/mm^2
+tu=320//N/mm^2
+fcu=640//N/mm^2
+pi=3.14
+n=2
+FS=4//factor of safety
+//min foce per pitch which will rupture the joint
+Ptu=(p-d)*t*ftu//N//ultimate teraing reisistance
+Psu=n*(pi/4)*d^2^tu//N//ultimate shear stress
+Pcu=n*d*t*fcu//N//ultimate crushing stress
+//actual stress produced in plates and rivets
+Ac=Ptu/4//N
+//we know
+//Ac=(p-d)*t*fta
+fta=Ac/((p-d)*t)//N/mm^2
+Ta=Ac*4/(n*pi*d^2)//N/mm^2
+fca=Ac/(n*d*t)//N/mm^2
+printf("the min force required is,%f N\n",Ptu)
+printf("the actual tearing stress acting is,%f N/mm^2\n",fta)
+printf("the actual shering stress acting is,%f N/mm^2\n",Ta)
+printf("thr crushing resistance stress is ,%f N/mm^2",fca)
\ No newline at end of file diff --git a/278/CH9/EX9.10/ex_9_10.sce b/278/CH9/EX9.10/ex_9_10.sce new file mode 100755 index 000000000..868ca8ae3 --- /dev/null +++ b/278/CH9/EX9.10/ex_9_10.sce @@ -0,0 +1,64 @@ +//give design calculation sfor longitudinal and circumferncial joints
+clc
+//soltuion
+//given
+P=2.5//N/mm^2
+D=1600//mm
+ft=75//N/mm^2
+T=60//N/mm^2
+fc=125//N/mm^2
+//design of longitudinal joint
+t=(P*D)/(2*ft)+1//mm
+d=6*sqrt(t)//m
+pi=3.14
+//choose standard avlue fromtable 9.3
+//let p be pitch
+//Pt=(p-d)*t*ft//N//tearing resistance of plate
+//Pt=(p-34.5)*2100//N
+Ps=4*1.875*(pi/4)*d^2*T+(pi/4)*d^2*T//N//shearing resistance of rivet//N//shearing resistance of rivet
+//Ps=Pt
+//2100*(p-34.5)=Ps
+//p=Ps/(2100)+34.5//mm
+//pmax=C*t+41.28=220//mm
+//since p>pmax,therefore
+p=220//mm
+p'=220/2//mm
+d1=0.2*p + 1.15*d//mm/diatnce between outtr and row and next row
+d2=0.165*p+0.67*d//mm//distance ebtween inner row for zigzag riveting
+t1=0.75*t//mm//thickness of wide strap
+t2=0.625*t//mm//thickness of narrow strap
+m=1.5*d//mm//margin
+Pt=(p-d)*t*ft//N
+Pc=5*d*t*fc//N//crushing resistance of rivet
+P=p*t*ft//N//strength of the unriveted
+//joint may also fail due to combine teARING AND shearing reistance
+Pts=(p-2*d)*t*ft+(pi/4)*d^2*T//N
+//eff=(least of Pt,Ps,Pts)/P
+eff=Pts/P//least is Ps
+//desing for circumferential joint
+//let n be number of rivets
+//shearign resistance of revets=total shearing load acting on circumferential joint
+//n*pi*d^2*T/4=pi*D^2*P/4
+//n=D^2*P/(d^2*T)//89.6 say 90
+n=90
+n1=90/2//number of rivets per row
+//p1=pi(D+t)/n'//
+//p1=113.7,say 140mm standard value'
+p1=140//mm
+effj=(p1-d)/(p1)
+d3=0.33*p1+0.67*d//dis btw rows of rivets for zigzag
+m1=1.5*d
+printf("calcultion for longitudinal joint")
+printf("the eff is,%f\n",eff)
+printf("the pitch is,%f mm\n",p)
+printf("the thickness of wide strap is,%f mm\n",t1)
+printf("the thickness of narrow strap is,%f mm\n",t2)
+printf("the diameter of rivets is,%f mm",d)
+printf("the margine s,%f mm\n",m)
+printf("the distance btw outer and next row is,%f mm\n",d1)
+printf("the distance btw inner rows is,%f mm\n",d2)
+printf("calculation for circumferencial joint\n")
+printf("the num of rivets is,%f\n",n)
+printf("the number of rivets per rwo for cercumferencial joint is,%f\n",n1)
+printf("the distance btw rows of rivets for zigzag riveting is,%f mm\n",d3)
+printf("the margin is,%f mm",m1)
diff --git a/278/CH9/EX9.11/ex_9_11.sce b/278/CH9/EX9.11/ex_9_11.sce new file mode 100755 index 000000000..81007bf77 --- /dev/null +++ b/278/CH9/EX9.11/ex_9_11.sce @@ -0,0 +1,38 @@ +//design joint
+clc
+//solution
+//given
+b=200//mm
+t=12.5//mm
+ft=80//N/mm^2
+T=65//N/mm^2
+fc=160//N/mm^2
+pi=3.14
+printf("the value of d is,%f mm\n",6*sqrt(t))
+//standard value of d=21.5mm
+d=21.5//mm
+//let n be number of rivets
+Pt=(b-d)*t*ft//N
+Ps=1.75*(pi/4)*d^2*T//N
+Pc=d*t*fc//N
+n=Pt/Ps
+t1=0.75*t//mm
+Pt1=(b-d)*t*ft//N
+Pt2=(b-2*d)*t*ft+Ps//N
+Pt3=(b-2*d)*t*ft+(3*Ps)//N
+Ps5=5*Ps//N//for 5 rivets
+Pc5=5*Pc//N//for 5 rivets
+P=b*t*ft//N
+printf("the value of forces is,%f N\n,%f N\n,%f N\n,%f N\n,%f N\n",Pt1,Pt2,Pt3,Ps5,Pc5)
+//eff=least(Pt1.Pt2,Pt3,Ps5,Pc5)/P
+eff=Pt1/P//since Pt1 is least
+p=3*d +5//mm//pitch
+m=1.5*d//mm
+d1=2.5*d//mm//dis btw rows of rivets
+printf("the diameter is,%f mm\n",d)
+printf("the nuber of rivets is,%f\n",n)
+printf("the thickness of strap is,%f mm\n",t1)
+printf("the eff is,%f\n",eff)
+printf("the pitch is,%f mm\n",p)
+printf("the marginl pitch is,%f mm\n",m)
+printf("the dis btw row is,%f mm",d1)
diff --git a/278/CH9/EX9.12/ex_9_12.sce b/278/CH9/EX9.12/ex_9_12.sce new file mode 100755 index 000000000..51cf3ca09 --- /dev/null +++ b/278/CH9/EX9.12/ex_9_12.sce @@ -0,0 +1,38 @@ +//desing an economical joint
+clc
+//solution
+//given
+b=350//mm
+t=20//mm
+ft=90//N/mm^2
+T=60//N/mm^2
+fc=150//N/mm^2
+printf("the value of d is,%f mm\n",6*sqrt(t))
+//d=26.8//mm
+//standard value is d=29mm using table 9.7
+d=29//mm
+Pt=(b-d)*t*ft//N
+Ps=1.75*(pi/4)*d^2*T//N
+Pc=d*t*fc//N
+n=Pt/Ps
+t1=0.75*t//mm
+Pt1=(b-d)*t*ft//N
+Pt2=(b-2*d)*t*ft+Ps//N
+Pt3=(b-3*d)*t*ft+(3*Ps)//N
+Pt4=(b-3*d)*t*ft+(6*Ps)//N
+Ps9=9*Ps//N//for 9 rivets
+Pc9=9*Pc//N//for 9 rivets
+P=b*t*ft//N
+printf("the value of forces is,%f N\n,%f N\n,%f N\n,%f N\n,%f N\n,%f N\n",Pt1,Pt2,Pt3,Pt4,Ps9,Pc9)
+//eff=least(Pt1.Pt2,Pt3,Pt4,Ps9,Pc9)/P
+eff=Pt1/P//since Pt1 is least
+p=3*d +5//mm//pitch
+m=1.5*d//mm
+d1=2.5*d//mm//dis btw rows of rivets
+printf("the diameter is,%f mm\n",d)
+printf("the nuber of rivets is,%f\n",n)
+printf("the thickness of strap is,%f mm\n",t1)
+printf("the eff is,%f\n",eff)
+printf("the pitch is,%f mm\n",p)
+printf("the marginl pitch is,%f mm\n",m)
+printf("the dis btw row is,%f mm",d1)
\ No newline at end of file diff --git a/278/CH9/EX9.13/ex_9_12.sce b/278/CH9/EX9.13/ex_9_12.sce new file mode 100755 index 000000000..51cf3ca09 --- /dev/null +++ b/278/CH9/EX9.13/ex_9_12.sce @@ -0,0 +1,38 @@ +//desing an economical joint
+clc
+//solution
+//given
+b=350//mm
+t=20//mm
+ft=90//N/mm^2
+T=60//N/mm^2
+fc=150//N/mm^2
+printf("the value of d is,%f mm\n",6*sqrt(t))
+//d=26.8//mm
+//standard value is d=29mm using table 9.7
+d=29//mm
+Pt=(b-d)*t*ft//N
+Ps=1.75*(pi/4)*d^2*T//N
+Pc=d*t*fc//N
+n=Pt/Ps
+t1=0.75*t//mm
+Pt1=(b-d)*t*ft//N
+Pt2=(b-2*d)*t*ft+Ps//N
+Pt3=(b-3*d)*t*ft+(3*Ps)//N
+Pt4=(b-3*d)*t*ft+(6*Ps)//N
+Ps9=9*Ps//N//for 9 rivets
+Pc9=9*Pc//N//for 9 rivets
+P=b*t*ft//N
+printf("the value of forces is,%f N\n,%f N\n,%f N\n,%f N\n,%f N\n,%f N\n",Pt1,Pt2,Pt3,Pt4,Ps9,Pc9)
+//eff=least(Pt1.Pt2,Pt3,Pt4,Ps9,Pc9)/P
+eff=Pt1/P//since Pt1 is least
+p=3*d +5//mm//pitch
+m=1.5*d//mm
+d1=2.5*d//mm//dis btw rows of rivets
+printf("the diameter is,%f mm\n",d)
+printf("the nuber of rivets is,%f\n",n)
+printf("the thickness of strap is,%f mm\n",t1)
+printf("the eff is,%f\n",eff)
+printf("the pitch is,%f mm\n",p)
+printf("the marginl pitch is,%f mm\n",m)
+printf("the dis btw row is,%f mm",d1)
\ No newline at end of file diff --git a/278/CH9/EX9.14/ex_9_14.sce b/278/CH9/EX9.14/ex_9_14.sce new file mode 100755 index 000000000..415d017ec --- /dev/null +++ b/278/CH9/EX9.14/ex_9_14.sce @@ -0,0 +1,61 @@ +//detremine the size of rivets to be used for joint
+clc
+//refer fig 9.24,9.25
+//solution
+//given
+t=25//mm
+P=50000//N
+e=400//mm
+n=7
+T=65//N/mm^2
+fc=120//N/mm^2
+//let xb and yb be center of gravity
+//xb=(x1+x2+x3+x4+x5+x6+x7)/7
+xb=(100+200+200+200)/7//mm
+//yb=(y1+y2+y3+y4+y5+y6+y7)/7
+yb=(200+200+200+100+100)/7//mm
+Ps=P/n
+T1=P*e//turning moment due to P//N-mm
+//l1=l3
+l1=sqrt(100^2+(200-yb)^2)//mm
+l3=sqrt(100^2+(200-yb)^2)//mm
+l2=200-yb//mm
+//l4=l7
+l4=sqrt(100^2+(yb-100)^2)//mm
+l7=sqrt(100^2+(yb-100)^2)//mm
+//l5=l6
+l5=sqrt(100^2+yb^2)//mm
+l6=sqrt(100^2+yb^2)//mm
+//eqauting the moments equal to each other
+//P*e=(F1/l1)*[l1^2+l2^2+l3^2+l4^2+l5^2+l6^2+l7^2]
+F1=(P*e*l1)/(l1^2+l2^2+l3^2+l4^2+l5^2+l6^2+l7^2)//N
+F2=F1*l2/l1//N
+F3=F1*l3/l1//N
+F4=F1*l4/l1//N
+F5=F1*l5/l1//N
+F6=F1*l6/l1//N
+F7=F1*l7/l1//N
+//cos(q1)=100/l3=0.76=a
+//cos(q4)=100/l4=0.99=b
+//cos(q5)=100/l5=0.658=c
+a=0.76
+b=0.99
+c=0.658
+R3=sqrt(Ps^2+F3^2+2*F3*Ps*a)
+R4=sqrt(Ps^2+F4^2+2*F4*Ps*b)
+R5=sqrt(Ps^2+F5^2+2*F5*Ps*c)
+printf("the value R3,R4,R5 are respctively,%f N\n,%f N\n,%f N\n",R3,R4,R5)
+//let d be diameter
+pi=3.14
+//from above we see that max lod is R5,therefore R5=P
+//R5=(pi/4)*d^2*T
+d=sqrt(R5*4/(pi*T))//mm
+Lc=R5/(d*t)//max crushing load
+printf("the cordinates of centre of gravity are,%f mm\n,%f mm \n",xb,yb)
+printf("the direct load is,%f N\n",Ps)
+printf("the turning moment is,%f N-mm\n",T1)
+printf("the values of Li respectively is,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n",l1,l2,l3,l4,l5,l6,l7)
+printf("the shear loads(Forces F) acting are,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n",F1,F2,F3,F4,F5,F6,F7)
+printf("the crushing stress is,%f N/mm^2\n ",Lc)
+printf("the diameter is ,%f mm\n",d)
+printf("since crushing load calculted is less then 120 N/mm^2,therefore desing is safe ")
diff --git a/278/CH9/EX9.15/ex_9_14.sce b/278/CH9/EX9.15/ex_9_14.sce new file mode 100755 index 000000000..415d017ec --- /dev/null +++ b/278/CH9/EX9.15/ex_9_14.sce @@ -0,0 +1,61 @@ +//detremine the size of rivets to be used for joint
+clc
+//refer fig 9.24,9.25
+//solution
+//given
+t=25//mm
+P=50000//N
+e=400//mm
+n=7
+T=65//N/mm^2
+fc=120//N/mm^2
+//let xb and yb be center of gravity
+//xb=(x1+x2+x3+x4+x5+x6+x7)/7
+xb=(100+200+200+200)/7//mm
+//yb=(y1+y2+y3+y4+y5+y6+y7)/7
+yb=(200+200+200+100+100)/7//mm
+Ps=P/n
+T1=P*e//turning moment due to P//N-mm
+//l1=l3
+l1=sqrt(100^2+(200-yb)^2)//mm
+l3=sqrt(100^2+(200-yb)^2)//mm
+l2=200-yb//mm
+//l4=l7
+l4=sqrt(100^2+(yb-100)^2)//mm
+l7=sqrt(100^2+(yb-100)^2)//mm
+//l5=l6
+l5=sqrt(100^2+yb^2)//mm
+l6=sqrt(100^2+yb^2)//mm
+//eqauting the moments equal to each other
+//P*e=(F1/l1)*[l1^2+l2^2+l3^2+l4^2+l5^2+l6^2+l7^2]
+F1=(P*e*l1)/(l1^2+l2^2+l3^2+l4^2+l5^2+l6^2+l7^2)//N
+F2=F1*l2/l1//N
+F3=F1*l3/l1//N
+F4=F1*l4/l1//N
+F5=F1*l5/l1//N
+F6=F1*l6/l1//N
+F7=F1*l7/l1//N
+//cos(q1)=100/l3=0.76=a
+//cos(q4)=100/l4=0.99=b
+//cos(q5)=100/l5=0.658=c
+a=0.76
+b=0.99
+c=0.658
+R3=sqrt(Ps^2+F3^2+2*F3*Ps*a)
+R4=sqrt(Ps^2+F4^2+2*F4*Ps*b)
+R5=sqrt(Ps^2+F5^2+2*F5*Ps*c)
+printf("the value R3,R4,R5 are respctively,%f N\n,%f N\n,%f N\n",R3,R4,R5)
+//let d be diameter
+pi=3.14
+//from above we see that max lod is R5,therefore R5=P
+//R5=(pi/4)*d^2*T
+d=sqrt(R5*4/(pi*T))//mm
+Lc=R5/(d*t)//max crushing load
+printf("the cordinates of centre of gravity are,%f mm\n,%f mm \n",xb,yb)
+printf("the direct load is,%f N\n",Ps)
+printf("the turning moment is,%f N-mm\n",T1)
+printf("the values of Li respectively is,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n",l1,l2,l3,l4,l5,l6,l7)
+printf("the shear loads(Forces F) acting are,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n,%f mm\n",F1,F2,F3,F4,F5,F6,F7)
+printf("the crushing stress is,%f N/mm^2\n ",Lc)
+printf("the diameter is ,%f mm\n",d)
+printf("since crushing load calculted is less then 120 N/mm^2,therefore desing is safe ")
diff --git a/278/CH9/EX9.16/ex_9_16.sce b/278/CH9/EX9.16/ex_9_16.sce new file mode 100755 index 000000000..afb4a9cb1 --- /dev/null +++ b/278/CH9/EX9.16/ex_9_16.sce @@ -0,0 +1,32 @@ +//find value of P
+clc
+//solution
+//given
+//refer fig 9.29 and 9.30
+T=100//N/mm^2
+n=4
+d=20//mm
+//Ps=P/4=0.25*P//N
+e=100//mm
+//T1=P*e//turning moment
+//la=ld=200=100//mm
+//lb=lc=100//mm
+//eqauting the moments equal to each other
+//P*e=(Fa/la)*[la^2+lb^2+lc^2+ld^2]
+//P*e=(Fa/la)*[2*300^2+2*100^2]
+//Fa=P*100*3/2000//N
+//Fa=0.15*P//N
+//Fb=Fa*lb/la=0.05*P//N
+//Fc=Fa*lc/la=0.05*P//N
+//Fd=Fa*ld/la=0.15*P//N
+//Ra=Ps-Fa=0.1*P
+//Rb=Ps-Fb=0.20*P
+//Rc=Ps+Fc=0.30*p
+//Rd=Ps+Fd=0.40*P//N
+//max load is Rd
+//therfore
+pi=3.14
+//Rd=(pi/4)*T*d^2
+//0.40*P=(pi/4)*T*d^2
+P=(pi/4)*T*d^2/0.40
+printf("the value of force P is,%f N",P)
\ No newline at end of file diff --git a/278/CH9/EX9.17/ex_9_17.sce b/278/CH9/EX9.17/ex_9_17.sce new file mode 100755 index 000000000..193680bdb --- /dev/null +++ b/278/CH9/EX9.17/ex_9_17.sce @@ -0,0 +1,37 @@ +//find diameter of rivet
+clc
+//solution
+//given
+n=6
+P=60000//N
+e=200//mm
+T=150//N/mm^2
+Ps=P/n
+//l1=l3=l4=l6
+l1=sqrt(75^2+50^2)//mm
+l3=sqrt(75^2+50^2)//mm
+l4=sqrt(75^2+50^2)//mm
+l6=sqrt(75^2+50^2)//mm
+l2=50//mm
+l5=50//mm
+//eqauting the moments equal to each other
+//P*e=(F1/l1)*[l1^2+l2^2+l3^2+l4^2+l5^2+l6^2]
+//P*e=(F1/l1)*[4*l1^2+2*l2^2]
+F1=(P*e*l1)/(4*l1^2+2*l2^2)//N
+F2=F1*l2/l1//N
+F3=F1*l3/l1//N
+F4=F1*l4/l1//N
+F5=F1*l5/l1//N
+F6=F1*l6/l1//N
+//cos(q1)=50/l1=0.555=a
+a=0.555
+R3=sqrt(Ps^2+F3^2+2*F3*Ps*a)
+R2=Ps+F2//N
+printf("the value of forces is,%f N\n,%f N\n",R2,R3)
+//R3>R2
+pi=3.14
+P=(pi/4)*d^2*T
+//R3=P
+d=sqrt(R3/117.8)//mm
+printf("the value of diameter is,%f mm\n",d)
+printf("the standard diameter of is 19.5 mm ")
diff --git a/278/CH9/EX9.18/ex_9_18.sce b/278/CH9/EX9.18/ex_9_18.sce new file mode 100755 index 000000000..37c14bdee --- /dev/null +++ b/278/CH9/EX9.18/ex_9_18.sce @@ -0,0 +1,48 @@ +//determine diametr of diameter and thickness of plate
+clc
+//solution
+//given'
+n=4
+Ab=60//mm
+Cd=60//mm
+Bc=60//mm
+P=100000//N
+Ef=150//mm
+q=30//deg
+Ty=240//N/mm^2
+Fs=1.5
+Fb=125//N/mm^2
+b=240//mm
+//let d be diameter of rivet
+Ps=P/n//N
+e=Ef*sin(q)//mm
+la=60+30//mm
+ld=90//mm
+//la=ld
+//lb=lc
+lb=30//mm
+lc=30//mm
+//eqauting the moments equal to each other
+//P*e=(Fa/la)*[la^2+lb^2+lc^2+ld^2]
+//10000*75=(Fa/la)*[2*90^2+2*30^2]
+Fa=7500*1000*la/(2*90^2+2*30^2)//N
+Fb=Fa*lb/la//N
+Fc=Fa*lc/la//N
+Fd=Fa*ld/la//N
+a=-sqrt(3)/2//deg
+b=-sqrt(3)/2//deg
+c=sqrt(3)/2
+d=sqrt(3)/2
+Ra=sqrt(Ps^2+ Fa^2+ 2*Fa*Ps*a)
+Rb=sqrt(Ps^2+ Fb^2+ 2*Fb*Ps*b)
+Rc=sqrt(Ps^2+ Fc^2+ 2*Fc*Ps*c)
+Rd=sqrt(Ps^2+ Fd^2+ 2*Fd*Ps*d)
+printf("the value of Ps is,%f N\n ",Ps)
+printf("the value fo forces rae,%f N\n,%f n\n,%f n\n,%f N\n",Fa,Fb,Fc,Fd)
+printf("the value of Ra,Rb,Rc and Rd are,%f N\n,%f N\n,%f N\n,%f N\n",Ra,Rb,Rc,Rd)
+//since greatest is Rd,therfore Rd=P
+pi=3.14
+//P=(pi/4)*d^2*Ty/Fs//N
+d1=sqrt(Rd/125.7)
+printf("the diametr of rivet is %f mm\n",d1)
+printf("choosing th standard value od d as 23.5 mm\n")
diff --git a/278/CH9/EX9.2/ex_9_2.sce b/278/CH9/EX9.2/ex_9_2.sce new file mode 100755 index 000000000..8416bfd1c --- /dev/null +++ b/278/CH9/EX9.2/ex_9_2.sce @@ -0,0 +1,27 @@ +//find the efficiency of following rivet joints
+clc
+//solution
+//given
+t=6//mm
+d=20//mm
+ft=120//N/mm^2
+T=90//N/mm^2
+fc=180//N/mm^2
+p=50//mm
+pi=3.14
+Pt=(p-d)*t*ft//N//tearing resistance of plate
+Ps=(pi/4)*d^2*T//N//shearing resistance of rivet
+Pc=d*t*fc//N//crushing resistance of rivet
+P=p*t*ft//N//strength of the unriveted
+//eff=(least of Pt,Ps,Pc)/P
+eff=Pt/P//least is Pt
+p1=65//mm
+Pt1=(p1-d)*t*ft//N
+Ps1=(2*pi/4)*d^2*T//N
+Pc1=2*d*t*fc//N
+P2=p1*t*ft//N
+printf("the value of forces are,%f N\n,%f N\n,%f N\n",Pt1,Ps1,Pc1)
+//eff1=least of Pt1,Ps1,Pc1/P2
+eff1=Pt1/P2//least is Pt1
+printf("the efficiency is first case is,%f\n",eff)
+printf("the eff is second case is,%f",eff1)
\ No newline at end of file diff --git a/278/CH9/EX9.3/ex_9_3.sce b/278/CH9/EX9.3/ex_9_3.sce new file mode 100755 index 000000000..7e5f4a5ef --- /dev/null +++ b/278/CH9/EX9.3/ex_9_3.sce @@ -0,0 +1,18 @@ +//find efficiency of joint
+clc
+//solution
+//given
+t=10//mm
+d=25//mm
+p=100//mm
+ft=120//N/mm^2
+T=100//N/mm^2
+fc=150//N/mm^2
+pi=3.14
+Pt=(p-d)*t*ft//N//tearing resistance of plate
+Ps=(2*pi/4)*d^2*T//N//shearing resistance of rivet
+Pc=2*d*t*fc//N//crushing resistance of rivet
+P=p*t*ft//N//strength of the unriveted
+//eff=(least of Pt,Ps,Pc)/P
+eff=Pc/P//least is Pc
+printf("the eff is,%f",eff)
\ No newline at end of file diff --git a/278/CH9/EX9.4/ex_9_4.sce b/278/CH9/EX9.4/ex_9_4.sce new file mode 100755 index 000000000..ba8a8e84a --- /dev/null +++ b/278/CH9/EX9.4/ex_9_4.sce @@ -0,0 +1,28 @@ +//find efficiency
+clc
+//solution
+//given
+t=13//mm
+ft=80//N/mm^2
+T=60//N/mm^2
+fc=120//N/mm^2
+pi=3.14
+d=6*sqrt(t)//mm//dia of rivet
+//use standard value from table 9.3
+//let p be the picth of rivets
+//Pt=(p-d)*t*ft=(p-23)*1040//N//tearing resistance of plate
+Ps=2*(pi/4)*d^2*T//N//shearing resistance of rivet
+//p-23=Ps/1040
+p=23+(Ps/1040)//mm
+//check the limits,if p<=pmax..then it is safe design
+//pmax=C*t+41.28//mm=75.28mm which is more then p
+pb=0.33*p+ 0.67*d//distance btw rivets
+m=1.58*d//margin
+Pt=(p-d)*t*ft//N//tearing resistance of plate
+Ps=(2*pi/4)*d^2*T//N//shearing resistance of rivet
+Pc=2*d*t*fc//N//crushing resistance of rivet
+P=p*t*ft//N//strength of the unriveted
+//eff=(least of Pt,Ps,Pc)/P
+printf("the value of forces are,%f N\n,%f N\n,%f N\n",Pt,Ps,Pc)
+eff=Ps/P//least is Ps
+printf("the eff is,%f",eff)
\ No newline at end of file diff --git a/278/CH9/EX9.5/ex_9_5.sce b/278/CH9/EX9.5/ex_9_5.sce new file mode 100755 index 000000000..b69a418f8 --- /dev/null +++ b/278/CH9/EX9.5/ex_9_5.sce @@ -0,0 +1,30 @@ +//find rivet dia,distance btw rows of rivets
+clc
+//solution
+//given
+t=7//mm
+pi=3.14
+ft=90//N/mm^2
+T=60//N/mm^2
+fc=120//N/mm^2
+//let d be dia,since t<=8mm therefore d will be obtainned by equating shearing resistance to crushing
+//Ps=Pc
+//Ps=3*(pi/4)*d^2*T//N//shearing resistance of rivet
+//Pc=3*d*t*fc//N//crushing resistance of rivet
+//Ps=Pc
+//141.4*d^2=2520*d
+d=2520/141.4//mm
+//let p is pitch
+Ps=141.4*d^2//N
+//Pt=(p-d)*t*ft//N//tearing resistance of plate
+//Ps=Pt
+//630*(p-19)=51045
+//p=(51045/630)+19//mm
+//pmax=C*t+41.28//mm=66mm,since pmax<p..therefore p=pmax=66mm
+p=66//mm
+pb=0.33*p+0.67*d//distance btw the rivets
+Pt=(p-d)*t*ft
+Ps=141.4*d^2//N
+Pc=3*d*t*fc//N
+printf("the pitch is,%f mm\n",p)
+printf("the distance btw the rivets is,%f mm",pb)
\ No newline at end of file diff --git a/278/CH9/EX9.6/ex_9_6.sce b/278/CH9/EX9.6/ex_9_6.sce new file mode 100755 index 000000000..2afa1730b --- /dev/null +++ b/278/CH9/EX9.6/ex_9_6.sce @@ -0,0 +1,27 @@ +//find rivet dia,pitch,thickness and eff
+clc
+//solution
+//given
+t=10//mm
+ft=80//N/mm^2
+T=60//N/mm^2
+pi=3.14
+//d=6*sqrt(t)//mm
+//choose standard value of d from table 9.3
+d=19//mm
+//let p is pitch of rivets
+Ps=1*1.875*(pi/4)*d^2*T//N//shearing resistance of rivet
+//Pt=(p-d)*t*ft=(p-19)*800//N//tearing resistance of plate
+//Ps=Pt
+p=19+(31900/800)//mm
+//pmax=C*t+41.28=58.78mm whihc is equal to p
+t1=0.625*t//mm
+Pt=(p-d)*t*ft//=(p-19)*800//N
+P=p*t*ft//N//strength of the unriveted
+printf("the value of forces is,%f N\n,%f N\n",Pt,Ps)
+//eff=(least of Pt,Ps)/P
+eff=Ps/P//least is Ps
+printf("the eff is,%f\n",eff)
+printf("the pitch is,%f mm\n",p)
+printf("the thickness of cover plate is,%f mm\n",t1)
+printf("the diameter of rivets is,%f mm",d)
\ No newline at end of file diff --git a/278/CH9/EX9.7/ex_9_6.sce b/278/CH9/EX9.7/ex_9_6.sce new file mode 100755 index 000000000..2afa1730b --- /dev/null +++ b/278/CH9/EX9.7/ex_9_6.sce @@ -0,0 +1,27 @@ +//find rivet dia,pitch,thickness and eff
+clc
+//solution
+//given
+t=10//mm
+ft=80//N/mm^2
+T=60//N/mm^2
+pi=3.14
+//d=6*sqrt(t)//mm
+//choose standard value of d from table 9.3
+d=19//mm
+//let p is pitch of rivets
+Ps=1*1.875*(pi/4)*d^2*T//N//shearing resistance of rivet
+//Pt=(p-d)*t*ft=(p-19)*800//N//tearing resistance of plate
+//Ps=Pt
+p=19+(31900/800)//mm
+//pmax=C*t+41.28=58.78mm whihc is equal to p
+t1=0.625*t//mm
+Pt=(p-d)*t*ft//=(p-19)*800//N
+P=p*t*ft//N//strength of the unriveted
+printf("the value of forces is,%f N\n,%f N\n",Pt,Ps)
+//eff=(least of Pt,Ps)/P
+eff=Ps/P//least is Ps
+printf("the eff is,%f\n",eff)
+printf("the pitch is,%f mm\n",p)
+printf("the thickness of cover plate is,%f mm\n",t1)
+printf("the diameter of rivets is,%f mm",d)
\ No newline at end of file diff --git a/278/CH9/EX9.8/ex_9_6.sce b/278/CH9/EX9.8/ex_9_6.sce new file mode 100755 index 000000000..2afa1730b --- /dev/null +++ b/278/CH9/EX9.8/ex_9_6.sce @@ -0,0 +1,27 @@ +//find rivet dia,pitch,thickness and eff
+clc
+//solution
+//given
+t=10//mm
+ft=80//N/mm^2
+T=60//N/mm^2
+pi=3.14
+//d=6*sqrt(t)//mm
+//choose standard value of d from table 9.3
+d=19//mm
+//let p is pitch of rivets
+Ps=1*1.875*(pi/4)*d^2*T//N//shearing resistance of rivet
+//Pt=(p-d)*t*ft=(p-19)*800//N//tearing resistance of plate
+//Ps=Pt
+p=19+(31900/800)//mm
+//pmax=C*t+41.28=58.78mm whihc is equal to p
+t1=0.625*t//mm
+Pt=(p-d)*t*ft//=(p-19)*800//N
+P=p*t*ft//N//strength of the unriveted
+printf("the value of forces is,%f N\n,%f N\n",Pt,Ps)
+//eff=(least of Pt,Ps)/P
+eff=Ps/P//least is Ps
+printf("the eff is,%f\n",eff)
+printf("the pitch is,%f mm\n",p)
+printf("the thickness of cover plate is,%f mm\n",t1)
+printf("the diameter of rivets is,%f mm",d)
\ No newline at end of file diff --git a/278/CH9/EX9.9/ex_9_9.sce b/278/CH9/EX9.9/ex_9_9.sce new file mode 100755 index 000000000..8125d075e --- /dev/null +++ b/278/CH9/EX9.9/ex_9_9.sce @@ -0,0 +1,48 @@ +//desing longitudinal joint
+clc
+//soltuion
+//given
+D=1250//mm
+P=2.5//N/mm^2
+ftu=420//N/mm^2
+fcu=650//N/mm^2
+Tu=300//N/mm^2
+eff=0.8
+Fs=5//factor of safety
+pi=3.14
+ft=ftu/Fs
+fc=fcu/Fs
+T=Tu/Fs
+t=P*D/(2*ft*eff)//mm//thickness of plate
+d=6*sqrt(t)//mm//DIA
+//Pt=(p-d)*t*ft=(p-31.5)*2100//N//tearing resistance of plate
+Ps=4*1.875*(pi/4)*d^2*T+(pi/4)*d^2*T//=8.5*(pi/4)*d^2*T//N//shearing resistance of rivet//N//shearing resistance of rivet
+//Pt=Ps
+//p-31.5=(397500/2100)
+//p=31.5+(397500/2100)//mm
+//pmax=C*t+41.28//mm=196mm
+//since p>pmax,therefore
+//p=pmax
+p=196//mm
+p'=196/2//mm
+d1=0.2*p+1.15*d//mm//diatnce between outtr and row and next row
+d2=0.165*p+0.67*d//mm//distance ebtween inner row for zigzag riveting
+t1=0.75*t//mm//thickness of wide strap
+t2=0.625*t//mm//thickness of narrow strap
+m=1.5*d//mm//margin
+Pt=(p-d)*t*ft//(p-31.5)*2100//N
+Pc=5*d*t*fc//N//crushing resistance of rivet
+P=p*t*ft//N//strength of the unriveted
+//joint may also fail due to combine teARING AND shearing reistance
+Pts=(p-2*d)*t*ft+(pi/4)*d^2*T//N
+printf("the value of forces calculted are,%f N\n,%f N\n,%f N\n",Pt,Pc,Pts)
+//eff=(least of Pt,Pc,Pts)/P
+eff=Pts/P//least is Ps
+printf("the eff is,%f\n",eff)
+printf("the pitch is,%f mm\n",p)
+printf("the thickness of wide strap is,%f mm\n",t1)
+printf("the thickness of narrow strap is,%f mm\n",t2)
+printf("the diameter of rivets is,%f mm",d)
+printf("the margine s,%f mm\n",m)
+printf("the distance btw outer and next row is,%f mm\n",d1)
+printf("the distance btw inner rows is,%f mm\n",d2)
\ No newline at end of file |